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Transient electromagnetic field plays very important roles in the evolution of high-energy-density matter or laser plasma. Now, a
new design is proposed in this paper to diagnose the transient magnetic field, using relativistic electron bunch as a probe based on
high-energy electron radiography. And based on this scheme, the continuous distribution of magnetic strength field can be
snapshotted. For 1mm thick quadrupole magnet model measured by 50MeV probe electron beams, the simulation result
indicates that this diagnosis has spatial resolution better than 4 microns and high measurement accuracy for strong magnetic
strength and high magnetic gradient field no matter whether the magnetic interaction is focusing or defocusing for the range
from -510 T∗ μm to 510 T∗ μm.

1. Introduction

The transient electromagnetic field plays very important
roles in the research on the high-energy-density matter,
driven by intense laser, ion, and Z-pinch equipment [1–6].
The research of electromagnetic field in plasma is related to
accelerator physics, high-energy density physics, inertial con-
finement fusion, and astrophysics phenomena [7–12]. In the
past several years, many methods based on charged particle
radiography have been tried, such as laser wake field acceler-
ator electron radiography, monoenergetic electron radiogra-
phy, and monoenergetic proton radiography [13–19]. In this
paper, we demonstrate a new method to achieve continuous
point measurement for the electromagnetic field strength.

As a diagnosis probe, high-energy electron has some
advantages for the transient electromagnetic field measuring.
Relativistic speed beams are taken easily by making the
electrons penetrate specimen with millimeter size in several
tens of picoseconds; compared with the other relativistic
particles, electron has lower magnetic rigidity, which makes
it more sensitive to the electromagnetic field; besides,
ultrashort bunch is taken easier, to ensure the quasistatic of
diagnosed specimen.

High-energy electron radiography (HEER) has been
developed at LANL, Tsinghua University and Institute of
Modern Physics, Chinese Academy of Science, in the past
several years [20–26]. The several microns spatial resolution
has been also taken in the experiment. In the past years, only
static target or fluid target has been used as the object in
HEER experiment. Up to now, there is no report of using
the point-to-point HEER as the electromagnetic field diagno-
sis. In this paper, a new method is proposed that is based on
HEER beam line design for magnetic field area diagnosis.

2. Principle

Above all, two approximates can ensure the accuracy of this
diagnosis. Firstly, the electric field is very similar to electro-
static field in the plasma. Thence, for the process from infin-
ity to infinity, all the incident and exit potential of probe
beams are zero, and there is no energy decrease or increase
when the electron beam has penetrated the system. Secondly,
for the scattered electron beams, the E/B field area is filled
with very small amount of materials to intervene the electron
scattering angle, just like the ultrashort intense laser-foil
interaction process [19].
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The whole diagnosis process is divided into two parts to
describe the interaction of beam line with plasma and the
electrons transport in the point-to-point HEER beam line.

For the first subprocess, high-energy electron beams will
be deflected by a magnetic field when penetrating the system.
The deflection can be described by the following formula:

θ =
ð
ωdt =

ð
eB⊥dt
γm0

=
ð
eB⊥
γm0c

dz, ð1Þ

where

γ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2/c2ð Þp , ð2Þ

where θ is deflection of electron beam, ω is angular veloc-
ity of electrons in magnetic field, v is velocity of electrons,m0
is the electron rest mass, c is speed of light in vacuum. B⊥ is
the weight of magnetic vector at x-y plane, and z is the posi-
tion of magnetic area.

Based on the above description, if the incident electrons
have a specific angle distribution with high symmetry in polar
coordinate at x-y plane, there is one-to-one correspondence
between transmittance and deflection.

The angle distribution of monoenergtetic electron inter-
acting with matter can be described by the following function:

f ϕð Þ = N t, ϕð Þ
N0

= 1
ϕ0 tð Þ ffiffiffiffiffiffi

2π
p e− 1/2ð Þ ϕ/ϕ0 tð Þð Þ2 , ð3Þ

where

ϕ0 tð Þ = 13:6MeV
βcp

ffiffi
t

p
1 + 0:038 ln tð Þð Þ, ð4Þ

where ϕ is scattered angle of electrons, t = X/X0 , X is the
thickness of target, and X0 is the radio length of specimen
materials.

From formula (3), after interactions between the incident
electron and target, the electron beams will have a specific
angle distribution. And the distribution should have high
symmetry in polar coordinate. In other words, the angle dis-
tribution of incident electrons can be controlled by scattering
target so as to meet diagnostic demand.

The next step is deflection measured by HEER beam line.
For monoenergetic electron beams, the transport in beam
line can be explained by the following matrix:
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Figure 1: (color online). Schematic diagram of HEER for magnetic area diagnosis. (a) The angle distribution of incident electrons. (b) The
electrons angle distribution after scattering target. (c) The electron position at Fourier plane; the green shadow area is the aperture position.
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Figure 2: (color online). Schematic of simulation design. The magnetic area as the specimen is a quadrupole magnet (a). And the aperture is
designed as an ellipse, where x-half-axis is 1mm and y-half-axis is 0.5mm in length (b).
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Figure 3: Electron beam trace from object plane to image plane in the x-plane and y-plane.
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where xi, yi and xi′, yi′are the position and angle of electrons at
the observation plane, and Rij are the conversion factor of the

beam line. The x0, y0 and x0′, y0′ are the position and angle of
electrons at the emission plane [27].

At the image plane, transport matrix parameters R12 =
R34 = 0. It means that the electron position at the image plane
is irrelevant with the angle of electrons at the object plane.
This beam line design is called point-to-point radiography.
Between the image plane and the object plane, by optimizing,
there will be a plane named Fourier plane which matches
the transport matrix parameters R11 = R33 = 0. It means that
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Figure 5: (color online). The angle distribution of electrons after scattering target (a) and the position distribution of electrons at the Fourier
plane (b).

Table 1: The transport matrix parameters of radiography beam line.

Parameters Value Parameters Value

R11F −2:69 × 10−3 R12F 1.10mm/mrad

R33F −6:20 × 10−3 R34F 0.53mm/mrad

R11 -1.00 R12 −5:94 × 10−3 mm/mrad

R33 -1.00 R34 −6:56 × 10−3 mm/mrad
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the electron angle information at object plane has been
translated to position information at this plane. Thence,
an aperture at the Fourier plane can achieve angle selection
for transmitted electrons. In the past years, the application
of aperture is to get better spatial and areal density resolu-
tions. Now, the magnetic strength diagnosis depends on the
characteristics of the aperture.

The aperture should be set at the Fourier plane where
aperture can select the angle around the center axis when the
electrons are not deflected. If the electron beam collective is

deflected by the magnetic field, the angle selection will also
be deflected from the center axis of angle distribution. Thence,
for the incident electrons with specific angle distribution, the
deflection of them has a negative correlation with its transmit-
tance. Furthermore, it is necessary to make the ratio of the x
-half-axis and y-half-axis equal R12F/R34F to ensure one-to-
one correspondence between magnetic strength and transmit-
tance. The footnote F means that the transport matrix param-
eters are from the object plane to Fourier plane. The principle
is shown in Figure 1.
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Figure 6: The electron position distribution at the Fourier plane under different specimen quadrupole designs.
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3. Simulations

3.1. General Setup. The sketch of integral simulation is shown
in Figure 2. The incident electrons are scattered by an alumi-
num foil initially, and then, the scattered electrons penetrate
the magnetic vacuum. Then, HEER magnetic lens are set to
transport, select, and refocus the electrons behind target.
Finally, the electron number density will be counted by the
detector at image plane.

3.2. Image Lens Optimization. The typical charged particle
image beam line should satisfy that the transport matrix
parameters are R12 = R34 = 0 at the image plane. But for the
force field diagnosis HEER, as mentioned in Section 2, it is

necessary to make the x-axis and y-axis Fourier plane coinci-
dent run along the z-axis. Under this requirement, the imag-
ing lens system adapting 50MeV kinetic energy electron
beams is optimized by COSY INFINITY 9.1 [28]. It includes
eight quadrupole magnets, as shown in Figure 2; the length of
them is 10 cm, the inner diameter is 40mm, and the MG of
QA is 3.9097T/m, and QB is -3.6295T/m. The drift length
L1 is 30 cm, and L2 is 10 cm. The total length of this beam
line is 2.6m. The optimization result is shown in Figure 3.
And the relational transport matrix parameters of it are
shown in Table 1.

According to transport matrix parameters from the
object plane to Fourier plane, the aperture in the simulation
is designed as an ellipse shape as shown in Figure 2(b) and
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Figure 7: (color online). Simulation results under different designs for quadrupole magnetic field as specimens.
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the corresponding selection angle range can be described by
the following formula:

x0′
2 + y0′

2 ≤ 0:91mradð Þ2: ð6Þ

3.3. Specimen Design. The specimen is composed of scatter-
ing target and magnetic vacuum. In this work, we select a
5μm thick aluminum foil as the scattering target. On the
one hand, as a low Z element, it can ensure that the probe
electrons have lower energy spread. On the other hand, alu-
minum is always selected as the target material in the
research of intense laser-solid interaction or Z-pinch. Com-
bined with the aperture selection, the transmittance corre-
sponding to deflection is shown in Figure 4.

For this Gaussian distribution, we delimit the transmit-
tance larger than 0.01 as detectable. That means the detection
range of deflection is from -3mrad to 3mrad. For 50MeV
electrons, the corresponding magnetic strength diagnostic
range is from -0.51T∗mm to 0.51T∗mm.

Except for the lens design, there are two factors that
might influence measuring accuracy in this design: deflection
and magnetic gradient (MG) of the specimen. The deflection
can be limited by the incident electron energy. To get micro-
spatial resolution, we should control the deflection less than
10mrad for 1mm scale expansion size. To study the influ-
ence of MG on measurement accuracy, we select a quadru-
pole model as the magnetic vacuum in this simulation, and
a group of MG is set as 1, 2, and 3T/mm.

3.4. Complete Simulation Process. We simulate the situation
that the line beam along the x-axis and y-axis penetrates
the specimen. This set has two advantages. Firstly, the focus-
ing and defocusing influences can be analyzed, respectively;
secondly, the spatial resolution along the x-axis and y-axis
also can be self-governed. The whole simulation of diagnostic
process includes three sections: incident electrons interact

with scattering target, electron beams go through the area
with electromagnetic field, and electrons are refocused by
HEER beam line. For the first simulation section, EGS5 codes
are selected to do this [29]. Because the magnetic field model
is the standard quadrupole field as the specimen, the last two
section simulation is done by PARMELA software [30].

4. Results and Discussion

In the case of specimen with no magnetic vacuum, the scat-
tered electron angle distribution and position distribution
at Fourier plane are counted. The statistical steps of angle dis-
tribution are 0.04mrad along x′ and y′ and of position are
0.044mm along the x-axis and 0.021mm along y-axis,
respectively. The results are shown in Figure 5.

According to Figure 5, we verify that the angle distribu-
tion after scattering target is translated to position distribu-
tion at Fourier plane and the convert ratios correspond to
R12F and R34F along the x-axis and y-axis, respectively.

Figure 6 shows the electron position distribution at the
Fourier plane when different magnetic field gradients of spec-
imen magnetic are set. Compared with Figure 5, the electron
distribution at the Fourier plane is deformed. The distribu-
tion is broadened along the direction of Lorentz force in the
magnetic field. The size of line beam broadening is related
with the magnetic gradient. In this case, the transmittance
will be also different when the same aperture is used in the
simulation.
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Figure 8: (color online). The distribution of electrons at image plane in different specimen quadrupole designs.

Table 2: The RMS spatial resolution along the x-axis and y-axis.

MG RMS (x) RMS (y)

1 T/mm 3.4 μm 3.7 μm

2T/mm 3.4 μm 3.7 μm

3T/mm 3.4 μm 3.7 μm
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We integrate the two line beams into a crossing beam as a
probe electron beam, and the diagnosis results for the quad-
rupole magnetic field with different magnetic gradients are
shown in Figure 7. Based on the distribution of incident angle
distribution, the range of diagnosis is from -0.51T∗mm to
0.51T∗mm. Corresponding to different magnetic gradient
settings, the range is from -0.51mm to approximately
0.51mm, -0.26mm to approximately 0.26mm, and
-0.17mm to approximately 0.17mm. In Figure 7, the simula-
tion results are very consistent with the theoretical value
regardless of the magnetic focusing or defocusing interac-
tions and a little deviation in the measurement at the weak
field area. That means, at the edge of the magnetic area, there
might be deviation in the experiment.

The spatial resolution can be taken by the analysis of the
line beam broadening at the image plane. The statistical
result of electron distribution at image plane is shown in
Figure 8.

And the following analysis results are shown in Table 2.
The simulation results indicate that the RMS spatial res-

olution of this design is better than 4 micrometers along the
x-axis and y-axis. And the distribution of the magnetic
strength field taken by this method is continuous. In fact,
for the smaller size specimen, the spatial resolution can be
also improved by cascade magnification HEER so as to get
more delicate structure.

5. Conclusions

We present a new method to diagnose the transient magnetic
field that is based on the HEER beam line design. The simu-
lation results of 50MeV penetrating the quadrupole model
indicates that this method has high accuracy for strong field
measurement no matter whether the magnetic gradient
interaction is focusing or defocusing. At the same time, spa-
tial resolution better than 4 micrometers is also got in our
simulations. Of course, smaller aperture application or more
optimized beam line design can get better spatial resolution.
In summary, these results indicate that this method is very
suitable for the delicate diagnosis of the transient magnetic
field strength.
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