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This study reports the efficacy of adsorbents synthesized by thermal (TT-GMH) and chemical (CT-GMH) modification of great
millet husk (GMH) for the treatment of synthetic wastewater containing Cr(VI). The chemical modification of raw GMH was
done by concentrated H2SO4 to increase the porosity and heterogeneity on the surface. The comparative investigations of
physicochemical properties of synthesized adsorbents were examined by point of zero charge (pHpzc), BET surface area, SEM-
EDX, FTIR, and XRD analyses. The results revealed that CT-GMH had around three times higher surface area and more
porous structure as compared to TT-GMH. The adsorption experiments were executed in batch mode to examine the impact
of parameters governing the adsorption process. For Cr(VI) solution of 25mg/L, adsorbent dose of 4 g/L, temperature of 25°C,
and shaking speed of 150 RPM, the maximum removal for TT-GMH was attained at pH 1 and contact time 150min, while for
CT-GMH, maximum removal was attained at pH 2 and contact time 120min. The experimental results fitted to the rate
kinetic equations showed that for both TT-GMH and CT-GMH, adsorbents followed the quasi-second-order kinetic model
during the adsorption process. Further, results revealed that the adsorption process was endothermic and Sips isotherm model
was followed for both TT-GMH and CT-GMH. Based on the Sips isotherm, maximum uptake capacity for TT-GMH and CT-
GMH was noted to be 16 and 22.21mg/g, respectively. Among the tested mass transfer models, liquid film diffusion model was
followed during the adsorption process of both the adsorbents. The desorption study revealed that TT-GMH and CT-GMH
give 69.45% and 74.48% removal, respectively, up to six cycles.

1. Introduction

Toxic heavy metals and dyes pertaining to water pollution
have been a serious concern for environmental and ecologi-
cal researchers. Rapid industrialization and regular human
activities are mainly responsible for the increment of these
pollutants in the environment and cause side effects and severe
health issues to humans, live animals, and plant development
[1]. Chromium, a heavy and d-block metal, exists in the triva-
lent (Cr(III)) and hexavalent (Cr(VI)) state in wastewater.
Compared to Cr(VI), Cr(III) is insoluble and also an essential
nutrient in small quantities required by microorganisms and
humans to control the insulin, sugar, and lipid metabolism

[2], while amounts of Cr(VI) are highly lethal because of its
carcinogenic, mutagenic, and teratogenic effects [3–5]. The
Cr(VI) is present in the effluents from alloy making processes,
tanneries, wood preservation paint and pigments, electroplat-
ing, and stainless steel industries [4, 6]. The permissible limit
for Cr(VI) in industrial effluents is limited to 2mg/L, and in
potable water, it is restricted to 0.05 to 0.1mg/L by Indian
Standards (IS), World Health Organization (WHO), and
United States Environmental Protection Agency (USEPA)
[2, 7]. The industries must treat their effluent by an economi-
cal water treatment technology to reduce Cr(VI) concentra-
tions up to the tolerance limit. Then, the treated effluent is
discharged into the aquatic ecosystem or environment.
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The technologies such as chemical precipitation [7],
electrochemical precipitation [8], chemical coagulation [9],
adsorption [2, 4], photocatalysis [10], solvent extraction
[11], ion exchange [12], and membrane separation [13] are
advance technologies that are used for the treatment of
Cr(VI) from industrial wastewater. Except for adsorption,
other technologies cannot be used for industrial-scale opera-
tion due to low removal efficiency towards Cr(VI), low selec-
tivity for target pollutant species, high operational cost, and
the probability of generation of by-product which may be
toxic [2, 14]. Adsorption process is an attractive alternative
treatment process to effectively remove Cr(VI) ions from
wastewater due to low cost of operation, lesser consumption
of hazardous chemicals, and minimum production of treated
waste [2, 4, 15, 16].

Several low-cost adsorbents have been used to remove
pollutant ions from wastewater; these include nonliving bio-
mass, waste biomass, algal biomass, or microbial biomass
[17]. Also, activated carbon, nanoporous activated carbon,
biochar, and chemically modified biochar prepared from
aloe vera waste [18], garlic stem [19], and coconut shell
[20] were also used for adsorption of pollutant species from
wastewater. For reducing the Cr(VI) ion concentration from
the aqueous solution, adsorbents such as waste tea [21], raw
straw [22], rice husk [23], orange peel [24], walnut shell [25],
Ziziphus jujuba cores as waste lignocellulosic material [26],
and eggshell membranes of different birds [27] had been
investigated. In the present study, abundantly available agri-
cultural waste of sorghum bicolor (great millet husk,
(GMH)) husk has been used as a raw material for producing
cost-effective adsorbent by thermal and chemical treatment.
The physicochemical properties of prepared adsorbents were
examined by point of zero charge (pHpzc), Brunauer-
Emmett-Teller (BET) surface area, scanning electron
microscopy coupled with energy dispersive X-ray (SEM-
EDX), Fourier transform infrared spectroscopy (FTIR), and
X-ray diffraction (XRD) analyses. The influence of the initial
pH of Cr(VI) solution and adsorbent dose was examined to
obtained the optimum value of pH and dose for Cr(VI)
uptake onto TT-GMH and CT-GMH adsorbents. The
kinetic and isotherm models for the removal of Cr(VI) by
TT-GMH and CT-GMH were studied through experimental
data of time and concentration parameters, respectively.
Thermodynamic modeling for energy parameters such as
Gibbs energy (ΔGo), entropy (ΔSo), and enthalpy (ΔHo)
was calculated by influences of temperature for the removal
of Cr(VI) by TT-GMH and CT-GMH adsorbents. Besides,
the mechanism governing the mass transfer operation dur-
ing adsorption was examined.

2. Material and Methods

2.1. Adsorbent Preparation. Great millet husk (GMH) was
collected from the nearby villages of Varanasi. It was then
washed with distilled water to remove dirt and dried in a
thermostatically controlled oven at 105°C for 12 h. Two
types of adsorbent were prepared from the husk. Thermally
treated adsorbent (TT-GMH) was prepared by vigorous
boiling of GMH until the color was removed. Chemically

treated adsorbent (CT-GMH) was prepared by adding con-
centrated H2SO4 to the husk in 1 : 1 weight ratio; then, the
blend was agitated with the help of a magnetic stirrer. After
mixing, the blend was filtered, and the filtrate was washed
repeatedly with double distilled water till the pH of the fil-
trate reached to 7. Particles were then subjected to drying
for 24 h in an oven, pulverized into fine powder, and sieved
for different sizes.

2.2. Reagents and Solutions. All the AR grade chemicals
(K2Cr2O7, H2SO4, NaOH, HCl, diphenyl carbazide, and ace-
tone) were used during experiments and purchased from
Merck and SRL India. Distilled water was used to prepare
1000mg/L stock solution of Cr(VI) by dissolving 2.828 g of
K2Cr2O7. The desired concentration of Cr(VI) solution was
obtained by diluting the stock solution. Carbazide solution
was prepared by dissolving 500mg of 1,5-diphenyl carbazide
in 100mL acetone, and sulfuric acid (6N) was synthesized
by dilution using double distilled water.

2.3. Analytical Methods and Instruments Used. The adsor-
bent prepared from thermally and chemically treated great
millet husk (TT-GMH and CT-GMH) was characterized
using BET surface area, SEM-EDX, FTIR, and XRD analyses.
The instruments used during batch adsorption process were
a pH meter measuring the pH of solution, a shaking incuba-
tor, an oven for drying of adsorbent, and a UV–visible spec-
trophotometer for measuring the concentration of Cr(VI).
The detailed specification (Table S1) and procedure
(Procedure S1) for analytical instruments have been given
in supplementary material, the absorbance at which Cr(VI)
concentration finds maximum absorption.

2.4. Batch Adsorption Studies. Experiments in batch mode
operation were performed for removal of Cr(VI) from aque-
ous solution. Excluding the impact of temperature, the rests
of the experiments were performed at ambient temperature.
The impact of various operating parameters like initial
Cr(VI) concentration (5–100mg/L), pH of the adsorbate
(1–10), temperature (25–40°C), contact time (0–180min),
and adsorbent dose (2–10 g/L) was examined during adsorp-
tion onto adsorbents TT-GMH and CT-GMH. The 50mL
solution of predetermined concentration was used to per-
form the experiments is 100mL flasks. The desired solution
pH was obtained with 0.1N H2SO4 and 0.1N NaOH solu-
tions. The solution with varying adsorbent doses and at con-
stant temperature was placed in a shaking incubator running
at a constant speed of 150 rpm. The flasks were taken out at
regular interval of time, and the adsorbent was separated by
using centrifuge. The Cr(VI) ion concentration in aqueous
solution was measured by employing a spectrophotometer
by measuring the deep red-violet-colored complex. This
complex was formed in an acidic medium by the reaction
of Cr(VI) and 1,5-diphenylcarbazide, and the maximum
absorbance of Cr(VI) was measured at 540nm [28]. The
removal percentage was enumerated by employing

%Removal of Cr VIð Þ = C0 − Ctð Þ × 100
Co

: ð1Þ
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The uptake capacity was determined by employing

Uptake capacity qð Þ = C0 − Ctð ÞV
W

, ð2Þ

where qe denotes as uptake capacity in milligram/gram. Co
denotes initial concentration of Cr(VI), while Ct denotes
concentration of Cr(VI) at time t in (mg/L). V denotes vol-
ume of Cr(VI) solution in litre, and W denotes weight of
adsorbent in grams.

3. Results and Discussion

3.1. Physicochemical Characteristics of the Adsorbent. The
pHpzc of the adsorbents TT-GMH and CT-GMH was found
to be 5.9 and 4, respectively, (Figure 1). At pH, less than
pHpzc, the adsorbents have higher density of positively
charged ions. Strong attraction force on anions is exerted
by these surface positive functional groups [18, 29]. The
essential information about adsorption limit can be
obtained from the surface area of the adsorbent which is
an intrinsic property. The BET surface area of TT-GMH
was noted to be 9.00280m2/g with a total pore volume of
0.00536 cm3/g. The BET surface area of 26.7815m2/g with
total pore volume 0.03085 cm3/g was seen for CT-GMH. It
was found that chemical treatment with H2SO4 enhanced
the specific surface area and total pore volume [18]. The
analysis surface morphology of the adsorbent by SEM
revealed that before, adsorption surface was rough with
some pores for both TT-GMH and CT-GMH as can be seen
from Figures 2(a) and 2(e). The SEM micrographs of TT-
GMH and CT-GMH after adsorption (Figures 2(c) and
2(g)) showed smooth surface covering of the pores. The
EDX analysis was performed for the elemental composition
of the sample. Chemical composition of TT-GMH and CT-
GMH before and after adsorption is summarized in Table 1.
Figures 2(d) and 2(h) showed Cr(VI) peaks associated with
adsorbents TT-GMH and CT-GMH after Cr(VI) adsorption
while no Cr(VI) peaks for the bare adsorbents were detected
(Figures 2(b) and 2(f)). These results confirmed the adsorp-
tion of Cr(VI) ions on the surface TT-GMH and CT-GMH.
The FTIR spectra for TT-GMH and CT-GMHwere recorded
in the range of 4000–400 cm-1 wave number. For both the
adsorbents, presence of stretching for -OH can be confirmed
from peaks of 3376.5 cm-1 for TT-GMH and 3392.5 cm-1 for
CT-GMH because of inter- and intramolecular hydrogen
bonding [22]. The O-H groups associated with adsorbents
were observed in a broad range of wavenumbers attributing
the existence of bare and carboxylic acid bonded O-H
groups. Additionally, peaks at 2915.1 cm-1 for TT-GMH plot
and 2923.8 cm-1 for CT-GMH plot showed the presence of
H-C-H stretching. Peaks at 1640 cm-1 and 1608 cm-1 corre-
spond to vibrations of C=O bonds of carboxylic groups and
ester groups, correspondingly. The peak at 1608 cm-1 for
CT-GMH was attributed to the N-H bond. A shift in the
peaks of Cr(VI) adsorbed TT-GMH and CT-GMH shown
in Figure 3 confirmed the active participation in adsorption
by hydroxyl, alkyl, and ketone groups. In the case of TT-
GMH as an adsorbent, O-H, C-H, C=C, and C=O peaks

shifted from 3475 to 3467, 2926 to 2918, 1620 to 1639, and
1120 to 1093 cm-1, respectively, while in case of CT-GMH
as an adsorbent, O-H, C-H, C=C, and C=O peaks shifted
from 3490 to 3485, 2938 to 2922, 1612 to 1635, and 1130 to
1099 cm-1, respectively. Apart from those, new peaks at
452 cm-1 for TT-GMH and at 452 cm-1 for CT-GMH
appeared after adsorption. XRD analysis of TT-GMH and
CT-GMH before and after adsorption is presented in
Figure 4. In the case of TT-GMH before adsorption, a broad
peak at 2θ = 22:5° corresponds to crystalline peak associated
with cellulosic carbon of GMH [28]. After adsorption, a slight
increase in peak intensity and marginal shift in 2θ were
observed. This might be due to surface adsorption of Cr(VI)
onto TT-GMH. In the case of CT-GMH before adsorption,
three sharp peaks at 2θ = 18°, 22.5°, and 25° were observed.
The sharp peak in the case of CT-GMH before might be due
to intensification of crystalline cellulose because of decompo-
sition of hemicellulose during chemical treatment [28, 30].
After adsorption, a slight increase in peak intensity and mar-
ginal shift in 2θ were also observed in the case of CT-GMH.
Similar XRD pattern was also reported by Narayan et al. [29].

3.2. Batch Adsorption Experiments

3.2.1. Impact of Contact Time. The impact of contact time on
Cr(VI) adsorption on TT-GMH and CT-GMH was explored
by changing the time from 0 to 150min. The experiment was
performed at pH2 for TT-GMH and CT-GMH, keeping the
dose of adsorbent constant at 4 g/L (Figure 5(a)). The satura-
tion level for Cr(VI) adsorption on adsorbents was reached
at 150min for TT-GMH and 120min for CT-GMH. Thus,
chemical modification of GMH imparts lower equilibrium
time and higher removal (%) for Cr(VI) ions [22]. After
the equilibrium is attained, the removal efficiency remained
almost constant. Initially, the number of vacant site for the
adsorption process is large; however, once the equilibrium
is attained, the possibility of repulsion between adsorbed
Cr(VI) and Cr(VI) present in aqueous solution prevails
[18]. This might be the reason for saturation in removal
once the equilibrium is attained.
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Figure 1: Point of zero charge of adsorbents TT-GMH and CT-
GMH.
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Figure 2: Continued.
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3.2.2. Impact of Initial pH. Figure 5(b) depicts the impact of
initial pH on removal of Cr(VI). The pH of the adsorbate
solution has proven importance in the adsorption process
[18, 21]. The tendency of metal ion solubility, the strength
of functional groups associated with adsorbent, and strength
of ionization of adsorbent during the adsorption process are
governed by pH of solution [22]. Therefore, pH of solution
is very crucial during the adsorption process. The impact
of initial pH on removal of Cr(VI) was perceived between
1 and 10. It was witnessed that the removal (%) decreased
from 98.64 to 12.84% for TT-GMH with an increase in the
pH from 1 to 10; however, for CT-GMH, percentage
removal increased from 97.75 to 99.5% when pH was
increased from 1 to 2, after pH2 removal decreased all the

way up to 20.48% at pH10. Higher removal percentage at
low pH is due to the presence of anions such as HCrO−

4
,CrO−

4 , and Cr2O7
-2, in an acidic environment. Hence, with

lower initial pH of adsorbate solution, increased Cr(VI)
removal occurred [31]. However, at higher pH, removal
(%) decreases because of upsurge in the hydroxyl ion con-
centration on the adsorbent surface which builds up a repul-
sive force between the anions and the negatively charged
surface [32].

3.2.3. Impact of Adsorbent Dose. A decisive parameter for
analyzing the adsorption process is the dose of the adsor-
bent. The impact of dose of adsorbent on adsorption process
is presented in Figure 5(c). Results showed that removal (%)
of Cr(VI) improved with upsurge in the dose of adsorbent
varying from 2 to 10 g/L. With an increase in adsorbent
dose, the number of fresh and bare active sites of adsorbent
for Cr(VI) increased, resulting in upsurge in removal (%)
[33, 34]. As the adsorbent dose increases, the uptake capacity
reflected the contrasting nature. For both adsorbents (TT-
GMH and CT-GMH), the uptake capacity decreases with
increase in dose from 2 to 10 g/L due to existence of unad-
sorbed active sites.

3.2.4. Impact of Initial Cr(VI) Concentration. Figure 5(d)
depicts the impact of Cr(VI) concentration on the removal
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WD = 11.0 mm

Signal A = SE1
Mag = 500 X

Date: 23 May 2017
(CIFC) IIT-BHU

20 𝜇m

(g)

Cr(VI)

1 2 3 4 5 6 7 8 9 10
Full scale 117 cts cursor: 0.000 KeV

Spectrum 2

(h)

Figure 2: SEM-EDX analysis of (a, b) TT-GMH before adsorption, (c, d) TT-GMH after adsorption, (e, f) CT-GMH before adsorption, and
(g, h) CT-GMH after adsorption.

Table 1: Chemical composition of TT-GMH and CT-GMH before
and after adsorption of Cr(VI).

Elements
(wt%)

TT-GMH TT-GMH CT-GMH CT-GMH
Before

adsorption
After

adsorption
Before

adsorption
After

adsorption

C 56.65 64.08 65.09 57.98

O 43.35 35.87 34.91 41.63

Cr 0.00 0.05 0.00 0.39
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(%) of adsorbents, TT-GMH and CT-GMH. The concentra-
tion of the solution provides the driving force for Cr(VI)
ions to mitigate the mass transfer limitations among the
adsorbate and adsorbent phase [35]. Moreover, high concen-
trations of Cr(VI) solution facilitate the accumulation of
adsorbate particles at adsorbent surface and occupy more
adsorption site during the adsorption process. Meanwhile,
it was perceived that uptake capacity decreased with upsurge
in concentration from 5 to 200mg/L. This appears due to the
increase in the ratio of Cr(VI) ion to adsorbent, since the
higher ratio of Cr(VI) ion to adsorbent can saturate high-
energy active sites and initiate the adsorption at lower
energy sites of adsorbent causing decrease in uptake capacity
[36, 37].

3.2.5. Impact of Temperature. Temperature of the medium
imparts critical impact on the adsorption process. The tem-
perature during the adsorption using TT-GMH and CT-
GMH as adsorbents was varied from 25 to 40°C, and results
are depicted in Figure 5(e). The maximum adsorption of
Cr(VI) which was 99.56% using TT-GMH and 99.82% using
CT-GMH at 40°C was obtained. With the increase in tem-
perature, the removal (%) increased for both the adsorbents
(TT-GMH and CT-GMH). With the rise in temperature,
there might be rupture of chemical bonds associated with
adsorbent leading to enhanced adsorption because of more
numbers of active adsorption sites. Additionally, with the
increase in temperature, the uptake capacity also increased
due to increase in collision frequency among adsorbent
and adsorbate [38].

3.2.6. Impact of RPM. In an adsorption study, it is crucial to
study the impact of shaking speed since it is an energy-
intensive process and affects the adsorption capacity. The
shaking speed was varied from 90 to 180RPM keeping the
rest of the parameters at optimum condition. The impact
of shaking speed of removal of Cr(VI) is presented in
Figure 5(f). It can be observed that with an increase in shak-
ing speed, the % removal of Cr(VI) increases up to 150RPM
thereafter that it starts decreasing for both the adsorbents
(TT-GMH and CT-GMH). The decrease in removal % after

150RPM might be due to extra energy possessed by the
adsorbent resulting in cleavage of bonds formed between
adsorbent molecules and Cr(VI) ions [39]. These results
are in line with the results obtained by Gupta et al. [40].

3.3. Adsorption Kinetics. The adsorption kinetics examines
the uptake rate of solute on the adsorbent surface during
adsorption. This uptake rate decides the retention time of
adsorbate at the solid-liquid interface and thus determines
the rate-controlling mechanism. To evaluate the adsorption
kinetics of Cr(VI) ions, the pseudo-first-order (Eq. S1)
(Table S2 supplementary material), pseudo-second-order
(Eq. S2), and Elovich models (Eq. S3) were tested. The
results obtained for adsorption were fitted to Eqs. (S1),
(S2), and (S3) and the kinetic results are shown in
Figure 6. The calculated parameters for kinetics are
tabulated in Table 2. The R2 for quasi-second-order model
for TT-GMH and CT-GMH was noted to be 0.9868 and
0.968, respectively, which was higher than other tested
models for both the adsorbents. Additionally, the error
function (χ) was minimal for the quasi-second-order
model, which validated that the model was best fitted with
experimental data. Also, the experimental uptake capacity
and uptake capacity (qe) obtained by the quasi-second-
order model were closest. Thus, based on the value of
correlation coefficient (R2) and the vicinity of uptake
capacity, the quasi-second-order kinetic model was best
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supported to the experimental data for both TT-GMH and
CT-GMH adsorbents [41].

3.4. Adsorption Isotherm. Adsorption isotherms were studied
to understand the phenomenon of adsorption. At fixed tem-
perature, adsorption isotherms represent the equilibrium
relation between the amount adsorbed per unit mass of
adsorbent and the concentration of adsorbate. The experi-
mental results were examined by three equilibrium iso-
therms such as Langmuir isotherm, Freundlich isotherm,
and Sips isotherm to assess the most suitable equilibrium
model for Cr(VI) adsorption onto great millet husk. The
nonlinear equations of isotherms are given in supplementary
material (Table S3). The results are shown in Figure 7(a) for
TT-GMH and Figure 7(b) for CT-GMH. The parameters
calculated for isotherms are presented in Table 3.

Langmuir isotherm is one of the simplest models of
physical adsorption that is based on the assumption that
only one molecule of adsorbate adsorbed at distinct active
sites of the adsorbent and the adsorbed molecules are free
from interaction among them [41]. Freundlich isotherm

shows a nonlinear function between the amount adsorbed
at equilibrium and some power of concentration of the sol-
ute. The Sips isotherm is derived as a combination and based
on limiting behavior of both Langmuir and Freundlich iso-
therms [41–43]. The correlation coefficient (R2) for Lang-
muir, Freundlich, and Sips model for TT-GMH was noted
to be 0.9616, 0.8958, and 0.9902, respectively. And, for CT-
GMH, the value of correlation coefficient was noted to be
0.9388, 0.9100, and 0.9883 for Langmuir, Freundlich, and
Sips isotherms, respectively. Thus, based on the correlation
coefficient (R2) and low error function (χ) values, the Sips
model was found to be followed during adsorption of both
TT-GMH and CT-GMH. The maximum uptake capacity
based on Sips isotherm for TT-GMH and CT-GMH at tem-
perature at 303K was found to be 16.00mg/g and 22.21mg/
g, respectively, for concentration of Cr(VI) in the range of 5-
200mg/L and at a fixed dose of adsorbents (4 g/L).

3.5. Thermodynamic Parameters. Thermodynamic studies
help us to determine the nature of adsorption of Cr(VI) onto
TT-GMH and CT-GMH. For the adsorption process, the
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Figure 6: Nonlinear kinetic modeling for both the adsorbents.

Table 2: Kinetic parameters for adsorption of Cr(VI) onto TT-GMH and CT-GMH.

Parameters
Pseudo-first-order model Pseudo-second-order model Elovich model

TT-GMH CT-GMH TT-GMH CT-GMH TT-GMH CT-GMH

qexp 6.580 6.418 6.580 6.418 6.580 6.418

k1 0.038 0.068

qe 5.947 6.064 6.740 6.539

k2 0.008 0.017

α 1.078 4.419

β 0.804 1.045

R2 0.9391 0.8706 0.9868 0.9688 0.9893 0.9516

χ 0.11 0.06 0.02 0.01 0.29 0.33

χ = jqe,exp − qe,thej/qe,the, where qe,exp and qe,the are the equilibrium and theoretical adsorption capacity of adsorbents according the model, respectively [46].
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change in standard free energy (ΔG), enthalpy (ΔH), and
entropy (ΔS) was calculated by using Eqs. (S7)-(S10)
mentioned in Table S4 (supplementary material). The
negative estimation of ΔG listed in Table 4 indicates the
spontaneous adsorption of Cr(VI) onto the adsorbent and
thermodynamic feasibility of the adsorption process [44]. A
positive value of ΔH indicates that the process is
endothermic in nature. Further, a positive value of ΔS refers
to the increased randomness at the adsorbent-adsorbate
interface during the adsorption of the Cr(VI) on both TT-
GMH and CT-GMH [20].

3.6. Mass Transfer Study. The equations of three different
mass transfer models are shown in supplementary data
(Table S5). The Weber and Morris model was generally
known as the intraparticle diffusion model and normally
used to understand the mechanism for mass transfer
controlling steps involved in the adsorption of bulk Cr(VI)

liquid to solid adsorbent (TT-GMH and CT-GMH)
material (Prajapati & Mondal, 2019). The nonlinear equation
of the Weber and Morris model can be represented by Eq.
(S11) (Supplementary material). The intraparticle diffusion
constants (K id) and intercept (C) were calculated by plotting
a graph between qt and t0:5; and if the plot was linear and
passed through the origin of the axis (0, 0), then the rate-
controlling step was intraparticle diffusion. Otherwise, if the
plot was linear but did not pass through the origin, the
adsorption process involved some additional rate-control
steps. It is clear from Figure 8(a) that the multilinearity plot
did not pass through the origin and was divided into two
sections for both TT-GMH and CT-GMH adsorbents,
which confirmed that two or more controlling steps were
involved in the mass transfer mechanism of Cr(VI) from
bulk to solid [45], such as boundary layer diffusion and
pore diffusion. The first section in the Weber-Morris plot
described the film diffusion/pore diffusion, where Cr(VI)

Table 3: Isotherm parameters for adsorption of Cr(VI) onto TT-GMH and CT-GMH.

Parameters
Langmuir isotherm Freundlich isotherm Sips isotherm

TT-GMH CT-GMH TT-GMH CT-GMH TT-GMH CT-GMH

qm (mg/g) 14.33 19.418 16.001 22.212

KL (L/mg) 1.918 1.396

K f 7.462 9.903

N 6.196 5.847

Ks 1.034 0.9619

ms 0.5648 0.5276

R2 0.9616 0.9388 0.8958 0.9100 0.9902 0.9883

χ 1.03 4.89 1.32 3.38 0.81 0.76
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Figure 7: Adsorption isotherms for (a) TT-GMH and (b) CT-GMH.
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Figure 8: Mass transfer studies for adsorbents TT-GMH and CT-GMH: (a) Weber and Morris model, (b) Bangham and Burt model, and (c)
layer/film diffusion model.

Table 4: Thermodynamic parameters at different temperatures for adsorption of Cr(VI) on TT-GMH and CT-GMH.

Adsorbent Thermodynamic parameters
Temperature

298 303 308 313

TT-GMH

ΔG0 (kJ/mol) −11.03 −11.78 −12.76 −14.16
ΔH0 (kJ/mol) 50.90

ΔS0 (kJ/mol·K) 207.31

CT-GMH

ΔG0 (kJ/mol) −13.14 −13.75 −14.46 −16.33
ΔH0 (kJ/mol) 47.87

ΔS0 (kJ/mol·K) 203.80
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ions were migrated from the solution to the outer solid
surface of the both adsorbents (TT-GMH and CT-GMH).
In the second section, the adsorption process attains
equilibrium in the case of both adsorbents. Table 5 shows
the values of the overall and sectional intraparticle rate
constant, boundary layer thickness, and R2 for both
adsorbents. The boundary layer thickness (C) values are
higher for CT-GMH adsorbent (Table 5), which confirmed
that the boundary-layer diffusion mechanism was
encouraged in CT-GMH adsorbent for adsorption of Cr(VI).

If pore diffusion phenomena were involved during the
adsorption process, then the Bangham and Burt model
was employed to determine the rate-determining step [41].
The equation of the Bangham model is shown by Eq.
(S12). Figure 8(b) shows the linear plots of Bangham’s
model for the TT-GMH and CT-GMH adsorbent. Table 5
shows the value of Bangham’s constants and R2 for TT-
GMH and CT-GMH adsorbents. According to the R2

values, Bangham’s model was not solely a rate-governing
stage for Cr(VI) adsorption onto TT-GMH and CT-GMH
adsorbents; therefore, both surface and pore diffusion may
control it. Additionally, the R2 value for CT-GMH is much
higher than the TT-GMH adsorbent that indicates CT-
GMH shows more pore diffusion rate than TT-GMH due
to the large number of pores on the surface of CT-GMH
due to acid treatment.

The two-section curve of the Weber–Morris model indi-
cated that liquid film/layer diffusion could have been the
major factor for the adsorption of Cr(VI) by TT-GMH and
CT-GMH adsorbents in the present study. Therefore, the
film/layer diffusion model was employed to equilibrium time
data for both adsorbents. Eq. (S13) denoted the layer film
diffusion model. According to the layer diffusion mass trans-

fer model, if the plot between ln ð1 − f Þ and t was linear and
passes through the origin (0, 0) axis, then liquid film diffu-
sion was the only rate-controlling step in the adsorption of
Cr(VI) by TT-GMH and CT-GMH adsorbents.
Figure 8(c) and Table 5 show the linear fitted plot and esti-
mated values of layer diffusion constants, respectively, for
layer film diffusion. The liquid film diffusion plot for Cr(VI)
adsorption by TT-GMH and CT-GMH adsorbents gave the
linear plot for both adsorbents with high R2 values com-
pared to Weber–Morris and Bangham’s model with nega-
tive diffusion constant and intercept values. This outcome
confirmed that liquid film diffusion was a dominant factor
for the rate-controlling step in the mass transfer of Cr(VI)
into TT-GMH and CT-GMH adsorbents. According to R2

(Table 5) values from three mass transfer models, the order
of rate-controlling models was liquid film diffusionmodel
> Bangham’smodel > intraparticle diffusionmodel.

3.7. Possible Mechanism of Cr(VI) Adsorption onto TT-GMH
and CT-GMH. The possible mechanism of Cr(VI) removal
using TT-GMH and CT-GMH at pH lower pHpzc is shown
in Figure 9. The initial adsorption process might occur due
to electrostatic attraction between anionic ions of Cr(VI)
and protonated surface of TT-GMH and CT-GMH at pH
lower than pHpzc. The FTIR results confirmed the associa-
tion of C-O bonds with both the adsorbents. There can be
possibility of ion exchange and hydrogen bonding for uptake
of Cr(VI) ions on the surface of adsorbents. Moreover, intra-
particle pore diffusion also plays an important role in
adsorption process. The groups associated with adsorbents
such as O-H, C-H, and C-C can acts as electron donors
and effectively reduce Cr(VI) to Cr(III) (Li et al., 2017). At
low pH, chromium exists in the form of HCrO−

4 ,CrO2−
4 ,

Table 5: Mass transfer parameters for adsorption of Cr(VI) on TT-GMH and CT-GMH.

Mass transfer model
Adsorbents

Parameters TT-GMH CT-GMH

(1) Weber & Morris model

First stage

K id 1ð Þ (mg/g·min1/2) 0.449 0.386

C1 1.274 2.369

R2
1 0.942 0.939

K id 2ð Þ (mg/g·min1/2) 2:21 × 10−3 7:92 × 10−4

Second stage

C2 6.147 6.211

R2
2 0.928 0.964

K id Oð Þ (mg/g·min1/2) 0.331 0.247

Overall stage
CO 2.01 3.22

R2
O 0.888 0.805

(2) Bangham’s model

Ko (mL/(g/L)) -1.359 -1.145

α 0.709 0.679

R2 0.962 0.971

(3) Liquid film diffusion model

KFD -0.0220 -0.0365

C -0.3184 -0.3257

R2 0.983 0.975

12 Adsorption Science & Technology



and Cr2O7
-2. The reduction of Cr(VI) to Cr(III) can occur

due to following reactions [18, 45]:

HCrO−
4 + 7H+ + 3e− ⟶ Cr3+ + 4H2O

CrO2−
4 + 8H+ ⟶ Cr3+ + 4H2O

Cr 2O2−
7 + 14H+ + 6e−2⟶ Cr3+ + 7H2O

ð3Þ

The released Cr(III) ions are present in the solution.
The adsorption of Cr(VI) was also confirmed by EDX
analysis where chromium was detected on the surface of
adsorbent (TT-GMH and CT-GMH) after adsorption.
The adsorption in the case of CT-GMH is also supported
by higher functionality of adsorbent due to chemical
treatment.
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3.8. Desorption Study. A desorption study for adsorbent is
very crucial for reusability and ultimate disposal of used
adsorbent. The desorption and readsorption study for Cr(VI)
was performed using 0.1M NaOH followed by 0.1M HCl
solution. The results are shown in Figure 10. It can be
observed that TT-GMH and CT-GMH gives 69.45% and
74.48% removal, respectively, up to six cycles. In addition,
desorption for TT-GMH and CT-GMH was observed to be
65.48% and 71.68%, respectively, up to six cycles.

3.9. Comparison of Adsorption Capacities. Further adsorp-
tion capacities of different adsorbents reported in literature
which are compared with the two adsorbents prepared from
great millet husk are presented in Table 5. From Table 6,
adsorption capacities of the present study are comparable
with some of the values reported in literature. The equilib-
rium uptake of different adsorbents depends upon its char-
acteristics. However, the present study was done to check
the application of great millet husk for Cr(VI) removal.

4. Conclusion

This study presents the efficacy of two adsorbents prepared
by thermally and chemically activated great millet husk for
Cr(VI) removal. The maximum removal efficiency obtained
for TT-GMH and CT-GMH was 98.84 and 99.50%, respec-
tively. The maximum adsorption capacity obtained for TT-
GMH was 16mg/g whereas for CT-GMH, it was 22.21mg/
g at an adsorbent dose of 4 g/L. The effect of pH variation
demonstrated that for both the adsorbents (TT-GMH and
CT-GMH), the adsorption process is highly pH dependent.
Results showed that chemical modification of great millet
husk is more effective than the thermal treatment. The
higher surface area, pore volume, and functionality of CT-
GMH favor the higher uptake capacity towards Cr(VI)
removal. Less equilibrium time for adsorption in the case
of CT-GMH facilitates a cost-effective process at a large
industrial scale. Comparison with uptake capacity of differ-
ent adsorbents for Cr(VI) removal, reported in literature,
showed that TT-GMH and CT-GMH of great millet husk
can be considered one of the effective adsorbents for Cr(VI)
removal. Experimental data designated the capability of TT-

GMH and CT-GMH for removal of Cr(VI) from wastewa-
ter. These adsorbents might be considered a valuable mate-
rial for cost-effectiveness in the adsorption process.
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