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The RAS (renin-angiotensin system) is the part of the endocrine system that plays a prime role in the control of essential
hypertension. Since the discovery of brain RAS in the seventies, continuous efforts have been put by the scientific committee to
explore it more. The brain has shown the presence of various components of brain RAS such as angiotensinogen (AGT),
converting enzymes, angiotensin (Ang), and specific receptors (ATR). AGT acts as the precursor molecule for Ang peptides—I,
II, III, and IV—while the enzymes such as prorenin, ACE, and aminopeptidases A and N synthesize it. AT1, AT2, AT4, and
mitochondrial assembly receptor (MasR) are found to be plentiful in the brain. The brain RAS system exhibits pleiotropic
properties such as neuroprotection and cognition along with regulation of blood pressure, CVS homeostasis, thirst and salt
appetite, stress, depression, alcohol addiction, and pain modulation. The molecules acting through RAS predominantly ARBs
and ACEI are found to be effective in various ongoing and completed clinical trials related to cognition, memory, Alzheimer’s
disease (AD), and pain. The review summarizes the recent advances in the brain RAS system highlighting its significance in
pathophysiology and treatment of the central nervous system-related disorders.

1. Introduction

The renin-angiotensin system (RAS) is of paramount impor-
tance, having a role in the regulatory pathway involved in
the maintenance of blood pressure (BP), body fluid volume,
and sodium homeostasis. Conventional RAS involves the
conversion of inactive angiotensinogen into angiotensin I
(Ang I) in the presence of renin which is released from the
kidney in response to low blood volume. Angiotensin-
converting enzyme (ACE) converts Ang I into angiotensin
II (Ang II) which acts on an angiotensin type 1 (AT1) and
angiotensin type 2 (AT2) receptor. AT1 and AT2 are
involved in various physiological changes such as an
increase in BP, volume overload, and facilitation of aldoste-
rone release. Intrinsic brain RAS is an enzyme-neuropeptide
system having functional components (angiotensinogen,
peptidases, angiotensin, and specific receptor proteins) with
important biological and neurobiological activities in the
brain.

2. History of Brain RAS

Renin was first named as a kidney hormone by Tigerstedt
and Bergman in the year 1898, where they observed its pres-
sure effects in rabbits [1]. Angiotensin was discovered during
the late 1930s concurrently by Page in the United States and
by Braun-Menenez and his colleagues in South America [2].
Ganten et al. in 1970 proposed that even after nephrectomy
of adult mongrel dogs, the tissue’s renin activity persisted
even after 12 days [3]. As plasma renin is unable to cross
the blood-brain barrier, it was predicted that there is the
existence of brain RAS independent of the kidney.

Philips and Felix [4] proved the presence of Ang II-
activated neurons in the brain and subfornical organs [4].
The results indicated that the components of the renin/
angiotensin system are available at the level of the brain cell
itself. All the components of brain RAS such as enzyme iso-
renin, ANG, Ang I, converting enzymes, and Ang II are
found in the brain [5–9]. Brain RAS and circulating RAS
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have been proven to be independent of each other [10–12].
Glial cells are identified as the site of synthesis of AGT
[13]. These RAS peptides are present in astrocytes, glial cells,
oligodendrocytes, and neurons of various areas of the brain
[14, 15] such as the basal ganglia, cerebral cortex, and hippo-
campus [16]. The review explains the recent advances in the
brain RAS system. It also highlights the status of the agonist
and antagonist of brain RAS in the treatment of various neu-
rological disorders.

2.1. Angiotensinogen. AGT is a high molecular weight mole-
cule (49.548), made up of 453 amino acids (aa) synthesized
in the liver. It is similar to α1 antitrypsin and is affiliated
to the Serpin gene family [17]. It is present centrally in the
brain with about 90% being expressed in astroglial cells
and in some neurons present in regions of the brain control-
ling cardiovascular and other metabolic functions [18, 19].
However, renin is endogenously expressed in the brain,
and increased brain RAS activity is also reported for induc-
ing moderate hypertension; certain experimental evidence
also suggests that AGT expression in the brain and circulat-
ing AGT regulation is an independent phenomenon [20].
For example, ACE blockade for a long time causes the low-
ering of AGT levels in plasma, but not in cerebrospinal fluid
(CSF). It is suggested that Ang I is not formed in the brain,
and availability of Ang II might be because of its excess from
periphery to the brain, as it itself is BBB destructive [21].
However, it should be noted that some studies have identi-
fied AGT- and Ang II-positive cells in the brain [22]. Ang
II exhibits a vasoconstrictor effect when acting on the AT1
receptor and vasodilator effect through the AT2 receptor
[23] in the brain.

2.2. Ang III and Ang IV. Ang II in the presence of aminopep-
tidase A (APA) gets converted into Ang III, which is abun-
dantly found in the brain [24]. Ang III is further converted
into Ang IV by aminopeptidase N (APN) and aminopepti-
dase B (APB). Ang III acts through the AT2 receptor and
has a main role in the regulation of BP and homeostasis
[25]. Ang IV has the ability to bind to the AT1 and AT4
receptors. Ang IV when bound to the AT1 receptor showed
the vasoconstrictor effect, and with the AT4 receptor, it
improved learning and memory response [26]. Cognition
enhancement is mainly because of its ability to increase cho-
linergic neurotransmission in the hippocampal region [27].
APA inhibitors, amastatin and RB150 (orally active), inhibit
the conversion of Ang II to III in the brain thereby increas-
ing Ang II which decreases BP and reduces the pressor
response [28] via the AT2 receptor. The preclinical safety
and efficacy of RB150 have taken it to a phase I study, where
it (RB150/QGC001) was found to be clinically and biologi-
cally well-tolerated in healthy volunteers after single oral
administrations up to 2000mg. Thus, APA inhibitors open
a new avenue as an oral antihypertensive drug segment.

In contrast, when APN (inhibiting metabolism of Ang
III) was blocked by intracerebroventricular (Icv) injection
of PC18 (2-amino-4-methylsulfonyl butane thiol), this
resulted in rise in BP due to a central mechanism of Ang
III. This effect was blocked by the AT1 antagonist losartan

suggesting involvement of the AT1 receptor in producing
the pressor response by Ang III [29].

2.3. Converting Enzymes of the Brain RAS: Renin/Prorenin.
The active form of renin in the brain is prorenin. It is present
in a low concentration called as prorenin. In the brain, it is
present within neurons and astrocytes in two forms: intra-
cellular renin and secreted renin (prorenin) [30, 31]. Prore-
nin acts on a prorenin receptor, activation of which leads
to the generation of angiotensin peptides which activate
the AT1 receptor resulting in GPCR signaling [32].

2.4. ACE and ACE2. Brain ACE is a key component of the
brain RAS and is expressed in many regions of the brain
(endothelium of central vasculature, choroid plexus, and
astrocytes) especially in the regulation of BP [32]. It is a
dipeptidyl peptidase in nature and hydrolyzes bradykinin,
tachykinin, or substance P in the brain [33]. ACE cleaves
Ang I to the active octapeptide Ang II. Icv infusion of ACE
into the brain of Sprague-Dawley rats has shown to increase
Ang II levels in the CSF leading to the increase in BP [32].
The ACE inhibitor captopril when administered centrally
normalizes BP and renal sympathetic nerve activity hence
improving brain RAS function [34]. ACE2, a form of ACE,
was first identified in the year 2000 [35, 36]. The human
ACE2 (hACE2) protein is a zinc metallopeptidase with 805
amino acids. ACE2 cleaves the COOH-terminal residue of
the decapeptide. Ang I thus generates Ang (1-9) which is
subsequently converted into Ang (1-7) [36, 37]. It shows a
greater affinity for Ang II in comparison with Ang I. ACE2
has an important role in counterregulating the actions of
the well-documented ACE/Ang II/AT1R axis which has a
vasoconstrictive effect. ACE2 cleaves Ang II to Ang (1–7)
which promotes vasodilation and has beneficial effects on
cardiovascular diseases [38, 39]. Injection of Ang (1–7) into
the brain resulted in a fall in arterial blood pressure indicat-
ing the central role of Ang (1–7) to counteract the rise in BP
by Ang II. Thus, imbalance between ACE and ACE2 would
affect blood pressure [40]. Local inhibition of brain ACE2
induces a reduction in baroreflex sensitivity. ACE2 is also
the functional receptor for coronavirus associated with the
acute respiratory syndrome, i.e., SARS-CoV [38].

2.5. Other Converting Enzymes: Aminopeptidase. As per the
literature, renin is present in a very minute concentration
in the brain and alone cannot contribute to Ang II genera-
tion. Hence, alternative converting enzymes such as tonin,
cathepsin G, and chymase are involved which bypass the
Ang I step and directly convert AGT to Ang II. Cathepsin
G is a serine protease located in the neutrophil leukocytes,
red blood cell membranes, and intracellular granules. Renin
and cathepsins have a similar structure, which in the absence
of renin leads to the generation of Ang II. Tonin is a serine
proteinase also called rat kallikrein 2 is present in the astro-
cytes and thalamus of the brain. In case of absence or limited
release of renin in the brain, tonin is responsible for Ang II
generation [41]. Another enzyme chymase, which is a serine
protease and is released from the mast cell, is also involved
in the generation of Ang II. The one derived from humans
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has the highest Ang II generation capacity as compared to
rat and rabbit chymase [42]. Other cleaving enzymes are
aminopeptidases that play a very important role in the regu-
lation of the RAS, and their inhibition shows significant
effects (discussed earlier). APA is also known as glutamyl
aminopeptidase and hydrolyzes the N-terminal of acidic
amino acids. APA converts Ang II to Ang III. APN is alanyl
aminopeptidase which hydrolyzes neutral amino acid resi-
dues. APB also called arginine aminopeptidase hydrolyzes
N-terminal basic amino acids [43].

2.6. Angiotensin Receptors

2.6.1. AT1 Receptors. In brain RAS, four types of angiotensin
receptors exist—AT1, AT2, AT4, and MasR. AT1 and AT2
receptors are G protein-coupled receptor kinase having 7
transmembrane subunits and are of prime importance.
AT2 is 34% identical at the amino acid level with the AT1
receptor [44].

AT1 receptors are located in the organum vasculosum of
the laminae terminalis (OVLT), the suprachiasmatic nucleus
(SCN), the preoptic periventricular nucleus (PVN), and the
median eminence. It consists of 359 amino acid sequences
and has a molecular weight of 40-42 kDa. AT1 has 2 sub-
types AT1A and AT1B which have a similar amino acid
sequence but different pharmacological properties [45].
AT1A shows typical binding characteristics of the AT1
receptor, and AT1B has a 10000-fold higher affinity for the
AT2 receptor antagonist PD123319. Ang II binds to the
AT1 receptor by a transmembrane domain with the help
of an extracellular loop. Ang II acts through AT1 receptor-
Gi- and Gq-coupled mechanisms and causes vasoconstric-
tion, hypertension, increased oxidative stress, and vasopres-
sin release. A Gi protein-coupled mechanism involves
inhibition of adenylyl cyclase and stimulation of phospholi-
pase C (PLC). PLC forms Diacylglycerol (DAG) and cyclic
AMP [46] (vasodilator in nature); it also releases protein
kinase C (PKC) which results in vasoconstriction by the Gi
inhibitory mechanism. Gq protein which activates the sec-
ondary messenger inositol triphosphate (IP3), and DAG
releases phospholipase A2 (PLA2) and PLD, which in turn
generate arachidonic acid having a role in inflammation
(Figure 1). Icv infusion of the AT1 antagonist losartan
inhibits hypertensive response to Ang II [47].

2.6.2. AT2 Receptors. The AT2 receptor predominates in the
midbrain mostly in the inferior olive, locus coeruleus, tha-
lamic nuclei, medial amygdala, and molecular layers of the
cerebellum. AT2 receptors are divided into two subtypes
AT2A and AT2B. AT2A is reported to be present in the ven-
tral thalamic nuclei, medial geniculate nuclei, and locus
coeruleus and is sensitive to guanine nucleotides, pertussis
toxin, and dithiothreitol. The AT2B subtype is located in
the inferior olive and is found to be insensitive to the
above-mentioned agents [48]. AT2 receptor activation
causes lowering of BP and antihypertensive effect in neuro-
genic hypertension by the restoration of baroreflex [49].

AT2 receptors are found in the fetus CNS and play an
important role in the differentiation and development of

CNS. They also contribute to repairing damaged DNA
[50]. Ang II activates the AT2 receptor and causes K+ chan-
nel activation and inhibits Ca2+ release. It stimulates arachi-
donic acid release by acting through PLA2 and activates
several phosphatases like protein tyrosine phosphatase,
MAP kinase phosphatase 1, SH2-domain-containing phos-
phatase 1 (SHP-1), and serine-threonine phosphatase 2A
[51–53]. This molecular-level action causes numerous effects
like differentiation, vasodilation, and apoptosis. AT2 recep-
tor activation therefore produces a neuroprotective effect
(Figure 2)

2.6.3. AT4 Receptors. AT4 receptors along with cholinergic
neurons are present in the brain in the cerebral cortex and
hippocampus, which are involved in cognition (memory for-
mation), sensory, and motor performances [54, 55]. It
increases cholinergic transmission and improves cognitive
improvement abilities [56]. It is an insulin-regulated amino-
peptidase (IRAP), and it shows its effect after binding to the
ligand. Ang IV shows its pressor response through the AT1
receptor [57]. Ligands binding to AT1 and AT2 receptors do
not bind to AT4 receptors proving that AT4 is not a GPCR
but a member of the growth factor or cytokine family of
receptors. The signal transduction mechanism of the AT4
receptor is still unclear for brain RAS [58].

2.6.4. Mitochondrial Assembly Receptor (MasR). MasR ini-
tially known as protooncogene is a G protein-coupled recep-
tor. Mas expression is found in the heart, kidney, lung, liver,
spleen, tongue, and skeletal muscle and excessively in the
brain [59]. In the brain, they are specifically present in the
NTS, RVLM, caudal ventrolateral medulla (CVLM), inferior
olive, parvo- and magnocellular portions of the PVN, supra-
optic nucleus, and lateral preoptic area [46]. The endoge-
nous activation ligand for MasR is angiotensin (1-7). It is a
negative regulator of Ang II-activated AT1R [35, 39]. Hence,
the MasR agonist shows similar effects as Ang II receptor
antagonists. The discovery of MasR led to the concept of
two arms of RAS showing different actions: one comprising
classic ACE/Ang II/AT1R (vasoconstrictive, hypertensive,
proliferative, and fibrotic) and the other comprising ACE2/
Ang (1-7)/Mas (provasodilatory, antihypertensive, antifibro-
tic, and antigrowth) [60]. The latter one plays an important
role in the critical component of pulmonary systems, gastric
mucosa, and cancer. Recently, experimental and clinical
pieces of evidence suggested that Ang (1-7) or Mas analogs
exhibit strong anti-inflammatory responses mediated by
SARS-CoV-2 [61, 62]. The details have been discussed in
the later part of the review.

2.7. Role of Brain RAS in the Regulation of Various
Physiological Activities and the Drugs Acting on It

2.7.1. Regulation of Cardiovascular Function through the
Brain. Ang II acts as a neurotransmitter by activating its sub-
types in different regions of the brain and thereby regulating
neurogenic hypertension by sympathetic activation and baror-
eflexes. Brain RAS along with the sympathetic nervous system
(SNS) and vasopressin release plays a crucial role in managing
hypertension [63]. The release of vasopressin occurs from the
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hypothalamo-pituitary system while SNS activation occurs by
the AT2 receptor via Ang II and Ang III. This leads to stimu-
lation of pressor response and inhibition of baroreflex which
causes an increase in the release of AVP into circulation and
leads to increased BP. The central role of BP modulation by
brain RAS is further confirmed by the fact that APA- and
APN-specific inhibitors mainly acting through Ang III pro-
duce a fall in BP. Secondly, brain RAS acts by synaptic inhibi-
tion of baroreflex at the level of NTS and increased
sympathetic nerve activity [25, 34]. NTS has an important role
in the central feedback regulation of BP. At the moment of
fluctuation of BP, aortic arch and carotid sinus baroreceptors
get activated and send the signal to the NTS. It processes the
signal and modulates synaptic output through initiating a
relay from the caudal ventrolateral medulla and finally
through RVLM. Thus, increased neuronal activity in RVLM
or decreased baroreflex sensitivity at NTS can alter the sympa-

thetic output. Inhibiting brain RAS by AT1 blockade in the
brain leads to a decrease in blood pressure. However, there is
need of preclinical studies where an angiotensin inhibitor like
cardioprotector is required.

2.8. Role of Brain RAS in Thirst, Sodium Uptake, and
Vasopressin Release

2.8.1. Modulation of Thirst. Brain RAS influences BP by
modulating synaptic nerve activity and stimulates behavioral
changes that result in salt intake and initiation of thirst.
Dehydration can be classified into extracellular (i.e., volumet-
ric) or intracellular (i.e., osmotic). Brain structures involved in
drinking behavior are the lamina terminalis and anteroventral
third cerebral ventricle region (AV3V) including the SFO,
OVLT, MnPO, and periventricular preoptic nuclei (PePO)
which show high AT1 mRNA expression and high density

PLA2/ PLD

PLC

Arachidonic
acid cAMP Increase

intracellular
Ca2+

PKC

Prostaglandins Vasoconstriction

ATP

Adenylate
cyclase 

IP3 DAG

AT1 receptor

PIP2

Gi
Gq

Gq

PLA2 PTP

Guanylyl
cyclase

cGMP

Increase
arachidonic

acid 

Phospatases, MKP-1,
PP2A, SHP-1 

Decrease ERK

Gi

Apoptosis
differentiation

Ca2+

chann
el

K+ 
channel

GTP

AT2 receptor

AngII

GDP

GTP

Figure 1: Signal transduction mechanism for angiotensin receptors—AT1 and AT2. Ang II binds to the AT1 receptor and shows
vasoconstrictor action through Gi- and Gq-coupled mechanisms. Gi protein-coupled mechanism involves inhibition of adenylyl cyclase
and phospholipase C stimulation coupled with Gq protein which activates secondary messengers like IP3 and diacylglycerol. Ca2+

released from the above pathway causes vasoconstriction. Vasoconstriction is also caused by protein kinase C from diacylglycerol and
cAMP (vasodilator in nature) from the adenylyl cyclase inhibitory pathway. Gq-coupled mechanism activates phospholipase A2 and D,
causing generation of arachidonic acid. Ang II binds with the AT2 receptor and by negative coupling with guanylyl cyclase shows Ca2+

inhibition and activation of the K+ channel. Also, the AT2 receptor acts through phospholipase A2 and stimulates arachidonic acid
release. AT2 receptor stimulation activates several phosphatases like protein tyrosine phosphatase, MAP kinase phosphatase 1 (MKP-1),
SH2-domain-containing phosphatase 1 (SHP-1), and serine threonine phosphatase 2A. When this phosphatase gets activated, there is
inactivation of extracellular signal-regulated kinase (ERK), which leads to potassium channel opening and inhibition of T-type Ca2+

channels. Abbreviations: PLA: phospholipase A; PLC: phospholipase C; PLD: phospholipase D; IP3: inositol (1;4;5) triphosphate; DAG:
diacylglycerol; PKC: protein kinase C; PTP: protein tyrosine phosphatase; PP2A: serine/threonine phosphatase 2A; ERK: extracellular
signal-regulated kinase.
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of AT1 binding sites [25]. Volumetric dehydration caused by
hemorrhage results in a decrease in blood volume and leads
to baro/volume receptors in the kidney for renin release. It
results in the start of a cascade of events that produce Ang II
which plays an important role in the initiation of thirst [64].
When angiotensin reaches its threshold level (500pg/ml by
48h of dehydration), it penetrates the capillaries of SFO and
OVLT. AT1 receptor expression causes activation of detectors
in the arch of the aorta, carotid sinus, and great veins that send
signals to the brain. It stimulates the thirst center in the brain
to initiates a search for water, and antidiuretic hormone
(ADH) is released. It results in decreased urine production
and increased Na+ ingestion (sodium appetite). Extracellular
dehydration thus increases thirst and sodium appetite.

2.8.2. Sodium Uptake. Aldosterone is the hormone of
sodium regulation, which plays an important role in the
brain by sensitizing specific areas (hypothalamus and hind-

brain) and affects circulating levels of Ang II. It also acts in
the kidney via the distal tubule and collecting duct through
stimulation of the sodium-potassium ATPase pump. The
combined effect of aldosterone in the brain and kidney stim-
ulates sodium appetite by inhibiting sodium excretion via
the kidney and increasing thirst [64].

2.8.3. Vasopressin Release. In the case of severe dehydration
or hypovolemia, circulating angiotensin stimulates AT1A
receptors in SFO and OVLT leading to activation of neuro-
nal outputs from angiotensin neurons to PVN and SON,
hence the release of angiotensin. This causes to increase
the firing rate of vasopressin neurons and release of AVP
from the posterior pituitary into circulation thereby combat-
ing fall in BP [65]. Vasopressin is also released when Ang II
is injected in the brain and further activates the somatic ner-
vous system and inhibits the baroreceptor reflex [66]. Angio-
tensin through vasopressin also promotes thermoregulation
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Figure 2: Function of angiotensin receptors in central nervous system-related disorders. Overview of brain RAS demonstrating the
formation of its component in periphery and in the CNS. The diagram represents the specific converting enzymes involved for the
conversion AGT to Ang IV, their receptors, and their role in various CNS disorders and protection. The RAS pathway initiates by
conversion of angiotensinogen from the liver to Ang I in the lungs by sequential action of enzymes and prorenin-renin which also acts
on a specific prorenin receptor. Ang I in the presence of ACE is further converted to Ang II, which gets fragmented into biological active
form Ang III and IV which further acts on AT1, AT2, AT4, and MasR. The AT1 activation results in stress, neuroinflammation, and
stroke. This effect is counteracted by the Ang II/AT2R and Ang (1-7)/MasR signaling pathway resulting in decrease in inflammatory
cytokines and reduced ROS contributing to neuroprotection and cell proliferation. Specific inhibitors like ARBs, ACEI, and renin
inhibitors have demonstrated to improve the pathological conditions. Abbreviations: Ang I: angiotensin I; Ang II: angiotensin II; Ang III:
angiotensin III; Ang IV: angiotensin IV; ACE: angiotensin-converting enzyme; ACE 2: angiotensin-converting enzyme; APA:
aminopeptidase A; APB: aminopeptidase B; APN: aminopeptidase N; MasR: Mas receptor; AT1: angiotensin receptor subtype 1; AT2:
angiotensin receptor subtype 2; AT4: angiotensin receptor subtype 4; PD: Parkinson’s disease; AD: Alzheimer’s disease.
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as observed by Ang II-facilitated heat loss in rats due to tail
skin vasodilatation and by stimulation of central AVP
release. Icv administration of the AT1 antagonist losartan
in rats which are preexposed to a hot environment for 1 h
showed the inhibition of the thermoregulatory cooling
mechanism. It prevents splanchnic nerve activity and
reduces the distribution of blood to the skin [65].

2.8.4. Role of Brain RAS in Stroke (Neuroprotection). Brain
RAS has a much wider range of neural effects and is involved
in Alzheimer’s disease (AD), stroke, memory, learning, alco-
holism, and stress [67]. Reduction or interruption of cerebral
blood flow results in ischemic stroke. It is followed by neuro-
nal necrosis and brain apoptosis resulting in serious damage
to surrounding cells. Ang II stimulates the AT2 receptor
and shows stroke-protective effects. Angiotensin receptor
blockers (ARBs) show a neuroprotective effect by selectively
blocking AT1 receptors leading to a decrease in local vaso-
constriction. Further, free Ang II activates more AT2 recep-
tors causing local vasodilation and decreases local brain
ischemia, thus limiting volume and extent of brain loss. Pre-
clinical studies using the middle cerebral artery occlusion
(MCAO) model showed complete blockade of brain AT1
receptors, whereas when treated with ARBs, it exhibited neu-
roprotective effects in stroke, without having any effect on
blood pressure [68]. Antihypertensive treatments, with dif-
ferent combinations of ACEI (perindopril), AT1 receptor
antagonist, β-blocker, and diuretic treatments, are used clin-
ically for controlling stroke [69]. ARBs acting on AT1R have
also been shown to stimulate peroxisome proliferator-
activated receptor gamma (PPARγ). Therefore, blocking
AT1R or/and activating PPARγ may cause cerebral protec-
tion [70] (Figure 2). Telmisartan, ramipril, candesartan, and
perindopril have been studied under clinical trials named
PRoFESS, HOPE, HOPE-3, and PROGRESS, respectively,
and found to be significantly effective. The details of the stud-
ies are mentioned in Table 1.

2.8.5. Role of Brain RAS in Neuronal Damage. In brain RAS,
Ang II plays an important role in neuronal damage, mainly
acting through the dopaminergic neurons (nigrostriatal sys-
tem) and microglial cells (inflammatory cells). It acts
through the Ang II-mediated AT1/NOx axis and generates
high-level superoxide ROS. Ang II acting through the AT1
receptor activates the NADPH-oxidase complex, which
mediates various oxidative stress (OS) and inflammatory
processes resulting in tissue damage leading to degenerative
diseases [71, 72]. AT1-induced NOx activation is initiated by
protein kinase C (PKC) in microglial cells [73]. Administra-
tion of ACEI and ARBs blocked the action of Ang II and
showed a reduction in neurotoxin-induced levels of protein
oxidation and lipid peroxidation and dopaminergic neuron
protection [74] (Figure 2).

2.8.6. Parkinson’s Disease (PD). PD is a neurodegenerative,
movement disorder that occurs due to the progressive loss
of dopaminergic neurons. Brain dopamine receptors are
present in the substantia nigra pars compacta (SNPc) and
striatum which has also shown the presence of the AT1

receptor [75]. Ang II activates NOx complex-stimulated
superoxide generation by inflamed cells causing the death
of dopaminergic neurons. ARBs (telmisartan, candesartan,
and losartan) and ACEI (captopril, perindopril) are found
to be potent against preclinical models of PD, although there
are very limited clinical studies available [76–78].

2.8.7. Role of Brain RAS in Memory Facilitation. Ang IV and
cholinergic neurons are closely associated with the neocortex
and hippocampus, which are involved in cognitive process-
ing. Conversion of Ang II to Ang IV results in a memory-
enhancing effect. The Ang IV analog Nle1-AngIV facilitates
long-term potentiation (LTP) in learning and memory [79].
Elevated brain Ang II in AD interferes with Ach release from
the cortex and affects cognitive functions. AT1R blockade by
ARBs (telmisartan, losartan, valsartan, candesartan, and
olmesartan) facilitates additional unbound Ang II available
for conversion to Ang III and further to Ang IV and facili-
tates learning and memory. Also, the synthesis of Ang II is
decreased by ACEI (perindopril, ramipril) which conse-
quently increases Ach release and also the synthesis of Ang
IV. Thus, coadministration of ACEI with AT1 antagonists
prevents the formation and action of Ang II and enhances
the formation of Ang IV, and it has been proven for its
memory-enhancing property [80].

2.8.8. Role of Brain RAS in AD and Dementia. AD is a mul-
tifactorial, complex, neurodegenerative disease that leads to
dementia characterized by deposits of amyloid β (Aβ) (1-
42), hyperphosphorylation of microtubule-associated pro-
tein tau, cholinergic neuronal loss, neuroinflammation, and
mitochondrial damage [81]. Overexpression of ACE is
observed in the hippocampus, frontal cortex, and caudate
nucleus in patients with AD. There are contradictory effects
observed for ACEIs in the treatment of Alzheimer’s disease
(AD) which are discussed below in detail. Some studies
claim ACE inhibitors to be detrimental as ACE converts
Aβ1–42 to Aβ1–40 (neuroprotective). Other studies have
reported ACEI to be beneficial. It improved cerebral blood
flow due to inhibition of the formation of Ang II. ACEI is
also demonstrated to inhibit the release of inflammatory
cytokines thereby attenuating neurodegeneration. ACE inhi-
bition by Icv administration of perindopril has shown to
ameliorate neurodegeneration [82, 83]. ARBs, namely, tel-
misartan, losartan, candesartan, valsartan, olmesartan, and
eprosartan, by their inhibitory action on AT1R have shown
to attenuate AD condition. They show their effect by the
decrease in amyloidosis, microglial activation, reduced neu-
roinflammation, and improved cerebral blood flow. Cande-
sartan and telmisartan have been studied clinically. A
comparative clinical study of lisinopril with that of candesar-
tan in 141 patients under the CALIBREX study demon-
strated improved cognitive performance in the candesartan
arm than lisinopril. With telmisartan’s virtue of efficacy in
preclinical studies under a clinical trial sponsored by the
Alzheimer’s Drug Discovery Foundation with 150 patients,
the trial is open labelled and comparative with perindopril;
it is expected to finish by 2022 (Table 1).
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Kehoe et al. [84] studied human postmortem brain tis-
sue and CSF of AD, diseased, and noncontrolled patients.
The authors measured ACE1 and ACE2 activity by using an
ACE1-specific fluorogenic peptide substrate (Abz-Frk(Dnp)-
P) and ACE2-specific fluorogenic peptide substrate (mca-
APK(Dnp) in the presence of a specific ACE1 inhibitor, cap-
topril, and a ACE2 inhibitor, MLN4760, respectively. Angio-
tensin I and II and Ang (1-7) were measured by the direct
ELISA method. The authors found ACE overactivity in brain
RAS, and postmortem CSF in AD is mirrored in antemortem
CSF. CSF-ACE1 in AD is higher in CSF-t-tau and CSF-p-tau
but not CSF-Aβ-42. In contrast to brain tissues, ACE2 posi-
tively correlates with ACE1 activity in post- and antemortem
CSF (inverse correlation in brain and brain tissue). Brain
angiotensin changes in AD are not reflected in CSF. These
findings indicated that some markers of brain RAS are mir-
rored in CSF; however, the relationship is complex. The
recent research work by Evans et al. [85] has indicated bene-
ficial effects of diminazene aceturate (ACE2 activator) by
enhancement of brain ACE2 activity thereby lowering hippo-
campal Aβ and hence restoring cognition in symptomatic
Tg2576 mice.

2.8.9. Role of Brain RAS in Stress, HPA Axis Regulation, and
Depression. AT1 receptors are majorly distributed in areas
that control stress response such as SFO and the median
eminence in the hypothalamic PVN, anterior pituitary
gland, amygdala and septal nuclei, hippocampus, and NTS
[86]. Stress results in the formation of Ang II in the thalamus
and other parts of the brain that contribute to catecholamine
release [87].

Brain RAS has already proven to have a role in the path-
ophysiology of depression [70]. As AT1 and AT2 receptors
are found in the hypothalamus-pituitary-adrenal (HPA)
[88] axis, HPA plays an important role in stress and stress-
related behavior. Activation of corticotropin-releasing hor-
mone (CRH) gene expression was found via AT1 receptor
activation in immobilization-induced stress. Treatment with
ARB (telmisartan, candesartan, and valsartan) or ACE
inhibitors reduces CRH-induced adrenocorticotropic hor-
mone (ACTH) and corticosterone release in spontaneously
hypertensive rats. They also decreased pituitary sensitivity
to CRH and reduced hypothalamic CRH expression which
ultimately led to the reduction of stress [89] (Table 1). How-
ever, preclinical ARBs and ACEI are found to be effective.
Clinical studies on them with respect to depression are still
awaited.

2.8.10. Role of Brain RAS in Alcohol Addiction. Alcohol con-
sumption is majorly dependent on social aspects alongside
genetic factors that play a crucial role in the pathogenesis
of alcohol addiction. Experimental studies suggested that
there is a direct correlation between endogenous Ang II level
and voluntary alcohol consumption [90]. The reward cir-
cuitry (activated due to alcohol consumption) of the brain
has dopamine as a critical component; accordingly, geneti-
cally modified D2 receptor-deficient mice have been shown
to drink less alcohol [91]. Angiotensin receptors are
expressed in the dopaminergic dominated nucleus accum-

bens; also, Ang II is demonstrated to stimulate dopamine
release in the brain [92]. The central administration of Ang
II to the experimental animal increased alcohol intake.
ACE inhibitors, captopril and enalapril, therefore are found
to prevent alcohol consumption [93].

2.8.11. Role of Brain RAS in Pain. Pain is defined as hyperex-
citation of sensory neurons that arises because of injury,
trauma, inflammation, and nerve damage. Ang II injection
into mouse hind paw has shown the development of periph-
eral pain. The amygdala, hypothalamus, and frontoparietal
cortex are considered to be important parts in the relay of
pain which also expresses RAS receptors. The drugs blocking
RAS have been shown to inhibit and show potential benefits
in central pain originating from either the brain or spinal
cord such as migraine and neuropathy pain. The mechanism
predicted is inhibition of cytokines and also due to the
release of endogenous opioids. The literature also reports
contradictory effects of brain RAS and ACEI which has
shown an algesic effect due to inhibition of metabolism of
bradykinin and substance P, while recent studies showed
the antinociceptive effect of ACEI and ARBs by attenuating
substance P, NO, and calcitonin gene-related peptide
(CGRP). Newer drug candidates such as AT2R antagonists,
EMA 200, EMA 300, EMA 401 have shown to inhibit P38
and p42/p44 MAPK; hence, they are found to be beneficial
in neuropathic pain; however, the recent article published
in June 2020 indicated that the AT2 receptor does not have
any role to play in pain modulation [72, 94].

The early phase IIb clinical study on EMA 401, an AT2R
antagonist, was found to be effective in neuropathic pain
(Spinifex Pharmaceuticals) though the detailed clinical study
results are awaited as the phase II clinical trial EPHENE was
terminated due to lack of preclinical safety data (Table 1).

There is a lack of literature, and the unavailability of
clinical trials on these molecules makes them obscure. More-
over, poor penetrability through BBB is another challenge to
target brain AT2 receptors. Hence, there is a need to synthe-
size and develop more analogs and perform exhaustive pre-
clinical studies to explore their potential in CNS-mediated
pain-related disorders [95].

2.8.12. SARS-CoV-2 Infection and Neurological
Manifestations. Current threat of COVID-19, which has agi-
tated the whole world, is an infectious disease caused by
severe acute respiratory syndrome nCoV-2 (SARS CoV-2).
COVID-19 has caused enormous deaths which have been
reported worldwide. Symptoms associated resembles normal
viral infection except in severe condition; it may develop to
pneumonia, acute respiratory distress syndrome (ARDS),
and multiorgan failure. SARS-CoV-2 consists of S protein
(structural protein) which is multifunctional and plays a
vital role in host receptor binding and pathogenesis of the
virus. Postentry, there are a release of the viral RNA genome
in the cytoplasm and translation into 2 polyproteins as well
as structural proteins, and later replication of the viral
genome begins. The membrane of the endoplasmic reticu-
lum (ER) or Golgi is then inserted with newly formed ungly-
cosylated proteins, and then, development of viral particles
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into the ER-Golgi intermediate compartment takes place
followed by fusion of the plasma membrane with vesicles
containing viral particles leading to the release of the virus.
Apart from lung and cardiovascular tissues, newly assem-
bled SARS-CoV-2 virions infect the ACE2-expressing cells
on neuronal and glial cells in the brain. It also enters the
brain predominantly through the olfactory mucosa (the first
feature is the development of anosmia) and could spread
through neuroanatomical interconnection. Within the
CNS, the brain stem is worst affected leading to respiration
and cardiovascular impairment and death. The acute infec-
tion of the brain is characterized by delirium followed by
severe conditions such as unconsciousness, cerebrovascular
events (stroke), encephalopathy, and seizures. The chronic
effects of nCoV-2 infection include demyelization, dementia,
and neuropsychological and neurodegenerative diseases
[96]. Although the healthcare workers are now well versed
with acute neurological events associated with nCoV-2, the
post-COVID CNS complications must not be ignored that
might occur as posttraumatic stress disorder that may
invade the future well-being.

3. Conclusion

Since the conception of brain RAS in the year 1898, contin-
uous research has been done in the field. It is now very well
established that brain RAS plays a crucial role in CNS-
controlled cardiovascular function, thirst, and maintenance
of sodium level; also, it exhibits a prominent role in CNS
itself. It is a neuroprotectant, observed via activation of the
AT2 receptor; on the contrary, AT1 receptor activation has
been shown to induce oxidative stress. Therefore, AT2
receptor agonists and AT1 receptor antagonists play a cru-
cial role in cerebral protection. Similarly, blocking of AT1
receptors on dopaminergic neurons by ARBs and ACEI
demonstrated a potent anti-PD effect. The role of Ang IV
in the memory-enhancing effect is well established, though
the invention of the Ang IV agonist is still awaited. ACE
overexpression is found to be associated with AD, and its
inhibition by perindopril and captopril has shown a promis-
ing effect in AD preclinically. The myriad of clinical trials on
ARBs and ACEI are evident that indicate the possible clini-
cal use of these drugs in AD in the near future. ACEI and
ARBs are also found to be effective in depression by amelio-
rating the HPA axis. Recently, the role of brain RAS has
been studied in the development of addiction. There is scope
for more research on brain RAS in addiction and substance
abuse, epilepsy, stress-related disorder, and psychosis.
Recent literature also reported the analgesic effect of AT2R
antagonists though still there is a need for preclinical and
clinical studies to prove its clinical benefit. With a plethora
of preclinical studies available for brain RAS, the unavail-
ability of clinical trials on molecules modulating brain RAS
obscures them. We have summarized the preclinical and
clinical research work carried out using angiotensin enzyme
and receptor inhibitors. However, further studies are needed
to unfold the uses of these molecules in various pathological
conditions associated with brain RAS.
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