
Research Article
Binding of Cd(II) by Amorphous Aluminum Hydroxide-
Organophosphorus Coprecipitates: From Macroscopic to
Microscopic Investigation

Lei Lu , Feng Xu , Wenkai Rao , Ning Nie , and Huihui Du

Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment,
Hunan Agricultural University, Changsha 410128, China

Correspondence should be addressed to Huihui Du; duhuihui@hunau.edu.cn

Received 8 March 2021; Revised 29 March 2021; Accepted 20 April 2021; Published 28 April 2021

Academic Editor: S Rangabhashiyam

Copyright © 2021 Lei Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The mobility of Cd(II) in soils, sediments, and aquatic systems is strongly dependent on adsorption behaviors occurring at the
mineral-water interface, and this process may be influenced by the presence of organic phosphorus (OP). In this study, we
investigate Cd(II) adsorption onto amorphous aluminum hydroxide (AAH), both in the presence and absence of OP,
represented by the widely abundant myo-inositol hexakisphosphate (IHP). Isothermal adsorption experiment coupled with
attenuated total reflection Fourier transform infrared (ATR-FTIR) and 1H solid-state NMR spectra were employed.
Physiochemical characterization shows that IHP can increase the surface negative charge and the number of surface sites.
Isothermal results show that high IHP loading enhances Cd(II) adsorption while no obvious increase is observed at low IHP
loading. The overall effect of IHP on Cd(II) sorption depends on the extent of two positive processes, i.e., (1) IHP can form
ternary complexes with adsorbed Cd(II) on AAH and (2) IHP can increase the negative surface charge of AAH, and a negative
process, i.e., AAH competes with Cd(II) for AAH surface sites. ATR-FTIR results confirm the possible formation of three
structurally distinct ternary complexes, i.e., the AAH-IHP-Cd, AAH-Cd-IHP, and AAH-Cd-IHP-Cd. The analysis of 1H solid-
state NMR demonstrates that IHP only increases the number of surface OH groups rather than changes their chemical
environment and speciation. Cd does not bind to the AAH surface but mainly binds with the OH groups of IHP. All findings of
this work suggest that the presence of high dose of OP promotes the retention of Cd(II) in soils, thereby decreasing their
bioavailability to biota.

1. Introduction

Heavy metals released from industrial and agricultural activ-
ities accumulate in soil, resulting in the degradation of soil
quality [1, 2]. Sorption, desorption, and precipitation reac-
tions of heavy metals onto soil components, i.e., metal
(hydr)oxides and organic constituents, determine their
mobility, migration, and bioavailability, which remarkably
affects crop safety [3–6]. Both iron and aluminum (hydr)ox-
ides are widely present in soils and sediments, especially in
tropical and subtropical soils with variable charges [7].
Poorly crystalline Fe/Al (hydr)oxides provide abundant
active sorption sites for toxic heavy metals through precipita-
tion [8, 9] and complexation [10]. As such, they can be a sub-

stantial sink for heavy metal pollutants, thereby governing
their biogeochemical cycles in contaminated environment.

In soils, the presence of anionic compounds can enhance
or suppress the surface interaction of heavy metals on Fe/Al
(hydr)oxides [11, 12]. Phosphate is an ubiquitous reactive
ligand in the environment, showing high reactivity to soil
minerals [13, 14]. A large number of studies have shown that
phosphate can significantly affect heavy metals adsorption
onto mineral phases [15–17]. This can occur as the result of
the following: (a) electrostatic interaction [18], (b) ternary
surface complexion [19], (c) competition with heavy metals
for surface adsorption sites [11, 20], and (d) formation of
metal-phosphate surface precipitation [21]. Ren et al. [22]
showed an enhanced adsorption of Cu(II) with coexisting
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phosphate on γ-Al2O3 at pH5.5, which is attributed to the
formation of ternary surface complexes (phosphate as bridg-
ing molecule). Recent research by Hinkle et al. [19] suggested
that the synergistic adsorption behavior of phosphate and
Fe(II) is probably due to electrostatic interactions and the ter-
nary complexation formation on Fe oxide surfaces. An earlier
study by Li et al. [20] found that phosphate treatment sup-
presses the maximum adsorption of Cd/Cu on hematite,
owing to the decreased inner-sphere adsorption sites with
coexisting phosphate. Singh et al. [21] also observed the for-
mation of surface ternary complexes of goethite-phosphate-
U, and U(VI)-phosphate precipitation occurred when
U(VI) concentration was up to ~100μM. As mentioned
above, most studies have focused on the influences of inor-
ganic phosphate on toxic metals binding to Fe/Al (hydr)ox-
ide, but relatively few studies have explored the effects of
organic phosphorus.

Organic phosphorus (OP) accounts for 50~80% of total P
in soils, among which myo-inositol hexakisphosphate (IHP)
is the most abundant one that is involved in many biogeo-
chemical processes [23, 24]. It is well documented that IHP
can strongly interact with metal (hydr)oxides, such as Al
(hydr)oxide [25–27], Fe (hydr)oxide [28, 29], and metal
nanoparticles [30, 31]. The coexisting IHP can significantly
promote Cd(II) sorption on gibbsite and kaolinite below
pH8 [32, 33]. ATR-FTIR spectroscopy results have con-
firmed two structurally distinct ternary surface complexes
in ternary system of IHP, Cd(II), and hematite [23]. Yan
et al. [34] investigated the adsorption of Zn(II) and IHP on
γ-Al2O3 surfaces and showed that the presorption of IHP
restrains the formation of Zn−Al layered double hydroxide
(LDH) precipitates. The above results have shown that the
presence of IHP can remarkably affect the interaction
between heavy metals and minerals. Despite this, very limited
studies have investigated the reactivity of minerals-IHP
coprecipitates, especially their sorption behavior towards
heavy metals.

Amorphous Al hydroxide (AAH), serving as the most
active Al (hydr)oxides in soils, exhibits a great number of
reactive functional groups and high specific surface area
[26, 27]. The adsorption processes of Cd(II) or IHP on
AAH have been systematically studied before [26, 35], while
the binding mechanisms of Cd(II) on AAH-IHP coprecipi-
tates are still poorly understood. The spectroscopy technol-
ogy, i.e., Fourier transform infrared spectroscopy (ATR-
FTIR) and solid-state 1H nuclear magnetic resonance spec-
troscopy (1H NMR), can provide molecular-scale informa-
tion for the binding characteristics of heavy metals on
mineral surface and allow for the direct identification of their
surface species. In the present study, we synthetized AAH-
IHP coprecipitates with two different P loadings. We charac-
terized the AAH-IHP coprecipitates in terms of mineralogy,
crystallinity, surface functional groups, and surface charge.
We combined batch sorption, ATR-FTIR spectroscopy, and
solid-state 1H NMR spectroscopy to explore the binding
mechanisms of Cd(II) in the composite system. Our finding
is helpful to understand the interaction of trace elements with
Al-organophosphorus coprecipitates in Al-rich soils and
sediments.

2. Materials and Methods

2.1. Synthesis of Pure AAH and AAH-IHP Coprecipitates.
Myo-inositol hexakisphosphate (C6H18O24P6, IHP) was pro-
duced from Sigma-Aldrich (Shanghai, China). Amorphous
Al hydroxide (AAH) was prepared according to the method
reported previously [26], by adding 0.5M NaOH to a
0.167M AlCl3 solution at pH ~6.0. Two kinds of AAH-IHP
coprecipitates were synthesized by mixing 0.05M aluminum
nitrate with 1mM or 10mM of IHP under vigorous stirring.
After 15min, the pH of the suspensions was adjusted to 7.3
and then left for 20min to obtain two different AAH-IHP
coprecipitates, named as AAH-IHP_low and AAH-IHP_
high, respectively. The suspensions were centrifuged at
4500 × g for 20min, and the resulting supernatants with
unadsorbed IHP were removed. Both the pure AAH and
AAH–IHP coprecipitates were washed three times with
deionized water and dialyzed for 2 days in the dark. The
freshly synthesized AAH and AAH–IHP coprecipitates were
employed for batch Cd(II) sorption experiments, and a pro-
portion of the freeze-dried precipitates were used for TEM,
XRD, ATR-FTIR, and zeta (ζ) potential measurements.

2.2. Cd(II) Adsorption Experimental Designs. Cd(II) stock
solution was prepared at 1000mg/L by dissolving
Cd(NO3)2·4H2O in deionized water. Potassium nitrate
(KNO3) was prepared at 0.1M as the background electrolyte.
Prior to the sorption experiment, the adsorbents were first
dispersed with electrolyte (0.1M KNO3) and purged with
N2 to remove CO2. Sorption experiments were performed
in a series of 50mL centrifuge tubes at room temperature
(~25°C). In each tube, sorption samples contained 0.1 g/L of
sorbents (AAH or AAH-IHP coprecipitates), 0~40mg/L
Cd, and background electrolyte. The sorption suspensions
were immediately shaken for 24 hours at pH6.5 and then
centrifuged at 4500 × g for 10 minutes. The supernatants
were filtered through 0.22μmmembrane filters and acidified
with 1% HNO3 for measurement of Cd(II) using ICP-OES
(PerkinElmer Optima 8300). The residual solids were
freeze-dried for selected analyses of ATR-FTIR and 1H
solid-state NMR. All the measurements were performed in
three replicates, and sample blanks were conducted through-
out the whole processes. The Langmuir isotherm (Eq. (1))
was used to model the results [36]:

Qe =
QmKCe

1 + KCe
, ð1Þ

where Qe (mg/g) and Qm (mg/g) refer to the equilibrium
adsorption capacity and maximum adsorption capacity,
respectively. K (L/mg) represents the Langmuir constant,
and Ce (mg/L) is the equilibrium concentration after
adsorption.

2.3. Characterization of Pure AAH and AAH-IHP
Coprecipitates with or without Adsorbed Cd(II). The mor-
phology of pure AAH and AAH-IHP coprecipitates was
recorded using a transmission electron microscopy (TEM,
FEI Tecnai G2 F20, US) after fixing them with 2.5%
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glutaraldehyde. The mineral identity was analyzed on a Bru-
ker D8 Advance diffractometer (XRD, Shimadzu XRD-6100)
equipped with a Cu Kα radiation (λ = 1:5406nm). Diffracto-
grams were collected from 1° to 85° with a 10 s acquisition
time and a step size of 0.02°. The surface charge property
was determined by a zeta potential analyzer (Zetaplus90,
Brookhaven). Prior to zeta potential collection, the freshly
samples (0.1 g/L) were dispersed in 0.1M KNO3 at pH6.5.
ATR-FTIR was performed on a PerkinElmer FT-IR spec-
trometer equipped with an advanced 6 reflection ATR units
(Specac Ltd. London, U.K.). Each spectrum was recorded in
the range extending from 800 cm–1 to 2600 cm–1 at a resolu-
tion of 4 cm–1. Solid-state 1H NMR spectra were recorded on
a 600MHz Bruker spectrometer (11.74T) equipped with a
high-speed MAS probe. 1H MAS-NMR spectra were mea-
sured with an excitation π/2 pulse of width 6μs and a 20 s
relaxation delay. Trimethylsilane solution was employed as
the external standard to calibrate the chemical shift. The
experimental error was ±0.1 ppm for the shift.

3. Result

3.1. Physiochemical Characteristics of AAH-IHP Coprecipitates.
The results of TEM and XRD are presented in Figure 1.
According to the TEM images, both pure AAH and AAH-
IHP coprecipitates show networks of coalesced aggregates,
which are composed of amorphous and nanosized particles.
This finding indicates the formation of poorly crystalline Al
hydroxide [7]. No significant differences are observed between
pure AAH and AAH-IHP coprecipitates. The XRD pattern of
pure AAH exhibits three broad peaks at ~0.42, 0.22, and
0.14nm, which agrees with those of amorphous Al hydroxide
[26]. By comparison, AAH-IHP coprecipitates show slightly
reduced crystallinity according to the decreased peak intensity
at 0.22 and 0.14nm. The possible explanation is that the fre-
quent reactions between AAH and IHP molecules prevent
cross-linking and lead to the reduced size of coherent scatter-
ing domains [37]. Combined results of TEM and XRD analyses
demonstrate that IHP can slightly alter the surface structure of
AAH, which agrees with other organo–AAH composites
reported previously [7, 26].

ATR-FTIR spectra are regarded as an efficient technique
to identify IR vibrations of the OP molecules and to charac-
terize the interaction between OP and minerals by changing
these vibrations [23, 34]. The ATR-FTIR spectra
(800~2600 cm–1) of IHP interacted with AAH are given in
Figure 1(e). The absorbance band at ~2427 cm–1 is assigned
to the Al-OH vibration. The bands at ~1065 and 1176 cm–1

correspond to the symmetric and asymmetric stretching
vibration of P–O [25], while the bands at ~932 and 883 cm–

1 are assigned to the P-OH vibration. The characteristic peak
of C–C in IHP molecule locates at ~1724 cm–1. In general, in
the range of 800~1200 cm–1 and ~1724 cm–1, most character-
istic bands for IHP molecules are observed in high IHP-
reacted samples. With the increase of initial IHP loading,
the original absorbance band at ~946 cm–1 gradually disap-
pears, which accords with the results of Yan et al. [26]. The
increased IHP loading decreases the absorbance band at
~2427 cm–1, which may result from inner-sphere surface

complex formation between AAH and IHP [38]. The inten-
sity of the absorbance bands at ~1065 and 1176 cm–1 is
enhanced as IHP loading increases, and the spectrum of
AAH-IHP_high shows the presence of characteristic peaks
of C–C (~1724 cm–1) and P–OH (~932 and 883 cm–1) vibra-
tions of IHP molecule. These results indicate that high OP
loading plays a key role in changing the mineral surface
property, and thus affecting their environmental reactivity.

Zeta potentials of AAH and AAH-IHP coprecipitates are
presented in Table 1. Our results show that the IHP loading
decreases the zeta potentials of AAH from 3.85 to –
2.56mV, which agrees with other mineral systems reported
previously [23, 27, 39]. However, the low IHP loading only
reduces the amount of surface positive change. When the
IHP concentration further increases, the surface adsorption
sites become increasingly negatively charged, which are
favorable to attract cations such as Cd2+ onto mineral
surfaces.

3.2. Isothermal Adsorption. Cd(II) adsorption isotherms at
pH6.5 are displayed in Figure 2. The goodness (R > 0:97,
Table 2) of fits in Table 2 signifies that Langmuir model
can adequately simulate Cd(II) adsorption onto pure AAH
and AAH-IHP coprecipitates. The maximum Cd adsorption
capacity for AAH, AAH-IHP_low, and AAH-IHP_high are
106.97, 107.63, and 204.71mg/g, respectively. AAH-IHP_
high exhibits the highest adsorption capacity. In addition,
the binding affinities (K , Table 2) for Cd(II) adsorption on
three samples are close to each other, which signifies that
high IHP increases the number of adsorption sites rather
than changes the affinity between Cd(II) and AAH. There is
no obvious differences between pure AAH and AAH-IHP_
low, which implies that low-dose OP treatment nearly exerts
no impact on Cd(II) immobilization on Al (hydr)oxides.

3.3. ATR-FTIR Spectroscopy. The ATR-FTIR spectra
(800~2600 cm–1) of AAH and AAH-IHP coprecipitates
before and after adsorbing Cd(II) at pH6.5 are presented in
Figure 3. The characteristic peak of AAH at ~2427 cm–1

(Al-OH vibration) decreases after adsorbing Cd(II). Excep-
tionally, the spectra of AAH with adsorbed Cd show no obvi-
ous differences compared to the Cd-free spectrum. When
AAH is coprecipitated with IHP, the spectrum intensity of
P–OH vibration at ~883 and 932 cm–1 is reduced, and a
new absorbance band at 1038 cm–1 appears, which is associ-
ated with the P–O–Cd symmetric stretching vibration [23].
This finding suggests that the adsorbed Cd(II) replaces
hydrogen of the OH groups on the surface of pure AAH
and AAH-IHP_high. However, the peak intensity of Al–
OH vibration (~2427 cm–1) with or without adsorbed Cd(II)
in AAH-IHP_high shows no apparent differences. This
observation suggests that Cd(II) is mainly binding to the
IHP molecules instead of AAH in the composites. Moreover,
it is interesting that the characteristic peaks of P–O
(~1176 cm–1) and C–C (~1724 cm–1) vibrations in AAH-
IHP_high with adsorbed Cd(II) are enhanced. Possible
explanation is because a part of IHP is desorbed from
AAH-IHP coprecipitates in background electrolyte, and
some of the free Cd ions occupy the adsorption sites of
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desorbed IHP on AAH, thus promoting the binding of des-
orbed IHP with the newly adsorbed Cd on the surface [23, 27].

3.4. 1H Solid-State NMR Spectroscopy. In order to gain a dee-
per insight into fundamental binding mechanisms of OP

interacted with AAH and their effects on binding of Cd(II),
the 1H NMR spectra of pure AAH and AAH-IHP_high with
and without adsorbed Cd(II) were analyzed and the results
are given in Figure 4. The 1H NMR spectra of pure AAH
exhibit a main peak at δH−1 = 4:7ppm, with two shoulders
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Figure 1: (a–c) TEM, (d) XRD, and (e) ATR-FTIR spectra of pure AAH and AAH-IHP coprecipitates (AAH-IHP_low and AAH-IHP_high).
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around 0.8 and 3.3 ppm, respectively. The 1H NMR peak at
4.7 ppm corresponds to the physically adsorbed water, and
those at δH−1 = 0:8 and 3.3 ppm are assigned to the OH
groups in AAH or IHP molecule [40]. When IHP is copreci-
pitated with AAH, the peak intensity at δH−1 = 0:8 and 3.3
increases and no new peak occurs. This result indicates that
the chemical environment and speciation of OH groups in
IHP molecule is very similar to that in AAH, and high IHP
loading increases the number of OH groups. On the other
hand, the presence of adsorbed Cd(II) decreases those char-
acteristic peaks of OH groups at δH−1 = 0:8 and 3.3 ppm in

all samples, corresponding to the reduced spectrum intensity
at ~883, 932, and 2427 cm–1 observed in Figure 3. This find-
ing demonstrates that Cd(II) binds to pure AAH and AAH-
IHP coprecipitates by surface complexation with OH groups.

4. Discussion

Sorption onto mineral surfaces plays a key role in the mobil-
ity, speciation, and bioavailability of heavy metals, thus con-
trolling their eventual fate in soils [41, 42]. The omnipresence
of organic phosphorus (OP) can strongly interact with min-
eral phases, resulting in a change of the surface charge and
reactive surface adsorption sites, and therefore the interac-
tion of mineral surface with many toxic metals [27, 34]. This
research represents a scenario in which Cd(II) occurs in nat-
ural environments where Al (hydr)oxides are associated with
OP. The isotherm adsorption results indicate that high IHP
loading promotes Cd(II) adsorption onto AAH through
increasing the adsorption sites, while no obvious increase is
observed with low P loading (Figure 2, Table 2). Li et al. [8]
demonstrated that Zn(II) adsorption on γ-Al2O3 in the pres-
ence of glyphosate (GPS) is directly bonded with the carboxyl
group of GPS andmay form Zn−Al LDH precipitates. Li et al.
[20] revealed that phosphate decreases the inner-sphere
adsorption sites, thus reducing Cd(II) and Cu(II) adsorption
on hematite. Collins et al. [11] indicated that the enhance-
ment of Cd(II) adsorption onto goethite with coexisting
phosphate and sulphate is solely by electrostatic interaction.
Therefore, from these results, it could be concluded that the
OP in the form of IHP may play several different roles in
the ternary systems: (1) IHP molecules are bound to AAH
with phosphate groups through the formation of inner-
sphere surface complexes [25, 38], which increases the
amount of reactive OH groups (Figure 4), and thus, the
adsorption sites are enhanced; (2) at low concentration of
IHP loading, the positive charge is reduced (Table 1), but
meanwhile, IHP may compete with Cd for the AAH adsorp-
tion sites [20, 43, 44]; (3) when at high IHP loading, the AAH
surfaces become more negatively charged, which enhances
electrostatic interaction between the minerals and free
Cd(II), and the adsorbed Cd(II) is mainly bound to the OH
groups in IHPmolecule instead of the mineral surface [8, 23].

OP not only affects the number of adsorption sites, but
also changes the metal species on the mineral surface. Yan
et al. [26] revealed that IHP surface complex is formed on
AAH when the reaction time is below 6h; afterwards, the
complexes are rapidly transformed to surface precipitates.
Sun et al. [43] showed that less than 12% of Cd-Al LDH pre-
cipitates is emerged when Cd(II) is interacted with γ-Al2O3
in 18 h at 25°C. Recent researches confirmed that the pread-
sorbed OP hinders the formation of Zn−Al LDH precipitates
on γ-Al2O3 [8, 34]. Therefore, in our experiment, we specu-
late that very few Cd−Al LDH precipitates are formed due
to the limited reaction time (~35min), and ternary surface
complex is the main mechanism. To the best of our knowl-
edge, ternary surface complexes can be further classified in
general into the following: (1) a type A in which the adsorbed
metal ions are near the mineral surface (i.e., S–M–L, where S,
M, and L represent mineral surface, metal ions, and ligand,

Table 1: Zeta potentials of pure AAH and AAH-IHP coprecipitates
(AAH-IHP_low and AAH-IHP_high) at pH 6.5.
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AAH 3.85 (0.08)
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Figure 2: Adsorption isotherms of Cd(II) on pure AAH and AAH-
IHP coprecipitates (AAH-IHP_low and AAH-IHP_high) at pH 6.5.

Table 2: Isotherm parameters for Cd(II) adsorption on pure AAH
and AAH-IHP coprecipitates (AAH-IHP_low and AAH-IHP_
high) at pH 6.5.

Langmuir model
Adsorbents Qm (mg/g) K (L/mg) R2

AAH 106.97 0.05 0.97

AAH-IHP_low 107.63 0.06 0.99

AAH-IHP_high 204.71 0.04 0.99

Note: Qm is the maximum adsorption capacity, and K represents the
Langmuir constant.
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respectively) [8]; (2) a type B in which the adsorbed ligand is
near the surface (i.e., S–L–M) [17]; or (3) a type C in which
both the metal ion and ligand are near the surface (i.e., S–
M–L–S) [16, 18]. It is well known that bivalent metal ions
can coordinate with two phosphate groups of IHP molecules
[45]. Meanwhile, our ATR-FTIR results show that the
adsorbed Cd(II) reduces the characteristic peak of Al–OH
vibration at 2427 cm–1 while no corresponding reduction is
observed in AAH-IHP complexes. These results suggest that
the free Cd(II) possibly associates with phosphate groups of

AAH-IHP, which results in the formation of type A ternary
surface complexes (AAH-IHP-Cd). In addition, our ATR-
FTIR results show that the addition of Cd further promotes
the readsorption of desorbed IHP in high IHP treatment, in
agreement with the studies reported previously [23, 27]. This
may be attributed to that a small proportion of Cd(II) is
adsorbed by AAH, and the desorbed IHP further binds with
the newly adsorbed Cd(II) due to the increased electrostatic
attraction. With this in mind, there may appear type B and
C complexes (AAH-Cd-IHP and AAH-Cd-IHP-Cd) in our
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ternary systems. Due to the formation of the above ternary
surface complexes, the coexistence of OP may exert an great
impact on the mobility of Cd(II) in Al minerals and Al-rich
soil. Anthropogenic activities lead to the accumulation of
both OP and Cd(II) in soil systems [46]. High OP loading
enhances the adsorption on Al (hydr)oxides, therefore
decreasing the availability of Cd(II) to plants. However, low
OP loading results in no remarkable promoting effect on
adsorption. This provides a new role of OP, that is to say,
high OP accumulation in soils would to some extent reduce
the environmental risk of Cd(II) and thus the exposure to
biota. On the other hand, our study proposes an ideal for
the remediation of heavy metal contaminated soils, that is,
to use mineral-organic phosphorus composite to reduce the
bioavailability of heavy metals as well as increasing essential
phosphorus element for biological growth. Lastly, our study
shows progress in the using of ATR-FTIR and NMR to inves-
tigate the molecular binding mechanism of heavy metals to
mineral-organo composite, and this approach has the poten-
tial for wide application in the area of environmental science,
where adsorption process is involved.

5. Conclusions

The results of this study show that OP facilitates Cd(II)
adsorption onto Al hydroxides at high-dose IHP loading
(204.71mg/g), but nearly exhibits no effect at low IHP load-
ing (107.63mg/g). ATR-FTIR results show that the adsorbed
Cd may have a slight promoting effect on IHP sorption to
AAH in high IHP treatment. IHP interacts intensively with
Al hydroxides by increasing the amount of reactive OH
groups instead of changing the chemical environment and
speciation of OH groups. IHP promotes Cd adsorption
through surface complexation via binding with OH groups,
and several structurally distinct ternary complexes are possi-
bly formed. These findings indicate that coexisting OP at
high concentration lowers Cd mobility in Al (hydr)oxides
or Al-rich soils, and thus the risk to crop safety and human
health.
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