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The exposed slopes formed by stone mining had caused serious problems of environmental pollution. The ecological restoration
was a very effective measure to solve it. In this study, the Indigofera amblyantha Craib was the dominant species in the
ecorestoration during the first two years of ecological restoration, which was based on analyzing the importance value (IV) and
diversity indexes of plant species. Meanwhile, the ecorestoration process helps slow down the increase of the concentrations of
some heavy metals in the substrate material; however, the changing trends of these metals were not uniform. The root and leaf
were the main parts of heavy metal distribution, respectively, corresponding to Pb, Cr, As, Sb, and Ni in root and Cu, Mn, and
V in leaf. It confirmed that Indigofera amblyantha Craib had an advantage ability to enrich and transfer Cd, Cu, and Mn
obtained from their biological concentration factor (BCF) and biological transfer factor (BTF). The Sb, Cd, and V were the
main factors affecting the IV by the redundancy analysis. These fine characters of Indigofera amblyantha Craib help explain it
well adapted to the ecorestoration of stone coal mines. The current results are valuable to evaluate and extend the application

in ecorestoration engineering of mining areas and other heavy metal-contaminated sites.

1. Introduction

Stone coal is a kind of coal resource stored in ancient stra-
tum, with the characteristics of a low-carbon (10-25%), low
calorific, high ash (65-80%), and high-sulfur (2-5%) [1, 2],
and associated with polymetallic composition, such as V,
Mo, Ni, Cu, Pb, Cd, Cr, Fe, and Zn, and their compounds,
etc. [3, 4]. Stone coal is an important V resource [2, 5]. Then,
the increasing exploitation of stone coal mines led to form a
lot of bare slopes and waste piles exposing to the environ-
ment [6, 7]. Many exposed high escarpments derived from
the mining of stone coal were exposed to atmospheric oxy-
gen, which resulted in acidic mine discharge (AMD) formed
from rain [8, 9]. The AMD could dissolve heavy metals dis-
charged into the water, such as V, Ni, Cd, Au, Ag, Cu, and
Zn [10, 11]. For example, for the fine particle sizes of stone
coal, the dissolved rates of As, Pb, V, Cd, and Cr were
2.96%, 0.95%, 0.35%, 0.25%, and 0.01% after 100 days in
pH 4.5 solution, respectively [12]. These heavy metals fur-

ther hazarded surrounding farmland and rivers. Thus, it
was worthy of close attention and needs an effective measure
to solve it.

The ecorestoration was a very effective measure to
reduce the ecological environment risk of the exposed slopes
formed after the stone coal mining [13-15]. At present, cov-
ering soil slope and growing plants was mainly ecological
restoration methods [16-18]. However, different from the
conventional ecorestoration, the dry, innutritious, and heavy
metal stress was the most limiting factor on these sites con-
taining heavy metals for plant establishment [19]. Therefore,
providing a suitable environment for plants to grow and
selecting tolerant plant species were essential to ecological
restoration. However, there was a lack of research reports
on ecorestoration and the plants adapted in exposed slopes
of the stone coal mines.

In this work, we firstly found Indigofera amblyantha
Craib growing very well in ecorestoration engineering of
the stone coal mine in Yiyang, Hunan province. Indigofera
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amblyantha Craib, with the characteristics of drought resis-
tance and barren tolerance, has been successfully applied to
soil-water conservation and slope restoration. However,
there is a lack of research on the tolerance of Indigofera
amblyantha Craib to heavy metal-contaminated sites. Ten
heavy metals, Pb, Cd, Cr, As, Cu, Zn, Ni, Sb, Mn, and V,
in root, leaf, stem, and stem-xylem of Indigofera amblyantha
Craib were measured to determine where the part was con-
ducive to heavy metal enrichment. The biological concentra-
tion factor (BCF) and biological transfer factor (BTF) further
analyzed the advantage ability to enrich and transfer heavy
metals. The relationship between the growth of Indigofera
amblyantha Craib and heavy metal distribution in soil is
very important to understand the tolerance of heavy metals.
As a result, these findings will help guide the ecorestoration
engineering of the stone coal mine.

2. Materials and Methods

2.1. Study Sites. The ecological restoration engineering of the
exposed slope of the stone coal mine was in Nijiang Kou,
Yiyang City, Hunan province, where it belongs to the sub-
tropical humid continental monsoon climate. The annual
average temperature was 16.1-16.9°C, the annual sunshine
hours were 1348-1772 with the annual cumulative rainfall
of 1230-1700 mm, and the frost-free period was 263-267
days. The total area of the ecological restoration engineering
was about 75,000 m%, and the construction was completed in
March 2019. In this study, about 3,000 m? as the sample sites
was selected to future analyze the changes in the recovery
process due to some areas which were not conducive to sam-
pling. The average slope ratio of the selected area was 1:0.25,
and the average sea allocation was about 70-80 m. To under-
stand the environmental background of the area, the heavy
metal content in stone coal was measured.

2.2. Ecological Engineering. The ecological restoration engi-
neering adopted the thick layer substrate material spraying
after hanging net for vegetation restoration [20]. Firstly,
the galvanized wire mesh was fastened to the stone slope
by the rock bolts in order to make the soil substrate material
better attached to the slope. Meantime, adding herbaceous
fibers to the net at the spacing of 1 m was to prevent the sub-
strate material layer down and provide support for plants’
root growth. Second, the substrate material was sprayed onto
the rocky slope with wire mesh by a compressed-air spraying
machine and rotor concrete conveyer (5m’ h™!, 0.12 MPa,
Hunan Changde Universal Compressor Co., Ltd., Changde
China). There was no seed added into the substrate material
for the first spraying at the thickness of 6 cm, and following
the second spraying mixed with the plant seeds with the
thickness of the layer was about 4 cm. The total thickness
of the layer was 8-10 cm. Third, nonwoven fabric was cov-
ered in the surface of the soil layer after spraying to reduce
the evaporation of water and soil erosion from the slope sur-
face and protect the seeds washed away by rain.

The substrate material and seeds were two important
components of ecological restoration engineering. The sub-
strate material was composed of a variety of material mixing,
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including soil, peat soil, sawdust, organic fertilizer, com-
pound fertilizer, aggregate agent, water retention agent, bio-
bacterial manure, and seeds according to a certain
proportion. The composition requirements and functions
of substrate material are detailed in Table S1 and S2,
Supplementary Information (SI). Plants were the key to
rocky slope ecoengineering. Therefore, the characteristics
of drought and barren tolerant of plants were selected to
use in the side slope ecological restoration. The selection of
plant species was based on reports in successful
engineering from common rock slope and similar mine
restoration [21-23], such as Indigofera amblyantha Craib
and Robinia pseudoacacia with strong resistance to
adversity [24-26]. Table S2 lists the selected plant species
used well applied in rocky slope ecoengineering. However,
it was not clear whether these plants were tolerant to heavy
metals for rocky slope ecoengineering in the stone coal
mine. The expected density of species was based on
references and empirical values (Table S2 and its
description in detail).

2.3. Sample Collection and Analysis. The investigation time
lasted for two years, and the sampling time was at the 3, 6,
9, 15, 18, and 21 months after ecorestoration (i.e., June, Sep-
tember, and December 2019 and June, September, and
December 2020, respectively). Twelve ecological investiga-
tion samples were established at 5m away from the bottom
and top of the slope and middle of slope in four different
locations, assessing plant species and communities in ecoen-
gineering restoration. In the investigation samples, 3 x 3 m”
quadrats were used for the shrubs, and internal 1 x 1m?
was chosen to determine the herb layer. The number, cover-
age/crown width, and height of each species in the ecoengi-
neering communities were measured in these quadrats. The
importance value (IV), Shannon-Wiener index (H ", and
Simpson index (D) were used to represent the vegetation
diversity, respectively [27-29], and their description in detail
is shown on Text S2 in SI. The importance value (IV) as a
comprehensive index can reflect the position and function
of a species in a given community. Thus, the higher IV
showed the species with better adaptability in the environ-
ment [30].

To prevent the sampling of the substrate material and
dominant plants from affecting the growth of the plants in
ecological investigation samples, dominant species accompa-
nying the substrate material of different recovered times
were sampling in the adjacent area outside the ecological
investigation samples. All substrate material and plant sam-
ples were sealed with polythene bags and transported to the
laboratory. The substrate material soil samples air-dried
were sieved through a 100-mesh sieve and used to further
analyze the content of the heavy metal. After washing care-
fully with deionized water, the plant samples (root, leaf, stem
xylem, stem phloem, and fruit/seed) were oven-dried at 80°C
until dry-weight no longer changes [31, 32] and further ana-
lyzed the content of heavy metal in parts of plants.

The content of heavy metals, including Pb, Cd, Cr, As,
Cu, Zn, Ni, Sb, Mn, and V in stone coal, artificial soil, and
plants, were measured by ICP-MS (NexION 350X,
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PerkinElmer, USA) after digesting tissues following the Chi-
nese National Standards for Food Safety Determination of
multiple elements (GB5009. 268-2016). The 0.10 g collected
samples were added to the 50 mL Teflon crucibles and added
5mL deionized water. Then, 5mL hydrochloric acid, 5mL
nitric acid, 3 mL hydrofluoric acid, and 2 mL perchloric acid
were added into the crucibles in turn, respectively. The cru-
cibles covering lid were placed on the electric heating plate
and heated 0.5h in the 120°C and continue to heat 0.5h in
the 150°C. Then, open the lid and heat it until it is nearly
dry to drive out the acid at 180°C. After cooling, 2 mL nitric
acid-soluble was added to dissolve again, joined in ultrapure
water to 50mL volumetric, and then filtered through
0.22 ym membrane filtration [33]. The solution after filtra-
tion further analyzed the content of heavy metals.

The biological concentration factor (BCF) and biologi-
cal transfer factor (BTF) indexes were calculated as follows
[34, 35]:

heavy metal content in plants

BCF = x100%, (1)

heavy metal content in soils

heavy metal content in overground parts

BTF = x 100%.

heavy metal content in root
(2)

The redundancy analysis (RDA) was used to analyze
the plant species response to the factors that had a greater
impact on growth. The result of RDA could find out the
positive or negative factors on the ecorestoration process.
The RAD was performed with CANOCO 5.0 [36]. When
the angle between different environmental factors and/or
species was acute, it indicated a positive correlation and
on the contrary obtuse represented a negative correlation
between them [37-39].

3. Result and Discussion

3.1. Plant Community Change. The time-dependent pictures
of the actual recovery are shown in Figure 1. It was obvious
that the vegetation coverage of the slope has been signifi-
cantly improved and remained a high coverage after 21
months. The analysis of the growth of species and changes
of the community help to clearly understand the driving
processes. The composition and individual amount of spe-
cies were the most important factors affecting the ecores-
toration community. From the analysis of the results
(Figure 2), the Carex siderosticta Hance and Indigofera
amblyantha Craib were the dominant species for the herbs
and fruticose community, respectively. The IV of species in
the herbaceous community was Carex siderosticta Hance>-
Lolium perenne L.>Cynodon dactylon (L.) Pers. in order
(Figure 2). The Phytolacca acinosa Roxb and Erigeron acer
Linn. were exotic local species and were less impact on the
community. The IV of Carex siderosticta Hance showed a
fluctuating trend and with an obvious downward trend in
winter (recovered time at 9th and 21st month); however,
the cold season Lolium perenne showed increasing trends
in winter. The IV of Cynodon dactylon (L.) Pers. showed

no significant change over time. For IV of species in the fru-
ticose community, there has a reduced trend in turn: Indigo-
fera amblyantha Craib>Crotalaria pallida Ait.>Cassia
surattensis Burm.>Robinia pseudoacacia L.>Rhus chinensis
Mill. in different recovery times (Figure 2). The Indigofera
amblyantha Craib was the dominant species among these
species, of which the IV showed an increasing trend. The
IV of species Crotalaria pallida Ait. in the second year
showed a slight decline, probably due to its poor drought tol-
erance. In addition, for the top, middle, and bottom of slope
positions, the IV of species did not differ significantly in dif-
ferent positions (Figure S1). The reason may be the height
difference of samples was not obvious enough (30-50 m).

The diversity index of the plant community was an
important indicator, which can quantitatively reflect the sta-
bility of the community. The higher values indicated that the
ecorestoration community was in better condition. The Ma,
H' and D indexes of the herbosa and fruticose community
consistently showed upward trends overall (Figure S2).
However, the Ma, H', and D indexes of the herbs showed
down slightly in the second spring, i.e., from 9th to 15th
months. There was no significant difference in diversity
indexes between top, middle, and bottom of slope positions.

The dominant species Indigofera amblyantha Craib was
firstly found that well adapted to the ecorestoration of stone
coal mines, which could grow well in poor and pH4.5-7.5
soil due to the characteristics of resistance to infertility [40,
41], a strong drought tolerance [42, 43], and strong tensile
strength of root. Thus, these characteristics of Indigofera
amblyantha Craib determined its dominant position under
adverse circumstances. The fruticose community was in a
dominant position relative to herbosa community, and they
played more greater role in the process of vegetation restora-
tion and stabilization. Thus, the distribution of heavy metals
of dominant plant in fruticose community was further
analyzed.

3.2. Heavy Metals in the Substrate Material. In order to fur-
ther investigate the heavy metal changes in the ecorestora-
tion, the concentration of heavy metals in stone coal and
substrate material with recovered time was measured
(Figure 3). Except for Mn, heavy metals of stone coal (s.coal)
were higher than those in the initial substrate material (init.),
especially Cd, Cr, Cu, Ni, and V were more obvious. Despite
the bare stone coal has been covered by a layer of replacing
with the artificial substrate material, there had still heavy
metals leaching from stone coal under the action of water
and oxygen. In other words, stone coal was an important
source of heavy metals in the presence of rain and oxygen
[8, 44]. It is worth noting that the Mn in the initial artificial
soil matrix (init.) was higher than in the whole recovery
period. And the concentration Mn was a downward trend
from the initial to the 18th month and then increased again.
The possible reason was that the initial addition of quick-
acting fertilizers contained high levels of Mn, but it lost
heavily in early recovery time.

The changing trend of Pb, Cu, Sb, and V in substrate
material shown firstly raised and then fell. The results sug-
gested that these heavy metals were leached from stone coal
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Eco-engineering restoration completed

(b) 2019.3

The 9™ month after restoration

(d) 2019.12

The 18™ month after restoration

(e) 2020.9

The 21* month after restoration

(f) 2020.12

FiGURE 1: The time-dependent ecological restoration process of stone mine slope.

into substrate material in the early stages of ecological resto-
ration. After 6 months of ecological restoration, the concen-
tration of Cu, Sb, V, and Pb decreased significantly, which
may be related to the increase in vegetation coverage. The
concentration of Sb decreased was more obvious in the sec-
ond year (8.01 mgkg™" at twenty-first month) relative to the
highest point (28.11 mgkg™" at the 6th month). In addition,
as a special associated heavy metal in stone coal, the concen-
tration of V in stone coal (1636.53 mgkg ™) was significantly
higher than that of the initial substrate material
(84.45mgkg™"), its concentration was rising until the 6th
month and then falling to a steady concentration
(897.04 mgkg™"). The Zn, Ni, and Cd in substrate material
were on the increasing trend overall. The concentrations of
Zn in the substrate material had little change overall in
recovered time. In contrast, the concentrations of Cd and
Ni in the substrate material were generally upward overall.

In addition, the concentration of Cd and Ni in the substrate
material increased 5.71 and 2.23 times, respectively, from
0.14 to 0.80mgkg ' and 23.52 to 52.46 mgkg . The high
concentration of these metals in stone coal might be one of
the driving factors for the increase of what was in the sub-
strate material. The concentrations of Cr and As in the sub-
strate material were slightly rising in the initial stage of
ecorestoration and then showed a downward trend. How-
ever, the concentrations of Cr and As had a slight upward
in the twenty-first month. These changes of heavy metals
in substrate material were closely related to plant absorbing
and transferring.

3.3. Distribution of Heavy Metals in Indigofera amblyantha
Craib. As the dominant species, the ability of Indigofera
amblyantha Craib to tolerate, accumulate, and migration of
heavy metals was an important factor to explain its
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adaptability in the ecorestoration of stone mine slope. The
distribution of heavy metals in Indigofera amblyantha Craib
is shown in Figure 4. Compared to the control group at
twenty-first month (CK(21)), the concentrations of As in
leaf, Cd, Cu, Zn, and V in the root, and Ni in stem-xylem
were approximately equal to the CK(21) group, which sug-
gested that these parts were not affected by those heavy
metals. The concentrations of different heavy metals in
roots, stems, and leaves varied greatly (Figure 4). By the
analysis of the ratio of heavy metals in different organs of
the experimental group (recovered the 21st month) and
CK(21), the Cd, Zn, and V of stem-phloem, Pb and As in
stem-xylem, Cr, Cu, Ni, and Mn in leaf, and Sb in root
were higher than that of other organs (Table S3). The
concentrations of Cd, Zn, and V in stem-xylem were
1.88, 2.74, and 1.71 times, Pb and As in stem-phloem
were 4.18 and 4.28 times, Cr, Cu, Ni, and Mn in leaf
were 263, 1.94, 2.78, and 3.62 times, and Sb in root was
2.11 times that of the CK groups after 21 months in
ecorestoration, respectively. The result showed that the
accumulation of heavy metals in plant organs in
contaminated sites has increased.

For the changes of concentration with recovered time,
except Cd, Cu, and Sb, the average concentrations in roots,
stems, and leaves increased gradually with the recovered
time increasing in the overall trend, and the rate of increase
in the second year was higher than that in the first year. Dif-
ferent from other heavy metals, Cu decreased in the first

year, but increased gradually in the second year, and Sb
showed the rule of ascending-descending-ascending in stem,
leaf, and root. Except for V and Sb, the changes of concen-
trations of other heavy metals in the stem-xylem were not
significant. The concentrations and increase ranges of Pb,
Cr, As, and Ni in root, Mn and V in leaf, and Zn in stem-
phloem were the highest, respectively. It is worth noting that
the concentration of Cd was the highest in the first 3 months
and then decreased gradually, which may be related to its
strong migration. The concentration of heavy metals in pods
of Indigofera amblyantha Craib was also different. The con-
centration of Cd, Zn, and Mn in the pod of the second year
was lower than that of the first year, and other heavy metals
were higher than that of the first year (Figure 5).

3.4. BCF and BTF of Heavy Metals in Indigofera amblyantha
Craib. The concentration level could not reflect the tolerance
and accumulation of heavy metals in plants. Thus, the bio-
logical concentration factor (BCF) and biological transfer
factor (BTF) of heavy metals in different tissues of Indigofera
amblyantha Craib were calculated to further analyze the
characteristics of enrichment and migration of heavy metals
(Figure 6). In general, the BCF > 1 is one of the standards for
heavy metal enrichment plants, and the BCFand BTF > 0.5
can be used to adsorb soil heavy metals in practical applica-
tion [45, 46]. The BCF of heavy metals in organs of Indigo-
fera amblyantha Craib increased with the recovered time,
in order as follows: leaf>stem-phloem>root>stem-xylem.
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However, the BCF heavy metal in the phloem was higher
than that in the xylem; thus, heavy metals were relatively
easy to accumulate in the phloem instead of the xylem.
The BCFs of Cd, Cu, Zn, and Mn were higher than other
heavy metals in each recovery time. The BCFs of Cd, Mn,
and Cu in leaf were 0.905, 0.891, and 0.515 after recovered
21 months, respectively. In addition, the BCFs of Cd and
Zn in stem-phloem were 0.697 and 0.478, respectively. There
indicated that Indigofera amblyantha Craib has a stronger
ability to accumulate Cd, Mn, Cu, and Zn, especially in the
leaf and stem-phloem. However, the BCF does not reflect
the ability of organs to transport heavy metals; thus, the
BTF be used to evaluate the ability to transport and enrich
heavy metals from underground to surface. The BTF of
Cd, Cu, Zn, Nj, Sb, and Mn in stem or leaf was higher than
1, and the BTF of Zn was even 3.16 in the stem-phloem at 18
months, and Cd, Cu, and Mn values were up to 1.92, 3.48,
and 4.27 in the leaf at 21 months, especially. Like the BCF,
the BTF of most heavy metals in the leaf was the highest,
and the BTF of heavy metals in the phloem was higher than
that in the xylem. The BTFs of Cu and Mn in leaf, Zn in
stem-phloem, and Cd in both leaf and stem-phloem were
higher than in other parts of organs. These heavy metals
may be transported from the xylem to the leaves and then
accumulated in the phloem. But, the BTF of Zn in stem-

phloem and leaf was a significant drop in winter (9™ and
21°*" months). There indicated that Indigofera amblyantha
Craib had a better ability to enrich and transfer Cd, Cu,
Zn, and Mn. After being absorbed by roots in the soil, Cd,
Cu, and Mn were mainly transferred to leaves, while Zn
was mainly accumulated in stem-phloem and roots. How-
ever, the enrichment and transferability of Pb, Sb, V, and
Cr were low. It suggested that Indigofera amblyantha Craib
has good tolerance to Pb, Sb, V, and Cr.

3.5. Response to Heavy Metals in Substrate Material. The
response of dominant species Indigofera amblyantha Craib
to heavy metals in substrate material was analyzed by the
redundancy analysis (RDA). The RDA could identify the
factors with a greater impact on plant growth [36, 38]. The
longer the radiation of environmental factor, the greater
influence of the factor has. The RDA analysis between IV
of plant species and heavy metals is shown in Figure S3.
The first two axes explained 76.4% of the microbial
community variation (axis 1: 41.0% and axis 2: 35.4%).
The total variation was 0.841, and P =0.082. The Sb, Cd,
and V in the substrate material were the main factors
affecting the IV of plant species (Figure S3). The IV of
Indigofera amblyantha Craib was a positive correlation
with V and Sb and a negative correlation with Cd.
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Indigofera amblyantha Craib was also used for ecolog-
ical restoration of tungsten mine site, and the absorption
of Cu and Zn was relatively significant through the anal-
ysis of heavy metals in the soil, which confirmed that
Indigofera amblyantha Craib had a good capacity of
accumulation and transport of Cu and Zn from stone
mines in this study [47]. Chen et al. suggested that Indi-
gofera amblyantha Craib had moderate tolerance and
bioaccumulation capability for Pb and Cd [48, 49].
However, there was no advantage of Indigofera
amblyantha Craib on accumulation, transport, and toler-
ance to Pb was found in this study. Besides, there were
no other reports related to heavy metals in Indigofera
amblyantha Craib. Although Indigofera amblyantha
Craib does not meet the standard of heavy metal super
accumulation in plant, it still can been used for the eco-
logical restoration of soil contaminated by Cd, Cu, Zn,
and Mn or mining areas due to its strong enrichment
and transport capacity for Cd, Cu, Zn, and Mn and
its large biomass.
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FiGurek 6: The (a) BCF and (b) BTF of heavy metal in different organs of Indigofera amblyantha Craib. The error bar was the standard error.

4. Conclusions

In this study, we firstly found that the Indigofera amblyantha
Craib showed great adaptability based on two years of
follow-up investigation on ecorestoration engineering in
expose slopes of the stone coal mines. Specifically, the Indi-

gofera amblyantha Craib was confirmed to be the dominant
species in the ecorestoration based on the IV and diversity
indexes obtained from the investigation of number, height,
crown width, or coverage of species. The changes of concen-
trations of heavy metals (Pb, Cd, Cr, As, Cu, Zn, Ni, Sb, Mn,
and V) in substrate material suggested that they were greatly
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affected by the stone coal parent material and ecorestoration
effect. Further, the concentrations and BCF and BTF indexes
of heavy metals in leaf, stem, root, and fruit of dominant
species confirmed that Indigofera amblyantha Craib had a
better ability to enrich and transfer Cd, Cu, Zn, and Mn
and has good tolerance to Pb, Sb, V, and Cr. Overall, the
results of this study could shed light on the applicability of
Indigofera amblyantha Craib in ecorestoration engineering
of mining areas.
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