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Hypothesis/Introduction. Berberine, a natural compound, has multiple pharmacological activities to promote islet function. We
hypothesized that berberine could reshape the local renin-angiotensin system (RAS) balance to ameliorate the development of
obesity via the modulation of autophagy. Materials and methods. After 8 weeks of administration of intragastric berberine to
ob/ob mice, metabolic parameters, islet structure, and the angiotensin-converting enzyme 2 (ACE2) expression were detected.
Additionally, ACE2 knockout (ACE2KO) mice were fed a low-fat diet for 16 weeks. Furthermore, we measured changes in the
islet ultrastructure by transmission electron microscope (TEM) and protein expression of LC3 and SQSTMI1/p62 by
immunohistochemistry in ob/ob and ACE2KO mice. Results. Prolonged exposure to palmitate increased the expression of ACE
and AngII type 1 receptor (ATR1) and decreased the ACE2 expression, which was partly offset by berberine. In ob/ob mice,
berberine increased in tolerance to glucose, improved abnormal f3-cell and a-cell distributions, upregulated ACE2 expression,
and decreased autophagosomes and the expression of LC3 and SQSTM1/p62. Autophagosomes and expression of LC3 and
SQSTM1/p62 were increased in ACE2KO mice. Conclusions. We demonstrated that berberine may improve the pancreatic islet

function by regulating local RAS-mediated autophagy under metabolic stress.

1. Introduction

Obesity, which is due to a chronic imbalance between energy
“input” and “output”, has become a major public health
problem because of its epidemic proportions worldwide [1].
Extensive research has proven that the renin-angiotensin sys-
tem (RAS) is strongly associated with the energy imbalance
and organ dysfunction caused by obesity [2, 3]. In addition
to the systemic RAS that modulates body fluid and cardiovas-
cular homeostasis, the concept of a tissue RAS, located within
individual tissue types to regulate the local organ function, is
now well recognized [3]. Complete tissue RAS has been iden-
tified in the endocrine and exocrine pancreas, and the expres-
sion of its various components has been demonstrated in the

islets of Langerhans [3]. The RAS consists of dual distinct
and counterregulating axes. Classically, the angiotensin-
converting enzyme (ACE)/Ang II (angiotensin II)/Angll
type 1 receptor (ATRI1) axis is responsible for the potent
vasoconstriction, proinflammatory, prooxidative, prolifera-
tive, and hypertrophic effects. The ACE2/Ang-(1-7)/Mas
receptor (Mas) axis constitutes an alternative axis that repre-
sents an intrinsic mechanism for inducing inverse actions by
regulating the ACE/Ang II/ATRI axis, thus inducing many
beneficial effects in energy balance and beta-cell protection
[4]. Metabolic stress is an important trigger for the RAS
imbalance in the activation of the ACE/Ang II/ATRI axis
and inhibition of the ACE2/Ang-(1-7)/Mas axis, which can
be reversed by ATR1 antagonists or Ang (1-7) [5, 6]. Our
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previous study further confirmed that the ACE2/Ang-(1-
7)/Mas axis is one of the intraislet paracrine mechanisms of
communication between a- and f-cells that ameliorates f3-
cell dedifferentiation and dysfunction induced by metabolic
stress [5]. Therefore, the RAS balance plays a crucial role in
modulating metabolic processes and represents a promising
target for the treatment of metabolic disease.

The autophagy-lysosome pathway is both induced by
obesity and implicated in the development of type 2 diabetes
[7, 8]. Autophagy is crucial for various biological events, such
as cellular remodeling during development and differentia-
tion, adaptation to stress conditions, and extension of life-
span [9]. Metabolic stress (mouse models of which include
high-fat diet-fed mice and ob/ob mice) induces an increase
in microtubule-associated protein 1, light chain 3 (LC3),
which plays a central role in the autophagy pathway [10].
Selective autophagy substrate sequestosome 1 (SQSTM1, also
known as p62) mediates the specific recognition of ubiquiti-
nated protein aggregates by binding to LC3 and is then scav-
enged by autophagy. In addition, in animal models of an
obese or a diabetic phenotype, global and pancreas-specific
deletions and/or mutations of certain autophagy genes (such
as Atg7, Lamp2, p62) result in elevated blood levels of glu-
cose, glucose intolerance, smaller increases in f-cell mass,
and degenerative changes in pancreatic islets [8, 11]. Impor-
tantly, it has become increasingly evident that autophagy
may be considered the linchpin linking the biological effect
of the RAS and the quintessential regulator of RAS balance.
The disturbance of RAS balance (increased Ang II and acti-
vation of its downstream signaling) increases autophago-
some formation via NOX and ROS production [12, 13].
And some evidence shows that the inhibition of ATR1 recep-
tor ameliorates hyperlipidemia and liver steatosis in type 2
diabetic db/db mice via stimulating autophagy [14]. How-
ever, a substantial gap in the literature remains regarding
how autophagy signaling influences the balance of RAS,
especially in pancreatic islets.

Berberine is a natural compound isolated from plants
such as Coptis chinensis and Hydrastis canadensis and has
multiple pharmacological activities, such as antimicrobial,
antidiabetic, antihyperlipidemic, anti-inflammatory, and
antioxidant properties [15-17]. Importantly, berberine, used
as a nonclassic AMP-activated protein kinase (AMPK) ago-
nist to upregulate autophagy, treats diabetes mellitus via anti-
oxidant and anti-inflammatory activities [18]. In this study,
we hypothesized that berberine would reshape the local
RAS balance to ameliorate the development of obesity and
promote islet function via the modulation of autophagy,
and we utilized berberine as a tool for mechanistic studies
as well as a possible active ingredient against pancreatic islet
dysfunction.

2. Materials and Methods

2.1. Animals. Six-week-old ob/ob male mice (C57BL/6] back-
ground) and wild-type C57BL/6] male control mice were
maintained under standard light conditions (12/12h light/-
dark cycle) and were allowed free access to food and water.
Wild-type C57BL/6] and ob/ob mice control mice were pur-
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chased from Beijing HFK Bio-Technology Co., Ltd. (Beijing,
China). Male ACE2-knockout (ACE2KO) mice (on a
C57BL/6] background) were obtained from the Institute of
Laboratory Animal Science, Chinese Academy of Medical
Sciences. The mice were fed a standard rodent chow diet
(low-fat diet; 20% protein, 70% carbohydrate and 10% fat)
which purchased from Beijing HFK Bio-Technology Co.,
Ltd. (Beijing, China). The care and experimental treatment
of the animals was approved by the Animal Research Com-
mittee of Hubei Medical College, Shiyan, China. ob/ob mice
were randomized to either a vehicle-treated (0.5% carboxy-
methyl cellulose) (ob/ob) or berberine-treated (100 mg/kg/d
berberine plus 0.5% carboxymethyl cellulose) group (Ob-
BBR) (Sigma-Aldrich, MO, US). Body weight, dietary intake,
and water intake were recorded twice a week. The total calo-
rie intake was calculated according to dietary calorie intake
and expressed as g/mice/d. After 8 weeks of administration
of intragastric berberine, the animals were weighed and anes-
thetized by intraperitoneal injection of pentobarbital at a
dose of 0.6 mg/kg. Beginning at 6 weeks of age, ACE2KO
mice were fed a low-fat diet for 16 weeks according to previ-
ously described methods [5].

2.2. Metabolic Measurements. At sacrifice, ~1 ml of blood was
collected from the orbital vein under anesthesia. Plasma
insulin concentrations were determined using an insulin
enzyme-linked immunosorbent assay (ELISA) kit (Millipore,
Billerica, MA, USA). For intraperitoneal glucose tolerance
tests (IPGTT), after 4 and 8 weeks on their respective treat-
ment, mice were fasted overnight and injected intraperitone-
ally (i.p.) with 2 g/kg glucose the following morning. Blood
glucose was measured with an UltraTouch glucometer from
cut tail tips at 0, 15, 30, 60, 90, and 120 min following glucose
injection.

2.3. Islet Isolation and Functional Studies. Islets in wild-type
control C57BL/6] mice were isolated from the pancreas
according to previously described methods [19]. The pan-
creas was perfused through the common bile duct with
1.5mg/mL collagenase P (Roche Applied Science, Mann-
heim, Germany). The islets were picked by hand, and proce-
dures were performed according to the steps of the functional
studies. Islets were placed in 24-well plates with 25 islets per
well. Palmitate solution was prepared as described previously
[20]. In addition, to test the effect of berberine, experiments
were performed in the absence or presence of berberine
(10 uM) in accordance with previous literature [21].

2.4. Analyses of the mRNA Expression Using Real-Time PCR.
The total RNA from isolated islets and mouse pancreatic tis-
sues was extracted using TRIzol Reagent (Invitrogen, Carls-
bad, CA, USA). Real-time quantitative polymerase chain
reaction (QPCR) was performed using a LightCycler (Roche
Diagnostics GmbH, Mannheim, Germany). The relative
transcript levels were normalized to 36B4 and calculated
using the 27T statistical method. The PCR primer
sequences used were as follows: ACE (forward primer: 5'
-TGA GAA AAG CAC GGA GGT ATC C-3' and reverse

primer: 5'-AGA GTT TTG AAA GTT GCT CAC ATC A-
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3"), ATRI1 (forward primer: 5'-CCA TTG TCC ACC CGA
TGA AG-3' and reverse primer: 5'-TGC AGG TGA CTT
TGG CCA C-3'), ACE2 (forward primer: 5'-GCA CTC
TCA GCA GAC AAG AAC AA-3" and reverse primer: 5'
-ATT TCA TCC AAT CCT GGC TCA AGT-3'), and Mas
(forward primer: 5'-ATT TCA TCC AAT CCT GGC TCA
AGT-3 and reverse primer: 5'-GAC TAA CGA TGC CAC
CGA TGC-3").

2.5. Western Blotting Analysis. Protein from 300 islets was
extracted using CytoBuster Protein Extraction Reagent
(Beyotime Institute of Biotechnology, Beijing, China). West-
ern blotting was performed as previously described [22]. Pro-
tein samples (30ug) were separated by 8% SDS-
polyacrylamide gel electrophoresis and transferred onto pure
nitrocellulose membranes (0.45 mm; Bio-Rad, Hercules, CA,
USA). Membranes were blocked and incubated with one of
the specific antibodies overnight at 4°C. Blots were probed
with peroxidase-conjugated goat anti-mouse f-actin (Pierce
Biotechnology, Rockford, USA) or peroxidase-conjugated
goat anti-rabbit ACE2 (1:500; Abcam, Cambridge, MA,
USA) and ACE (1:500; Abcam, Cambridge, MA, USA) for
1h at room temperature followed by chemiluminescence
detection (Amersham Pharmacia Biotech, Piscataway, NJ,
USA).

2.6. Immunohistochemistry. Paraffin sections (5um) were
rehydrated, and antigen retrieval was performed using a
PickCell pressure cooker. The primary antibodies used were
guinea pig anti-insulin (1:150; Abcam, Cambridge, MA,
USA), rabbit anti-ACE2 (1:200; Abcam, Cambridge, MA,
USA), and rabbit anti-ACE (1:200; Abcam, Cambridge,
MA, USA). Secondary antibodies were conjugated to Alexa
Fluor 488 (Jackson ImmunoResearch Laboratories, West
Grove, PA, US) or Dylight 549 (Abbkine, CA, US). The
nuclear counterstain 4’6’ -diamidino-2-phenylindole (DAPI,
1:1000; Invitrogen, Carlsbad, CA, USA) was also used. All of
the digital images were acquired using a fluorescence micro-
scope equipped with a DC 200 digital camera (C-1/TE200U,
Nikon, Tokyo, Japan) and were subsequently analyzed using
Image-Pro Plus software version 5.0 (Media Cybernetics).
The density threshold selection tool was used to select the
pancreatic islet areas marked with insulin and glucagon,
which were depicted as a percentage of the mean islet
cross-sectional area [23]. Additionally, pancreatic sections
were stained for LC3 (1:500; Medical and Biological Labora-
tories Co, Ltd, Woburn, MA, USA) or p62/SQST1 (1:500;
Abcam, Cambridge, MA, USA) using anti-rabbit primary
antibodies. HRP-conjugated goat anti-rabbit IgG (1:200;
Servicebio, Wuhan, Hubei, China) was used as a secondary
antibody at a 1:100 dilution. All sections were analyzed using
light microscopy, and images were captured using a com-
puter image analysis system.

2.7. Transmission Electron Microscopy. Pancreatic sections
were fixed with 4% glutaraldehyde and postfixed in 1%
osmium tetroxide at 4°C. The samples were subsequently
washed again, dehydrated with graded alcohol, and embed-

ded in epon-araldite resin. Ultrathin 50 nm sections were
obtained using an ultramicrotome. Sections were then
stained with uranyl acetate and lead citrate. A Hitachi H-
7500 transmission electron microscope (TEM) was used to
observe autophagosomes.

2.8. Statistics. Results are expressed as the mean + SEM. Sta-
tistical analysis was performed using the SPSS statistical anal-
ysis program. The statistical significance of quantitative
results was evaluated using an analysis of variance (ANOVA)
test. A 2-tailed p value of less than 0.05 was considered statis-
tically significant.

3. Results

3.1. Palmitate Induced an Imbalance in the RAS in Pancreatic
Islets In Vitro. To further explore the effect of metabolic stress
on the expression of the RAS, we detected the expression of
RAS components in culture with palmitic acid. When islet
cells were preincubated with palmitate at 0.2 or 0.4 mmol/L
for a period of 48h, The ACE mRNA expression was
increased 2.32- or 3.27-fold, respectively (Figure 1(a)). The
expression of ATRI increased synchronously with ACE
(p<0.05); thus, palmitate induced the activation of the
ACE/ATRI axis (Figure 1(b)). However, with the adminis-
tration of palmitate at 0.2 or 0.4 mmol/L, the ACE2 mRNA
expression was markedly decreased by 23% or 41%, respec-
tively (p < 0.05) (Figure 1(c)). Interestingly, the expression
of Mas and ACE2 mRNA had the same trend but without
statistical significance (p > 0.05) (Figure 1(d)), whereas with
the expression of ACE and ACE2, the increase in ACE/ACE2
was readily apparent (p < 0.05) (Figure 1(e)). To further con-
firm the effect of palmitate on the RAS, we administered
0.4 mM palmitate to cultured islet cells in a subsequent study.
Similar to the mRNA expression, the ACE expression was
significantly upregulated, whereas the ACE2 expression was
clearly decreased (Figure 1(f)). These results indicate that
palmitate activates the ACE/ATR1 axis and inhibits the
ACE2/Mas axis dependent on palmitate concentration in iso-
lated islets.

3.2. Berberine Reshaped the Balance of Local RAS in
Pancreatic Islets. We administered berberine 10 uM to islet
cells preincubated with palmitate to investigate the effect of
berberine on RAS balance. Relative to islet cells preincubated
with palmitate at 0.4 mmol/L for a period of 48 h, berberine
could significantly decrease the ACE mRNA expression by
55.07% (p < 0.05) (Figure 2(a)). And berberine slightly inhib-
ited the ATR1 mRNA expression by 15.84% (Figure 2(b)).
However, berberine does not reduce the expression of ACE
and ATRI to normal levels, indicating that the malignant
effects of palmitate could be only partially reversed. Impor-
tantly, with respect to palmitate alone, berberine greatly
enhanced the ACE2 mRNA expression by 3.27-fold, even
more than that of the normal control group (p <0.05)
(Figure 2(c)). And Berberine has little effect on the Mas
mRNA expression (Figure 1(d)). Thus, the effects of berber-
ine on the ACE/ACE2 ratio were more obvious
(Figure 2(e)). Analogous to the mRNA expression results,
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mice of each genotype (4 and 8 weeks). (d) Insulin levels from vehicle-treated mice and BBR-treated mice. Serum insulin levels were
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(HOMA-IR) index. HOMA - IR = fasting glucose (mmol/L) X fasting insulin (mU/L)/22.5. (f) Representative images of immunofluorescence
staining for insulin and glucagon (x400). WT (n = 6): wild-type C57BL/6] mice; ob/ob (1n=6): ob/ob mice; Ob-BBR (n=7): berberine-
treated ob/ob mice. Data were expressed as the mean + SEM, *p < 0.05, **p < 0.01 vs. ob/ob group; *p < 0.01 vs. WT group.

berberine sharply inhibited the protein expression of ACE
and dramatically increased that of ACE2 (Figure 1(f)).

3.3. Berberine Ameliorated Metabolic Parameters and
Structural Disorders. As expected, compared with wild-type
C57BL/6] mice, body weight and food intake (g/kg/h) were
significantly greater in the ob/ob and Ob-BBR groups
(Figures 3(a) and 3(b)). After four weeks of treatment with
berberine, an obvious decrease in body weight of the ob/ob
mice was observed that lasted until the end of the interven-
tion period (Figure 3(a)). The IPGTT showed that ob/ob
mice had an impaired tolerance to glucose, whereas berberine
seemed to markedly improve the tolerance (Figure 3(c)).
ELISA showed that the plasma insulin concentration in the
ob/ob group was significantly higher than that in the WT
group, with a 6.13-fold increase, and was nearly twice that
of the Ob-BBR group (Figure 3(d)). To further investigate
the effect of berberine on insulin resistance, HOMA-IR
(Homeostasis model for assessment of insulin resistance)

was calculated, and we found that berberine partly decreased
HOMA-IR in the Ob-BBR group (Figure 3(e)). Immunofluo-
rescence showed that the islet structure of insulin and gluca-
gon cells keeps the islets intact in ob/ob mice (Figure 3(f)).
Unlike the defined a-cell mantle and f3-cell core characteris-
tic of islets in wild-type C57BL/6 ] mice, islets of ob/ob mice
appeared to maintain a more scattered organization and a
higher percentage of a-cells. The increase in a-cell mass did
not occur with berberine treatment, and in this group, the
/3 ratio was evidently lower.

3.4. Autophagy Might Mediate the Protective Effect of
Berberine. We further verified that autophagy was involved
in the berberine-mediated protective effect on pancreatic islets
by transmission electron microscope (TEM) (Figure 4). Ultra-
structural changes in TEM images in the two ob/ob mouse
groups displayed aberrant cytoplasm characterized by mito-
chondria, endoplasmic reticulum, free ribosomes, and irregu-
lar nuclei, as well as few autophagosomes and lysosomes. TEM
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FIGURE 4: Autophagy mediated the protective effect of berberine in pancreatic islet cells. (a) Representative images of the islet cell structure by
TEM. The black arrows show autophagosomes. (b, c) Representative images of the islet cell structure by immunohistochemistry (x400). WT
(n=7): wild-type C57BL/6 ] mice; ACE2KO (n =7): ACE2KO mice. The arrows show autophagy.

analysis demonstrated a large number of electron-dense
homogeneous spherical granules in the ob/ob groups, while
the Ob-BBR group demonstrated a decreased proportion of
paler and less dense granules (Figure 4(a)). A decreased pro-
portion of autophagosomes and lysosomes in the pancreatic
islet of the Ob-BBR group signified that berberine promoted
autophagy. We also detected the intracellular localization
and expression of LC3 and SQSTM1/p62 by immunohisto-
chemistry (Figures 4(b) and 4(c)). Interestingly, the protein
expression of LC3 showed the same trend as p62 in pancreatic
islets. In addition, they were both increased in the ob/ob group
and could be further induced by berberine in the Ob-BBR
group. However, LC3 localized in the nucleus and p62 expres-
sion was concentrated in the cytoplasm.

3.5. Knockout of ACE2-Induced Autophagy Formation In
Vivo. To confirm whether the RAS is involved in the effect
of berberine on autophagy in pancreatic islets, we double
immunostained pancreatic sections from the two ob/ob
mouse groups. Interestingly, the ACE2-positive cells were
mostly localized towards the islet periphery, which was the
position of a-cells as shown in our previous study [5]. In
addition, ACE2-positive cells were increased in the Ob-BBR
group (Figure 5(a)). These results demonstrated that berber-
ine ameliorates the metabolic stress-induced imbalance of
the local RAS by the decrease in ACE2. Thus, we further
explored whether autophagy was involved in the berberine-
mediated protective effect on pancreatic islets in ACE2

knockout (ACE2 KO) mice. Ultrastructural changes in
TEM images in ACE2 KO mice displayed a few autophago-
somes and lysosomes (Figure 5(b)). We also found that the
expression of LC3 and SQSTM1/p62 was increased in
ACE2 KO mice (Figure 5(c)).

4. Discussion

Autophagy is likewise a physiological survival response that
removes aberrantly long-lived proteins and damaged organ-
elles in order to maintain cytoplasmic quality and promote
cell survival under stress/starvation.

Autophagy acts as a central regulator of berberine-
mediated effects [24-26]. It is triggered by stress through dif-
ferent mechanisms, which induces autophagosomes to fuse
with lysosomes to form autolysosomes, resulting in degrada-
tion of the cargo. Autophagy is therefore a very important
process for survival. The protein microtubule-associated
protein 1, light chain 3 (LC3), functions in autophagosome
formation and plays a central role in the autophagy pathway
[27]. Under basal conditions, LC3 is known to exist in a
soluble form termed LC3-I, and upon upregulation of the
autophagy pathway, LC3 is converted to a lipidated form
termed LC3-II that associates with autophagosomal mem-
branes. In our study, in ob/ob mice, berberine increased in
tolerance to glucose, improved abnormal f-cell and a-cell
distributions, upregulated ACE2 expression, and decreased
autophagosomes and lysosomes and the expression of LC3
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FiGure 5: Knockout of ACE2-induced autophagy formation in vivo. (a) Representative images of immunofluorescence staining for insulin
(green) and ACE2 (red) (x400). WT (n=6): wild type C57BL/6] mice; ob/ob (n=6): ob/ob mice; Ob-BBR (n=7): berberine-treated
ob/ob mice. (b) Representative images of the islet cell structure by TEM. The arrows show autophagosomes. (c, d) Representative images
of the islet cell structure by immunohistochemistry (x400). WT (n = 7): wild type C57BL/6 ] mice; ACE2 KO (n=7): ACE2 KO mice.

and SQSTM1/p62. And the activation of autophagy was
observed in pancreatic islets of ACE2-deficient mice, as indi-
cated by increased numbers of autophagolysosomes and the
expression of LC3 and SQSTM1/p62. We noticed that
AMPK-dependent autophagy is the main target of the berber-
ine treatment effects [28, 29]. AMPK is an important down-
stream regulator of ACE2-mediated protective effects [30].
Recent studies have demonstrated that the inhibition of
ATRI relies on the AMPK pathway to activate autophagy [31].

Autophagy was originally defined as the process of degra-
dation and recycling of proteins, other macromolecules, and
organelles. Autophagy deficiency has been reported to cause

structural abnormalities and S-cell dysfunction [8, 32]. The
major findings of the present study are that metabolic stress
induces an imbalance in the local RAS in pancreatic islets,
including an increase in the ACE/ATR1 axis and inhibition
of the ACE2/Mas axis, which can be reversed by berberine.
ACE2 knockout facilitates the formation of autophagosomes
and the expression of autophagy-associated proteins LC3 and
p62. Furthermore, berberine decreases metabolic stress-
induced autophagy to ameliorate metabolic parameters and
structural disorders. Here, we rationalize the idea that
autophagy may mediate how berberine reshapes the balance
of the local RAS in pancreatic islets.
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Berberine has been found to effectively and safely
improve f3-cell function and attenuate insulin resistance in
high-fat diet-fed and diabetic mice [33, 34]. In the present
metabolic stress model, we used TEM and H&E staining
and found that long-term treatment with berberine induced
a significant increase in the tolerance to glucose and a
decrease in body weight and lipid ectopic accumulation in
ob/ob mice. These data suggested that berberine effectively
abolishes pancreatic islet dysfunction during metabolic
stress. Interestingly, after 8 weeks of treatment in ob/ob mice,
it seems paradoxical that berberine decreased the plasma
insulin levels detected by ELISA while increasing the insulin
protein expression in f3-cells as shown by immunofluores-
cence. However, these results are very reasonable because
metabolic stress, such as obesity, can lead to hyperinsuli-
nemia also induce f-cell dedifferentiation and apoptosis
[35-37]. Collectively, these findings are consistent with previ-
ous studies showing that berberine has the potential to act as a
therapeutic agent for obesity and type 2 diabetes [38].

The RAS is a pluripotent toxic factor and key contributor
in insulin resistance and subsequent f3-cell dysfunction [39].
Under metabolic pressure, ATR1 blockade or activation of
ACE2/Ang [1-7] not only attenuates pancreatic 3-cell dedif-
ferentiation and apoptosis but also promotes islet remodeling
and glucose homeostasis [5, 40]. To our knowledge, this
study demonstrated that berberine reshapes the balance of
the local RAS in pancreatic islets, including inhibition of
the ACE/ATRI axis and activation of the ACE2/Mas axis.
Reviewing the current literature, the possible mechanisms
of the berberine-induced protective effects lie in the inhibi-
tion of the ACE/ATRI axis. Berberine regulates Ang II-
induced proliferation, collagen synthesis, and cytokine secre-
tion of cardiac fibroblasts via the AMPK-mTOR-p70S6K sig-
naling pathway [41]. Ko found that berberine abolished the
generation of reactive oxygen species and MCP-1 expression
induced by Ang II in human umbilical vein endothelial cells
in a dose-dependent manner [42]. Further, berberine was
found to be a direct dual inhibitor of a-glucosidase and
ACE [43]. Furthermore, our data first found that berberine
increased the ACE2 expression, which may be related to the
suppression of the ACE/ATRI axis [44]. Together, these data
confirm the causal role of berberine-remodeling in the local
RAS in the pancreatic islet.

The limitations of this study should be noted. Although
we have shown that autophagy is a target of berberine, the
effects of the local RAS on autophagy in ACE2 KO high-fat
diet-fed diabetic mice were not investigated. Additionally,
the AMPK pathway, a classic downstream target of berberine
and the RAS, was not used in this study. Further studies are
needed to verify the above mechanisms.

In conclusion, obesity increased ACEI1/ATRI activity
and decreased the ACE2 expression, inducing RAS imbal-
ance and p-cell function. Berberine inhibited the
ACE1/ATRI1 expression and autophagy, activated ACE2,
and improved f-cell dysfunction. ACE2 KO mimicked RAS
imbalance, which dysregulated the levels of LC3 and LAMP2
and increased the number of autophagolysosomes in high-fat
diet-fed mice. Many questions regarding the molecular
network underlying these responses must be answered. How-

Journal of the Renin-Angiotensin-Aldosterone System

ever, the possibility that RAS-mediated autophagy could
play an essential role in berberine-induced improvements
in fB-cell dysfunction in metabolic stress is very exciting.
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