Hindawi Adsorption Science & Technology Volume 2022, Article ID 3057189, 14 pages https://doi.org/10.1155/2022/3057189

Research Article

N-TiO₂₋₈/g-C₃N₄ Dual Photocatalysts for Efficient Oxytetracycline Hydrochloride Photodegradation and CO₂ Photoreduction

Thanh-Binh Nguyen, Thuy Hang Dinh Thi, Kim Hue Dinh Thi, Hien Bui Minh, Ngoc Quynh Nguyen Thi, Duy Vu Ngoc, and Bang Nguyen Dinh

Correspondence should be addressed to Thanh-Binh Nguyen; nguyenthanhbinh@hus.edu.vn

Received 13 November 2021; Revised 30 March 2022; Accepted 26 April 2022; Published 11 May 2022

Academic Editor: Adrián Bonilla-Petriciolet

Copyright © 2022 Thanh-Binh Nguyen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A series of x% (wt) N-TiO₂₋₈/g-C₃N₄ composites was synthesized by calcination and hydrothermal methods (labeled xTiCN, x: 5, 10, and 15). All composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity of these composites was evaluated through oxytetracycline hydrochloride (denoted as OTC) photodegradation and CO₂ photoreduction. The xTiCN composites exhibited higher OTC photodegradation than bulk g-C₃N₄. 10TiCN was slightly more active than 5TiCN and 15TiCN, with a photodegradation yield of 97% after 5 h of light irradiation and constant rate of 0.647 h⁻¹. For CO₂ photoreduction, it was observed that 5TiCN exhibited the highest activity among the synthesized composites, with 7.0 ppm CH₄ formed. This CH₄ concentration was 7.8 times higher than the concentration formed by bulk g-C₃N₄ (0.9 ppm). A Z-scheme mechanism was proposed to explain the enhanced photocatalysis by x% (wt) N-TiO_{2- δ}/g-C₃N₄ composites. The Z-scheme structure increased redox ability, caused better separation of photogenerated electron-hole pairs, and broadened the light absorption zone of the photocatalysts.

1. Introduction

Antibiotics are widely used to control bacterial infections in medical, agricultural, and veterinary sectors [1]. Oxytetracycline hydrochloride (OTC) is a commonly used tetracycline antibiotic. Large amounts of OTC have been released into the environment due to its extensive use [2, 3]. It has a long half-life due to its naphthacene core, persisting in the environment for long periods of time. Its environmental residue, especially in water sources, being carcinogenic, and causing antibiotic resistance in bacteria, is dangerous for human health and the ecosystem [3, 4]. Along with antibiotic water pollution, air pollution has also increased in recent times. With rapid worldwide industrial development, large amounts of CO₂ are released into the atmosphere, causing the greenhouse effect and global warming [5, 6]. Climate change, due to pollution, has caused severe mete-

orological phenomena, such as typhoons and floods. Thus, CO₂ emission reduction and its environmental remediation are an urgent necessity.

Among different ways to solve these above pollution problems, photocatalysis is an attracted one in recent times [7–12]. The photocatalysis can oxidize OTC to nontoxic compounds [13] and reduce $\rm CO_2$ to useful chemical compounds, such as $\rm CH_4$ and $\rm CH_3OH$ [14], reducing water and air pollution. It is a simple and green process, requiring only light irradiation for catalyst activation. The $\rm TiO_2$ photocatalyst is commonly used because of its high photocatalytic efficiency, good stability, and nontoxicity [15, 16]. However, it is only activated under 380 nm light irradiation. UV light intensity in the sunlight spectrum is approximately 5%; therefore, the $\rm TiO_2$ photocatalyst requires a UV light source, increasing the process cost. To overcome this drawback, numerous studies report reducing

¹VNU University of Science, 19 Le Thanh Tong, Hanoi, Vietnam

²Vietnam Maritime University, 484 Lach Tray, Hai Phong, Vietnam

³Vietri University of Industry, Tien Kien, Phu Tho, Vietnam

the ${\rm TiO_2}$ bandgap, activating ${\rm TiO_2}$ at longer wavelengths (such as visible light), or combining ${\rm TiO_2}$ with narrow bandgap semiconductors. In the first strategy, the ${\rm TiO_2}$ oxide is doped with nonmetallic elements (N, F) or transition metals (Fe, Co) [17–22]. In the second method, ${\rm TiO_2}$ is combined with other semiconductors, such as CuO, BiOBr, metal Au, Pt, or both [23–29]. When combining with an oxide-owned narrower bandgap energy, the new composite will be activated by a longer light wavelength, such visible light, and prevent electronhole pair recombination. With metal deposition, the metallic phase conduction band attracts free electrons, reducing the recombination of electron-hole pairs.

Recently, graphitic carbon nitride $(g-C_3N_4)$, a nonmetallic photocatalyst, has attracted immense interest [30–36]. Synthesized by facile and cost-effective methods, it exhibits high chemical and thermal stability. In particular, it exhibits potential for antibiotic-photocatalytic degradation in aqueous solutions and CO_2 photoreduction [37, 38]. A low bandgap of 2.7 eV enables their visible-light activation. However, rapid recombination of photogenerated electron-hole pairs is a limitation of the $g-C_3N_4$ photocatalyst. The combining of $g-C_3N_4$ with other semiconductors to prevent this recombination is an interesting strategy [39].

Among the aforementioned photocatalyst improvement strategies, the construction of a heterojunction between two semiconductors is a promising method. In this structure, the photogenerated electron-hole pairs are separated into different zones, thus preventing recombination and enhancing photocatalytic activity. Further, the carrier transfer behavior has been altered by several photocatalytic mechanisms such as type-I, type-II, and, quite recently, the Z-scheme [40]. Among these mechanisms, the Z-scheme has garnered considerable attention as it not only exhibits electron-hole pair separation in two different zones but also enhances the redox properties. For instance, Guan et al. demonstrated that the activity of 20% LaFeO₃/BiOBr was ~21.0 and~1.3 times that of bare LaFeO₃ and BiOBr, respectively [41]. Additionally, in 2022, Cheng's group also revealed that the optimal photocatalyst 20% Bi₄Ti₃O₁₂/CdS exhibited an activity 1.6 and 3.3 times that of bare CdS and Bi₄Ti₃O₁₂, respectively [42]. An improved photocatalytic activity was also observed on the Bi₂O₂CO₃ photocatalyst [43]. The enhanced composite photoactivity was explained by improved photoexcited carrier separation in the composite. Therefore, with a similar targeted photocatalyst structure, TiO₂- and g-C₃N₄-based composites were also developed, which exhibited positive results. Wang et al. demonstrated that the tetracycline (TCL) photodegradation on TiO₂@g-C₃N₄ was 75% and 12% greater than that on TiO₂ and g-C₃N₄, respectively [44]. Similarly, for CO₂ photoreduction, Reli et al. showed a twofold increase in CH₄ formation on TiO₂/g-C₃N₄ (0.3/1) as compared to g-C₃N₄ [45]. These studies indicate that along with the nature of coupled semiconductors, the morphology and interface interaction between two semiconductors play an important role in photocatalytic improvement.

In view of the above, this study demonstrates the coupling of TiO_2 and $g-C_3N_4$ to obtain heterojunction photocatalysts, $x\% TiO_2/g-C_3N_4$. On the one hand, TiO_2 has the disadvantage

of a large bandgap energy, E_g = 3.2 eV; on the other hand, g- C_3N_4 , despite having a lower bandgap energy, $E_a = 2.7 \text{ eV}$, demonstrates a fast recombination of electron-hole pairs. Therefore, the formation of a heterojunction composite through semiconductor coupling could allow overcoming the disadvantages of each constituent. Additionally, the CB/ VB potential position of TiO₂ (-0.17 V/+3.0 V) and g-C₃N₄ (-1.15 V/+1.5 V) [44] would allow the establishment of a staggered band structure and the formation of a Z-scheme photocatalyst. The hydrothermal method, prevalently employed for tuning the morphology of synthesized compounds, was used to prepare the composite. Subsequently, calcination was conducted to enhance the interaction between TiO2 and g-C3N4 such as an in situ nitrogen doping into TiO2. The photocatalytic activity was estimated through OTC oxidation in the liquid phase. OTC is the most stable compound in the TCL group, and as per our knowledge, no studies on OTC oxidation were reported using this composite type. To further evaluate the synthesized photocatalyst composites, CO₂ photoreduction was also investigated in the gas phase.

2. Materials and Methods

2.1. Materials. Chemical compounds, melamine ($C_6H_6N_6$) (Sigma-Aldrich), $C_{16}H_{36}O_4$ Ti (Sigma-Aldrich), C_1G_3 COOH (China), C_2H_5 OH (China), C_1G_3 COOH (Sigma-Aldrich), and oxytetracycline hydrochloride (OTC) (Sigma-Aldrich), of analytical purity were used as obtained.

2.2. Synthesis of g- C_3N_4 and N- $TiO_{2-\delta}/g$ - C_3N_4 Composites

2.2.1. Synthesis of g- C_3N_4 and N- TiO_2 . Melamine calcination at 550°C, for 3 h, in nitrogen gas medium, was used to synthesize g- C_3N_4 .

The nitrogen-doped TiO₂ (N-TiO₂) synthesis was inspired by the work of Viswanath et al. [46]. In this typical procedure, titanium (IV) butoxide in ethanol solution and melamine in hot water-ethanol (1:3 volume ratio) solution were mixed, then stirred for 24 hours and aged for 5 days. The obtained gel was dried and calcined at 400°C for 3 hours.

2.2.2. Synthesis of N-TiO₂₋₈/g-C₃N₄. Calculated amounts of g-C₃N₄, titanium (IV) butoxide, and acetic acid (1:30 in volume) were mixed in a 250 ml beaker, with 15 min magnetic stirring, and autoclaved at 140°C for 12 h. The resulting solution was centrifuged and rinsed several times with ethanol. The solid obtained was oven dried at 60°C for 24 h and calcined at 400°C for 3 h, under nitrogen gas. The x% (wt) N-TiO₂₋₈/g-C₃N₄ composites were denoted as xTiCN (x: 5, 10, and 15).

2.3. Photocatalytic Procedure

2.3.1. OTC Photodegradation. Into a beaker containing 100 ml 10 ppm OTC solution (C_0), g- C_3N_4 or xTiCN composite (0.1 g) was added with stirring (Figure 1(a)) and left in the dark for 1 h to attain adsorption equilibrium. The mixture was then illuminated with a 200 W LED lamp. Every 1 hour, 5 ml sample was taken, filtered, and analyzed by a

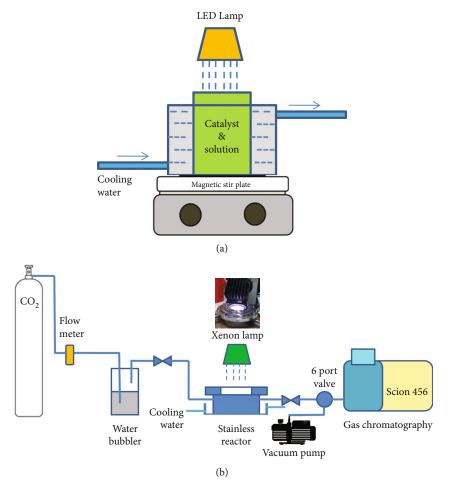


Figure 1: Scheme of the photocatalytic reactor used for OTC oxidation (a) and ${\rm CO_2}$ reduction (b).

UV-vis spectrophotometer to detect OTC content (C_t) of the reaction mixture. The photostability test was performed 5 times. The separation of the catalyst and the reaction solution was carried out by centrifugation (6000 rpm).

2.3.2. CO_2 Photoreduction. Into a glass beaker (5 cm diameter) containing 15 ml deionized water, g-C₃N₄ or xTiCN composite (0.1 g) was added. After 15 min stirring, the mixture was evaporated in an oven, at 70°C, to obtain a well-dried, homogeneously dispersed powder. The catalyst-containing beaker was placed in a handmade closed stainless steel reactor (169 cm³ volume), equipped with a 6 cm diameter quartz window, and purged with high-purity (99.999%) 500 ml/min CO₂ flow for 30 min. The reactor was illuminated with a 150 W Xenon lamp (Newport model 67005) for 18 h. Gaseous products were analyzed using a gas valve system connected to a gas chromatograph, equipped with a thermal conductivity detector and flame ionization detector (TCD-FID) (Scion 456) (Figure 1(b)).

2.4. Characterizations. X-ray diffraction (XRD) (Bruker D8), Fourier-transform infrared spectroscopy (FTIR) (8101M Shimadzu), N₂ adsorption-desorption (TriStar 3000-Micromeritics), UV differential reflectance spectroscopy (UV-DRS) (Jaco V-530), transmission electronic microscopy (TEM, JEM 1400

 Plus Jeon), and X-ray photoelectron spectroscopy (XPS) (Thermo Scientific MultiLab 2000) were used to characterize g-C₃N₄ and xTiCN composites.

3. Results and Discussion

3.1. Structural Characterization. XRD patterns of xTiCN composites are shown in Figure 2(a). The formation of the g- C_3N_4 crystalline phase, with a characteristic peak at 27.8°, was observed in all XRD patterns, confirming the g-C₃N₄ structure after composite synthesis. Characteristic peaks at 25.5°, 38.0°, 48.1°, 54.2°, and 62.8°, corresponding to the TiO₂ anatase phase, were observed in the XRD patterns of all composites. In the N-TiO₂ XRD patterns, a small quantity of the rutile phase was recognized at 2 theta of 27.5 and 36.1°. To identify different components, FTIR characterization was carried out, and the spectra are shown in Figure 2(b). In the g-C₃N₄ spectrum, the peak at 802 cm⁻¹ was ascribed to the s-triazine bending mode [30]. The peaks at 1228 and 1311 cm⁻¹ were attributed to the C-N stretching vibrations [47, 48]. The peaks at 1392, 1535, and 1625 cm⁻¹ originated from the -C=N stretching vibrations in aromatic rings. The broad band at 3000–3500 cm⁻¹ corresponded to the stretching vibrations of the absorbed water hydroxyl group (-O-H) and terminal

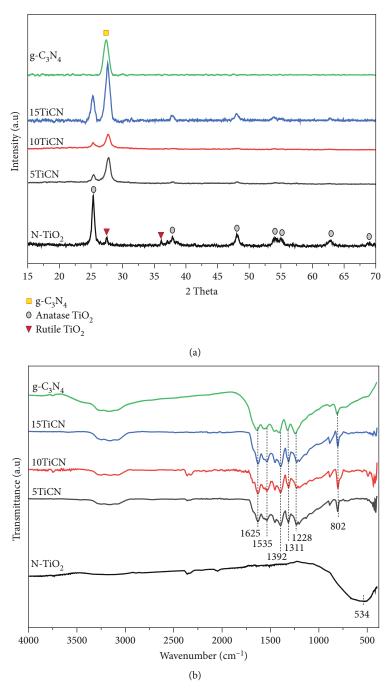
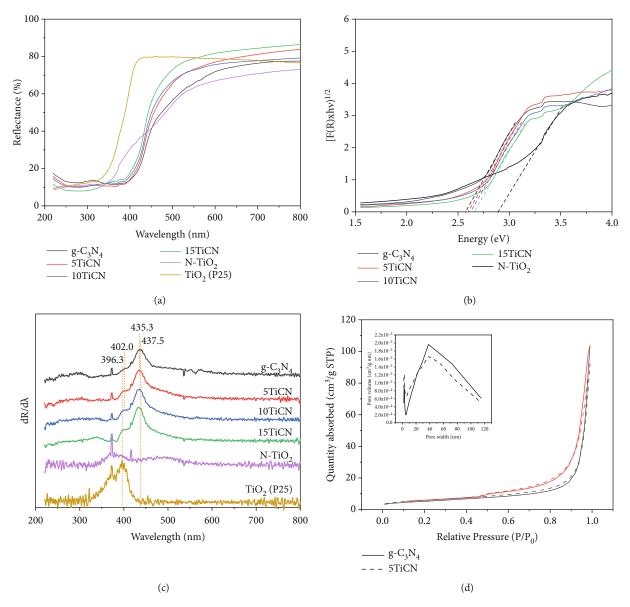


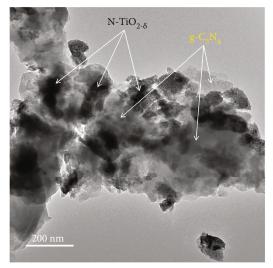
Figure 2: XRD patterns (a) and FTIR spectra (b) of $g-C_3N_4$ and xTiCN composites.

amino groups (-NH₂) [47, 48]. Finally, the broad peak at 534 cm⁻¹ was attributed to the Ti-O bond vibrations [49].

The light absorption abilities of the composites were analyzed by UV-vis DR spectra. Figure 3(a) shows the UV-vis DR spectra of g-C₃N₄ and xTiCN. The bandgap energies, calculated using the Kubelka–Munk function (results are shown in Figure 3(b)), were 2.58, 2.60, 2.63, 2.66, and 2.90 eV for g-C₃N₄, 5TiCN, 10TiCN,15TiCN, and N-TiO₂, respectively. Increasing the TiO₂ content broadened the composite bandgap energy owing to a greater contribution of the large band gap energy by TiO₂ (3.2 eV) as compared

to g-C₃N₄ (2.58 eV). However, generally, all photocatalyst composites could be activated by visible light. The corresponding differential curves of UV-vis DR spectra are displayed in Figure 3(c). The absorption edges ($\lambda_{\rm abs}$) of pristine TiO₂ (P25) and g-C₃N₄ are at wavelengths of 396.3 and 437.5 nm, respectively. In contrast, the *x*TiCN composites exhibit a slight shift of the g-C₃N₄ adsorption edge peak to a shorter wavelength, while that of TiO₂ slightly shifts to a longer wavelength. The longer-wavelength-shifted adsorption edge of the TiO₂ constituent is possibly due to nitrogen doping in TiO₂ during the composite synthesis.




FIGURE 3: UV-vis DR spectra (a), energy bandgap determination by Kubelka–Munk function (b), and its corresponding differential curves (c) of $g-C_3N_4$, $N-TiO_2$, and xTiCN composites; N_2 adsorption-desorption isotherms and corresponding pore distribution curves of $g-C_3N_4$ (solid line) and 5TiCN composite (dash line) (d).

These observations suggest an interaction between g-C₃N₄ and TiO₂, forming in situ-doped N-TiO₂. In the case of 5TiCN, the observed adsorption edge peaks of TiO₂ andg-C₃N₄ correspond to wavelengths of 402.0 and 435.3 nm, respectively. Based on the relationship $E_g=1240/\lambda_{\rm abs}$, the calculated bandgap energies (E_g) of TiO₂ and g-C₃N₄ are 3.08 and 2.85 eV, respectively. For the N-TiO₂ sample prepared by the hydrothermal method, the differential curve of the UV-vis DR spectrum exhibited a single weak and broad peak at 392.5 nm (or $E_g=3.16\,{\rm eV}$). This peak is attributed to the adsorption edge of TiO₂.

The g-C₃N₄ and 5TiCN composites were selected to characterize its specific surface area, one of the important proper-

ties of heterogeneous catalysis. The results are presented in Figure 3(d). It is observed that two samples show the type-4 isotherms with H3 hysteresis loop, which indicate the presence of a mesopore. This is suitable with the obtained pore distribution curves. The BET surface areas are 18 and $20\,\mathrm{m}^2/\mathrm{g}$ for g-C₃N₄ and 5TiCN, respectively. Hence, the composite preparation did not seem to change the g-C₃N₄ structure.

The interaction between the TiO_2 and $g-C_3N_4$ phases is better understood from the TEM images presented in Figure 4. It is observed that the TiO_2 particles (dark areas in Figures 4(a) and 4(b)) were formed in various sizes and shapes. Some TiO_2 particles were deposited on the $g-C_3N_4$ layer (e.g., position of cycle 1), while the others were covered by $g-C_3N_4$ multisheets, forming a core-shell structure (e.g.,

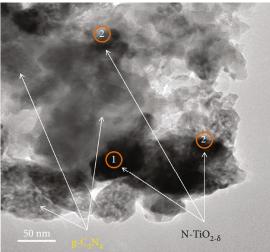


FIGURE 4: TEM images of 5TiCN.

position of cycle 2), thereby enhancing the interaction surface between the TiO_2 and $\text{g-C}_3\text{N}_4$ phases.

The elemental composition and oxidation state of the catalyst influence catalytic performance. Therefore, the 5TiCN composite was characterized using XPS, as shown in Figure 5.

Three peaks at binding energies of 458.5, 459.1, and 464.3 eV, corresponding to orbitals ${\rm Ti}^{4+}2{\rm p}_{3/2}$, ${\rm Ti}^{3+}2{\rm p}_{1/2}$, and ${\rm Ti}^{4+}2{\rm p}_{1/2}$, respectively, were observed in the Ti2p high-resolution spectrum [50, 51]. As reported by Jia et al., binding energies of two prominent peaks (at 458.5 and 464.3 eV) exhibited 0.2 eV shifts compared to spectral peaks of pure ${\rm TiO}_2$. This could be due to the substitution of ${\rm O}^{2-}$ by ${\rm N}^{3-}$, leading to the formation of N-Ti-O bonds [52]. This indicated N doping of ${\rm TiO}_2$ during composite synthesis, decreasing the ${\rm TiO}_2$ bandgap energy, leading to visible-light activation [17, 18]. The small peak of ${\rm Ti}^{3+}2{\rm p}_{1/2}$ confirmed oxygen vacancies in ${\rm TiO}_2$ [51]. Hence, ${\rm TiO}_{2-\delta}$ is a more accurate molecular formula than ${\rm TiO}_2$.

Deconvolution peaks for the O1s spectrum exhibited two peaks at 531 and 532 eV, assigned to O-H of absorbed water and the Ti-O bond [53], respectively. N1s spectrum exhibited three peaks at 398.6, 399.7, and 400.8 eV, ascribed to the sp²C of C-N=C, tertiary N of N-(C)₃ group, and N-C=N bonds, respectively. The C1s spectrum exhibited three peaks at 284.9, 286.3, and 288.2 eV, corresponding to C-C, C-NH₂, and N-C=N bonds, respectively [53, 54].

3.2. Evaluation of Photocatalytic Activity

3.2.1. Photooxidation of OTC. Before performing the photocatalytic test, the adsorption equilibria were carried out (Figure 6(a)). The results demonstrated that all composites reached rapidly the adsorption equilibrium after only about 15 minutes, while 60 minutes was required for N-TiO₂. The calculation indicated that the equilibrium adsorption quantities of OTC at 60 min were 11%, 14%, 17%, 12%, and 88% for g-C₃N₄, 5TiCN, 10TiCN, 15TiCN, and N-TiO₂, respec-

tively. It remarked that there was a strong adsorption phenomenon of OTC on $N-TiO_2$.

The photocatalytic activity of the catalysts was investigated through OTC photodegradation and CO₂ photoreduction. Figure 6(b) shows the photodegradation of OTC and UV-vis spectra of OTC solutions during test time, using 5TiCN. OTC concentrations were calculated from the absorbance intensity of UV-vis spectra at the 357 nm wavelength.

Figure 7 shows OTC photodegradation efficiency and kinetics. All composite photocatalysts exhibited excellent OTC degradation activity, with yields of 93%, 97%, and 92% for 5TiCN, 10TiCN, and 15TiCN, respectively. For N-TiO₂, the adsorption phenomenon dominated, reaching 90% adsorbed OTC quantity after 1 hour of equilibrium, and the efficiency of OTC removal increased only ~4% when turning on the light for 5 hours. Hence, the photocatalytic reaction on N-TiO₂ was negligible. This behavior was possibly due to the formation of the melon structure formed during the synthesis, besides the process of nitrogen doping on TiO₂ [55]. The melon structure, which is not a semiconductor, could cover TiO2/N-TiO2 particles, preventing the photocatalytic process. A blank test (without catalyst) was also carried out for comparison. In the blank test, the OTC concentration decreased about 9% by photolysis. Hence, after 5 h light irradiation, the 10TiCN composite was slightly more active than those of 5TiCN and 15TiCN. It is noted that the adsorption phenomenon contributes a small part in the conversion calculation, only 14% in the case of 5TiCN as mentioned in the above adsorption equilibrium study. For these OTC conversion reactions, reaction kinetics were described by the following equation [56]:

$$\ln\left(\frac{C_0}{C_t}\right) = kt + \ln\left(\frac{C_0}{C_0'}\right),\tag{1}$$

where C_0 , C'_0 , and C_t are the initial, equilibrium, and time t concentrations of OTC during the test, respectively. Rate

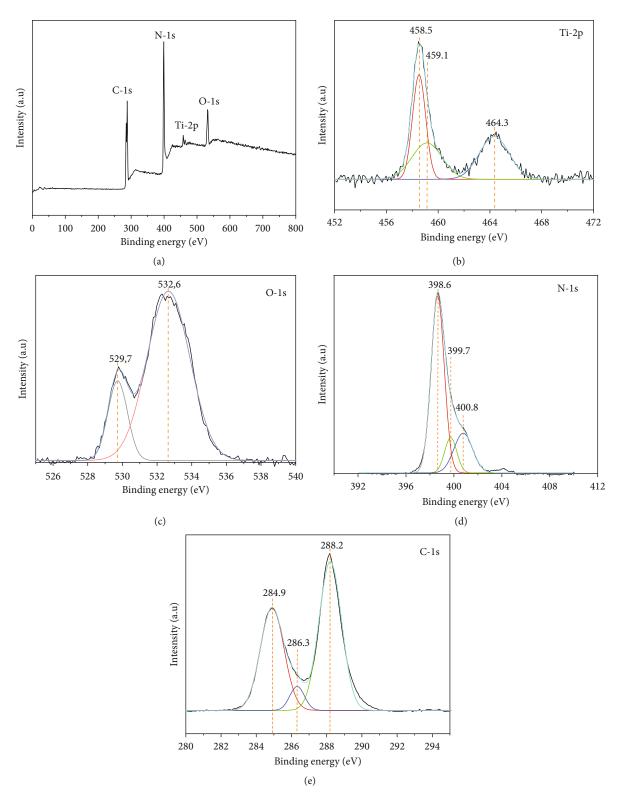


FIGURE 5: X-ray photoelectron spectra of 5TiCN: (a) survey spectra; (b) high-resolution spectra of Ti2p, (c) high-resolution spectra of O1s; (d) high-resolution spectra of N1s; (e) high-resolution spectra of C1s.

constants (k) were 0.389, 0.457, 0.647, and 0.451 h⁻¹ for g-C₃N₄, 5TiCN, 10TiCN, and 15TiCN, respectively (from fitted lines in Figure 7(b)). The reaction kinetic on N-TiO₂ was not investigated as the catalytic activity was negligible

with respect to the adsorption phenomenon. Based on rate constant values, composite activities followed the following order: $10\text{TiCN} > 5\text{TiCN} \approx 15\text{TiCN} > g\text{-}C_3\text{N}_4$. The rate constant of 10TiCN was approximately 1.7 times that of $g\text{-}C_3\text{N}_4$.

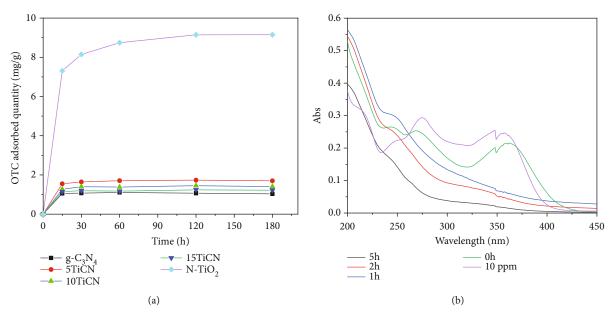


FIGURE 6: OTC adsorption equilibrium (a) on xTiCN and UV-vis spectra of OTC during test time on 5TiCN composite (b).

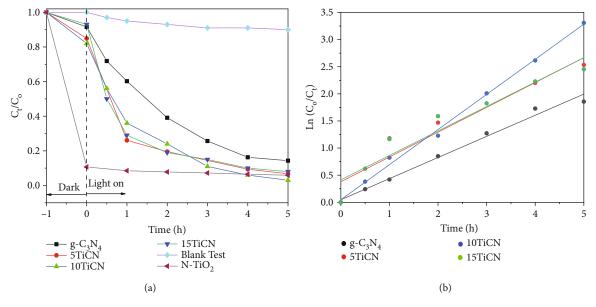


FIGURE 7: (a) Photodegradation efficiency of OTC on xTiCN composites versus irradiation time and (b) kinetic of OTC degradation reaction on xTiCN composites.

There are no reports of OTC photodegradation on TiO_2 -g-C₃N₄ composites, while there are very few reports on tetracycline (TCL) photodegradation using such composites. Wang's research group reported 20 ppm TCL solution photodegradation using composites, such as TiO_2 @g-C₃N₄ heterojunction, TiO_2 @g-C₃N₄ core-shell quantum heterojunction, and TiO_{2-x} /ultrathin g-C₃N₄/ TiO_{2-x} direct Z-scheme heterojunction [44, 57, 58]. TCL photodegradation rate on the TiO_2 @g-C₃N₄ core-shell quantum heterojunction composite was 2 and 2.3 times higher than those on TiO_2 and bulk g-C₃N₄, respectively. Photoactivity of TiO_{2-x} /ultrathin g-C₃N₄/ TiO_{2-x} direct Z-scheme heterojunction system was 20.1 and

1.3 times higher than those of ${\rm TiO_2}$ and ${\rm g-C_3N_4}$, respectively. Wang et al. reported a 3 times higher TCL degradation rate on N-TiO₂/O-doped N-vacancy ${\rm g-C_3N_4}$ than on N-vacancy ${\rm g-C_3N_4}$ [59]. Rao et al. reported a 4.4 times higher rate constant of 10 ppm TCL solution photodegradation using a hierarchical structure of anatase-rutile ${\rm TiO_2/g-C_3N_4}$ (ARC), compared to ${\rm g-C_3N_4}$ [60].

In general, the ${\rm TiO_2\text{-}g\text{-}C_3N_4}$ heterojunction structure improved photoactivity remarkably compared to those of bulk ${\rm TiO_2}$ and ${\rm g\text{-}C_3N_4}$. OTC photodegradation yield reached up to 97%, with a 1.7 times higher rate constant with 10TiCN than with ${\rm g\text{-}C_3N_4}$.

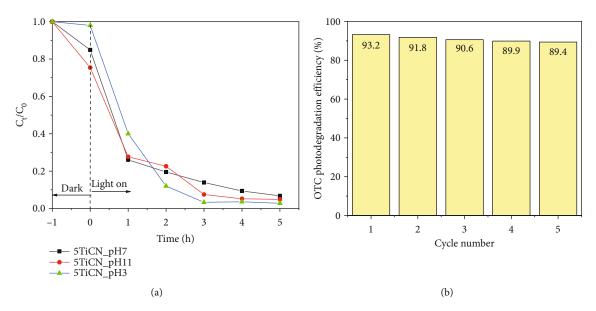


FIGURE 8: Photodegradation efficiency of OTC in function of pH (a) and photostability test on 5TiCN (b).

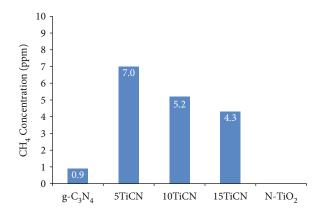


FIGURE 9: CH₄ concentration on g-C₃N₄ and xTiCN composite.

The influence of pH on the photoactivity was evaluated. The researches focused on 5TiCN (Figure 8(a)). After 5 hours of irradiation, the photoactivity at pH11 and 5 was slightly improved, in comparison with pH7. In the study of Yu et al., the isoelectric point of g-C₃N₄ was about pH 5 [61]. It means that the g-C₃N₄ surface charge is positive at pH < 5 and negative at pH > 5. The OTC has the pKa₁ = 3.22, $pKa_2 = 7.68$, and $pKa_3 = 8.94$ [62]. Therefore, the OTC exhibited a positive charge at pH < 3.22 in the form of H₃TC⁺ and negative one at pH > 9 in the main form of OTC⁻². Thus, the charges on the g-C₃N₄ surface and OTC molecules in experimental pH conditions are the same, which prevent adsorption of OTC on the g-C₃N₄ surface by electrostatic repulsion force. That could explain why the pH 3 and pH 7 did not influence strongly on the OTC conversion as observed.

The stability tests were carried out for the 5TiCN composite (Figure 8(b)). The OTC conversion decreased from 93.4% to 89.4% after 5 cycles. This is the promising result in an application view.

3.2.2. Photoreduction of CO₂. To investigate the dual photocatalytic behavior of N-TiO_{2-δ}/g-C₃N₄ composites, they were used in the photoreduction of CO₂ by H₂O in the gaseous phase (Figure 9). Concentration of CH₄ (the only product detected) was monitored to analyze the photocatalytic behavior of the synthesized composites. 5TiCN exhibited the highest activity, with 7.0 ppm CH₄ concentration, followed by 10TiCN (5.2 ppm CH₄), 15TiCN (4.3 ppm CH₄), and g-C₃N₄ (0.9 ppm CH₄). No product was detected in the N-TiO2 test. As mentioned in the OTC photooxidation results above, this low photoactivity of N-TiO₂ could be explained by the formed melon structure that covered TiO₂/N-TiO₂ particles and possibly the lower CB potential position of N-TiO₂ than the standard reduction potential of CO₂/CH₄ [55]. The detected CH₄ concentration was quite low over g-C₃N₄. Thus, the test was performed three times, and average value was taken. Hence, the CH₄ concentration was 7.8 times higher for 5TiCN (composite exhibiting maximum photocatalysis) than for pristine g-C₃N₄.

There are very few reports on photoreduction using a photocatalyst formed by TiO₂ and g-C₃N₄ [45, 63-69]. CO₂ photoreduction in the gaseous phase [45, 63–65] and liquid phase [66-69] has been reported. Gas phase studies, with CH₄ and CO products, indicate better photocatalytic activity for the TiO2-g-C3N4-combined photocatalyst, compared to bulk TiO₂ and g-C₃N₄. Zhou et al. reported a 4 times higher CO formation on g-C₃N₄-N-TiO₂ (14.73 μ mol) than on P25 (TiO₂) [63]. In liquid phase photoreductions, besides CH₄ and CO, other oxygenated hydrocarbons (CH₃OH, HCOOH, and CH₃COOH) are formed. TiO₂-g-C₃N₄-combined photocatalysts exhibit also higher photoactivity compared to single-phase TiO₂ or g-C₃N₄. Badiei et al. reported an 11.3 µmol·g⁻¹·h⁻¹ CH₃OH formation for g-C₃N₄@TiO₂, which was 5 and 10 times higher than those for g-C₃N₄ and P-25 (TiO₂), respectively [66]. Lu et al. reported a 283.9 μmol·h⁻¹·g⁻¹ CO formation for 2D g-C₃N₄/

FIGURE 10: Schematic illustrations of the energy band structures of N-TiO_{2- δ} and g-C₃N₄ before contact (a), N-TiO_{2- δ}/g-C₃N₄ heterojunction composite for OTC photooxidation mechanism (b), and CO₂ photoreduction mechanism (c).

 ${
m TiO_2}$, which was 292.2, 6.8, and 5.7 times higher than those for ${
m TiO_2}$, bulk ${
m g-C_3N_4}$, and mechanically mixed ${
m TiO_2/g-C_3N_4}$, respectively [67]. These results cannot be compared due to different experimental conditions. However, all studies indicate higher photoactivity using ${
m TiO_2-g-C_3N_4-combined}$ photocatalysts. In this study, ${
m CH_4}$ production on 5TiCN was 7.8 times higher than that on bulk ${
m g-C_3N_4-combined}$

3.2.3. Photocatalytic Mechanism. An outstanding photocatalytic activity was exhibited by the *x*TiCN composites during OTC photodegradation and CO₂ photoreduction as compared to the pristine g-C₃N₄ and N-TiO₂. Hence, the coupling mechanism of g-C₃N₄ and TiO₂ is worth investigating. From the UV-vis DR spectrum, the semiconductor conduction/valance edge energies ($E_{\rm CB}/E_{\rm VB}$) can be calculated using the electro-

negativity theory [70]. According to this theory, we have the following empirical formulas:

$$E_{\rm CB} = X - E^e - 0.5 E_g, E_{\rm VB} = E_{\rm CB} + E_g, \tag{2}$$

where X, E^e , and E_g are the semiconductor electronegativity (5.81 eV for TiO_2 [71] and 4.72 eV for $\mathrm{g-C}_3\mathrm{N}_4$ [30]), free electron energy corresponding to the hydrogen scale (4.5 eV), and semiconductor bandgap energy, respectively. As determined above from the differential curve of the UV-vis DR spectrum for 5TiCN, the bandgap energies are 3.08 and 2.85 eV, respectively, for the N-TiO $_{2-\delta}$ and $\mathrm{g-C}_3\mathrm{N}_4$ constituents. Using equation (2), $E_{\mathrm{CB}}/E_{\mathrm{VB}}$ is -0.23 V/+2.85 V for N-TiO $_{2-\delta}$ and -1.21 V/+1.64 V for $\mathrm{g-C}_3\mathrm{N}_4$ (-0.14/+2.76 for separately synthesized N-TiO $_2$). With these calculated E_g and $E_{\mathrm{CB}}/E_{\mathrm{VB}}$ values, the

energy band diagram before the coupling of the N-TiO $_{2-\delta}$ and g-C₃N₄ phases is presented in Figure 10(a). As thoroughly discussed by Yang [70], when coupling two semiconductors, the built-in electric field formation and photoexcited carrier transfer occur by different routes depending on the semiconductor types, their Fermi level, and CB/VB potential positions. In x TiCN composites, N-TiO₂ and g-C₃N₄ behave as n-type semiconductors [72, 73], and thus, their Fermi level is near the top conduction edge energy. As the N-TiO_{2-δ} Fermi level is higher than that of g-C₃N₄, spontaneous electron diffusion from N-TiO_{2-δ} to g-C₃N₄ occurs during their coupling and generates a built-in electric field with positive charge accumulation in the g-C₃N₄ interface zone and a negative one in the N-TiO₂- δ interface zone. This diffusion is gradually suppressed by the built-in electric field itself, and finally, a thermal equilibrium state is established in the N-TiO_{2-δ}/g-C₃N₄ heterojunction [70, 74]. On irradiating the composite, photogenerated electron (e⁻) and hole (h⁺) pairs formed on the CB and VB of each constituent. Subsequently, the built-in electric field promoted the photogenerated electrons on the CB of N-TiO_{2-δ} to the VB of g-C₃N₄. This transfer is displayed in Figures 10(b) and 10(c) and is well-known as the Z-scheme mechanism. In this system, the charge transfer between two phases caused the separation of photogenerated electrons and holes into different zones-electrons in the CB of g-C₃N₄ and holes in the VB of TiO₂—preventing their recombination or, simply put, prolonging their lifetime. Notably, this type of charge transfer enriched the photogenerated electrons on the negative CB of g-C₃N₄ and photogenerated holes on the positive VB of TiO2, thereby strengthening the redox property of the composite. Additionally, a low bandgap of g-C₃N₄ broadened the light absorption region and improved the light utilization efficiency. All these factors contributed to the photocatalytic enhancement of N-TiO_{2-δ}/g-C₃N₄ composites.

Note that the type-II and Z-scheme mechanisms entail a similar photocatalyst composite structure. However, in the type-II mechanism, reduction takes place on the CB of the semiconductor with a less negative CB potential. Hence, for the xTiCN composite, if the type-II mechanism had occurred, the CO2 would have been reduced on the CB of the N-TiO_{2-δ} constituent. This is unlikely as the reduction potential of the N-TiO_{2- δ} constituent (-0.23 V) is less negative than that of the CO₂/CH₄ (-0.24 V) [14]. Nevertheless, the obtained experimental results show a remarkably higher CH₄ content formation than that of bare g-C₃N₄. This evidence suggests that the xTiCN photocatalyst composites entail the Z-scheme mechanism. It is also found that CO₂ photoreduction could not take place on separately synthesized $N\text{-TiO}_2$ as its CD potential position (-0.14 V) is less negative than that of CO_2/CH_4 (-0.24 V).

The photogenerated electron-hole pair transfers are summarized as follows:

Then, for oxidation of OTC,

$$\begin{array}{l} e^{-}(g\text{-}C_3N_4(CB)) + O_2 \longrightarrow O_2 \\ h^{+}(N\text{-}TiO_{2\text{-}\delta}(VB)) + OTC \longrightarrow byproduct + CO_2 + H_2O \\ or for reduction of CO_2, \\ 8e^{-}(g\text{-}C_3N_4(CB)) + CO 2 + 8H^+ \longrightarrow CH_4 + 2H_2O \\ 8h^{+}(TiO_{2\text{-}\delta}(VB)) + 8H_2O \longrightarrow 8H^+ + 8\text{-}OH \\ 8\text{-}OH \longrightarrow 4H_2O + 2O_2 \end{array}$$

4. Conclusions

Here, x% (wt) N-TiO₂-₈/g-C₃N₄ composites were synthesized, and their textural and structural properties were analyzed by XRD, FTIR, UV-DRS, TEM, and XPS. All composites showed better activity than bulk g-C₃N₄ towards OTC photodegradation and CO₂ photoreduction. OTC photodegradation yields were higher for the composites (93%, 97%, and 92%, on 5TiCN, 10TiCN, and 15TiCN, respectively) than for bulk g-C₃N₄ (86%). Among these catalysts, the 10TiCN showed the highest rate constant of 0.647 h⁻¹. In CO₂ photoreduction, CH₄ was the only product detected. CH₄ concentrations of 0.9, 7.0, 5.2, and 4.3 ppm were detected using bulk g-C₃N₄, 5TiCN, 10TiCN, and 15TiCN, respectively. CH₄ formation of 5TiCN was 7.8 times higher than that of bulk g-C₃N₄. Enhanced composite photoactivities were attributed to their Z-scheme mechanism. With this structure, charge transfer between N-TiO₂ _δ (CB) and g-C₃N₄ (VB) occurred, leading to recombination prevention of photogenerated electron-hole pairs and stronger redox abilities. The interesting obtained result above indicates the promising novel dual photocatalysts. Tuning composite morphology (e.g., specific surface area and porosity) and contact surface area between components (e.g., good dispersion phase and core-shell system) could enhance photoactivity of x% (wt) N-TiO_{2- δ}/g-C₃N₄ further.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declares that there is no conflict of interest regarding the publication of this paper.

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.05-2017.39.

References

- [1] R. Daghrir and P. Drogui, "Tetracycline antibiotics in the environment: a review," *Environmental Chemistry Letters*, vol. 11, no. 3, pp. 209–227, 2013.
- [2] K. Kummerer, "Antibiotics in the aquatic environment a review part I," *Chemosphere*, vol. 75, no. 4, pp. 417–434, 2009.
- [3] L. Xu, H. Zhang, P. Xiong, Q. Zhu, C. Liao, and G. Jiang, "Occurrence, fate, and risk assessment of typical tetracycline

- antibiotics in the aquatic environment: a review," *Science of the Total Environment*, vol. 753, pp. 141975–141992, 2021.
- [4] S. Suzuki and P. T. P. Hoa, "Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina," *Frontiers in Microbiology*, vol. 3, pp. 1–8, 2012.
- [5] G. Zhao, X. Huang, X. Wang, and X. Wang, "Progress in the catalyst exploration for heterogenous CO₂ reduction and utilization," *Journal of Materials Chemistry A*, vol. 5, pp. 21625– 21649, 2017.
- [6] S. Sorcar, S. Yoriya, H. Lee, C. A. Grimes, and S. P. Feng, "A review of recent progress in gas phase CO₂ reduction and suggestions on future advancement," *Materials Today Chemistry*, vol. 16, p. 100264, 2020.
- [7] X. Li, J. Xie, C. Jiang, J. Yu, and P. Zhang, "Review on design and evaluation of environmental photocatalysts," Frontiers of Environmental Science & Engineering, vol. 12, no. 5, p. 14, 2018.
- [8] S. Wageh, A. A. Al-Ghamdi, R. Jafer, X. Li, and P. Zhang, "A new heterojunction in photocatalysis: S-scheme heterojunction," *Chinese Journal of Catalysis*, vol. 42, pp. 667– 669, 2021.
- [9] L. Liu, T. Hu, K. Dai, J. Zhang, and C. Liang, "A novel step-scheme BiVO₄/Ag₃VO₄ photocatalysts for enhanced photocatalytic degradation activity under visible light irradiation," *Chinese Journal of Catalysis*, vol. 42, pp. 46–55, 2021.
- [10] Z. Liang, R. Shen, Y. H. Ng, P. Zhang, Q. Xiang, and X. Li, "A review on 2D MoS₂ cocatalysts in photocatalytic H₂ production," *Journal of Materials Science & Technology*, vol. 56, pp. 89–121, 2020.
- [11] S. Li, C. Wang, M. J. Cai et al., "Facile fabrication of TaON/ Bi₂MoO₆ core-shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction," *Chemical Engineering Journal*, vol. 428, p. 131158, 2022.
- [12] R. Shen, D. Ren, Y. Ding et al., "Nanostructure CdS for efficient photocatalytic H₂ evolution: a review," *Science China Materials*, vol. 63, pp. 2153–2188, 2020.
- [13] X. Yang, Z. Chen, Z. Wan et al., "Recent advances in photodegradation of antibiotic residues in water," *Chemical Engineer*ing Journal, vol. 405, p. 126806, 2021.
- [14] D. Albertus, "Recent progress in artificial photosynthesis: CO₂ photoreduction to valuable chemicals in a heterogeneous system," *Current Opinion in Chemical Engineering*, vol. 2, no. 2, pp. 200–206, 2013.
- [15] J. H. Pereira, V. J. Vilar, M. T. Borges, O. González, S. Esplugas, and R. A. Boaventura, "Photocatalytic degradation of oxytetracycline using TiO₂ under natural and simulated solar radiation," Solar Energy, vol. 85, no. 11, pp. 2732–2740, 2011.
- [16] G. Liu, N. Hoivik, K. Wang, and H. Jakobsen, "Engineering TiO₂ nanomaterials for CO₂ conversion/solar fuels," *Solar Energy Materials and Solar Cells*, vol. 105, pp. 53–68, 2012.
- [17] T. Suwannaruang, J. P. Hildebrand, D. H. Taffa, M. W. K. Kamonsuangkasem, P. Chirawatkul, and K. Wantala, "Visible light-induced degradation of antibiotic ciprofloxacin over Fe-N-TiO₂ mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture," *Journal of Photochemistry and Photobiology A: Chemistry*, vol. 391, p. 112371, 2020.
- [18] S. Cipagauta-Díaz, A. Estrella-González, M. Navarrete-Magaña, and R. Gómez, "N doped - ${
 m TiO_2}$ coupled to ${
 m BiVO_4}$ with high performance in photodegradation of Ofloxacin anti-

- biotic and rhodamine B dye under visible light," *Catalysis Today*, vol. 2021, 2021.
- [19] F. Li, H. Li, L.-x. Guan, and M.-m. Yao, "Nanocrystalline Co²⁺/F⁻codoped TiO₂-SiO₂ composite films for environmental applications," *Chemical Engineering Journal*, vol. 252, pp. 1–10, 2014.
- [20] O. Ola and M. M. Maroto-Valer, "Transition metal oxide based TiO₂ nanoparticles for visible light induced CO₂ photoreduction," *Applied Catalysis A: General*, vol. 502, pp. 114– 121, 2015.
- [21] M. Xu, H. Wu, Y. Tang et al., "One-step in-situ synthesis of porous Fe³⁺-doped TiO₂ octahedra toward visible-light photocatalytic conversion of CO₂ into solar fuel," *Microporous and Mesoporous Materials*, vol. 309, p. 110539, 2020.
- [22] M. Mgolombane, O. M. Bankole, E. E. Ferg, and A. S. Ogunlaja, "Construction of Co-doped TiO₂/rGO nanocomposites for high-performance photoreduction of CO₂ with H₂O: comparison of theoretical binding energies and exploration of surface chemistry," *Materials Chemistry and Physics*, vol. 268, p. 124733, 2021.
- [23] A. Tiwari, A. Shukla, D. T. Lalliansanga, and S.-M. Lee, "Aunanoparticle/nanopillars TiO₂ meso-porous thin films in the degradation of tetracycline using UV-A light," *Journal of Industrial and Engineering Chemistry*, vol. 69, pp. 141–152, 2019
- [24] W. Li, B. Li, M. Meng et al., "Bimetallic Au/Ag decorated TiO₂ nanocomposite membrane for enhanced photocatalytic degradation of tetracycline and bactericidal efficiency," *Applied Surface Science*, vol. 487, pp. 1008–1017, 2019.
- [25] J. Singh, S. Juneja, R. K. Soni, and J. Bhattacharya, "Sunlight mediated enhanced photocatalytic activity of TiO₂ nanoparticles functionalized CuO-Cu₂O nanorods for removal of methylene blue and oxytetracycline hydrochloride," *Journal of Colloid and Interface Science*, vol. 590, pp. 60–71, 2021.
- [26] X. Hu, C. Li, J. Song, S. Zheng, and Z. Sun, "Multidimensional assembly of oxygen vacancy-rich amorphous TiO₂-BiOBrsepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light," *Journal of Colloid and Interface Science*, vol. 574, pp. 61–73, 2020.
- [27] W. Bi, Y. Hu, N. Jiang et al., "Ultra-fast construction of plaque-like Li₂TiO₂/TiO₂ heterostructure for efficient gas-solid phase CO₂ photoreduction," *Applied Catalysis B: Environmental*, vol. 269, p. 118810, 2020.
- [28] Q. Wang, P. Dong, Z. Huang, and X. Zhang, "Synthesis of Ag or Pt nanoparticle-deposited TiO₂ nanorods for the highly efficient photoreduction of CO₂ to CH₄," *Chemical Physics Letters*, vol. 639, pp. 11–16, 2015.
- [29] T. Cheng, H. Gao, R. Li, S. Wang, Z. Yi, and H. Yang, "Flexoelectricity-induced enhancement in carrier separation and photocatalytic activity of a photocatalyst," *Applied Surface Science*, vol. 566, p. 150669, 2021.
- [30] X. Wang, S. Blechert, and M. Antonietti, "Polymeric graphitic carbon nitride for heterogeneous photocatalysis," *Acs Catalysis*, vol. 2, pp. 1596–1606, 2012.
- [31] Y. Zheng, L. Lin, B. Wang, and X. Wang, "Graphitic carbon nitride polymers toward sustainable photoredox catalysis," *Angewandte Chemie International Edition*, vol. 54, pp. 2868– 12884, 2015.
- [32] O. Timothy, A. T. Kuvarega, and D. C. Onwudiwe, "Graphitic carbon nitride-based catalyst and their application: a review," *Nano-Structures & Nano-Objects*, vol. 24, p. 10057, 2020.

- [33] M.-M. Fang, J.-X. Shao, X.-G. Huang, J.-Y. Wang, and W. Chen, "Direct Z-scheme CdFe₂O₄/g-C₃N₄ hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation," *Journal of Materials Science & Technology*, vol. 56, pp. 133– 142, 2020.
- [34] D. Reh, W. Zhang, Y. Ding et al., "In situ fabrication of robust cocatalyst-free CdS/g-C₃N₄ 2D-2D step-scheme heterojunction for highly active H₂ evolution," *Solar Rrl*, vol. 4, no. 8, p. 1900423, 2020.
- [35] R. Shen, K. He, A. Zhang et al., "In-situ construction of metal-lic Ni₃C@core-shell cocatalysts over g-C₃N₄ nanosheets for shell-thickness-dependent photocatalytic H₂ production," Applied Catalysis B: Environmental, vol. 291, p. 120104, 2021.
- [36] J. Wang, G. Wang, B. Cheng, J. Yu, and J. Fan, "Sulfur-doped g-C₃N₄/TiO₂ S-scheme heterojunction photocatalyst for Congo Red photodegradation," *Chinese Journal of Catalysis*, vol. 42, pp. 56–68, 2021.
- [37] P. Suyana, P. Ganguly, B. N. Nair, S. C. Pillai, and U. S. Hareesh, "Structural and compositional tuning in g-C₃N₄ based systems for photocatalytic antibiotic degradation," *Chemical Engineering Journal Advances*, vol. 8, p. 100148, 2021.
- [38] R. Liu, Z. Chen, Y. Yao et al., "Recent advancements in g-C₃N₄-based photocatalysts for photocatalytic CO₂ reduction: a mini review," RSC Advances, vol. 10, pp. 29408–29418, 2020.
- [39] J. Lin, W. Tian, H. Zhang, X. Duan, H. Sun, and S. Wang, "Graphitic carbon nitride-based Z-scheme structure for photocatalytic CO₂ reduction," *Energy & Fuels*, vol. 35, no. 1, pp. 7–24, 2021.
- [40] Q. Xu, L. Zhang, J. Yu, S. Wageh, A. A. Al-Ghamdi, and M. Jaroniec, "Direct Z-scheme photocatalysts: principles, synthesis, and applications," *Materials Today*, vol. 21, no. 10, pp. 1042–1063, 2018.
- [41] S. Guan, H. Yang, X. Sun, and T. Xien, "Preparation and promising application of novel LaFeO₃/BiOBr heterojunction photocatalysts for photocatalytic and photo-Fenton removal of dyes," *Optical Materials*, vol. 100, p. 109644, 2020.
- [42] T. Cheng, H. Gao, G. Liu et al., "Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi₄Ti₃O₁₂ hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions," *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, vol. 633, p. 127918, 2022.
- [43] L. Li, H. Gao, G. Liu et al., "Synthesis of carnation flower-like Bi₂O₂CO₃ photocatalyst and its promising application for photoreduction of Cr(VI)," Advanced Powder Technology, vol. 33, p. 103481, 2022.
- [44] W. Wang, J. F. Xinlei, and C. Lu, "TiO $_2$ @g-C $_3$ N $_4$ heterojunction with directional charge migration behavior for photodegradation of tetracycline antibiotics," *Materials Letters*, vol. 236, pp. 622–624, 2019.
- [45] M. Reli, P. Huo, M. Šihor et al., "Novel TiO₂/g-C₃N₄ photocatalyst for photocatalytic reduction of CO₂ and photocatalytic decomposition of N₂O," *The Journal of Physical Chemistry A*, vol. 120, no. 43, pp. 8564–8573, 2016.
- [46] M. Sathish, B. Viswanathan, and R. P. Viswanath, "Characterization and photocatalytic activity of N-doped TiO₂ prepared by thermal decomposition of Ti-melamine complex," *Applied Catalysis. B, Environmental*, vol. 74, no. 3-4, pp. 307–312, 2007.
- [47] A. Majumdar, U. Ghosh, and A. Pai, "Novel 2D/2D g-C₃N₄/ Bi₄NbO₈Cl nano-composite for enhanced photocatalytic deg-

- radation of oxytetracycline under visible LED light irradiation," *Journal of Colloid and Interface Science*, vol. 584, pp. 320–331, 2021.
- [48] J. Ni, W. Wang, D. Liu et al., "Oxygen vacancy-mediated sandwich-structural ${\rm TiO_{2-x}}$ /ultrathin ${\rm g-C_3N_4/TiO_{2-x}}$ direct Z-scheme heterojunction visible-light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotic," *Journal of Hazardous Materials*, vol. 408, p. 124432, 2021.
- [49] S. El-Sherbiny, F. Morsy, M. Samir, and A. Osama, "Synthesis, characterization and application of TiO₂ nanopowders as special paper coating pigment," *Applied Nanoscience*, vol. 4, pp. 305–313, 2014.
- [50] D. Jimin, "A facile method for synthesis of N-doped TiO₂ nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity," *Applied Surface Science*, vol. 273, pp. 278–286, 2013.
- [51] B. Bharti, S. Kumar, H.-N. Lee, and R. Kumar, "Formation of oxygen vacancies and Ti³⁺ state in TiO₂ thin film and enhanced optical properties by air plasma treatment," *Scientific Reports*, vol. 6, p. 32355, 2016.
- [52] T. Jia, F. Fang, D. Yu, and G. Sun, "Facile synthesis and characterization of N-doped TiO₂/C nanocomposites with enhanced visible-light photocatalytic performance," *Applied Surface Science*, vol. 430, pp. 438–447, 2018.
- [53] X. Zheng, Y. Liu, X. Liu, Q. Li, and Y. Zheng, "A novel PVDF-TiO₂@g-C₃N₄ composite electron spun fiber for efficient photocatalytic degradation of tetracycline under visible light irradiation," *Ecotoxicology and Environmental Safety*, vol. 210, p. 111866, 2021.
- [54] J. Hong, D. K. Hwang, R. Selvaraj, and Y. Ki, "Facile synthesis of Br-doped g-C₃N₄ nanosheets via one-step exfoliation using ammonium bromide for photodegradation of oxytetracycline antibiotics," *Journal of Industrial and Engineering Chemistry*, vol. 79, pp. 473–481, 2019.
- [55] C. Hu, Y.-C. Chu, M.-S. Wang, and X.-H. Wu, "Rapid synthesis of g-C₃N₄ spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity," *Journal of Photochemistry and Photobiology A: Chemistry*, vol. 348, pp. 8–17, 2017.
- [56] H. Zhang, G. Zhang, H. Zhang et al., "Facile synthesis hierarchical porous structure anatase-rutile TiO₂/g-C₃N₄ composite for efficient photodegradation tetracycline hydrochloride," *Applied Surface Science*, vol. 567, p. 150833, 2021.
- [57] W. Wang, J. Fang, S. Shao, and M. Lai, "Compact and uniform TiO₂@g-C₃N₄ core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics," *Applied Catalysis B: Environmental*, vol. 217, pp. 57–64, 2017.
- [58] J. Ni, W. Wang, D. Liu et al., "Oxygen vacancy-mediated sandwich-structural TiO_{2-x}/ultrathin g-C₃N₄/TiO_{2-x} direct Zscheme heterojunction visible-light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotics," *Journal* of Hazardous Materials, vol. 408, p. 124432, 2021.
- [59] Y. Wang, L. Rao, P. Wang, Z. Shi, and L. Zhang, "Photocatalytic activity of N-TiO₂/O-doped N vacancy g-C₃N₄ and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment," *Applied Catalysis B: Environmental*, vol. 262, p. 118308, 2020.
- [60] H. Zhang, G. Zhang, H. Zhang et al., "Facile synthesis hierarchical porous structure anatase-rutile TiO₂/g-C₃N₄ composite for efficient photodegradation tetracycline hydrochloride," *Applied Surface Science*, vol. 567, pp. 473–481, 2019.

- [61] B. Zhu, P. Xia, W. Ho, and J. Yu, "Isoelectric point and adsorption activity of porous g-C₃N₄," Applied Surface Science, vol. 344, pp. 188–195, 2015.
- [62] Y. Li, H. Wang, X. Liu, G. Zhao, and Y. Sun, "Dissipation kinetics of oxytetracycline, tetracycline, and chlortetracycline residues in soil," *Environmental Science and Pollution Research*, vol. 23, no. 14, pp. 13822–13831, 2016.
- [63] S. Zhou, Y. Liu, J. Li et al., "Facile in situ synthesis of graphitic carbon nitride (g-C₃N₄)-N-TiO₂ heterojunction as an efficient photocatalyst for the selective photoreduction of CO₂ to CO," Applied Catalysis B: Environmental, vol. 158, pp. 20–29, 2014.
- [64] Q. Wang, L. Zhang, Y. Guo et al., "Multifunctional 2D porous g-C₃N₄ nano sheets hybridized with 3D hierarchical TiO₂ micro flowers for selective dye adsorption, antibiotic degradation and CO₂ reduction," *Chemical Engineering Journal*, vol. 396, p. 125347, 2020.
- [65] K. Li, B. Peng, J. Jin, L. Zan, and T. Peng, "Carbon nitride nanodots decorated brookite TiO₂ quasi nanocubes for enhanced activity and selectivity of visible-light-driven CO₂ reduction," *Applied Catalysis B: Environmental*, vol. 203, pp. 910–916, 2017.
- [66] A. B. Dehkordi, A. Ziarati, J. B. Ghasemi, and A. Badiei, "Preparation of hierarchical g-C₃N₄@TiO₂ hollow spheres for enhanced visible-light induced catalytic CO₂ reduction," Solar Energy, vol. 205, pp. 465–473, 2020.
- [67] S. Tang, X. Yin, G. Wang, X. Lu, and T. Lu, "Single titanium-oxide species implanted in 2D g- $\rm C_3N_4$ matrix as a highly efficient visible-light $\rm CO_2$ reduction photocatalyst," *Nano Research*, vol. 12, pp. 457–462, 2019.
- [68] H. Wang, H. Li, Z. Chen, J. Li, P. Huo, and Q. Wang, "TiO₂ modified g-C₃N₄ with enhanced photocatalytic CO₂ reduction performance," *Solid State Sciences*, vol. 100, p. 106099, 2020.
- [69] J. Wu, Y. Feng, D. Li, X. Han, and J. Liu, "Efficient photocatalytic CO₂ reduction by P-O linked g-C₃N₄/TiO₂-nanotubes Z-scheme composites," *Energy*, vol. 178, pp. 168–175, 2019.
- [70] H. Yang, "A short review on heterojunction photocatalyst: carrier transfer behavior and photocatalytic mechanisms," *Materials Research Bulletin*, vol. 142, p. 11406, 2021.
- [71] M. Navarrete-Magana, A. Estrella-Gonzalez, L. May-Ix, S. Cipagauta-Diaz, and R. Gomeza, "Improved photocatalytic oxidation of arsenic (III) with WO₃/TiO₂ nanomaterials synthesized by the sol-gel method," *Journal of Environmental Management*, vol. 282, p. 111602, 2021.
- [72] H. Irie, S. Washizuka, Y. Watanabe, T. Kako, and K. Hashimoto, "Photoinduced hydrophilic and electrochemical properties of nitrogen-doped TiO₂ films," *Journal of the Electrochemical Society*, vol. 152, no. 11, pp. E351–E356, 2005.
- [73] A. Wang, C. Wang, F. Li, W. Wong-Ng, and Y. Lan, "Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs," *Nano-Micro Letters*, vol. 9, p. 47, 2017.
- [74] S. Guan, R. Li, X. Sun, T. Xian, and H. Yang, "Construction of novel ternary Au/LaFeO₃/CuO composite photocatalysts for RhB degradation via photo-Fenton catalysis," *Materials Technology*, vol. 36, no. 10, pp. 603–615, 2021.