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A bacterial or bone infection in the feet causes diabetic foot infection (DFI), which results in reddish skin in the wound and
surrounding area. DFI is the most prevalent and dangerous type of diabetic mellitus. It will mainly occur in people with
heart disease, renal illness, or eye disease. +e clinical signs and symptoms of local inflammation are used to diagnose
diabetic foot infection. In assessing diabetic foot ulcers, the infection has significant clinical implications in predicting the
likelihood of amputation. In this work, a diabetic foot infection network (DFINET) is proposed to assess infection and no
infection from diabetic foot ulcer images. A DFINET consists of 22 layers with a unique parallel convolution layer with
ReLU, a normalization layer, and a fully connected layer with a dropout connection. Experiments have shown that the
DFINET, when combined with this technique and improved image augmentation, should yield promising results in
infection recognition, with an accuracy of 91.98%, and a Matthews correlation coefficient of 0.84 on binary classification.
Such enhancements to existing methods shows that the suggested approach can assist medical experts in automated
detection of DFI.

1. Introduction

Diabetic foot infection is a common complication of dia-
betes mellitus that requires treatment and is arguably the
most prevalent cause of nontraumatic lower extremity
amputation. Extended exposure to cold and rainy condi-
tions, soaked feet, alcohol consumption, and smoking are all
huge risk factors for developing foot infection. DFI is more
common in persons who have heart, renal, or eye problems.
DFI is a severe type of injury experienced by people with

diabetes [1]. +is condition occurs when the bacteria enter
the body through the wound. Diabetic foot ulcer (DFU) is
not an infection, but it often leads to infection [2]. DFI is
caused by bacteria or bone infection in the foot ulcer area,
making the wound and the surrounding skin reddish. Di-
abetic foot infection is cured with the help of antibiotic
treatment [3]. If a medical professional does not treat the
injury, the infection can spread, leading to pain, discomfort,
necrosis, and, in the worst case, amputation. +e two major
causes of diabetic foot infection are neuropathy and
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peripheral artery disease (PAD) [4]. Neuropathy (nerve
damage) can significantly impair the feeling in the leg [5]. A
person unable to feel the pain can risk developing a foot
infection. It may allow vulnerable bacteria to enter the body.
PAD is another cause of diabetic foot infection; it prevents or
slows down the healing process by impairing blood flow. It
makes people not feel the initial injury and risk developing
foot infection [6]. Physical examination, blood tests, and a
Doppler study of the leg diagnose DFI. +e physician will
look into the foot for signs of foot infection. +erefore, the
traditional methods are very costly and time-consuming [7].

Infection should be tested in patients with active DFU
and ischemia. Approximately 56% of DFU becomes infected,
with 20% of infections resulting in a limb or foot amputation
[8, 9]. According to the International Diabetes Federation,
80% of individuals with diabetes mellitus (DM) live in
countries with low-income, including India, the world’s
second-largest diabetes country after China. +ere are
around 69.1 million patients with DM in India with a
prevalence rate of 9.3% [10]. To avoid the severe effects
outlined previously, a diabetic patient with a “high-risk” foot
needs regular doctor visits, expensive medication, and
personal sanitary care. As a result, it places a significant
financial burden on patients and their families, particularly
in underdeveloped nations, where the cost of treatment is
high.+ere are not many computer-aided methods available
for the screening of DFI. Recognizing infection in DFU
using cost-effective machine learning algorithms is a critical
step toward developing a comprehensive computerized DFU
evaluation system for remote monitoring. +erefore, it is
essential to develop DL algorithms to evaluate foot ulcer
images and assess whether patients have infection or no
infection.

+e recent trends in computer vision (CV) and deep
learning (DL) in recognizing foot infection will provide
helpful information for the physician for further treatment
plans [11].+is research proposes a novel framework for DFI
classification based on the motivation from preceding re-
search works. +e proposed CNN model integrates features
from parallel convolution layers because features contain
unique and crucial information about foot infection and for
compact representation. +e advantage of combining all
aspects is that more information about the infection may be
gathered and pathologies with comparable appearances to
non-infected skin can be treated more effectively. Several
CNN models were trained to distinguish between infection
and noninfection classes. We then showed that using the
proposed model parameters improves overall classification.
+e works relevant to diabetic foot infection are discussed in
Section 2, followed by a discussion of the dataset and the
proposed DFINET in Section 3. +e collected results are
presented in Section 4, followed by a conclusion and future
directions in Section 5.

2. Related Work

+e evolution of DL and CV in medicine has solved most
medical imaging and other medical-related problems such as
Alzheimer detection, cervical cancer, malarial detection [12],

and brain tumour [13]. Infection is defined as at least two
classic signs of purulence in DFU. It is difficult to tell from
DFU images if diabetic foot infections are present; however,
increasing redness in and around the ulcer and colored
purulence could be signs of DFI. Blood testing is the gold
standard diagnostic test in the medical system. In addition,
the images in this dataset were taken after the debridement
of necrotic and devitalized tissues, which removes a key
indicator of infection in DFU. Rostami et al. [14] proposed
the ensemble DL model to determine the wound images
from different sources. +e proposed model classifies the six
classes: normal, normal skin, venous wound, diabetic
wound, pressure, and surgical wound. +e model achieved
94.28% accuracy in binary classification and 87.70% in
multilevel classifications. Kim et al. [15] proposed a model
for the prognosis of DFU using thermal images. +e
ResNet50 model is used as the feature extractor, in which
machine learning (ML) algorithms random forest and
support vector machine (SVM) are used as a classifier. +e
model achieved an accuracy of up to 81.1%. Das et al. [16]
proposed the CNN architecture with a deep residual block to
extract the high-level features, and then the parts are fused
with different machine learning algorithms. +e logistic
regression algorithm achieves an area under the curve value
of 96.50%. Hüsers et al. [17] presented the transfer learning
method to detect the wound maceration and was able to
achieve a recall of 0.69. Carlos Padierna et al. [18] extracted
features from infrared images of the upper side of the foot
and toes to propose a classification approach for finding
PAD and achieved 92.64% using SVM. Adam et al. [19]
developed density dual-tree complex wavelet transform in
an automated detection method to locate diabetic feet with
and without neuropathy. Entropy and texture features were
extracted from infrared images and 93.16% accuracy was
achieved using a k-nearest neighbour. Alzubaidi et al. [20]
developed a CNN model named DFU Queensland Uni-
versity of Technology Net to classify normal and abnormal
classes from DFU images. +e CNN model is designed by
increasing the width and global average pooling, with an
F1-score of 94.5% in classifying the class as normal and
abnormal. Das et al. [21] proposed the stacked parallel
convolution layers to improve the classification perfor-
mance in classifying normal and abnormal categories. +e
model achieves an area under the curve value of 0.974.
Goyal et al. [22] proposed DL to recognize ischemia and
infection from DFU images using the ensemble CNN
model and machine learning algorithms. +e ensembled
model achieved 90% and 73% accuracy in classifying is-
chemia and infection, respectively. Das et al. [23] proposed
a CNN model with different residual blocks consisting of
convolution, normalization, leaky rectified linear unit
(LReLU), and global average pooling layers. +e model
achieved better accuracy in classifying ischemia—with an
accuracy of 97.8%—than the classification of infection—
with an accuracy of 80%—from the diabetic foot ulcer
images. Recognition of infection in DFU with light-weight
deep learning methods is a significant step toward devel-
oping a complete computerized DFU assessment system for
remote monitoring in the future due to the high risks of

2 Journal of Healthcare Engineering



infection in DFU leading to amputation and patient’s
hospital admission [24]. From the literature, it is found that
only two models are available for diabetic foot infection
recognition.

DL algorithms for DFI recognition are investigated in the
present study, which considers a literature review. To over-
come the challenges faced in classifying infection and non-
infection due to poor lighting conditions, poor contrast,
marks, and skin tone, a new convolutional neural network
(CNN) was developed using diabetic foot images from scratch.
+e following is a list of significant contributions to this work:

(1) A 22-layer CNN architecture with convolution
layers, batch normalization, ReLU, and a dropout
layer is proposed to improve the classification ac-
curacy in predicting infection and noninfection

(2) +e hyperparameters are studied and fine-tuned for the
proposed model to enhance the model’s performance

3. Materials and Methods

+e proposedmodel is designed to extract the discriminative
features efficiently by improving the overall performance in
classifying infection and non-infection from diabetic foot
ulcer images.

3.1.Dataset for theStudy. +eDFU images with infection are
not publicly available, but with the appropriate procedure,
they can be accessed [22]. +e dataset is assessed once the
lead investigator signs a dataset release agreement. +e
dataset consists of two classes, and each class contains two
subclasses, i.e. ischemia versus nonischemia and infection
versus noninfection. +is study considers infection versus
noninfection to improve the overall classification perfor-
mance. +e dataset consists of 5890 images, with 2945
images for infection and 2945 images for non-infection with
ground truth labels. A senior physician made the final de-
cision on the ground truth labels. Figures 1(a) presents
infection and Figure 1(b) presents noninfection class ex-
ample images from the dataset.

+e dataset found that the images have interclass sim-
ilarity, poor contrast, and poor lighting conditions. Image
augmentation techniques such as sharpening, gamma cor-
rection, saturation, and equalization are applied to the
dataset to overcome this issue. In the CNN model, the data
augmentation technique is also employed to address the
problem of overfitting. Figure 2 shows the augmentation
technique applied to the infection classes. In this research,
the images in the dataset are resized to 256× 256 for in-
fection recognition. Each image in the dataset increased by a
factor of 5, including the original image. +e number of
images in the dataset has been increased by 14725 for each
class, resulting in 29450 images. In Table 1, the dataset
distribution with and without augmentation is given.

3.2. Methodology. +e overall flow of the proposed meth-
odology is shown in Figure 3. +e augmented dataset is split
into training (training and validation) and testing sets.

+e trained model is then tested with a test set, and in-
fection and noninfection are determined using DFU
images. +e proposed DFINETmodel is shown in Figure 4
with layer by layer description. 10 convolutional layers, 5
max-pooling layers, 5 normalization layers, and 2 fully
connected layers make up the model’s 22 layers. +e
proposed architecture uses the ReLU activation function
in the convolutional layer to map negative values to 0 and
positive values to a maximum value of z. +e ReLU
function can be determined using equation (1), where z is
the input of the neuron. +e nonlinearity in the dataset is
introduced using the ReLU function. Because the negative
values are set to 0 in the ReLU function, it is computa-
tionally efficient.

F(z) � maximum(0, z). (1)

+e normalization layer speeds up the training process
by normalizing the feature values using mean and variance
across each channel’s input. +e extracted features from
convolutional filters 4, 5, 6, and 7 are concatenated to im-
prove the performance. Concatenated layers take the two
blobs and output as a single blob. After feature concate-
nation, maximum pooling is used to reduce the feature
representation and computational complexity. +e fully
connected layer is integrated with the flattened layer for
converting 2-dimensional data to 1-dimensional data. +e
fully connected layer multiplied the input with the weight
value at each node from the flattened layer and provided the
output value after adding the bias value. +e dropout layer is
used in the fully connected layer with a dropout probability
ratio of 0.3. +e dropout function reduces the overfitting in
the proposed model, making the model more general. +e
SoftMax layer is used to classify the input data as infection or
noninfection class by providing the probability of each class.
+e SoftMax function is calculated using

σ(z)i �
e

zi


k
j�1 e

zj
. (2)

Here, i � 1, 2, 3, . . . , k and Z � (z1, z2 . . . zk) ∈ Rk.
Infection and noninfection class patterns that distin-

guish the two classes are learned using the DFINET model
using the training dataset which can aid in enhancing the
model’s performance. Table 2 provides the detailed pa-
rameters of the proposed model.

Figure 1: Sample images from dataset. (a) Infection. (b)
Noninfection.
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3.3. Feature Visualization Using Filters. +e feature map of
the infection and noninfection classes using DFU images is
visualized using different convolutions at different layers. +e
feature map at convolutional layer 1, convolutional layer 2, max
pooling_1, and batch normalization_1 layer in the DFINET is
shown in Figure 5. +e feature visualization maps for con-
volutional layer activation 2, max pooling layer 2 and batch
normalization layer 2 are shown in Figure 6. +e feature vi-
sualization map of fully connected layers 1 and 2 is shown in
Figure 7.

3.4. Adam Optimizer. +e proposed model uses the
Adaptive Moment Estimation (Adam) optimizer as an
optimization strategy to update the weights during the
training process [25]. Adam uses the running average of
both the gradients and second moments of the gradients.
Adam is quite computationally effective and requires less
memory space. For each parameter, wj weight update is
given by

Δwt � −η
vt

�����
st + ε√ ∗gt, (3)

wt+1 � wt + Δwt, (4)

where η � initial learning rate, gt � gradient at time t, vt �

exponential average of gradients, and st �exponential average of
square gradients.
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Figure 2: Data augmentation. (a) Original. (b) Sharpen. (c) Gamma correction. (d) Saturation. (e) Elastic transform.

Table 1: Dataset distribution.

Classes Augmentation Total images
Infection Without 2945
Noninfection 2945
Infection With 14725
Noninfection 14725

Input Image

Dataset Splitting

TestingTraining

Image Augmentation

Training Set Validation Set

Training DFINET

Validating DFINET

Trained and Validated
DFINET

Infection/ Non-Infection

Figure 3: Proposedmethodology workflow for classifying infection
and noninfection.
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Figure 4: DFINET architecture for classifying infection/noninfection from DFU images.

Table 2: DFINET layer parameter details.

Layer type Layer parameters
Kernel size (KS), number of filters (NF)

Conv_1 KS� 7× 7, NF� 64
Max_pool_1 KS� 3× 3, Stride� 2
Conv_2 KS� 3× 3, NF� 64
Conv_3 KS� 3× 3, NF� 128
Max_pool_2 KS� 3× 3, Stride� 2
Conv_4a KS� 3× 3, NF� 128
Conv_4b KS� 1× 1, NF� 128
Max_pool_3 KS� 3× 3, Stride� 2
Conv_5a KS� 3× 3, NF� 128
Conv_5b KS� 1× 1, NF� 128
Conv_6a KS� 3× 3, NF� 256
Conv_6b KS� 1× 1, NF� 256
Max_pool_4 KS� 3× 3, Stride� 2
Conv_7a KS� 3× 3, NF� 256
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4. Results and Discussion

4.1. Comparison of DFINET with Other Models. DFINET,
AlexNet, VGG16, and GoogLeNet are experimented with
an NVIDIA Quadro RTX6000 using the Caffe DL

framework. +e obtained dataset is randomly split into
three different training and testing sets, provided in
Table 3.

+e ratio of training and testing is 90:10. +e training
set is further divided into 70% folds for training and

Table 2: Continued.

Layer type Layer parameters
Kernel size (KS), number of filters (NF)

Conv_7b KS� 1× 1, NF� 256
Max_pool_5 KS� 7× 7, Stride� 2
FC_1 100
Dropout Probability� 0.3
FC_1 2
Total number of parameters 14, 895, 440

Figure 5: DFINET feature map: (a) input infection image, (b) Conv_1 layer, (c) Conv_2 layer, (d) Pool_1, and (e) Batch Norm_1.
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20% for validation to reduce overfitting in the model.
+erefore 21204 (70%) images for training, 5890 (20%)
for validation, and 2356 (10%) for the testing phase are
used. +e model training parameters are set to an epoch
of 30, learning rate of 0.0001, batch size of 16, step down
policy of 33%, and gamma value of 0.1. +e step-down
policy is used to reduce the learning rate at every 33% of
the training phase. In the DFINET model, the binary
cross-entropy function is used as a loss function. DFI-
NET, AlexNet, VGG16, and GoogLeNet are trained
using the same parameter. In terms of accuracy
(ACC), specificity (SPE), sensitivity (SEN), precision
(PRE), F1-Score, and MCC classification metrics, the
models are compared with other models described in the
literature. +e different evaluation metrics are defined as
follows:

ACC �
T

+
+ F

+

T
+

+ T
−

+ F
+

+ F
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−
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−

+ F
+,

SEN �
T

+

T
+

+ F
−,

PRE �
T

+

T
+

+ F
+,

F1 − Score �
2∗PRE∗ SEN
PRE + SEN

,

MCC �
T

+ ∗T
−

(  − F
+ ∗F

−
( 

����������������������������������������

T
+

+ F
+

( ∗ T
+

+ F
−

( ∗ T
−

+ F
+

( ∗ T
−

+ F
−

( )( 

 ,

(5)
where T+ � true positive, F+ � false positive, T− � true
negative, and F− � false negative.

+e training validation plot for the models DFINET,
GoogLeNet, AlexNet, and VGG16 is shown in Figure 8. A
validation accuracy of 90.80% for DFINET, 79.31% for
AlexNet, 77.04% for GoogLeNet, and 86.67% for VGG16 is
obtained upon validation at each epoch. +e validation
accuracy and validation loss are plotted for each epoch. After
the models are validated on the validation dataset, they are
tested with the testing dataset. +e confusion matrix is
calculated using the model testing results and shown in
Figure 9.

Figure 6: DFINET feature map: (a) Conv_2 activation layer, (b) batch Norm_2, and (e) Max Pool_2.

Figure 7: DFINET feature map: (a) fully connected layer_1 and (b) fully connected layer_2.

Table 3: Dataset splitting ratio.

Number of images in dataset Split 1
Train (70%)–test (30%)

Split 2
Train (80%)–test (20%)

Split 3
Train (90%)–test (10%)

29450 Training: 20615 images
Testing: 8835 images

Training: 23260 images
Testing: 6190 images

Training: 27094 images
Testing: 2356 images
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DFINET classification results for correct classification
and misclassified images are shown in Figures 10 and 11,
respectively. Due to the poor illumination and not-so-steady

image-capturing environment, the shadow effect also plays a
vital role in classifying infection and noninfection classes.
+e confusion matrix provides a clear idea about the
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Figure 8: Training and validation plot: (a) DFINET. (b) GoogLeNet. (C) AlexNet. (d) VGG16.
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effective classification performance of the model. +e per-
formance values of DFINET, AlexNet, GoogLeNet, and
VGG16 models are calculated from the confusion matrix,
and SOTAmodels from the literature are reported in Table 4.

+e proposed DFINET performed admirably in classi-
fying infection and non-infection classes. In addition, the
proposed models’ outcomes are compared to those of the
SOTA for infection and noninfection classes. In every
classification metric, the DFINET technique surpassed the
SOTA performance. +e performance shown in Table 4
proves that the proposed DFINET outperforms all the

other models. +e DFINET model achieves an accuracy of
91.98% in 30 epochs compared to the second-best model
VGG16 with 83.11% accuracy. Notably, the DFINETmodel
achieved an MCC value of 0.84, outperforming all the other
models with an increased value of 0.18 from the second-best
model—VGG16. +e MCC provides balanced ratios of the
values taken from the confusion matrix. It is more useful in
binary classification. +e SEN and SPE are the essential
performance evaluation metrics in medical imaging appli-
cations. +e DFINETmodel yields an SEN value of 90.57%
and SPE value of 93.46%, far better than those yielded by

Figure 10: Correctly classified classes. (a) DFINET: actual class� infection; predicted class� infection. (b) DFINET: actual class-
� noninfection; predicted class�noninfection.

Figure 11: Misclassified classes. (a) DFINET: actual class� infection; predicted class� noninfection. (b) DFINET: actual class-
� noninfection; predicted class� infection.

Journal of Healthcare Engineering 9



Table 4: Performance of DFINET in infection classification from DFU images.

Model/classifier Train/test split ACC SEN SPE PRE F1-score MCC
GoogLeNet 90/10 75.34 73.27 77.82 79.80 76.39 0.50
VGG16 90/10 83.11 81.45 84.95 85.74 83.54 0.66
AlexNet 90/10 76.74 74.96 78.79 80.31 77.54 0.53
DFINET 90/10 91.98 90.57 93.49 93.72 92.12 0.84
DFINET 80/20 89.29 88.46 90.63 93.88 91.09 0.77
DFINET 70/30 87.50 92.78 80.28 86.54 89.55 0.74
Ensemble CNN [22] 90/10 72.70 70.90 74.40 73.50 72.20 0.45
Res7Net [23] 90/10 80.00 80.40 80.20 79.70 79.80 0.60
Inception ResNetV2 [22] 90/10 67.60 68.80 66.40 67.20 68.00 0.35
Bayes Net [22] 90/10 63.90 61.90 66.00 65.30 62.20 0.29

0.0

0.
0

0.
2

0.
4

PP
V

 an
d 

N
PV

0.
6

0.
8

1.
0

0.2 0.4 0.6
Prevalence of Infection in Diabetic Foot Ulcer

0.8 1.0

PPV
NPV

Figure 12: Positive and negative predicted values with a prevalence rate of 0.05.

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

Figure 13: (a) Infection class. (b) Occlusion map of infected class. (c) Noninfection class. (d) Occlusion map of noninfected class.

10 Journal of Healthcare Engineering



VGG16. +e results show that the parallel convolution filter
and image augmentation are important factors in improving
its performance. According to the literature, identifying the
infection from the image patches is fairly challenging. +e
fundamental explanation is that the properties of the in-
fection and noninfection classes are very similar. +e wound
and its surrounding area get a little reddish when infected,
which is a small feature to remember while identifying them.
As a result, when we utilize the CNN architecture with
parallel convolution filters with better image augmentation
to extract more features from multiple convolution filters
and when we concatenate them to cover more spread-out
clusters from the same image, it allows us to correctly
identify them. As a result, the DFINET is shown to be the
most effective way to discriminate between infection and
noninfection. We have reported the training time of the
model in terms of minutes and seconds. +e DFINETmodel
takes 36mins 16 seconds, while the VGG16 model takes
2 hours 45minutes during training.+e DFINETalso proves
that the model is computationally efficient with better ac-
curacy [26].

With a disease prevalence rate of 0.05, the suggested
DFINET model’s positive predicted value (PPV) and neg-
ative predicted value (NPV) are determined. +e PPV and
NPV are used to evaluate the DFINET model’s diagnostic
performance to comprehend the clinical outcome of disease
prediction. Figure 12 illustrates the PPV and NPV values
with different probabilities in predicting infection in the
DFU images. Although the proposed model does a better job
of classifying infection and noninfection, it is essential to
consider the model’s limitations and future research di-
rections. +e collection of more data samples with proper
lighting conditions is required.

Furthermore, a generative adversarial network (GAN)
can also be explored to generate synthetic data samples to
check the model’s performance. +e DFINET model’s un-
derstanding in classifying infection and noninfection is
visualized using occlusion sensitivity [27]. Figure 13 shows
themodel’s understanding toward the image features used to
predict infection and noninfection by the DFINET model.

5. Conclusion

In this work, the CNN based model DFINET, the pretrained
model VGG16, GoogLeNet, and AlexNet are proposed and
trained to classify infection and noninfection classes from
the DFU images. +e proposed DFINET has provided
promising results compared to the pretrained models and
models from the literature. Classification of infection and
noninfection from the nonstandard images is quite com-
plicated due to the inter-/intra-class similarities and too
subtle in foot images.+e other factors affect exposure, scars,
and texture on the skin. Because texture features provide
crucial information about diseases and, as a result, are
important for classification (e.g. infection and noninfection),
they were used in this study. +e DFINET would extract
diverse features from a single image as a result of the parallel
convolution filters, allowing the proposed model to out-
perform all other SOTA approaches. When compared to

other approaches in classifying infection and noninfection
classes, the DFINETmodel achieved an impressive accuracy
of 91.98% and an MCC value of 0.84. +e usage of parallel
convolution and better hyperparameter tuning are critical in
this scenario. Furthermore, the features were important in
predicting DFI since they highlighted the difference in skin
appearances. +e DFINET can help physicians diagnose
infection in DFU with reduced time and workload. It further
helps make a proper treatment plan for patients to prevent
amputation. +e performance of these approaches could be
enhanced in the future with a more balanced dataset and
improved data. +e performance of algorithms on this
dataset could be improved by further tweaking the hyper-
parameters of deep learning methods.+e GAN architecture
will generate synthetic images to predict the infection in the
DFU images. +e dedicated web and mobile application for
the DFI screening can help in the technological development
in telemedicine.
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