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The recently emerging technique of sparse reconstruction has received much attention in the field of photoacoustic imaging (PAI).
Compressed sensing (CS) has large potential in efficiently reconstructing high-quality PAI images with sparse sampling signal. In
this article, we propose a CS-based error-tolerant regularized smooth L0 (ReSLO0) algorithm for PAI image reconstruction, which
has the same computational advantages as the SLO algorithm while having a higher degree of immunity to inaccuracy caused by
noise. In order to evaluate the performance of the ReSLO algorithm, we reconstruct the simulated dataset obtained from three
phantoms. In addition, a real experimental dataset from agar phantom is also used to verify the effectiveness of the ReSLO
algorithm. Compared to three L, norm, L, norm, and TV norm-based CS algorithms for signal recovery and image
reconstruction, experiments demonstrated that the ReSLO algorithm provides a good balance between the quality and efficiency
of reconstructions. Furthermore, the PSNR of the reconstructed image calculated by the introduced method was better than the
other three methods. In particular, it can notably improve reconstruction quality in the case of noisy measurement.

1. Introduction

Photoacoustic imaging (PAI) is a new noninvasive and non-
ionizing biomedical imaging method which gains rapid
development in the last two decades [1-4]. As a hybrid tech-
nique, PAT attains the advantages of the contrast of optical
imaging and high resolution of ultrasonic imaging. In partic-
ular, PAI has shown great potential in many applications,
including living mouse brain vasculature imaging [3, 5, 6],
human skin imaging [7, 8], and the treatment and diagnosis
of cancer [9-11]. When the biological tissue is irradiated by
nanosecond laser pulses, the photoacoustic signals will be
generated in the tissue’s light absorption region and mea-
sured by ultrasonic transducers. Afterwards, the distribution
of laser energy absorption can be calculated from the photo-
acoustic signals by using the analytical or iterative
algorithms.

The reconstruction algorithm is an important factor
affecting the quality of PAI imaging, and the accurate and effi-
cient reconstruction algorithms are of great significance. Ana-
lytic algorithms such as the filtered back-projection algorithm
[12-14], the deconvolution reconstruction algorithm [15], and

the time-reversal imaging algorithm [16] have already been
used extensively owing to their accuracy and implementation
convenience. However, the analytic algorithms can only
reconstruct an accurate image with complete measurement
data from all directions, which requires a long scan time or
complex electronic equipment. When the data are insufficient,
the analytic algorithms are no longer effective. In many PAI
applications, such as breast imaging and ophthalmic imaging,
only incomplete data can be accepted. There has not been
accurate PAI reconstruction formula with incomplete data
yet. Therefore, the development of high-speed and high-
quality PAT image reconstruction algorithms based on incom-
plete data is an active research topic recently. The incomplete
data may arise from various forms, but in this work, we only
consider the sparse-view PAI reconstruction problem.
Mathematically, image reconstruction with sparse-view
incomplete data can be thought of as an underdetermined lin-
ear system. By making some constraints, the iterative recon-
struction algorithm that gives a more accurate result at the
expense of much more computing time has been developed
for sparse-view PAI [17-19]. One type of them is based on
the compressive sensing (CS) theory, which has drawn
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FiGURE 1: The (a) Sheep-Logan phantom, (b) blood vessel phantom, and (c) standard General Electric resolution phantom employed in the

2D computer-simulation studies.

increasing attention due to its can recover sparse signals under
sampling rate far lower than the Nyquist rate [20, 21]. By using
the L1magic convex optimization algorithm and sparse-view
data, Provost and Lesage applied CS to PAI [22, 23]. The prob-
lem of artifacts and loss of resolution in the case of insufficient
measurements can be solved by using patterned excitation
light via the SPGL1 algorithm [24]. Bayesian CS method was
used to simplify the PAI system [25]. The experimental results
indicated that the CS-based reconstruction method can reduce
undersampling artifacts effectively through the nonlinear con-
jugate gradient descent algorithm [26]. The above studies indi-
cated that the CS methods can reduce the number of
ultrasonic transducers and get high-quality reconstruction
results with sparse-view data.

To date, most CS applications within sparse-view PAI
imaging have centered on the L, norm minimization prob-
lem [22, 24, 27] and the total variation (TV) minimization
problem [28-31]. Encouraged by the advantages in edge
preservation and finer structure recovering, the L regulariza-
tions were introduced to computed tomography (CT) [32-
35], magnetic resonance imaging (MRI) [36], and PAI [37].
Bioucas-Dias and Figueiredo proposed a smoothed L, norm
(SLO) [38] algorithm that directly minimizes the L, norm,
which combines the advantages of the high precision of con-
vex optimization and the rapidity of greedy algorithm.
Mozaftarzadeh et al. have shown that the SLO algorithm can
provide a higher PAI image quality while a low number of

transducers were [37]. However, the SLO algorithm does
not consider the noise in the measurement data. Based on
the SLO algorithm, Bu et al. have adopted a regularization
term to tolerate errors which can achieve the same computa-
tional efficiency as the SLO algorithm while having better
noise robustness. This inspired us to apply the regularized
smooth L, (ReSLO) algorithm to reconstruct the sparse-
view PAI image. In this paper, we studied the use of the
ReSLO for L, norm minimization CS problems caused by
sparse-view PAI reconstruction. The proposed algorithm is
able to provide more accurate result under the sparse-view
situation. For the purpose of verifying the capability of the
ReSLO algorithm, the ReSLO algorithm compares with three
L, norm, L, norm, and TV norm-based CS algorithms for
signal recovery and image reconstruction.

2. Methods

2.1. Photoacoustic Theory. Based on the photoacoustic signal
generation theory, the relationship between the acoustic
pressure p(r, t) and the absorbed energy density A(r) obeys
the following wave equation [39].

o _
(w -V )p(r, t)=I'(r)A(r)
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FIGURE 2: Reconstruction results of the Sheep-Logan phantom. The first to the third rows are the reconstruction images with 20-view, 35-
view, and 50-view that are uniformly distributed at a 360" curve. The first to the fourth columns show the results of TwIST, SPGL1, SLO,
and ReSLO individually.
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TaBLE 1: Numerical results of reconstructed images.

Experimental CPU time (seconds) PSNR (dB) NMAE

Positions TwIST SPG SLO ReSLO TwIST SPG SLO ReSLO TwIST SPG SLO ReSLO
5 0.69 11.76 0.52 0.77 11.8 11.93 11.95 12.11 104.93 103.34 103.08 101.25
10 1.1 12.3 1.09 1.45 12.57 13.27 12.65 13.21 96.01 88.58 95.17 89.15
15 1.93 22.76 1.86 2.18 13.34 14.78 14.14 14.68 87.87 74.48 80.12 75.31
20 2.58 26.07 2.51 2.81 14.65 16.04 15.6 16.11 75.53 64.35 67.77 63.84
25 3.32 28.67 3.36 3.71 16.01 17.34 16.8 17.2 64.61 55.47 59 56.37
30 39 51.92 4.04 4.45 17.03 18.94 18.05 18.94 57.46 46.09 51.1 43.99
35 2.65 46.86 4.77 5.14 18.35 21.45 20.22 21.66 49.34 33.7 39.79 31.63
40 3.59 30.22 5.41 5.77 19.7 30.23 239 30.23 42.26 12.57 26.06 11.66
45 4.04 29.03 6.44 6.8 21.3 42.66 40.31 60.93 35.16 3.01 3.94 0.37
50 3.08 28.8 7.11 7.61 24.5 61.36 83.65 1135 24.3 0.35 0.03 0.001
Average 2.69 28.84 3.71 4.07 16.93 24.80 25.73 31.86 63.75 48.19 52.61 47.36

where r means the pixel position, t indicates the time, c is the
ultrasound speed, I'(r) denotes the Grueneisen parameter,
and I(t) is a temporal function of illumination that can be
approximately regarded as a Dirac delta function 8(t) in
most practical cases. By solving the wave equation of Eq.
(1), the pressure measured at locations r, can be written as
[40].

[ R e L C

With Fourier transform, the forward projection problem can
be expressed in the time-frequency domain as

oA =24

During the experiment, the frequency domain data can be
obtained by applying fast Fourier transform to the time
domain measurements. To numerically model the above for-
ward problem, the unknown reconstruction image A(r) is
reshaped into one-dimensional long vector X € RY, and a
column vector Y € RM can be used to represent all the
temporal-frequency pressure p(ry, k). According to Eq. (3),
the temporal-frequency domain measurement matrix can
be designed as [22].
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which is determined by the geometry and the grid shape of
the unknown image. In Eq. (4), r,, indicates the position of
the transducer, T denotes the p1xel coordinates of the image,
p is the number of ultrasonic sensors, and q indicates the
number of sampling points, respectively. Then, Eq. (3) can
be expressed as Y = KX. In PAI, the goal of image reconstruc-
tion is to reconstruct X through the pressure data Y.

2.2. Compress Sensing Application in PAI According to the
theory of compress sensing, an image can be reconstructed

when it or its transformation is sparse. Fortunately, most
medical images can be considered sparse with a sparse trans-
form basis ¥ : X = V0, where 0 € RY indicates the sparse
coefficient. Provost and Lesage have shown that there is a
sparse transform basis in which the PAI image is compress-
ible [22]. By denoting A =KY, the problem of PAI image
reconstruction can be solved by the following optimization
model.

min E(X) s.t. Y=KX=A6, (5)

where E(X) is the regularization function. Accroding to the
literature [22], the matrix A obtained from the product
between the forward operator K in the Fourier domain with
a wavelets basis ¥ will be a CS-matrix. And the wavelet basis
showed the best properties among generic bases that can rep-
resent sparsely images obtained via PAI

We note that most of the current CS-based reconstruc-
tion algorithms explore the prior knowledge that the PAI
image is sparse or sparse in the transform domains. And
the regularization term in Eq. (5) usually denoted by the L,
norm of the image’s sparsity transform coefficient, the total
variation norm of the image, and so forth. For example, the
constrained L; norm minimization can be applied to recon-
struct the PAI image.
|Y — A9 <. (6)

mein 1], st
The subject of solving Eq. (6) has received considerable atten-
tion in PAT image reconstruction, such as the use of L1magic
[22], SPGLI [24], and ADM [27].
If TV norm is selected as the regularization term, the TV-
based CS reconstruction model can be defined as follows:

min TV(X) st |[Y -KX|<3, (7)

where TV(X) = YN ID;X|| = IN,\/AIX? + AYX? is the dis-

crete form of TV for a grayscale image and A} and A} denote
the horizontal and vertical difference operators. In the field of
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FIGURE 3: Reconstruction results of the blood vessel phantom. The first to the third rows are the reconstruction images with 20-view, 30-view,
and 40-view that are uniformly distributed at a 360° curve. The first to the fourth columns show the results of TwIST, SPGL1, SL0, and ReSL0O
individually.
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TaBLE 2: Numerical results of reconstructed images.
Experimental CPU time (seconds) PSNR (dB) NMAE
Positions TwIST SPG SLO ReSLO  TwlIST SPG SLO ReSLO TwIST SPG SLO ReSLO
5 0.56 6.64 0.49 0.72 14.51 14.28 14.3 14.41 100.73 103.39 103.24 101.96
10 1.19 17.67 1.02 1.44 16.06 15.86 14.87 15.52 84.25 86.27 96.61 89.68
15 1.65 21.68 1.76 2.05 19.94 18.52 16.39 17.79 53.93 63.5 81.14 69.09
20 2.53 25.83 237 2.82 34.14 22.43 19.9 22.24 10.51 40.48 54.16 41.38
25 2.18 19.71 3.29 3.5 37.89 27.01 25.51 28.72 6.83 23.9 28.4 19.63
30 2.65 28.07 3.87 4.14 41.42 31.46 32.24 35.79 4.54 14.31 13.08 8.7
35 2.65 34.98 4.47 4.83 43.35 39.04 40.33 45.64 3.64 5.98 5.16 2.8
40 2.73 18.22 5.22 5.77 45.4 47.6 53.94 65.24 2.88 2.23 1.08 0.29
45 2.29 21.71 5.85 6.47 46.47 65.3 87.61 112.95 2.54 0.29 0.02 0.001
50 2.48 8.45 6.81 7.16 47.88 81.64 115.34 115.71 2.16 0.04 0.001 0.001
Average 2.09 20.3 3.52 3.89 34.71 36.31 42.04 47.40 27.2 34.04 38.29 33.35

PAIL the TV minimization optimization algorithm can
reconstruct excellent image from few-view data [28-31]. In
this work, the two-step iterative shrinkage thresholding
(TwIST) algorithm is considered for image reconstruction
[31, 38].

2.3. Regularized Smooth L, Algorithm. In order to realize fast
recovery of sparse signal, Mohimani et al. introduced the SLO
algorithm [41] to obtain sparse solution of underdetermined
of linear equation Y = KX. The SLO algorithm obtains the
most sparse solution by solving the following optimization
problem

m@inHOHO s.t. Y=A60, (8)

where [|0||, is the L, norm of 8 [37, 41]. In this algorithm, a
continuous function was used to approximate ||0||, instead
of minimize the L, norm directly, which can be written as fol-
lows: f,(0) =exp (—6°/0%). It should have a parameter o
which determines the quality of the approximation. Consid-
ering

) 1; if6=0,
L P #0 ®)

and by defining F_(0) =YY f.(0), the L, norm of 6 can be
calculated by ||0]|, = N — F(0) for small values of o.

Recently, Mozaffarzadeh et al. illustrate that SLO offers
higher-quality PAI images in comparison with L, norm-
based basis pursuit method while a low number of transduc-
ers were [37]. However, we can only observe inaccurate mea-
surements Y = KX + e, which means there are errors between
Y and KX. And the property of the SLO decreases signifi-
cantly due to the equality constraint Y = KX. In order to
resolve this problem, we added observation noise to the for-
ward model.

Y=KX+e=AO+e, (10)

where e € RM denotes a vector indicating the modeling trans-
ducer noise. And a regularized SLO (ReSLO0) method was used
to solve the above problem mentioned in Eq. (10) [42, 43],
which can be written as follows:

max F,(6) st |[Y-A]|, <. (11)

ReSLO transforms the equality constraint in Eq. (8) into
inequality constraint allowing certain error tolerance. The
ReSLO algorithm includes two nested iterations. The initial
value 0y, is set to 4 times of the maximum absolute value of
the sparse coeflicients in the outer loop, and the next values
0;=p0; y,jz1, where p is chosen between 0.5 and 1 in the
experiment [41]. For every o, the internal circle is responsible
for finding the maximum value of F () on set {6]||Y-A9)||,
< 8}. The internal loop consists of iterations of the form 6
— 0+ uo’VF,_(0), followed by solving the optimization
problem:

n%inuep—éH st ||Y-AB||, <. (12)
P

Using Lagrange multipliers, this minimization results in [42].
8,=0-A"(AA" +17'1,) " (A@—y), (13)

where A is the regularized parameter that is fixed for the
internal loop and adaptively computed for external loop.
An adaptive regularized parameter selection approach [44]
is used to solve objective function in Eq. (11), which gener-
ates a suitable regularization parameter in the iterative pro-
cess to balance the fit of the sparsity and residual error in
the objective function. Then, the regularized parameter dur-
ing the internal loop can be written as

~

\— H9v—9j_1 2 (14)

|4 (48, -)]

2
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FIGURE 4: Reconstruction results of the standard General Electric resolution phantom. The first to the third rows are the reconstruction
images with 30-view, 40-view, and 50-view that are uniformly distributed at a 360° curve. The first to the fourth columns show the results
of TwIST, SPGL1, SLO, and ReSLO individually.
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TaBLE 3: Numerical results of reconstructed images.
Experimental CPU time (seconds) PSNR (dB) NMAE
Positions TwIST SPG SLO ReSLO TwIST SPG SLO ReSLO TwIST SPG SLO ReSLO
5 0.37 8.04 0.45 0.74 14.58 14.49 14.81 14.95 96.87 97.58 97.89 93.45
10 0.97 12.47 1.08 1.5 14.76 15.46 15.4 15.79 88.17 84.36 85.86 80.16
15 1.48 21.62 1.78 2.08 15.43 16.38 16.29 16.67 78.49 74.94 74.68 68.14
20 2.15 31.96 2.55 2.89 16.27 17.34 17.18 17.73 68.62 63.55 62.05 54.09
25 2.83 37.57 3.21 3.48 17 18.57 18.18 18.92 60.94 51.36 49.37 43.06
30 3.36 49.94 4.15 4.48 17.99 20.55 19.98 21.02 51.78 37.85 34.52 29.41
35 3.17 26.03 4.73 5.15 18.98 22.43 22.26 23.47 44.38 27.93 22.88 18.97
40 3.03 32.1 55 5.85 20.2 25.01 25.52 26.49 37.09 19.32 14.04 11.8
45 292 52.29 6.18 6.82 21.64 27.24 27.76 29.12 30.51 13.31 9.1 6.96
50 3.43 53.99 6.75 7.14 23.49 30.16 30.99 32.99 23.54 8.4 5.43 391
Average 2.37 32.6 3.64 4.01 18.03 20.76 20.84 21.72 58.04 47.86 45.58 41

where 0y, is the first solution of the internal loop for the value
0 =0;. The step-by-step procedures of the ReSL0 algorithms

are described in Algorithm 1. Other details of the scheme are
described in [38, 42, 44] and their references.

3. Experiment and Result

Although the existing CS-based PAI reconstruction algo-
rithms provide better results, the accuracy and efficiency of
sparse-view PAI reconstruction still need further improve-
ment. In this section, we provided a variety of simulations
and in vitro applications to illustrate the advantages and effi-
ciency of the ReSLO method for sparse-view PAI reconstruc-
tion. The forward simulation and inverse reconstruction
were conducted in 2D phantoms and images. The same iter-
ation stopping criteria & = ||X**! — X¥||/||X¥|| < 0.005 were
used to be fair to compare the four algorithms. The simula-
tion experiments were carried out using Matlab (version
7.8) on a PC with a 8 GHz CPU and 32 GB memory.

By using the wavelet transform and different sparse regu-
larization methods, the numerical simulations have been car-
ried out on the Sheep-Logan phantom, the blood vessel
phantom, and the standard General Electric resolution phan-
tom (Figure 1) with a 128 x 128 resolution corresponding
simulation area of 30 mm x 30 mm. During the simulation,
the sound speed was 1500 m/s. A single ultrasonic transducer
was used to receive the signals. To simulate the frequency
response of the transducer, at every detection position, 128
randomly selected in the window [0.2, 3] MHz were used to
define the projection matrix K. By adjusting the phantom
gray values to [0, 1], we obtained the ultrasonic pressure Y
using the projection matrix K.

3.1. Reconstruction from Simulated Sparse-View Data. We
compared ReSLO for the solution model (10) with SPGL1
for the solution model (6), TWIST for the solution model
(7), and SLO for the solution model (8). Figure 2 demon-
strates the reconstruction results of the Sheep-Logan phan-
tom by using these four methods. From the first row of

Figure 2, we can see that the images of these four methods
are strongly affected when 20 position samples are used.
When the number of sampling is 35, the images recon-
structed by the TwIST and SLO methods contain artifacts
and distortions, and the quality of the reconstructed images
by the RESLO and SPGL1 methods is better than these two
methods. As the signal acquisition position reaches 50, the
image reconstructed by the TwIST method still contains
many noises, and the other three methods can reconstruct
high-quality images. So we can conclude that the L, norm
and L, norm-based CS algorithms can obtain more accurate
image with sparse-view signals.

The quantitative evaluation of the reconstructed images
including the CPU times, the peak signal-to-noise ratio
(PSNR), and the normalized mean absolute error (NMAE)
achieved by each of the algorithms is presented in Table 1.

The PSNR (in dB) is defined as 10 log, (N -MAX;}/

||X—)A(||§) and the NMAE is defined as 100 x || X - X||,/
|| X]|,> where MAX; means the maximum pixel value of the
image and X denotes the estimate of the original. The CPU
running time was used to estimate time complexity. The
PSNR and the NMAE were used for quality evaluation of
the reconstructed image.

According to Table 1, we can infer that there are great dif-
ferences between the CPU times: TwIST is about 1.5 times
faster than ReSLO, which itself can be roughly 7 times faster
than SPGL1. And the SLO has the same computational com-
plexity as the ReSLO. From Table 1, we can see that those four
methods achieve similar PSNRs and NMAEs when using sig-
nals at less than 35 locations. Table 1 also shows that the
ReSLO outperforms other three methods when using signals
with more than 35 locations. Moreover, if we consider a
method cannot reconstruct a high-quality image as the PSNR
is less than 30, then we can conclude that the TWIST fails for
all experiments, the SLO fails when the number of sampling
positions is less than 45, while the SPGL1 and ReSLO algo-
rithms fail when the number of sampling positions is less
than 40. The numerical results in Table 1 indicate that the
ReSLO algorithm can reconstruct high-quality images with
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FiGUre 6: The PSNRs and NMAE:s of reconstruction results of the blood vessel phantom with different number of sampling points. (a-d) The
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more than 40 sampling signals in a short time. From the
results of simulations, we can see that the ReSLO algorithm
is more accurate than the other three algorithms in the
sparse-view sampling condition.

Considering the universality of the ReSLO method, the
blood vessel phantom was used as the initial energy density
to additionally compare these four algorithms. The condi-
tions of this experiment were the same as the Sheep-Logan
experiment. Figure 3 shows the reconstruction images of
the blood vessel phantom with these four algorithms. It can
be seen from Figure 3 that all these four algorithms can
reconstruct accurate images by using photoacoustic signals

from 40 sampling positions. When the signal of 30 sampling
positions is used, all reconstructed images contain much
noise, which has a certain influence on the identification of
the blood vessel structure. Among these four algorithms,
the ReSLO algorithm has the best reconstruction quality,
which can be observed by the middle extraction lines from
the reconstructed images. However, when the sampling posi-
tion is 20, none of the four algorithms can get good recon-
structed image.

Table 2 shows the numerical results of the blood vessel
for those four methods. Since the reconstructed image sizes
of the two experiments are the same, the running time of
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the blood vessel experiment is similar to that of the Sheep-
Logan experiment. From Table 2, we can see that the TwIST
method can obtain a larger PSNR and a smaller NMAE when
the number of samples is less than 30. However, the NMAE
of the TWIST method is only slightly improved when the
sampling position is greater than 30. And the ReSLO method
can achieve the largest PSNR and the smallest NMAE when
the number of samples is greater than 30. According to
Table 2, we can conclude that the TWIST method has better
accuracy and efficiency when the signal number is small
and the ReSLO method obtains better quality PAI images
with sufficient measurements.

In order to further verify the effectiveness of the RESLO
algorithm, a more complex and challenging standard General
Electric resolution phantom is also used for simulation. The
reconstruction results of the four algorithms are shown in
Figure 4. In the first column of Figure 4, the images recon-
structed by TwIST contain severe noises, which seriously
affect the image quality. The second and third columns of
Figure 4 are reconstructed by SPGL1 and SLO, respectively.
It can be observed that both methods can suppress noise,

but the quality of the reconstructed image can be further
improved. The last column of Figure 4 shows the results of
ReSLO, which obtain the best reconstruction quality among
the four methods.

Table 3 shows the numerical results of the standard Gen-
eral Electric resolution phantom for those four methods. As
can be seen from Table 3, the TWIST algorithm has the short-
est CPU time and the CPU time of the ReSLO algorithm is
slightly slower than the SLO algorithm, while the CPU time
of the SPGL1 algorithm is always much bigger than the other
three algorithms. The TwIST algorithm has the worst PSNR
and the biggest NMAE, and the PSNR value of images recon-
structed by the ReSLO algorithm is the highest, and the
NMAE value of images reconstructed by the ReSLO algo-
rithm is the lowest. From the above three experiments, we
can arrive at the conclusion that the ReSLO algorithm outper-
forms the other three algorithms under sparse sampling
condition.

3.2. Comparison for Different Variances of the Noise. In order
to quantify the influence of noise, the PSNR and NMAE of
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the reconstruction images of the Sheep-Logan phantom
experiment are calculated and shown in Figure 5. A good
algorithm has a larger PSNR and a smaller NMAE. As can
be seen from Figure 5, when there is weak noise of 50dB
and 40dB, those four methods achieve similar PSNRs and
NMAE:s when using signals with less than 35 positions. Fur-
thermore, the ReSLO algorithm achieves the biggest PSNR
and the smallest NMAE with sampling locations of more
than 40 and improves PSNR faster than the other three algo-
rithms. When there is strong noise of 30dB and 20 dB, the
SLO algorithm and the TwIST algorithm have smaller PSNRs
and larger NMAEs, but the ReSLO algorithm can still achieve
good reconstruction results with sufficient measurements. In
other words, the ReSLO0 algorithm achieves good reconstruc-
tion of PAI images in noisy environments.

Figure 6 provides the PSNR and NMAE tendency chart
of the reconstruction results of the blood vessel phantom
experiment with noisy observation. When the number of
sampling locations is greater than 25, the ReSLO method
can achieve the largest PSNR and the smallest NMAE. These
results are consistent with the results of the noiseless envi-
ronment as shown in Table 2. However, the performance of
the SLO algorithm degrades rapidly due to the equality con-
straint in Eq. (8). According to the information gathered
above, we may reach the conclusion that the ReSLO0 algorithm
can reconstruct high-quality PAI images regardless of noise.
Besides, the SLO algorithm that does not include noise regu-
larization terms cannot be used in a strong noise environ-
ment. The inequality optimization constraint in Eq. (11)
can provide the better performance in the noise
environment.

3.3. In Vitro Experiments. Besides the numerical phantom
experiments, the in vitro experiments were used to demon-
strate the ReSLO algorithm’s performance. And the recon-
struction results of the TwIST, SPGLI1, and SLO are also
presented. A schematic diagram of the imaging system setup
is displayed in Figure 7(a), where an experimental coordinate
system [x,y,z] is also described. A Q-switched Nd:YAG
pumped at 532 nm was used as the light source. The laser fre-
quency is 10 Hz, and the pulse width is 6-10ns. A focused
piezoelectric transducer (Panametrics V309) with a central
frequency of 5 MHz was controlled by a precision stepper
motor for photoacoustic signal acquisition. The rotation
radius of the transducer is 40 mm, and the rotation step size
is 2°. At each sampling location, the photoacoustic signals
were first amplified by a signal amplifier, then captured and
averaged 30 times by a Tektronix MSO4000B mixed signal
oscilloscope, and finally transmitted to the computer for sig-
nal processing and imaging.

The imaging sample used in the experiment is a gelatin
cylinder with one graphite rod and two hairs as optical
absorbers. Figure 7(b) is the photograph of the sample. The
radius of the gelatin cylinder is 13 mm. The diameter of
graphite rod is 0.5mm, and the length of hair is 4mm. In
the phantom experiment, 60-view data and 90-view data
are selected for reconstruction. The images are constructed
by the TwlIST, SPGL1, SLO, and ReSLO algorithms,
respectively.
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The in vitro experiment results are displayed in Figure 8.
The first and the second row show the reconstruction results
from 60-view and 90-view experiment data. As can be seen
from the first row of Figure 8, there will be a lot of noise in
the reconstructed image and some low-contrast features will
disappear when using 60-view experiment data. When the
sampling data is sufficient, such as 90-view data, all four algo-
rithms are able to construct good quality images. And the
sizes and locations of the optical absorbers are well recon-
structed. However, the resolution of reconstructed images
using TWIST and SLO algorithms is not as good as SPGL1
and ReSLO algorithms. By comparing the results of numerical
experiments and in vitro experiments, we can conclude that
the quality of reconstructed images in vitro experiment is
not as good as that of numerical experiments. Therefore, we
need to collect more data to achieve exact reconstruction.

4. Conclusion

In this paper, we carried out and estimated a L, norm-based
ReSLO algorithm for the PAI. The main motivation of it is to
replace the equality constraint with inequality constraint that
allows some errors and make use of a regularization parame-
ter to achieve a balance between the sparsity and the residual
of objective function. The effectiveness and universality of
this algorithm are demonstrated through numerical and
in vitro experiments. Both visual inspection and quantitative
measure comparisons have manifested that the ReSLO algo-
rithm can reconstruct better images than L1 norm and TV
norm-based CS algorithms. Furthermore, the ReSLO algo-
rithm has similar computational efficiency to the SLO algo-
rithm and at the same time has better immunity to noise.
Finally, the ReSLO algorithm can significantly reduce the
number of ultrasonic sensors and scanning time required to
reconstruct high-quality PAI images.
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