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,e present work demonstrates the design and implementation of a human-safe, portable, noninvasive device capable of predicting type
2 diabetes, using electrical bioimpedance and biometric features to train an artificial learningmachine using an active learning algorithm
based on population selection. In addition, there is an API with a graphical interface that allows the prediction and storage of data when
the characteristics of the person are sent. ,e results obtained show an accuracy higher than 90% with statistical significance (p<0.05).
,e Kappa coefficient values were higher than 0.9, showing that the device has a good predictive capacity which would allow the
screening process of type 2 diabetes. ,is development contributes to preventive medicine and makes it possible to determine at a low
cost, comfortably, without medical preparation, and in less than 2 minutes whether a person has type 2 diabetes.

1. Introduction

Diabetes is a serious chronic disease, which develops when
the pancreas does not produce enough insulin (a hormone
that regulates the level of glucose or sugar in the blood) or
when the body cannot use this hormone effectively [1].
According to estimates by the World Health Organization,
422 million adults worldwide had diabetes in 2014, com-
pared to 108 million by 1980 and at least 50% of people who
suffer from it do not know it [1]. ,e WHO has also in-
dicated that diabetes has tripled in the last 20 years. Globally,
it has gone from around 151 million people with diabetes in
2000 to 463 million in early 2020. All this makes diabetes the
health problem that has increased the most throughout the
century [1].

,e most popular methods for diagnosing diabetes such
as FPG (fasting plasma glucose) and OGTT (oral glucose
tolerance test) are invasive and painful methods that usually
take longer than a bioimpedance measurement [2]. For the
diagnosis of diabetes, the glycosylated hemoglobin (A1C)
test is performed. ,is blood test indicates the average blood

sugar level for the past two to three months. ,is test
measures the percentage of sugar in the blood bound to the
protein in red blood cells that carry hemoglobin (oxygen).
,e higher the blood sugar level, the greater the amount of
hemoglobin with glucose. An A1C level of 6.5 percent or
higher on two separate tests indicates the presence of dia-
betes. If a diagnosis of diabetes is received, the doctor may do
a blood test to determine the presence of the autoantibodies
that are common in type 1 diabetes. ,ese tests help dis-
tinguish between type 1 diabetes and type 2 diabetes when
the diagnosis is uncertain. ,e presence of ketone bodies
(products derived from the breakdown of fat) in the urine
also suggests type 1 diabetes rather than type 2 [3].

Electrical bioimpedance represents the opposition of a
biological medium to the passage of alternating current and
has resistance and reactance components [4]. ,e resistance
(R) is conditioned by the resistivity of the different tissues of
the human body to electrical conduction. Fat and bone
tissues have high resistivity, while intracellular and extra-
cellular fluids easily conduct electrical current [5]. ,e re-
actance (Xc) in the biological environment is produced by
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the insulating effect of the cell membranes, which behave like
capacitors charging and discharging the passage of current.
In other words, while resistance (R) determines the body’s
hydration status, reactance (Xc) determines its nutritional
status (Quesada Leyva, León Ramentol, Betancourt
Bethencourt, and Nicolau Pestana [6]).

Type 2 saccharin diabetes (previously called non-
insulin-dependent or adult-onset diabetes) is caused by the
body not using the insulin it produces effectively. Most
diabetics have type 2 (T2D), which is largely due to excess
weight and lack of physical activity.,e symptoms of type 2
diabetes can be like those of type 1 but are often less severe.
Consequently, it is sometimes diagnosed several years after
the first symptoms appear when complications have al-
ready appeared. Until recently, this type of diabetes was
only seen in adults, but today it is increasingly being di-
agnosed in children.

Apart from bioimpedance, there are other noninvasive
techniques that allow the evaluation of diabetes. Photo-
plethysmography is an alternative; it is just that a sensor is
required for heart rhythm analysis, which can be expensive.
,ere are also other developments given with bioimpedance
but ultimately require comparisons (correlation analysis)
with invasive glucose tests.

,e figures and circumstances determine the importance
of looking for methods that are fast, accurate, easily ac-
cessible, and in addition, low cost, which allow predicting
with high probability that a person has diabetes. In the
COVID-19 pandemic, people with diabetes mellitus have
been one of the most vulnerable populations, since they have
a greater probability of dying and having more serious
conditions due to the infection, compared to the general
population [3]. Diabetes is a highly prevalent disease
throughout the world. It is estimated that around 415million
people currently suffer from it and that number will increase
by just over 50% by 2040. It is estimated that the majority of
emergency rooms will be for diabetics [7].

,erefore, in accordance with the aforementioned, our
work proposes a portable, noninvasive, and low-cost pro-
totype capable of predicting type 2 diabetes, using electrical
and biometric bioimpedance characteristics to train an ar-
tificial learning machine implementing an active learning
algorithm based on population selection. ,e prototype
implemented is detailed in the following.

2. Materials and Methods

2.1. Description of the Acquisition Prototype. ,e acquisition
device has two main components.,e first component is the
PmodIA, which is an impedance analyzer built based on the
AD5933 integrated circuit. ,e PmodIA module measures
impedance values ranging from 10 [Ω] to 10 [MΩ] and uses
a frequency sweep, a programmable gain amplifier, and a 13-
bit temperature sensor. It uses the I2C communication
protocol and has the formulas for calculating impedance and
frequency settings [8]. ,e second component is the ESP32,
which is a System on a Chip (SoC) withWi-Fi and Bluetooth
connection capabilities, a 32-bit Xtense® single-/dual-core
microprocessor with a capacity of up to 600 instructions per

second, a 448KB RAMmemory, 34 general-purpose pins, 18
channels of analog-digital conversion, among other func-
tionalities [9]. ,is microprocessor is usually distributed on
development boards with all the components it needs to
function, for example, the ESP32-OLED-BAT, which has an
integrated OLED screen and a battery holder. ,e brands
Skintac and 3M were compared to choose the electrodes.
Table 1 shows the list of instruments andmodules used in the
development of the prototype.

,e prototype is composed of the bioimpedance analyzer
module, which applies and reads electric current through
people’s bodies. ,e ESP32 is used as a data processing
microcontroller, which reads the signal from the previous
module and saves the results to be then processed mathe-
matically. To have a proper contact between the skin and the
bioimpedance module, an appropriate means such as the
electrodes must be used and finally, there are batteries to be
able to make the equipment wireless and comfortable at the
time of the tests.

2.1.1. Configuration and Calibration of the Noninvasive
Prototype. Table 2 shows the values selected for the module
configuration.

,e prototype delivers values with the labels real (Rr) and
imaginary (Ir) for each frequency. However, these values do
not correspond to the true values of the real and imaginary
parts of the impedance. To obtain the correct values, the
calibration must first be carried out by following these steps.

,e magnitude is calculated with (1), using the cali-
bration resistor.

magnitude �

��������

Rr
2

+ Ir
2



. (1)

,en, the FG (gain factor) is calculated, which is the gain
obtained using the calibration resistance and allows calcu-
lating the impedance magnitude of the new measurements;
this is calculated by

FG �
1

Rcalibration/magnitude
. (2)

To obtain the value of the system phase (Z phase),
equation (3) is used with the calibration resistance.

phase � tan−1 Ir

Rr
 . (3)

,e FG and phase values are calculated for each one of
the frequencies and used as calibration values. ,erefore, for
a new measurement, equation (4) is used from which the
impedance values are obtained and equation (3) is used to
obtain the phase of the unknown measurement; finally, with
the difference between the phase of the unknown mea-
surement and the phase of the system (phaseZ), the cali-
brated phase (phaseC) is obtained as shown in equation (5).

impedance �
1

FG∗magnitude
, (4)

phaseC � new phasemeasure − phaseZ. (5)
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,e values of the real and imaginary parts of the cali-
brated impedance are obtained with equations (6) and (7).

real � impedance∗ cos(phaseC), (6)

imaginary � impedance∗ sin(phaseC). (7)

To verify the calibration of the prototype, the percentage
of error is calculated by

percentage of error �
vt − vm

vt
∗ 100, (8)

where vt is the theoretical impedance value using a 100Ω
resistor with a 100 nF capacitor in series and vm is the value
measured using the PmodIA.

With the implementation of this mathematics, some-
thing important is assured and it is the calibration of the
prototype. All electronic equipment requires handling a
reference standard that allows you to obtain true and ac-
curate results. If the previously described equations are not
implemented, the prototype can deliver any result and the
study would not be valid and important.

2.1.2. ESP32 Programming. ,e ESP32 is a low energy
consumptionmicrocontroller, which due to its size turns out
to be powerful for processing different tasks. ,is device has
an integrated processor with interfaces that allows con-
nection with various peripherals. Using FreeRTOS, which is
an open-source C library, an operating system for micro-
controllers is implemented. With this library, the micro-
controller can execute at least two tasks in parallel or manage
the execution of tasks. With this control, it is possible to
make the ESP32 communicate with the PmodIA, manage

the OLED screen, select from a menu using four buttons,
and connect to the Wi-Fi network when necessary, making
use of the task manager.

2.2. API Description. An API that facilitates patient in-
teraction with the device was developed. With this in-
terface, the person can easily view the results indicating
whether they have type 2 diabetes. ,e API was made in
the Python programming language using the Flask,
HTML, and CSS framework for the creation of the user
interface. Data storage is implemented in the SQLite
database, the API implementation used Amazon web
services, and EC2 t2 microinstance was selected, with
Ubuntu Linux/UNIX operating system with 30G of
storage and a virtual core.

,e API graphical interface, apart from allowing you to
view and download the data sent, allows you to retrain the
learning machine with the new data and download the
generated model in a file with the extension (.p) to be used in
Python and a file with the extension (.h) for use in
microcontrollers.

2.3. Selection of Bioimpedance Characteristics. Rodŕıguez
Timaná and Castillo Garćıa [10] in their work on charac-
terizing people with T2D using bioimpedance were able to
identify that people with T2D have a higher concentration of
glucose, so their impedance response is different from that of
healthy people since the signal must pass through more cells
that contain glucose which makes them less conductive [11].
In addition, Timaná and Castillo used a 256-frequency
sweep in their study. Using this number of frequencies
causes a total of 1024 characteristics to be generated, which
include values of magnitude, phase, real part, and imaginary
part of the impedance (Rodŕıguez Timaná and [12]). ,is
number of features is too high for statistical analysis of the
machine learning model.

Considering the above, in this work, only 4 frequencies
were used, which allows facilitating the implementation
using the EPS32 and it is also possible to perform a correct
and feasible statistical analysis. ,is process of choosing the
most relevant characteristics begins with a selection of
frequencies. ,e chosen frequencies were 4 (10000Hz,
32400Hz, 54800Hz, and 77200Hz). ,ese frequencies are
ideal to have an adequate penetration in the cells of the
tissue; in addition, they allow to have a good representation
of the signal and therefore good results with little demand
for hardware and software.

Figure 1 shows the information model, where it starts
with the Amazon web services that store and deploy the
application. ,en, there is the login process which guar-
antees that only authorized personnel can view, add, update,
and delete data. Each of the previous actions executes its
process that oversees verifying, consulting, or modifying the
data stored in the database.

,is information model allows having an organized
structure for the validation and protection of the data en-
tered in addition to integrating the BDD prototype with the
Internet of things and guaranteeing autonomous operation

Table 1: System parts list.

Description Quantity
PmodIA, programmable bioimpedance analyzer-
AD5933 1

Esp32-OLED 0.96 development board with 18650
battery holder 1

1K ohm resistors 4
Two-terminal push buttons 4
4800 mAh 18650 battery 1
Adhesive electrodes 2

Table 2: Configuration and calibration values.

Characteristic Value
Calibration resistance 470Ω
Multiplier x4
Number of cycles 511
Output voltage 2 vpp
Programmable gain x1
Feedback resistance 20Ω
Internal clock Selected
Start frequency 10000Hz
Number of steps 255
Frequency increment 280Hz
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without the need for physical connections to computers to
share data.

To obtain the best results, statistical chi-square tests are
carried out that examine the differences between the ob-
served and expected characteristics [13]. ,e test delivers a
probabilistic value (p value) which, being less than 5%,
means that the characteristics used are significant to obtain
the expected ones. In addition, the Hosmer test is carried
out, which allows examining the general fit of themodel [14],
and just like the chi-square, when obtaining a p value lower
than 5%, it is established that the model is significant to
predict the selected characteristic. ,e previous tests are
used with the four selected frequencies and the biometric
characteristics of age, weight, sex, and height to make up a
total of 20 characteristics or attributes.

2.4. Machine Learning Selection. Machine learning is a
subfield of artificial intelligence that simulates human in-
telligence processes such as learning, reasoning, and self-
correction [15]. ,ere are many types of machine learning
algorithms, among which the most popular are as follows.

2.4.1. Logistic Regression (LR). It is a linear classifier and uses
the logistic function to evaluate the class assigned to a
prediction. ,e logistic function is presented as [16]

P �
1

1 + e
−h, (9)

where P is the prediction of the label and h is the point
multiplication of the vector of characteristics and vector of
weights plus the bias.

2.4.2. Artificial Neural Network (ANN). It is a computa-
tional model inspired by the human brain in the sense of
using interconnected units called neurons, which learn by
experience, usually consisting of one or more input layers,
hidden layers, and output layers [17].

2.4.3. K-Nearest Neighbor (KNN). It is based on the idea of
the closest patterns to the target. ,is classifier assigns the
class label to most of the closest K patterns in data space [18].

2.4.4. Support Vector Machines (SVM). ,ese look for a
linear decision surface and use values called C which is a
parameter to control errors based on the cost margin
function and gamma which is the Gaussian kernel that al-
lows determining the variance [19].

To select the machine learning algorithm, tests were
carried out with different logistic regression machines, 3-
layer ANN, modifying the number of neurons to conform to
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different architectures, then with KN machines testing from
1 to 10 neighbors, and finally, with SVM machines with C
values of 0.01, 0.03, 0.1,0.3, 1, 3, 10, and 30 and range of 0.01,
0.03, 0.1, 0.3, 1, 3, 10, and 30. In the Results section, the
chosen learning machine and its correct explanation are
indicated.

2.5.Descriptionof theActiveTrainingAlgorithmBasedonSeed
Selection (ATSS). Next, an algorithm is presented that uses a
reduced number of samples for initial training, and as the
samples are introduced, it updates the initial model ob-
tained, in accordance with the increase in performance
indicators.

,e algorithm is based on the following concepts: Sil-
houette’s Width (SW), which is an indicator that allows the
interpretation of cohesion, which is the intraclass distance,
and the separation, which is a measure of the distance be-
tween classes [12]. ,e measure of SW is presented as

Si �

1 −
ai

bi

, if ai < bi

0, if ai � bi

bi

ai

− 1, if ai > bi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (10)

where ai is the average Euclidean distance of point i with
respect to the samples of its same class and bi is the average
Euclidean distance of point i with respect to the samples of
the other classes. For this study, the closer Si is to 1, the closer
it will be to the samples of its own class and the further it will
be from the samples of the other classes.

Classification performance indicators are calculated with
(11) to (13):

accuracy �
TP + TN

TP + TN + FP + FN
, (11)

precision �
TP

TP + FP
, (12)

recall �
TP

TP + FN
, (13)

where TP is the true positives that correspond to the labels
that were correctly predicted and are positive. TN is the true
negatives that correspond to the labels that correspond to
negative predictions. FP are false positives that correspond
to the labels that were predicted negative when positive and
FN are false negatives that correspond to the labels that were
predicted positive when they were negative.

,e initial population or seed samples are taken with
10% of the training data that present the highest SW values.
,en, the size of the final population is defined, and this
value allows limiting the number of new entries to reduce the
computational cost of training; if the maximum population
is not reached, a new sample is added, and if it is reached, the
sample with the lowest SW value will be replaced by the new

sample. To accept or exchange a sample, the following
conditions apply:

(1) ,e SW value of the new sample must be greater than
the lowest of the SW values of the current data

(2) When training with that sample, the accuracy in-
dicator must increase or stay the same and at least
one of the other performance indicators must
increase

2.6. Experimental Phase: Setup for Testing. To ensure that
patients and users do not have adverse effects from the use of
the device, which is a priority, the international standard of
protocols and standards IEC 60601-1 must be considered. It
presents all the testing requirements for protection from
possible hazards [20] as the leakage currents that are pro-
duced by the insulation of the conductors and four pa-
rameters are defined: earth leakage current, envelope leakage
current, patient leakage current, and patient auxiliary cur-
rent [21].

,e location of the electrodes is essential to obtain a
correct bioimpedance measurement. ,ese electrodes must
be at a distance less than 4 cm between them; otherwise,
there may be interferences and, therefore, erroneous values
of resistance and reactance. Impedance measurements can
be taken in a supine or sitting position and the electrodes
must be placed on the wrist, this area being free of hair and,
in addition, little exposed to the sun or other aspects that
negatively affect the bioimpedance measurement. When
implementing machine learning, as many variables as
possible should be controlled to ensure that the classification
uses the same characteristics for each sample. Factors such as
sweat, hair, voluntary and involuntary muscle movements,
and tickling reflexes are difficult to control in other parts of
the body such as the chest, back, forehead, and sole of the
foot. ,at is why the results could be affected by any of the
variables mentioned above if the location of the electrodes
was to be modified.

2.6.1. Sampling and Database Creation. A database for the
characterization of people was generated using the data
acquisition device and the API, which together were called
BDD (Bioimpedance Diabetes Detector), this database
consists of 256 samples and 20 characteristics, the partici-
pating population was 53 people, including 34 women and
19 men, and the age range was between 19 and 76 years. ,e
people participating in this project are diabetic patients from
the San Juan de Dios Hospital in the city of Cali, Colombia,
and the approval of the ethics committee of the said in-
stitution was obtained through the act CEIHSJ001-019; on
the other hand, each patient signed an informed consent
document so that they were aware of the procedure that was
going to be performed with the electrical bioimpedance
measurement equipment. Diabetic and nondiabetic patients
were properly diagnosed by a doctor, with this scientifically
ensuring that the study population is consistent and meets
the relevant inclusion criteria. Among the participants, there
were 20 people diagnosed with type II diabetes. An average
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of 5 impedance measurements was taken in the upper part of
each person’s forearm as shown in Figure 2.

2.6.2. Statistical Validation and Visualization of Principal
Components. Figure 3 shows the training and prediction
process based on the ATSS algorithm. Once the initial model
is obtained, the training samples are added, and the per-
formance indicators are verified to retrain the algorithm and
obtain the new model.

,e final population is used to obtain the model and
make the predictions. For a prediction, the following pro-
cedure is done.

10 measurements are taken and the correlation verifi-
cation of each of the samples is carried out with the function
of

y � ax
b
, (14)

where a is the coefficient, b is the exponent, the variable x
corresponds to the frequency, and the variable y is the
amplitude of the impedance.

,e measurements are sent to the API and the model is
used to predict each of the samples.

A voting process is carried out which consists of eval-
uating whether 80% of the predictions fall within a class, and
the result is taken as a valid prediction; otherwise, it is taken
as undefined (it could not be classified between diabetic or
not diabetic).

p0 is the total coincidence probability and pe is the
hypothetical coincidence probability. ,e higher the value
of the coefficient, the lower the possibility that the labels
resulting from the prediction have been assigned by
chance.

,e process shown in Figure 4 is repeated 30 times, each
time using a random order. In this way, 150 accuracy results
are obtained for both the traditional method and the use of
the proposed algorithm. ,en, the means of the accuracies
are calculated, and the Wilcoxon test is performed [22].

Finally, the principal component analysis (PCA) is
carried out, which allows reducing the dimensionality of the
characteristics taken and maintaining the highest possible
variance [23]; in this way, they can be reduced to only 2
dimensions and be plotted.

3. Results

3.1. BDD Prototype. Figure 4(a) shows the equipment
implemented in its final form, and Figure 4(b) presents the
3d design of the housing of the bioimpedance acquisition
system equipment. As can be seen in Table 3, the physical
characteristics of the prototype make it possible for it to be
handled with one hand in a comfortable way. ,e prototype
delivers a prediction in 2 : 45 minutes, which is much less
than waiting for laboratory analysis. On the other hand, the 9
hours of autonomy allow the prototype to be used in rural
areas and 180 predictions could be made before having to
charge or change the battery. Table 4 shows the error per-
centages of the prototype.

Figure 5 shows that, with only 12 parts, the device can be
assembled and that its implementation is simple which
makes most of the cost only come from the PmodIA.

Figure 6 presents the results obtained when taking
measurements of the same person during a 12-hour interval
starting at 8 : 00 am and ending at 8 : 00 pm; during each
hour of that interval, 10 measurements were taken.
Figure 6(a) is the bar diagram of the relative percentage of
standard deviation (RSD%) that shows only a variation of
2% and this is confirmed with the graphs of Figure 6(b),
where it is shown that the 120 measurements overlap.

,is is an unexpected result as a person’s glucose value
changes throughout the day. ,is allows us to infer that the
bioimpedance value does not depend only on glucose in the
blood and that there are other factors, such as those men-
tioned by Punter-Villagrasa and others [24], and possibly
these other parameters do remain stable during the day.

Figure 7 shows the views of the data acquisition pro-
totype screen; the interface is intuitive in relation to its
operation and the presentation of results.

To comply with the IEC 60601-1 standard, the device is
designed in such a way that the battery can be removed for
charging; thus, it can be ensured that the device will not be
connected to the electrical network, while a measurement is
taken and that these are only taken using the battery, which
is why we do not have any of the leakage currents described
by the standard. In addition, tests were carried out in the
metrology laboratory of the Santiago de Cali University
where its operating conditions were validated.

3.2. API Implemented. Figure 8 shows the views of the API
graphical interface. Figure 8(a) is the general database, where
you can perform the data download process and system
training and delete all data and input to observe the con-
fusion matrix. Finally, Figure 8(b) shows the graph corre-
sponding to the correlation of the amplitude dispersion data
for all the frequencies defined by the acquisition system.

3.3. Selection of Characteristics, Machine Learning, and
Electrodes. Table 5 shows the accuracy of the learning
machines using the bioimpedance characteristics. ,e re-
sults found show that the algorithm based on RL presents the
best performances with the characteristics used. Table 6
shows that, using biometric data, precision is increased by
7%. ,is is possible because there are characteristics that
represent risk factors for having T2D, such as overweight
and age. In addition, it has been noted that the impedance
values of women are usually lower than those of men, and
adding the gender tag allows the machine to assign weights
more precisely. On the other hand, in the works of Nguyen
et al. [25] and Chatrati et al. [26], deep learning was used to
obtain accurate values above 80%; however, the use of deep
learning was not implemented in BDD due to the difficulty
that its implementation in a microcontroller would entail,
which can be a limitation of the system and could be tested in
future work.

Table 7 shows that the 3M electrodes have the lowest
impedance value; therefore, they are better for this job as
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they add fewer impedance components. On the other hand,
the classification results in Table 8 show that both the tra-
ditional method and the use of the proposed algorithm have
success rates above 90%. However, the use of the active
learning algorithm presents an increase in precision with a
statistical significance of one (p< 0.05), in addition to

improving the Kappa coefficient [27]; therefore, the pro-
posed algorithm increases the predictive capacity of the
system. With the improvement in precision and the Kappa
coefficient that the population selection gives, it can be
inferred that not all samples provide useful information and
there are even some that provide information that reduces
the predictive capacity of the model; this can be given be-
cause either the person, despite not having a diagnosis of
diabetes, may have high impedance values or possibly have
signs of prediabetes or the person has a diagnosis of diabetes

Figure 2: Location of electrodes for taking measurements.
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Table 3: Characteristics of the acquisition equipment.

Characteristic Value
Length 13 cm
Width 6.5 cm
High 4.0 cm
Weight 204.7 g
Autonomy with 4800 mAh battery 9 hours
Time it takes to do 10 measurements 2 : 45 minutes

Table 4: Percentages of equipment error.

Characteristic Value (%)
Magnitude error 4
Phase error 4

(a) (b)

Figure 4: Data acquisition prototype implemented. (a) Final Implementation. (b) 3d design.
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Figure 6: Variation of 120 measurements taken in 12 hours. (a) Graphical boxplot of RSDs%. (b) Graphs for 120 measurements taken in a
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Figure 7: Acquisition system views.
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but has managed the treatment of diabetes very well and
managed to stop the cell damage caused by the disease.

It is important to mention that doing statistical tests is
important since they allow us to establish the validity of the
results regardless of which samples are used to train and
validate the system in addition to showing that the results of
one algorithm are greater than the other and that this re-
lationship has significance.

3.4. Classification Results. Table 8 shows the results of the
performance indicators of the logistic regression machine
based on traditional supervised training and with the ATSS
algorithm.,emean values of accuracy were obtained with a
standard deviation of 0.1313 and 0.1328 (for the algorithm
without and with active learning, resp.). It also shows the p
value results under the Wilcoxon and Kappa tests.

Figure 9 shows the results of the algorithm based on
traditional training. Figure 10(a) shows the graphical rep-
resentation of the data distribution using two main com-
ponents of the seed simples and Figure 10(b) shows how the
adequate selection of the samples according to the SW allows
the samples used by the system to present a greater

(a)
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Scatterplot measurement with id 68
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Previous Next

Back to base

(b)

Figure 8: Views of the API’s graphical interface. (a) Database. (b) Scatter plot over the entire frequency range.

Table 5: Accuracy of machines that presented the best
performances.

Algorithm Accuracy
RL with lbfgs 0.94
RL with Newton-cg 0.93
RL with liblinear 0.93
RL with sag 0.85
ANN [ 19 14 16]∗ 0.88
KNN with neighbors� 1 0.85
KNN with neighbors� 2 0.88
KNN with neighbors� 3 0.82
KNN with neighbors� 4 0.82
∗19 neurons in the input layer, 14 neurons in the hidden layer, and 16
neurons in the output layer.

Table 6: Statistical analysis of the selection of characteristics.

Biometric data Model p value Significant Accuracy
Yes Chi-squared 1.1265e−27 Yes 0.97Yes Hosmer 7.6861e−38 Yes
No Chi-squared 2.1396e−22 Yes 0.90No Hosmer 1.4073e− 05 Yes

Table 7: Characterization of the electrodes.

Model Average impedance value
Magnitude (Ω) ∟angle [o]

3M 35 ∟0.03
Skintac 173 ∟0.02

Table 8: Performance indicators of the training model.

Indicator Traditional training ATSS
Accuracy 0.9300 0.9638
Kappa 0.8108 0.9171
Wilcoxon 9.1682 e−20
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separation in the classes than those found using the tradi-
tional training method.

In the literature, no works were found where the de-
velopment of portable noninvasive bioimpedance equip-
ment is presented and that also uses machine learning.
,erefore, the references that were found are related to the
use of bioimpedance and its relationship with glucose; these
works are not focused on prediction. Regarding the pro-
posed algorithm, only works related to machine learning
techniques were found, where samples used for training and
validation were selected, the proposed algorithm has a
feature selection scheme for training, and as with the pre-
diction of new samples, the algorithm can continue its
learning process.

,e improvements are obtained after applying the
sample selection algorithm. ,e PCA was used to show
graphically how it selects samples that are separated under
the SW and how in the end they are more separated without
using the algorithm since it is not possible to graph the 20
dimensions that would be obtained representing all the
characteristics used. In numerical terms, the average SW

without using the algorithm is 0.33, the average SW of the
initial samples is 0.85 and finally, a difference is obtained
between the SW with and without the algorithm of 0.2;
however, the improvements are better represented with the
results of the indicators obtained by the confusion matrix.
,e PCA was only used as a visual aid to graphically rep-
resent what the algorithm is executing.

4. Conclusions

,e equipment developed is portable, safe, noninvasive, and
with the potential to have accuracy rates above 90% that
allow determining whether a person has type 2 diabetes. ,e
active learning algorithm not only improves performance
but also offers protection to the prediction model since only
samples that are close to their class and that improve the
performance indicators are accepted. ,is combined with
the API allows the system to be used, retrained, and vali-
dated in different regions by different users at the same time.

Compared to the state of the art, the BDD system does
not use invasive methods or medical records of the person
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Figure 9: Traditional training’s PCA model of two main components.
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Figure 10: ATSS′ PCA model with two main components. (a) Seed samples. (b) Samples after ATSS.
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for prediction. In addition, it is faster than invasive tests
since no laboratory analysis is required, and with the use of
the API, the system can be validated externally. However,
the works described in the introduction use biological
markers known as the level of glucose in the blood to make
the machine training, which allows a clear biological ex-
planation of why the model works. ,e work proposed here
does not manage to explain exactly what is the biological
characteristic that allows the bioimpedance to detect dia-
betes, although the hypothesis of the cellular damage that
the cells present is being measured with bioimpedance is
presented. ,erefore, this work focused on the electronic
and programming design of a system capable of predicting
diabetes.

All these factors and characteristics of the implemented
equipment have the potential to be used in T2D screening,
being a simple process; this translates into a faster diagnosis
mechanism that in turn helps to reduce diseases related to
T2D.,is is even in health service posts in developing places
where invasive diagnostic tests are difficult to access. With
this development, there is a contribution to preventive
medicine, which precisely meets the needs of people, in this
case with type 2 diabetes. ,is equipment does not replace
the conventional methods of detection of the pathology, but
it does allow detection of this in less than 3minutes and at
any time of the day.

One of the main objectives of this research was to de-
velop portable and low-cost equipment, so it was decided to
use the ESP32 microcontroller; consequently, the develop-
ment of deep learning with such hardware becomes com-
plicated. On the other hand, with the results of above 90%
accuracy, the use of a device with greater processing and
memory such as a Raspberry Pi was not justifiable, which
would increase the size, weight, and cost of the device in
addition to reducing autonomy.

In future work, the algorithm can be modified to use
sugar levels measured by noninvasive techniques such as
photoplethysmography to deliver a prediction of the disease
together with the glucose level.
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