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Introduction. Cardiovascular disease constitutes the leading cause of mortality in patients with chronic kidney disease (CKD),
which is termed cardiorenal syndrome type 4 (CRS-4). Here, we report the development of pathological cardiac remodeling
and fibrosis in unilateral urinary obstruction (UUO) rats. Methods. Hematoxylin and eosin (H&E) staining was performed to
observe the pathology of myocardial tissue. The degree of myocardial tissue fibrosis was observed by Masson and Sirius red
staining. Immunohistochemical staining was applied to detect the expression of CD34 and CD105 in myocardial tissue, and
immunofluorescent staining was performed to examine the expression of CD34, collagen I/collagen III, and alpha smooth
muscle actin (α-SMA). The expression of the signal pathway-related proteins vascular endothelial growth factor A (VEGFA),
vascular endothelial growth factor receptor 2 (VEGFR2), nuclear factor κB (NF-κB), and interleukin (IL)-1β was tested by
western blotting. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the mRNA levels of serum and
glucocorticoid-inducible kinase (SGK)-1, NF-κB, and interleukin-1β (IL-1β). Results. The results showed the development of
pathological cardiac remodeling and cardiac dysfunction in UUO rats. Moreover, there was more angiogenesis and endothelial-
mesenchymal transition (End-MT) in the UUO group, and these effects were inhibited by eplerenone. Conclusions. The results
indicated that this cardiac fibrosis was associated with angiogenesis and that End-MT was related to aldosterone and
mineralocorticoid receptor (MR) activation. Moreover, in association with the MR/IL-1β/VEGFA signaling pathway, early
treatment with the MR antagonist eplerenone in rats with UUO-induced CKD may significantly attenuate MR activation and
cardiac fibrosis.

1. Introduction

Chronic kidney disease (CKD), characterized as renal dys-
function, is recognized as a major public health problem
with high morbidity and mortality from noncommunicable
disease. In 2017, 697.5 million cases of all-stage CKD were
recorded, for a global prevalence of 9.1% [1]. Cardiovascular
disease (CVD) is the most common complication of CKD

and the leading cause of more than 50% of deaths in patients
with CKD [2]. CKD that leads to cardiac abnormalities is
referred to as cardiorenal syndrome type 4 (CRS-4). Various
manifestations of chronic renal impairment-induced myo-
cardial injury in CRS-4 include left ventricular hypertrophy
(LVH), diastolic dysfunction, and decreased cardiac func-
tion, effects that increase the risk of death among CKD
patients [3]. Cardiovascular events are the leading cause of
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death in patients with CKD, increasing the risk by 10 to 20
times, yet CRS4-related cardiac pathology remains poorly
understood [4].

Cardiac hypertrophy and fibrosis are frequently observed
in cardiomyopathy associated with CKD and end-stage renal
disease (ESRD). During the development of hypertrophy,
interstitial cells, such as capillary endothelial cells and cardiac
fibroblasts, also undergo dynamic phenotypic changes to sup-
port the contractile function of the myocardium [5]. Cardio-
myocyte hypertrophy, while cardiomyocytes secrete a variety
of vascular growth factors, such as vascular endothelial growth
factor (VEGF), which can stimulate angiogenesis to meet the
myocardial blood supply demand. Therefore, there is a close
relationship and a dynamic balance between cardiomyocytes
and new blood vessels. However, continuous angiogenesis
can lead to maladaptive ventricular remodeling, leading to
myocardial fibrosis and heart failure.

In recent years, there have been an increasing number of
studies on the molecular mechanism between angiogenesis
and cardiomyocytes, but the role of angiogenesis in the
occurrence and development of cardiac fibrosis is still not
very clear. It is currently believed that chronic inflammation
and excessive activation of the renin-angiotensin-
aldosterone system (RAAS) play a key role in this process.
Moreover, aldosterone and activation of the mineralocorti-
coid receptor (MR) also cause cardiac inflammation and
fibrosis, vascular fibrosis and remodeling, tubulointerstitial
fibrosis, and glomerular injury. Therefore, in this study, we
focused on the role of angiogenesis in CRS-4 and the mech-
anisms that mediate the associated cardiac pathology.

2. Materials and Methods

2.1. Animal Model, Grouping, and Administration. Male
Wistar rats (Hebei Medical University Animal Center, SCXK
2018–004, N = 30) weighing 170 ± 10 g were used in this
study. The rats were maintained on standard rat chow and
tap water at 22°C under a 12h light/12h dark cycle. The ani-
mal experiment was approved by the Ethics Committee for
Animal Experimentation of the Hebei University of Chinese
Medicine (Hebei, China), approval number DWLL2021063.

The rats were randomly assigned to three groups: the
sham group, UUO group, and UUO with eplerenone
(EPL) treatment group. There were 10 animals in each
group. For the UUO operation, the rats were anesthetized
with 1.5% isoflurane by continuous inhalation. The left kid-
ney was exposed through a left flank incision, and then the
left ureter was ligated with 5-0 silk at two sites between the
bladder and renal pelvis. After surgery, eplerenone (Pfizer,
United States) was given to UUO rats in the EPL-treated
group via a diet at a dose of 1.25 g/kg diet (100mg/kg/day)
for 6 months, and the other groups of rats were fed regular
chow. Echocardiograms were performed via a Vevo 2100
system (VisualSonics, Canada) 6 months after UUO, prior
to harvesting tissues. Renal function was evaluated by blood
urea nitrogen (BUN) and serum creatinine (Scr), which were
measured by screening kits from Beckman Coulter. Hearts
were collected, weighed, and processed for histological
examination and protein and mRNA tests.

2.2. Echocardiography Analysis. All rats were anesthetized
with 3% isoflurane and underwent echocardiographic mea-
surements using a Vevo 2100 system (VisualSonics, Canada).
The echocardiographic parameters included heat rate, left ven-
tricular anterior wall (LVAW), left ventricular internal dimen-
sion (LVID), left ventricle posterior wall thickness (LVPW),
ejection fraction (EF), and fractional shortening (FS).

2.3. Histological Analysis and Immunohistochemistry
Staining. The hearts were harvested and fixed overnight in
4% paraformaldehyde and dehydrated with alcohol for par-
affin embedding. Heart sections (4μm) were stained with
H&E, Masson’s trichrome, Sirius red, and immunohisto-
chemistry for α-smooth muscle actin (α-SMA, ABclonal,
A17910, 4000000298, China), CD34 (Abcam, ab81289,
GR3240236-22, UK), CD105 (Abcam, ab2529, GR3256475-
11, UK), and NR3C2 (Proteintech, 00016122, USA). Sec-
tions were observed by microscopy (Leica, BX53, Germany).
Positive cells and the staining area were quantified in 10
consecutive high-power fields per heart using ImageJ version
1.8.0 and expressed as the number of positive cells/view or
percent positive area.

2.4. Immunofluorescence Staining. After fixation, the hearts
were incubated in 20% sucrose overnight and then embed-
ded in optimal cutting temperature compound (OCT).
Cryosections of heart tissue were stored at -80°C until use.
(6μm) Heart sections were rehydrated in phosphate-
buffered saline (PBS) for 5 minutes. After washing, the sec-
tions were blocked with 10% goat serum for 20 minutes.
The sections were incubated with primary antibodies at
4°C overnight and again with secondary antibody at 37°C
for 1 hour. The primary antibodies used for immunofluores-
cence included anti-CD34 (Abcam, UK, ab81289, 1 : 200),
anti-CD105 (Abcam, UK, ab2529 1 : 200), anti-α-SMA
(Abcam, UK, ab202509, GR3283221-3, 1 : 400), anti-
collagen I (Abcam, UK, ab270993, GR3394622-8, 1 : 100),
and anti-collagen III (Abcam, UK, ab7778, GR3250987-1,
1 : 100). Cell nuclei were stained with 4′,6-diamidino-2-phe-
nylindole (DAPI). All images were obtained using a confocal
microscope (Leica, SP8, Germany).

2.5. Protein Extraction and Western Blot Analysis. The left
ventricle of heart tissue was homogenized in radioimmuno-
precipitation assay (RIPA) buffer for protein extraction. A
total of 20~50μg of protein was separated by 10% SDS–
PAGE and then transferred to a 0.22μm polyvinylidene
difluoride (PVDF) membrane. The membrane was blocked
for 1.5 h at room temperature with 5% milk. Then, the mem-
brane was incubated overnight at 4°C with anti-interleukin-1β
(IL-1β) (NOVUS, 25270, 1 : 1000, China), anti-nuclear factor
κB (NF-κB) (Abcam, UK, 1 : 1000, GR200963-20), anti-
NR3C2 (Proteintech, USA, 21854-1-AP, 00016122 1 : 1000),
anti-vascular endothelial growth factor A (VEGFA) (Abcam,
UK, GR3194799-3, 1 : 1000), and anti-vascular endothelial
growth factor receptor 2 (VEGFR2) (Abcam, UK, 1 : 500) anti-
bodies and incubated with fluorescein-conjugated secondary
antibodies (LI-COR, USA, C80605-11; LI-COR, USA,
C80710-11) for 1 hour at room temperature. GAPDH
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antibody was used for normalization of protein loading. The
protein expression was scanned with an Odyssey Infrared
Imaging System (LI-COR, Lincoln, NE, USA).

2.6. Real-Time Quantitative PCR Analysis. Total RNA in the
left ventricle of heart tissues was extracted using the EZNA.
Total RNA Kit II (Omega, Bio-Tek, Norcross, GA, USA)
according to themanufacturer’s protocol, and reverse transcrip-
tion was performed using the MonScriptTM RT III all-in-one
Mix (Monad Biotech, China). The cDNA was used as a tem-
plate for MonAmpTM ChemoHS qPCR Mix (Monad Biotech,
China), and real-time qPCR analysis was performed by the ABI
7500 FAST System (Applied Biosystems, USA). The genes (and
the sequences of the primers used) are as follows: SGK-1 (for-
ward 5′-CTTCTGTGGCACGCCTGAGTATC-3′, reverse 5′-
AGCCTCTTGGTCCGG TCCTTC-3′); IL-1β (forward 5′-
ACAGCAGCATCTCGACAAGAGC-3′, reverse 5′-CCACGG
GC AAGA-CATAGGTAGC-3′); NF-κB (forward 5′-TTTT
CAGCACTGATTATAGCAGGTT-3′, reverse 5′-AAGGTA
TCGCAGTCCCCACC-3′); and GAPDH (forward 5′-GTCC
ATGCCATCACTGCCACTC-3′, reverse 5′-CGCCTGCTT
CACCACCTTCTTG-3′).

2.7. Statistical Analysis. The values are expressed as the
means ± standard deviations (SD). Statistical analysis was
performed with SPSS 23.0 (IBM, USA) and GraphPad Prism
version 8.0 (GraphPad Software, USA). Statistical compari-
sons were performed with one-way ANOVA followed by
Tukey’s post hoc test for multiple groups, and Student’s t
-test was used for two groups. Tests were performed to
determine whether the data were normally distributed. A
significance level of p < 0:05 was defined as being statistically
significant.

3. Results

3.1. Chronic Kidney Injury and Cardiac Dysfunction Induced
by Unilateral Urinary Obstruction (UUO). UUO is a well-
known model of CKD [6]. Six months after left UUO, we
observed the effects of chronic kidney injury and cardiac
function. Renal function tests for BUN and Scr levels
revealed impaired renal function in long-term UUO rats
compared with sham rats (shown in Figures 1(a) and 1(b)).
Cardiac hypertrophy was observed in rats with UUO-
induced CKD, as indicated by images of hearts and
increased heart weight (p < 0:05, shown in Figures 1(c) and
1(d)). Echocardiography was employed at 6 months after
UUO. LVIDs and LVs were increased in rats with UUO-
induced CKD, and EF was decreased (p < 0:05, shown in
Figure 1(e), Table 1). Notably, treatment of UUO rats with
EPL protected kidney and cardiac function (shown in
Figures 1(a) and 1(b), Table 1). The results showed that
UUO rats can serve as models of CKD and develop cardiac
dysfunction, and an MR antagonist, EPL, can protect both
renal and cardiac function.

3.2. UUO Induces Cardiac Fibrosis and Inflammation in
Rats. H&E staining of the heart showed injured myocardial
cells, irregular nuclear morphology, uneven staining, and

increased inflammatory cell infiltration in the myocardium
of UUO rats (shown in Figure 2(a)). Moreover, Sirius red
staining showed significantly more collagen deposition and
fibrosis in the myocardial interstitium (p < 0:05, shown in
Figure 2(b)), and the same results were seen in Masson’s
trichrome staining (p < 0:05, shown in Figure 2(c)). How-
ever, the pathological changes and collagen deposition
were alleviated in EPL-treated rats (shown in Figure 2).
These findings suggest that UUO-induced CKD in rats
causes cardiac dysfunction and cardiac fibrosis, which is
similar to the pathophysiology of CRS-4. The results imply
that this model can be used to investigate the pathophys-
iology of CRS-4. EPL decreased cardiac fibrosis and
reversed dysfunction, which suggests that aldosterone plays
a key role in CRS-4.

3.3. Angiogenesis and Endothelial-Mesenchymal Transition
(End-MT) Promote Cardiac Fibrosis in UUO Rats. We fur-
ther examined whether angiogenesis is associated with the
process of cardiac fibrosis. We therefore compared the num-
ber of endothelial cells and neovascular endothelial cells in
the heart from the three groups. CD34 is a marker of endo-
thelial cells and is expressed in large amounts in the myocar-
dial tissues of rats. CD105 is a marker of neovascular
endothelial cells. Immunohistochemical analysis showed
that the numbers of CD105+ cells (p < 0:05, shown in
Figure 3(a)) and CD34+ cells (p < 0:05, shown in
Figure 3(b)) were significantly increased in the myocardial
tissue of the UUO group compared with the sham group.
This finding suggests that there was more angiogenesis in
the UUO group than in the sham group.

Cardiac fibrosis is the main pathological change in CRS-
4. We speculated that End-MT plays a key role in this pro-
cess. There are a large number of neovascular endothelial
cells. To clarify the role of End-MT in the formation of myo-
cardial fibrosis, we further evaluated the coexpression of
CD34/CD105 and α-SMA, a marker of myofibroblasts, by
immunofluorescence. The results showed more CD34+/α-
SMA+ positive cells and CD105+/α-SMA+ positive cells in
the UUO group than in the sham group (shown in
Figures 4 and 5). End-MT cells play an important role in
cardiac fibrosis by secreting collagen, and collagen I (Col I)
and collagen III (Col III) are the most abundant collagen
components in the myocardial interstitium. Three-color
confocal microscopy analysis identified Col I and Col III
secretion around CD34+/α-SMA+cells (shown in Figure 6).
The inhibitory effect of EPL on angiogenesis and End-MT
may indicate that the activation of MR is related to cardiac
fibrosis.

3.4. Eplerenone Inhibits Activated MR-Induced Angiogenesis
by Regulating the VEGFRA/VEGFR2 Pathway. Aldosterone
works through activation with MR, and we confirmed MR
activation by examining the expression of NR3C2 by immu-
nohistochemistry and western blotting. NR3C2 is located
mainly in the cytoplasm and interacts with heat shock pro-
tein 90 (HSP90); then, when MR is activated, NR3C2 is
translocated to the nucleus to mediate gene transcription.
We found that more NR3C2 was transferred to the nucleus
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(p < 0:05, shown in Figure 7(a)) and that there was more
expression of NR3C2 (p < 0:05, shown in Figure 7(b)) in
the UUO group than in the sham group; these effects were
inhibited by eplerenone (shown in Figure 7).

To further investigate the signaling pathway of angio-
genesis and End-MT related to MR activation, we used
western blot and real-time qPCR to test the signaling

pathway protein and mRNA levels. We found that the
protein expression of NF-κB, IL-1β, VEGFA, and VEGFR2
was upregulated in the injured hearts of UUO rats and
downregulated by eplerenone treatment (p < 0:05, shown
in Figure 8(a)). Moreover, the same results were found
for the mRNA levels of SGK-1, NF-κB, and IL-1β
(p < 0:05, shown in Figure 8(b)).
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Figure 1: Chronic kidney injury and cardiac dysfunction are induced by UUO. (a) Scr in serum was evaluated for function. (b) BUN in
serum was evaluated for renal function. (c) Representative images of hearts harvested from all groups. (d) Cardiac mass as measured by
the heart weight from all groups. (e) Echocardiography images from all groups. Each value represents the mean ± SD. N = 6. ∗p < 0:05 vs.
sham. #p < 0:05 vs. UUO.

Table 1: Echocardiography of sham rats, UUO injury rats, and eplerenone-treated rats.

Quantitative parameters Sham UUO EPL

HR(bmp) 368:21 ± 17:31 330:72 ± 32:42∗ 354:99 ± 40:21
LVEDd(mm) 6:92 ± 0:66 7:70 ± 0:42 6:76 ± 0:63#

LVEDs(mm) 3:72 ± 0:52 4:60 ± 0:39∗ 3:28 ± 0:50#

LVPWd(mm) 1:59 ± 0:11 1:55 ± 0:10 1:70 ± 0:21
LVPWs(mm) 2:72 ± 0:17 2:56 ± 0:18∗ 2:98 ± 0:20#

LVM(mg) 594:44 ± 116:64 700:95 ± 83:70 654:13 ± 36:26
LVd(μL) 251:49 ± 54:79 313:22 ± 37:89 238:02 ± 48:88#

LVs(μL) 60:46 ± 20:07 98:19 ± 19:10∗ 44:97 ± 15:27#

LVEF(%) 77:32 ± 2:84 69:12 ± 4:23∗ 80:52 ± 3:61#

FS(%) 46:36 ± 3:13 40:26 ± 3:52∗ 50:52 ± 3:81#

HR: heart rate; LVEDd: left ventricular end-diastolic diameter; LVESd: left ventricular end-systolic diameter; LVAWd: left ventricular anterior wall dimension
at end-diastole; LVPWd: left ventricular posterior wall thickness at end-diastole; LVM: left ventricular mass; LVd: left ventricular diastolic volume; LVs: left
ventricular systolic volume; LVEF: left ventricular ejection fraction; FS: fractional shortening. ∗p < 0:05 vs. sham. N = 6. #p < 0:05 vs. UUO.
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Figure 2: UUO induces cardiac fibrosis and inflammation in rats. (a) Heart sections were stained with HE for morphological changes. (b)
Sirius red staining for collagen deposition. (c) Masson’s trichrome staining for collagen deposition. The fibrosis area is enlarged. Scale bars,
100μm. Each value represents the mean ± SD. N = 6. ∗p < 0:05 vs. Sham. #p < 0:05 vs. UUO.
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Figure 3: CD105-positive MVD and CD34-positive MVD increased in the hearts of UUO rats. (a) Immunohistochemistry staining using
antibodies against CD105 to examine neovascular endothelial cells in cardiac tissues. (b) Immunohistochemistry staining with antibodies
against CD34 to examine endothelial cells in cardiac tissues. MVD: microvascular density. Scale bars, 50μm. Each value represents the
mean ± SD. N = 6, ∗p < 0:05 vs. sham.#p < 0:05 vs. UUO.
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4. Discussion

CRS-4 defines cardiovascular involvement in patients with
CKD. It has been acknowledged that patients with advanced
kidney disease are at high risk of cardiovascular disease mor-
bidity and mortality [7]. Furthermore, it is currently being
advocated that patients with earlier stages of CKD also suffer
a high rate of cardiovascular events, and CKD is now consid-
ered an independent CVD risk factor [8]. Although an
increasing number of studies have investigated the patho-
genesis of CRS-4 in recent years, the underlying pathophys-
iology is complex and has not yet been clearly described [9].

Our study utilized the UUO model for 6 months of long-
term observation, which induces chronic kidney and cardiac
injury. UUO is a valuable model to elucidate both the path-
ogenesis and the mechanisms responsible for progressive
renal fibrosis. Our data revealed that the UUO rats caused
certain adverse effects on the structure and function of the
myocardium, especially the decreased LVEF. The CRS-4
model was successfully replicated. CKD caused a certain
degree of fibrosis of the myocardium, and the contraction
function of the myocardium also decreased to a certain
extent. Although it has been studied in a short-term UUO
model for CRS-4, myocardial fibrosis, and cardiac hypertro-
phy were observed, and cardiac dysfunction did not develop
[10, 11]. Similarly, the 5/6 nephrectomy (5/6Nx) surgical
model of CKD has been shown to induce cardiac remodeling
and vascular changes at the determined endpoint in another
study [12]. The model of CRS generally involves the estab-
lishment of heart injury, kidney injury, or combined heart
and kidney injury. Most of the CKD models used in the
CRS-4 study use nephrectomy or bilateral ischemia–reperfu-
sion injury to cause severe renal insufficiency [13, 14], which
has a high mortality rate. In the current study, we used a
long-term UUO model in which CKD is developed and
can simulate the long-term onset of CRS-4 with a lower
mortality rate, which is essential in the clinic as acute and
chronic urinary obstruction due to benign prostatic hyper-
trophy, renal calculi, or other urinary retention [10].

Angiogenesis is a complex process of budding and the
formation of new blood vessels from preexisting microves-
sels via migration, proliferation, and survival. In ischemic
coronary artery diseases, such as acute myocardial infarction
(AMI) and ischemic cardiomyopathy, angiogenesis increases
the blood supply to tissues [15]. However, studies on angio-
genesis and CRS-4 have rarely been reported, especially
long-term UUO-induced cardiac fibrosis. Interestingly, we
also detected angiogenesis during the observation of cardiac
injury in UUO rats. In rats with UUO-induced CKD, the
endothelial cell marker CD34 and neovascular endothelial
cell marker CD105 were abundant. The results showed high
levels of CD34 and CD105 expression and an increase in
vascular endothelial cells in the left ventricle. Cardiac hyper-
trophy and fibrosis are the main pathological changes in
CRS-4. Pathological hypertrophy is also associated with car-
diac structural remodeling and myocardial fibrosis, and sus-
tained pathological hypertrophy leads to congestive heart
failure [16]. During the development of hypertrophy, capil-
lary endothelial cells, and cardiac fibroblasts dynamically
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Figure 4: The endothelial-mesenchymal transition (End-MT) was
increased in UUO rats. Immunofluorescent multistaining with
antibodies against endothelial cell marker CD34 (FITC, green)
and myofibroblast marker α-SMA (TRITC, red) for identifying
End-MT (cells coexpressing the two markers indicate End-MT,
and nuclei were stained with DAPI in blue). Scale bars, 75μm.
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Figure 5: The neovascular endothelial-mesenchymal transition was
increased in UUO rats. Immunofluorescent multistaining with
antibodies against neovascular endothelial cell marker CD105
(FITC, green) and myofibroblast marker α-SMA (TRITC, red) for
identifying the neovascular endothelial-mesenchymal transition
(cells coexpressing the two markers, and nuclei were stained with
DAPI in blue). Scale bars, 75μm.

6 Journal of the Renin-Angiotensin-Aldosterone System



undergo phenotypic changes to support the contractile func-
tion of the myocardium, especially angiogenesis with capil-
lary microvasculature, and myocytes increased in
proportion to the hypertrophy [17, 18]. However, dispropor-
tional cardiac myocyte growth and angiogenesis may lead to
myocardial ischemia and promote adverse cardiac fibrosis.

A key regulator of angiogenesis is vascular endothelial
growth factor (VEGF), which stimulates angiogenesis by act-
ing on VEGF receptor 2 (VEGFR2) on endothelial cells [19].
In the heart, VEGF is produced by cardiac myocytes in
response to hypoxia-induced factor 1 (HIF-1α) [5], a key
mediator during periods of ischemic insult, and is also trig-
gered by hemodynamic forces and inflammation. Activation
of the RAAS has a significant effect on cardiorenal connec-
tors. In particular, aldosterone is a key factor in inflamma-
tion and adverse cardiovascular remodeling by acting on

the MR [20]. Furthermore, an increasing number of studies
have shown that aldosterone participates in endothelial dys-
function, vascular fibrosis, and inflammation in the vascula-
ture [21, 22]. Inflammation is a common driver of
pathological cardiac remodeling after cardiac injury [23].
During cardiac injury and remodeling, the immune system
is activated, and immune cells, such as T lymphocytes, B
lymphocytes, and macrophages, can promote fibroblast acti-
vation by secreting inflammatory cytokines, leading to
abnormal collagen metabolism and thus causing myocardial
fibrosis [24]. There is also a strong relationship between
inflammation and fibrosis in other organs [25]. Similarly,
aldosterone has been suggested to play an important role
in angiogenesis [26]. Eplerenone, a selective aldosterone
blocker, is clinically used for the treatment of CRS-4 and
heart failure. Although numerous studies related to the
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Figure 6: End-MT cells produce collagen type I (COL I) and collagen type III (COL III). (a) Immunofluorescent multistaining identifies
cells coexpressing CD34 (FITC, green), α-SMA (TRITC, red), and COL I (Alexa Fluor® 405, blue). Scale bars, 75 μm. (b)
Immunofluorescent multistaining identifies cells coexpressing CD34 (FITC, green), α-SMA (TRITC, red), and COL III (Alexa Fluor®
405, blue). Scale bars, 75μm.
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Figure 7: MRs were activated in UUO injury rats. (a) Immunohistochemistry staining identifies NR3C2 expression in the nucleus. Scale
bars, 50μm. Each value represents the mean ± SD. N = 6. ∗p < 0:05 vs. Sham. #p < 0:05 vs. UUO. (b) The expression of NR3C2 protein in
cardiac tissue of UUO rats was detected by western blot. Each value represents themean ± SD. N = 3. ∗p < 0:05 vs. Sham. #p < 0:05 vs. UUO.
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effects of aldosterone and eplerenone on cardiovascular dis-
ease have been performed, the relationship between aldoste-
rone and angiogenesis in the development of CRS-4 is not
yet clear and has conflicting results. Michel et al. showed
for the first time that aldosterone increases neovasculariza-
tion in the setting of ischemia through activation of Ang II
signaling [27]. Similarly, one study showed that aldosterone
plays a pivotal role in hepatocellular carcinoma development
through VEGF-mediated tumor angiogenesis and that eple-
renone attenuates angiogenesis in mice [28]. However, some
studies have revealed that aldosterone inhibits tube forma-
tion of endothelial cells (ECs) and suppresses angiogenesis
[29, 30]. In our study, EPL successfully reversed angiogene-
sis and cardiac dysfunction. This suggests that MRs might
function upstream of angiogenesis. Aldosterone activates

MRs to induce inflammatory changes in the heart, and it is
possible that inflammation activates VEGF and VEGFR2
transcription. In the current study, we showed that VEGF
and VEGFR2 colocalize with other MR target genes, such
as SGK1, and inflammatory markers, such as NF-κB and
IL-1β. We did not directly examine the impact of aldoste-
rone and MRs on vascular endothelial cells in our research.
Thus, further studies are required to verify this hypothesis
and understand the mechanism of MRs in endothelial cells.

However, whether angiogenesis plays a good or bad role
is unclear in CRS-4, which is a long and chronic process of
cardiac fibrosis. Myofibroblasts secrete large amounts of
extracellular matrix (ECM) proteins, such as collagens and
fibronectin, which contribute to heart remodeling and myo-
cardial fibrosis [31]. Although cardiac fibroblasts are
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Figure 8: Aldosterone stimulates angiogenesis, and End-MT is activated by the MR/IL-1β/VEGFA signaling pathway. (a) The protein
expression of NF-κB, IL-1β, VEGFA, and VEGFR2 in cardiac tissue of UUO rats was detected by western blot. Each value represents the
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considered essential modulators of the ECM network, sev-
eral other cell types, including immune cells, vascular endo-
thelial cells, and cardiomyocytes, have been implicated in
ECM remodeling either directly or indirectly [32]. The
fibroblast-myofibroblast transition and cell proliferation
increase Col I and Col III secretion. Otherwise, End-MT,
which is characterized by losing the endothelial phenotype
and obtaining myofibroblastic properties, also contributes
to the deposition of ECM [33, 34]. In our research, we found
more CD34+/α-SMA+ positive cells and CD105+/α-SMA+

positive cells in the UUO group than in the sham group,
as well as Col I and Col III deposition. Therefore, we specu-
late that End-MT also occurs in neovascular endothelial cells
to participate in the pathophysiological process of myocar-
dial fibrosis. However, we observed angiogenesis only 6
months after UUO injury, and the role of angiogenesis in
myocardial fibrosis could be a gradual change over time.

5. Conclusion

In conclusion, our study demonstrates the development of
pathological cardiac remodeling and cardiac dysfunction in
UUO rats. Angiogenesis and End-MT may play important
roles in cardiac hypertrophy and fibrosis, both of which
are regulated by activated MR-induced upregulation of the
VEGFA/VEGFR2 signaling pathway. The MR antagonist
eplerenone can protect cardiomyocytes and decrease End-
MT, which highlights the importance of MR antagonists
for preclinical CRS-4.
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