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As an eco-friendly material, Zn-adeninate bio-metal-organic framework (bio-MOF) was investigated as an efficient adsorbent
for both anionic and cationic dyes. The adsorption capability of the synthesized Zn-adeninate bio-MOF was confirmed by its
notable surface area of 52.62m2 g−1 and total pore volume of 0.183 cm3 g−1. The bio-MOF adsorption profiles of anionic direct
red 81 (DR-81) and cationic methylene blue (MB) dyes were investigated under different operating parameters. The optimum
dosages of Zn-adeninate bio-MOF were 0.5 g L−1 and 1 g L−1 for MB and DR-81 decolorization, respectively. The pHPZC of
Zn-adeninate bio-MOF was 7.2, and maximum monolayer adsorption capacity was 132.15mg g–1 for MB, which decreased to
82.54mg g–1 for DR-81 dye. Thermodynamic data indicated the spontaneous and endothermic nature of the decolorization
processes. Additionally, the adsorption processes were in agreement with the Langmuir and pseudo-second-order kinetic
models. The synthesized Zn-adeninate bio-MOF could be reused several times with high decolorization ability. These findings
demonstrated that the synthesized Zn bio-MOF is an effective and promising adsorbent material for the removal of both
cationic and anionic dyes from polluted water.

1. Introduction

Water accounts for approximately 70% of the Earth’s sur-
face, but only approximately 3% is freshwater. A large frac-
tion of the freshwater is locked up in glacial ice caps or at
great depths under the surface of the earth, which is difficult

to extract and hence is not used by humans. Moreover, a
high percentage of the freshwater has become highly pol-
luted, leaving only 0.4% as usable, which is insufficient for
the 7.80 billion people living on the earth [1]. The safety of
water sources is the most challenging matter related to water
sustainability that is faced by several countries worldwide.

Hindawi
Adsorption Science & Technology
Volume 2022, Article ID 6818348, 16 pages
https://doi.org/10.1155/2022/6818348

https://orcid.org/0000-0003-1640-1426
https://orcid.org/0000-0002-4561-1628
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6818348


Contamination of water with harmful materials, such as
organic dyes and heavy metal ions, is a severe problem
because of their toxic and carcinogenic nature [2].

Currently, a large number of fabricated dyes are pro-
duced annually around the globe, and approximately 10%
of these are discharged into the environment as wastewater
because they (50% concentration) do not strictly bind to
the fibers and can act as liquid contaminants [3]. Addition-
ally, the multifaceted aromatic structures of the synthetic
dyes make them stable and difficult to decompose [4]. The
aromatic amines created after the degradation of azo dyes,
a type of synthetic dye, are highly toxic [5]. Moreover,
approximately 40% of the dyes contain organically bound
chlorine, which is a known carcinogen [6]. Further, the dis-
charge of dye-polluted liquids into streams and rivers lowers
dissolved oxygen and enables anaerobic media, which can
destroy aquatic organisms [4].

Direct dyes are characterized by their affinity for
bleached and unbleached chemical pulps and are primarily
used in the pulp and textile industries. They usually contain
sulfonic acid groups and at least one azo group that imparts
water solubility to the dyes. Direct red-81 dye (DR-81) is one
of the most famous anionic azo dyes used in industrial appli-
cations (Figure 1(a)) [7]. By contrast, methylene blue (3,7-
bis(dimethylamino)-phenothiazin-5-ium chloride) (MB) or
basic blue-9 is a univalent cationic dye with the molecular
formula of C16H18N3ClS, as shown in Figure 1(b), and is uti-
lized for biological staining as well as coloring hair, papers,
wool, and cotton [8]. However, the accumulation of MB in
water has undesirable health effect, including eye burns,
breathing problems, diarrhea, and nausea [9].

Accordingly, researchers have investigated various tech-
niques for wastewater treatment, such as advanced oxidation
processes [10], electrocoagulation, coagulation/flocculation
[11], adsorption [12–14], activated sludge processes [15],
filtration [16], ion exchange [17], photodegradation [18],
membrane bioreactors [19], bed biofilm reactors [20], and
constructed wetlands (CW) [21]. Among these techniques,
adsorption is a very efficient removal technique because of
its ease of operation, high removal efficiency, reusability of
the adsorbents, and cost-effectiveness. Adsorption involves
transition of solids from the solution to the adsorbent sur-
face [22]. Several adsorbents, such as carbon-based nanoad-
sorbents, polymer-based adsorbents, biosorbents, transition
metal-based oxides, and metal-organic frameworks (MOFs),
have been employed to remove dyes from wastewater [1,
23–25]. Recent studies have found that MOFs are powerful
adsorbents compared to other materials owing to their high
surface areas and porous structures [1, 26].

MOFs are a category of hybrid materials that contain
metal ion-based matrices and organic ligands that attach
the vertices to form two- or three-dimensional periodic
structures [1]. The appropriate choice of organic ligands
and vertices results in the synthesis of MOFs with different
pore sizes, topologies, and geometries. Several techniques,
such as defect engineering, modulation of noncovalent inter-
actions, and functionalization of organic ligands [26], have
been developed to prepare porous frameworks for adsorbing
organic dyes with high selectivity. Significant advancements

have been made in the design of water-stable MOFs. MOFs
can be soaked in water for extended periods at various pH
values without changing their structures [27]. Consequently,
MOFs are considered promising materials for wastewater
remediation owing to their impressive properties and spe-
cific interactions with the pollutants, in addition to their cat-
alytic activities against specific organic pollutants [28].

In recent years, bio-MOFs have attracted significant
interest as green sustainable frameworks. Derived biomole-
cules that are usually readily biodegradable and nontoxic
are combined to synthesize bio-MOFs [1, 29]. Biomolecules,
such as polysaccharides, amino acids, nucleobases, and pep-
tides, are combined with metal ions to synthesize bio-MOFs.
Salamat et al. studied the combination of a polysaccharide
with metal ions for MOF crystallization under biocompati-
ble conditions. The hydroxyl groups present on the polysac-
charide molecules were found to assist in the coordination
interactions with the metal ions. Hence, functional polysac-
charides trigger the formation of MOFs by controlling the
morphological structure and particle size of the prepared
MOFs [30]. Furthermore, the integration of the functional-
ized biopolymers with MOF materials can improve the bio-
compatibility, adsorption, and flexibility of the composite
materials, which can extend their application in biocatalysis
and biological sciences [31]. Zn-based bio-MOFs have been
used for the wastewater remediation because of their high
porosity, which simplifies the decontamination process of
pollutants [1]. The existence of tunable chemical functions,
such as −NH2 groups, result in excellent removal capacities
of the negative and positive dyes [32]. In this study, an
eco-friendly reusable Zn-adeninate bio-MOF was synthe-
sized and investigated as an effective adsorbent material for
the anionic DR-81 and cationic MB dyes from polluted
water.

2. Materials and Methods

2.1. Materials. Adenine and 4,4′-biphenyl dicarboxylic acid
were purchased from Alfa Aesar and Acros Organics,
respectively. Zinc acetate dihydrate and dimethylformamide
(DMF, HPLC) were obtained from Fisher Scientific. DR-81
(MW= 675:60gmol−1) and MB (MW= 319:85gmol−1) were
procured from Sigma-Aldrich. The chemicals were used as
received.

2.2. Synthesis of Zn-Adeninate Bio-MOF. In a 25mL screw-
capped tube, 0.03378 g of adenine was dispersed in 5mL of
DMF. The dispersed adenine powder was sonicated at 70°C
for 6h in an isothermal sonicator to obtain a well-dispersed
solution of the organic ligand. In another 25mL screw-
capped tube, 0.1097g of zinc acetate dihydrate was dissolved
in 10mL of DMF. Additionally, 0.12111g of 4,4′-biphenyl
dicarboxylic acid was dispersed in 6mL of DMF, and all the
tubes were sonicated in an isothermal sonicator for 6h. Zinc
acetate dihydrate solution was added to the dispersed adenine
solution, and the dispersed 4,4′-biphenyl dicarboxylic acid
solution was added to the mixture. Subsequently, 4mL of
DMF, 2mL of methanol, and 0.5mL of nanopure water were
added to the mixture. Finally, the reaction mixture was heated
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at 85°C for 24h. After cooling to room temperature (23°C), the
formed white precipitate was collected by centrifugation for
15min at 6000 rpm, washed three times with 3mL of DMF,
and subsequently dried in an oven at 50°C overnight.

2.3. Characterization of the Synthesized Zn Bio-MOF. The
functional groups of the synthesized Zn-adeninate bio-
MOF were determined by analyzing its infrared absorption
spectrum obtained using a Thermo Scientific Nicolet
(USA). X-ray photoelectron spectroscopy (XPS, Thermo
Fisher Scientific, USA) was used to evaluate the chemical
states of the synthesized Zn-adeninate bio-MOF. To deter-
mine the crystal structure of the synthesized Zn-adeninate
bio-MOF, X-ray diffraction (XRD) pattern of the synthesized
sample was obtained by a Shimadzu XRD-6100 diffractome-
ter with Cu-Kα radiation at λ = 1:54Å. Scanning electron
microscopy (SEM, JEOL JSM-6010LV) was used to deter-
mine the morphology of the fabricated bio-MOFs. Transmis-
sion electron microscopy (TEM, JEOL JEM-2100F) was
employed to obtain high-resolution images of the fabricated
bio-MOF for investigating its bulk morphology. The pore
size and surface area of the synthesized material were deter-
mined using a Belsorp-max automated apparatus via degas-
sing of the fabricated Zn-adeninate MOF at 200°C for 6 h

before detection. The thermal stability of the fabricated bio-
MOF was investigated using a TGA-50 (Shimadzu), and the
weight loss of the material was recorded in the temperature
range of 28–800°C under nitrogen gas atmosphere. The gas
flow and material heating rates were 40mLmin–1 and
10°Cmin–1, respectively.

2.4. Decolorization of Cationic and Anionic Dyes using the
Synthesized Bio-MOF. The characteristic adsorption affinity
of the prepared Zn-adeninate bio-MOF was investigated
for different pollutant dyes, including cationic and anionic
dyes, using a batch technique. Subsequently, 50mg of the
synthesized Zn-adeninate bio-MOF was shaken at 23°C with
50mL of the dye solution at different initial concentrations.
The influence of adsorption parameters, such as pH (1–11),
contact time (0–180min), initial dye concentration (5–
100mgL–1), material dosage (0.1–2 gL–1), and reaction tem-
perature (23–85°C), were investigated. The adsorption
experiments were performed in triplicate to confirm the
results, and the mean values were used for the data analysis.
After the adsorption experiment, the supernatant was sepa-
rated from the adsorbent material by centrifugation and
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Figure 2: FTIR spectrum of the prepared Zn-adeninate bio-MOF.
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Figure 3: XRD pattern of the synthesized Zn-adeninate bio-MOF.
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Figure 1: Structures of (a) direct red-81 and (b) methylene blue.
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the absorbance of the supernatant was determined using a
colorimetric method with a UV-visible spectrophotometer
at 665 and 465 nm for MB and DR-81, respectively. The

decolorization percentage of the dye by the synthesized
Zn-adeninate bio-MOF was calculated using the following
equation [33]:
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Figure 4: XPS spectra of the fabricated Zn-adeninate bio-MOF; (a) full spectrum, (b) C 1s spectrum, (c) N 1s spectrum, (d) O 1s spectrum,
and (e) Zn 2p spectrum.
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Decolorization% =
Co − Ce
Co

� �
× 100, ð1Þ

where Ce and Co refer to the equilibrium and initial pol-
lutant concentrations (mgL–1). The adsorption capacity
(mg g–1) was calculated using the following equation [13]:

qe =
V Co – Ceð Þ

m
, ð2Þ

where V denotes the solution volume (L), qe denotes the
adsorption capacity of the pollutant (mg g–1), and m denotes
the mass of the fabricated Zn-adeninate bio-MOF (g).

The point of zero charge of the synthesized Zn-adeninate
bio-MOF was determined by mixing 0.1 g of the adsorbent
material with 25mL of 0.01 molar NaCl. The pH of the solu-
tion was adjusted to 1–12 using 0.01M NaOH and/or 0.01M
HCl. Equilibration was achieved by shaking the solution in a
thermostatic bath at 25°C for 24 h. The powdered material
was separated, and the final pH of the supernatant was
determined. The pH of the final solution was plotted against
the initial pH, and the pH value at which the curves inter-

sected (pH ðfinalÞ = pH ðinitialÞ) was the pHpzc of the fabri-
cated Zn-adeninate bio-MOF [12].

2.5. Thermodynamics, Equilibrium, and Kinetics of the Bio-
MOF Adsorption Behavior. The nature of the decolorization
processes by the synthesized Zn-adeninate bio-MOF was
evaluated by determining the thermodynamic parameters.
The adsorption equilibrium was analyzed using the Lang-
muir, Freundlich, and Temkin isothermal models. Further-
more, the kinetics of the dye removal processes by the
synthesized material were tested by applying the pseudo-
first-order, pseudo-second-order, Elovich, and intraparticle
kinetic models.

2.6. Regeneration of the Prepared Zn Bio-MOF. One gram of
the used Zn-adeninate bio-MOF was recovered and washed
three times with distilled water and 50mL of methanol at
23°C, agitated at 150 rpm for 10min, and dried at 150°C
overnight for use in the subsequent adsorption experi-
ments. Furthermore, the readsorption processes were per-
formed at the following optimized removal conditions:
contact time = 10min for MB and 30min for DR-81, pH =
7, bio-MOF dosage = 0:5 g L–1 for MB and 1 g L–1 for DR-
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Figure 5: Morphological structures of the Zn-adeninate bio-MOF: (a) SEM and (b) TEM, HRTEM, fringe lattices, and SAED.
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81, initial dye concentration = 10ppm, agitation speed = 300
rpm, and solution temperature = 23°C.

3. Results and Discussion

3.1. Characterization of the Fabricated Zn-Adeninate Bio-
MOF. The FT-IR spectrum of the prepared Zn-adeninate
bio-MOF exhibited various characteristic peaks of both the
organic framework ligands and metal. The C–O stretching
peak of the carboxylic unit in the adeninate group was
observed at 1600 cm-1, as shown in Figure 2. The peak at
1373 cm-1 accounts for the C–C stretching; additionally,
most bands in the range of 3000–3800 cm−1 were assigned
to the OH unit of carboxylic acid [34]. The stretching fre-
quencies of the N–H group of adenine are located in the
range of 3117–3338 cm−1 [35]. The peaks observed in the
wavenumber range of 420–1000 cm−1 are characteristic of
the Zn–O bonds, confirming the presence of metal in the
synthesized bio-MOF [36]. Therefore, the FT-IR spectrum
contains the characteristic peaks of the synthesized Zn-
adeninate bio-MOF.

The crystalline structure of the prepared Zn-adeninate
bio-MOF was determined using XRD, as shown in
Figure 3. The XRD pattern contains distinct Zn-adeninate
bio-MOF peaks at 6.5°, 13.6°, and 21.8°, which can be attrib-
uted to the (111), (222), and (440) planes, respectively. These
peaks are characteristic of the crystalline structure of bio-
MOF and are completely different from the XRD patterns
of ZnO [12, 37].

The chemical structure of the synthesized Zn-adeninate
bio-MOF was investigated using XPS (Figure 4). The four
peaks located at 284.2, 400, 531.6, and 1022.3 eV were
assigned to C 1s, N 1s, O 1s, and Zn 2p, respectively. The C
1s spectra contained three peaks at binding energies (BE) of

284.2, 286.3, and 288.2 eV, which were related to the C=C,
C=O, and COO−/COOH functional groups, respectively
[35]. The N 1s peak in the XPS spectrum of the synthesized
Zn-adeninate bio-MOF indicated the presence of −NH2
and −NH2/NH3

+ units [38]. Moreover, the N 1s peak charac-
teristic of the −NH2 species appeared at 399.3 eV, while the
peaks corresponding to the H-bonded and/or quaternary
ammonium structures were present at approximately
400 eV [1]. The O 1s spectrum contained the characteristic
peak of the bridging hydroxyl (μ3-OH) group at 533 eV,
while the Zn carboxylate and (μ3-O) in Zn–O peaks appeared
at 531.6 eV and 531.4 eV, respectively [39]. The presence of
Zn was confirmed by the appearance of Zn 2p peaks at
1022.3 and 1045.5 eV [35].

The morphology of the Zn-adeninate bio-MOF was ana-
lyzed using SEM, HRTEM, and SAED, as shown in Figure 5.
The presence of large crystals in the SEM image was attrib-
uted to the agglomeration of the particles, which was proved
via TEM. The SEM and TEM images confirmed the presence
of uniform morphology with small nanoparticles in the syn-
thesized Zn-adeninate bio-MOF sample, which was different
from the extensive size distribution at the microscale
observed in the previously prepared bio-MOFs. The reduc-
tion in the particle size of the synthesized sample can be
attributed to the variations in the synthesis conditions, such
as the long stirring time that results in the formation of
smaller nanoparticles with a higher yield compared to the
procedures previously described in the literature [40]. More-
over, the circular pattern observed in the SAED image
revealed the homogeneous polycrystalline nature of the syn-
thesized Zn-adeninate bio-MOF, which is in agreement with
the XRD data.

The surface properties of the synthesized Zn-adeninate
bio-MOF before and after the adsorption of different dyes
were determined using the Brunauer-Emmett-Teller (BET)
method and N2 isotherms, as shown in Figure 6. The iso-
therms before and after adsorption were type III with rela-
tively similar shapes, exhibiting an indistinct hysteresis loop
related to N2 condensation in the mesopores [41]. The spe-
cific surface area, mean pore diameter, and total pore volume
of the prepared Zn-adeninate bio-MOF were approximately
52.62m2 g−1, 14.454 nm, and 0.183 cm3 g−1, respectively.
The large pore size and surface area of Zn-adeninate bio-
MOF are appropriate for the utilization of the synthesized
bio-MOF as an adsorbent for water pollutants [1]. After the
adsorption process, the BET surface area of Zn-adeninate
bio-MOF decreased to 34.06m2 g−1 and 32.59m2 g−1 for
MB and DR-81, respectively. This was expected because of
the agglomeration and blockage of pores in Zn-adeninate
bio-MOF after the adsorption of MB and DR-81 ions [42].

The thermal profile of the synthesized Zn-adeninate bio-
MOF was obtained in a nitrogen gas atmosphere to test its
thermal stability. Multiple degradation stages are present in
the thermogram of the synthesized bio-MOF, as shown in
Figure 7. The first weight loss of approximately 17.5%
occurred at 298°C, which can be assigned to the loss of gases
and water molecules that penetrated the pores of bio-MOF
[1, 33]. The second weight loss of stage is approximately
59% occurred in the temperature range of 298–510°C, which
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is related to the breakdown of the organic framework of the
bio-MOF. These results demonstrated the excellent thermal
stability of the prepared Zn-adeninate bio-MOF.

3.2. Assessment of the Synthesized Zn-Adeninate Bio-MOF
for Cationic and Anionic Decolorization from Wastewater.
The performance of the prepared Zn-adeninate bio-MOF
was investigated for the decolorization of MB and DR-81
from the polluted synthetic solutions at room temperature
via a batch technique.

3.2.1. Influence of Contact Time on the Decolorization of
Cationic and Anionic Dyes. The effect of the contact time

on the adsorption capacity of the synthesized Zn-adeninate
bio-MOF for MB and DR-81 was evaluated at different time
intervals of up to 180min, as shown in Figure 8. The adsorp-
tion capacities increased with time until the equilibrium
state was reached. The improvement in the adsorption
capacities for the cationic and anionic dyes in the initial
stage can be attributed to the functional groups that can bind
with the target dyes and large surface area of the Zn-
adeninate bio-MOF [1, 12]. The optimum contact time at
neutral pH was 10min for MB and 30min for DR-81 with
adsorption capacities of 9.88 and 8.41mg g–1 for MB and
DR-81, respectively. After equilibrium was achieved, the
active sites of the prepared adsorbent became saturated with
MB and DR-81, limiting further removal [13]. These results
demonstrated the high capacity of the synthesized Zn-
adeninate bio-MOF to decolorize both anionic and cationic
dyes in short contact times.

3.2.2. Influence of Initial pH on the Decolorization of
Cationic and Anionic Dyes. The pH plays a significant role
in the dye decolorization from wastewater. The pH directly
affects the surface charge of the adsorbent and ionization
degree of the pollutants [12, 43]. The pHPZC of Zn-adeninate
bio-MOF was 7.2, as shown in Figure 9(a). This illustrates that
the synthesized Zn-adeninate bio-MOF is positively charged
till pH = 7:2 and negatively charged beyond this point [12].
The effect of pH on the decolorization process was studied at
pH values ranging from 1 to 11. As shown in Figure 9(b),
the acidic media were a promising candidate for decolorizing
anionic DR-81 using Zn-adeninate bio-MOF. High decolori-
zation values were recorded for the removal of DR-81 up to
pH = 7, with an adsorption capacity of 8.41mgg–1, which then
decreased to 3.13mgg–1 at pH = 11. By contrast, basic, neu-
tral, and slightly acidic media favored MB decolorization.
The adsorption capacity for MB decolorization was
9.89mgg–1 at pH = 7. As the pH of the solution increased to
11, the adsorption capacity of bio-MOF for MB reached
10.88mgg–1. Under alkaline conditions (pH > 7), more
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negative ions are available in the solution; therefore, the elec-
trostatic attractive forces between the negatively charged
hydroxyl and carbonyl groups of the synthesized Zn-
adeninate bio-MOF and the positively charged species of the
cationic MB dye increase. Under similar conditions, repulsive
forces exist between the negatively charged Zn-adeninate bio-
MOF and anionic DR-81 [44]. Under acidic conditions
(pH < 7), more protons are formed, which increase the com-
petition with the active sites of bio-MOF, decreasing the
removal of MB and increasing the removal of DR-81 [45,
46]. However, the decolorization rate of the MB dye by bio-

MOF was limited to less than 8% when the solution pH was
increased from 7 to 11. Therefore, a solution pH of 7 was
selected as the optimum pH for removing both DR-81 and
MB dyes using the prepared Zn-adeninate bio-MOF [47].

3.2.3. Influence of the Synthesized Zn-Adeninate Bio-MOF
Dosage on the Decolorization of Cationic and Anionic Dyes.
The adsorbent dosage is an important factor that controls
the adsorbent capacity and, hence, the decolorization pro-
cess [43]. The effect of the adsorbent dosage of the synthe-
sized Zn-adeninate bio-MOF was tested after 10 and
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Figure 10: Influence of the dosage of the synthesized Zn-adeninate bio-MOF on the decolorization of (a) MB and (b) DR-81 (contact
time = 10min for MB and 30min for DR-81, pH = 7, initial dye concentration = 10 ppm, stirring speed = 300 rpm, and solution
temperature = 23°C).
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30min for MB and DR-81, respectively. The decolorization
of MB and DR-81 dyes by the synthesized Zn-adeninate
bio-MOF was enhanced by increasing the material dosages

from 0.1 g to 2 g L−1, as shown in Figure 10. Furthermore,
the decolorization capacity of the synthesized Zn-adeninate
bio-MOF toward the two different dyes decreased with the
increasing amounts of the synthesized adsorbent. The
reduced decolorization capacity toward numerous types of
dyes at high dosages of the prepared bio-MOF can be attrib-
uted to the unsaturated decolorization residual sites on the
synthesized bio-MOF [1]. By contrast, increasing the dosage
of the synthesized bio-MOF enabled the extra active sites
available for dye decolorization, which in turn increased
the removal percentage of the dyes from the wastewater.
These findings can be attributed to the high surface area of
the fabricated Zn-adeninate bio-MOF [48]. Therefore, the
optimum dosages (or the economical dosages) of the synthe-
sized Zn-adeninate bio-MOF were chosen as 0.5 and 1 gL−1

for the decolorization of MB and DR-81 dyes, respectively.

3.2.4. Influence of Initial Concentrations of the Dyes on the
Decolorization Processes. The effect of the initial dye con-
centration on the decolorization process was investigated
in the concentration range of 5 to 100 ppm at the opti-
mum contact time, pH, and material dosage for each dye
solution. Figure 11 shows that the adsorption capacity
increased as the initial dye concentration increased from
5 to 100 ppm, which agrees with the results of the previous
investigations [12, 49]. This may be attributed to the satu-
ration of the surface-active sites of the adsorbent at high
initial concentrations of the MB and DR-81 dyes. These
results indicated that the synthesized Zn-adeninate bio-
MOF possesses practical and effective ability to decolorize
the cationic and anionic dyes from the wastewater at dif-
ferent initial dye concentrations.

3.2.5. Influence of Solution Temperature on the
Decolorization of Cationic and Anionic Dyes. Figure 12
shows the influence of the solution temperature on the
decolorization of the MB and DR-81 dyes by the synthesized
Zn-adeninate bio-MOF. When the solution temperatures
were increased from 23 to 85°C, the decolorization processes
were enhanced, indicating a favorable decolorization process
at high temperatures. These results indicated that the decol-
orization processes by the fabricated Zn-adeninate bio-MOF
are endothermic [1].

3.2.6. Thermodynamic Modeling of the Decolorization
Processes. The decolorization mechanism in terms of favor-
ability, energy, and reversibility was studied and analyzed
using the decolorization thermodynamics. To determine
the thermodynamics of the decolorization process, the
changes in enthalpy (ΔH°), entropy (ΔS°), and free energy
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Table 1: Thermodynamic parameters for the decolorization of MB
and DR-81 by the synthesized Zn-adeninate bio-MOF.

Dye
ΔG°

(kJmol−1)
Ea

(kJmol−1)
ΔH°

(kJmol−1)
ΔS°

(kJmol−1)

MB −17.70 48.02 31.27 29.22

DR-81 −3.65 35.23 34.27 36.34
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(ΔG°) were determined in kilojoule per mole. The Gibbs free
energy was calculated using the following equation:

ΔG∘ = −RT ln Kc, ð3Þ

where T denotes the temperature of the solution in Kelvin,
Kc denotes the fraction adsorbed at equilibrium, Kc = Fe/
ð1 − FeÞ, Fe = ðCo − CeÞ/Co, and R represents the universal
gas constant (8.314 Jmol−1K−1).

The standard entropy and enthalpy values were calcu-
lated using the Van’t Hoff equation as

ln Kc =
ΔS°

R
−
ΔH°

RT
: ð4Þ

The Hoff plot for ln Kc versus 1000/T was a straight line
with satisfactory values of R2 for different concentrations of
MB and DR-81. The ΔS° and ΔH° values were calculated
from the intercept and slope of the plot, respectively. The
activation energy (Ea) was estimated using the following
equation [33]:

Ea = ΔH° + RT: ð5Þ

The values of the thermodynamic parameters (Ea, ΔG
°,

ΔS°, and ΔH°) for the decolorization of MB and DR-81 dyes
by the synthesized Zn-adeninate bio-MOF at 396K are listed
in Table 1. The negative value of ΔG° indicates that the
decolorization of MB and DR-81 by the synthesized bio-
MOF is thermodynamically spontaneous [14]. However,
the positive value of enthalpy indicates that the decoloriza-
tion processes were endothermic. Furthermore, enhanced
disorder at the liquid/solid interface during the decoloriza-
tion processes is reflected by the positive values of the
entropy [12, 14].

3.2.7. Equilibrium Isotherms of MB and DR-81 Decolorization.
To examine the decolorization behaviors of the MB and DR-
81 dyes by the synthesized bio-MOF, three models, namely,
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Figure 13: Adsorption isotherms for MB and DR-81 by the synthesized bio-MOF.

Table 2: Isotherm parameters of the Langmuir, Freundlich, and
Temkin models for the decolorization of MB and DR-81 by the
synthesized bio-MOF.

Isotherm parameters MB DR-81

Langmuir parameters

qm (mg g−1) 132.147 82.543

KL (Lmg−1) 0.422 0.105

RL 0.056 0.079

R2 0.993 0.990

Freundlich parameters

KF (mg g−1) 3.052 2.461

nF 4.163 1.102

R2 0.890 0.856

Temkin parameters

A (L g−1) 33.143 45.1224

B (Jmol−1) 1.949 0.937

R2 0.972 0.755
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Langmuir, Freundlich, and Temkin, were utilized. For nonlin-
ear estimation, a trial-and-error method was developed to
minimize the error distribution between the experimental
and theoretical adsorption data using the Solver add-in of
Microsoft Excel. The Langmuir nonlinearized plots exhibited
good correlation coefficients (R2 = 0:993 for MB and 0.990
for DR-81) [50].

qe =
qmKLCe
1 + KLCe

, ð6Þ

where Ce refers to the adsorbate equilibrium concentration
(mgL–1), qe denotes the adsorbed amount of MB/DR-81 at
equilibrium (mgg–1), and KL and qm denote the Langmuir
constants of the decolorization energy (Lmg–1) andmaximum

monolayer decolorization capacity (mgg–1), respectively.
Equation (7) was used to test the Freundlich model by plotting
log qe against log Ce [51].

qe = KF × Ce
1/nf , ð7Þ

where KF and nF denote the Freundlich constants related to
the capacity and intensity of decolorization, respectively.
Equation (8) was employed to verify the Temkin isotherm
model for the adsorption data of the MB and DR-81 dyes on
bio-MOF [52].

qe =
RT
b

� �
ln A × Ceð Þ, ð8Þ

Table 3: Comparison of the monolayer decolorization capacities of MB and DR-81 for different nanoadsorbents.

Pollutant Adsorbents Optimized conditions Decolorization capacity (mg g–1) References

MB

Zn-adeninate bio-MOF
Time = 10min

Dosage = 0:5 g L−1

MBconc: = 10 ppm
132.15 Present study

Activated carbon
Time = 120min
Dosage = 0:5 g L−1

MBconc: = 10 ppm
53.90 [47]

MIP-202 bio-MOF
Time = 8min

Dosage = 1:0 g L−1

MBconc: = 10 ppm
79.79 [1]

Cu-BTC MOF
Time = 20min

Dosage = 0:5 g L−1

MBconc: = 10 ppm
15.28 [54]

UiO-66 MOF
Time = 20min

Dosage = 0:1 g L−1

MBconc: = 20 ppm
13.2 [55]

Fe-BDC MOF
Time = 300min
Dosage = 2:5 g L−1

MBconc: = 5 ppm
8.65 [56]

DR-81

Zn-adeninate bio-MOF
Time = 30min

Dosage = 1:0 g L−1

DR-81 conc: = 10 ppm
82.54 Current study

Kaolinite
Time = 120min
Dosage = 4 g L−1

DR-81 conc: = 50 ppm
26.55 [57]

MIP-202 bio-MOF
Time = 12min

Dosage = 1:0 g L−1

DR-81 conc: = 50 ppm
36.07 [1]

Potato peel
Time = 50min

Dosage = 0:25 g L−1

DR-81 conc: = 50 ppm
10.40 [58]

Neem bark
Time = 50min

Dosage = 0:25 g L−1

DR-81 conc: = 50 ppm
8.40 [58]
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where B = RT/b is a constant that is related to the decoloriza-
tion heat (Jmol−1) and A is the Temkin isotherm constant
(Lg−1).

A comparison of the nonlinear fittings of the Langmuir,
Freundlich, and Temkin models is presented in Figure 13
and Table 2.

The Langmuir model was found to be the most appro-
priate for describing the dye removal processes of MB and
DR-81 by the synthesized bio-MOF because this model
showed the highest correlation coefficients. Additionally,

the values of the separation factor RL were in the range of
0 to 1, which indicated that the Langmuir model is favorable
for describing the dye removal procedures [53]. Meanwhile,
the Freundlich decolorization intensities (nF) were 4.163 and
1.102 for the decolorization of MB and DR-81, respectively,
which was higher than unity, indicating the favorable nature
of dye removal by the synthesized adsorbent [1, 53]. By
contrast, the Temkin correlation coefficients had low values,
indicating poor fitting of the equilibrium decolorization data
of MB and DR-81 with the Temkin isothermal model.

Table 4: Parameters of the kinetic models for MB and DR-81 removal by the synthesized Zn-adeninate bio-MOF.

Kinetic model Parameters MB DR-81

Pseudo-first-order model

qexp: (mg g−1) 17.992 11.835

qtheor (mg g−1) 1.842 6.328

K1 (min−1) 0.274 0.250

R2 0.531 0.463

Pseudo-second-order model

qexp: (mg g−1) 17.992 11.834

qtheor (mg g−1) 18.134 12.008

K2 (gminmg-1) 0.437 0.111

R2 0.996 0.989

Elovich kinetic model

α (mgmin g−1) 12.426 7.252

β (gmg−1) 0.0921 0.447

R2 0.800 0.679

Intraparticle diffusion kinetic model

C1 (mg g−1min−1) 19.751 10.341

ki (gmg−1) 0.022 0.362

R2 0.700 0.790
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Figure 14: Comparison of the FT-IR spectra of (a) the synthesized Zn-adeninate bio-MOF, (b) Zn-adeninate bio-MOF and MB, and (c) Zn
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Hence, the Langmuir model was found to be the most suit-
able for describing the monolayer decolorization of MB
and DR-81 by the synthesized bio-MOF surface [43].

3.2.8. Comparison of the Decolorization Capacity of MB and
DR-81 for the Synthesized Zn-Adeninate Bio-MOF with other
Adsorbents. The monolayer decolorizing capacities (qm) of
the MB and DR-81 dyes for Zn-adeninate bio-MOF were
compared with the qm values of other reported nanoadsor-
bents (Table 3). The synthesized Zn-adeninate bio-MOF
was found to have better decolorization results for MB and
DR-81 compared to those of the previously reported
nanoadsorbents.

3.2.9. Decolorization Kinetic Analysis of the MB and DR-81
Dyes. Pseudo-first-order and pseudo-second-order models
were used to understand the decolorization kinetics of MB
and DR-81 by the synthesized Zn-adeninate bio-MOF. The
two nonlinear decolorization models can be described by
Equations (9) and (10), respectively [59, 60]:

qt = qe 1 − ek1t
� �

, ð9Þ

qt =
qe

2K2t
qeK2t + 1

, ð10Þ

where qt and qe (mg g−1) denote the adsorbed amounts of
dye at time t and equilibrium, respectively, and K1
(min−1) and K2 (gmg−1min−1) define the rate constants
of the pseudo-first-order and pseudo-second-order models,
respectively. Additionally, the following nonlinear Elovich
equation was used to decolorize the different water pollut-
ants [61]:

qt =
1
β

� �
ln 1 + αβtð Þ, ð11Þ

where α denotes the initial decolorization rate (mgg–1min–1)
and β is related to the degree of surface coverage and decolor-
ization activation energy (gmg–1). The intercept and slope of
the linear plot of qt versus ln t describe β and α, respectively.
The intraparticle diffusion model was explored using the fol-
lowing equation proposed by Weber and Morris [62]:

qt = kit
1/2 + C, ð12Þ

where ki denotes the constant of the intraparticle diffusion rate
and C denotes the thickness of the border layer. The linear fit-
ting of qt versus t

1/2 when the plot passes through the origin
indicates intraparticle diffusion, in which the rate-limiting
process is the only intraparticle diffusion process. If this was
not obtained, other mechanisms along with the intraparticle
diffusion would be included.

The correlation coefficients of the four kinetic models
are listed in Table 4. The nonlinearity of qt versus time plots
show high correlation coefficient values of 0.996 and 0.989
for the MB and DR-81 dyes, respectively. The computed
qe values were in perfect agreement with the experimental
data (qe) for the pseudo-second-order kinetics. Hence, the
decolorization of MB and DR-81 by the synthesized bio-
MOF followed the pseudo-second-order kinetic model.
According to the pseudo-second-order model, the decolori-
zation processes become rapid and equilibrium times are
very short, which is similar to the experimental results.
Rapid adsorption of MB and DR-81 on Zn-adeninate bio-
MOF occurred in the first 25min, and then, it diminished
in the subsequent 3 h. The rapid adsorption can be princi-
pally associated with boundary layer diffusion or macropore
diffusion, while the reluctant decolorization is due to intra-
particle diffusion or micropore diffusion with a low R2 value
[63]. The data confirmed that MB and DR-81 decoloriza-
tion processes by the synthesized bio-MOF may be mainly
controlled by a pseudo-second-order model for the studied
pollutants [1, 14].

3.2.10. Decolorization Mechanism of MB and DR-81 by the
Synthesized Bio-MOF. The FT-IR spectra before and after
the decolorization of MB and DR-81 were compared, as
shown in Figure 14. Following MB and DR-81 adsorption,
the FT-IR spectra showed distinct changes due to the decol-
orization of the cationic and anionic dyes by the Zn-
adeninate bio-MOF. The transition in the peak at
1005 cm−1 may be due to the symmetric bending of S–O in
MB with Zn bio-MOF. Furthermore, the variation in the
characteristic peak at 1600 cm−1 may be due to the chemical
combination of C–C in Zn bio-MOF with the electrophilic
N+ groups of DR-81 and MB [1]. Furthermore, the Zn–O
peak in the lower wavenumber region shifted, indicating
the interaction between Zn–O and the positively charged
groups in the dyes [64]. The characteristic peak of the asym-
metric vibration at 3611 cm−1 shifted, indicating chemical
bonding between the –NH2 group and positively charged
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Figure 15: Reusability test of the synthesized Zn-adeninate bio-
MOF against cationic and anionic dyes.
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functional groups of the dyes [36]. These findings indicated
that the decolorization mechanism of the MB and DR-81
dyes by the synthesized Zn-adeninate bio-MOF might be
chemically controlled.

3.2.11. Recyclability Study of the Synthesized Zn-Adeninate
Bio-MOF. The regeneration of the adsorbent is significant
because it affects the cost of practical applications [1, 14].
The synthesized adsorbent was washed and reused to decol-
orize MB and DR-81 from wastewater. The decolorization-
desorption cycles were repeated five times, as shown in
Figure 15. The results indicated that the prepared Zn-
adeninate bio-MOF could be reused several times with high
decolorization performance for both MB and DR-81 [1].

4. Conclusions

In this study, a novel, efficient, environmentally benign, and
nontoxic adsorbent of porous Zn-adeninate bio-MOF was
reported for the decolorization of both cationic and anionic
dyes from wastewater. The prepared Zn-adeninate bio-MOF
was characterized using different techniques, such as XRD,
FT-IR, BET, SEM, TEM, XPS, and TGA. The synthesized
Zn-adeninate bio-MOF had a surface area of 52.62m2 g−1

and total pore volume of 0.183 cm3 g−1. The decolorization
processes of the MB and DR-81 dyes were in agreement with
the Langmuir model, which represents monolayer decolori-
zation by the prepared Zn bio-MOF. The best-fit kinetic
model for the MB and DR-81 dye decolorization was the
pseudo-second-order model. Furthermore, the maximum
decolorization capacity of the synthesized Zn-adeninate
bio-MOF against MB and DR-81 was 132.15 and
82.54mg g−1, respectively. The synthesized Zn-adeninate
bio-MOF could be reused several times with a high decolor-
ization performance. Accordingly, the prepared Zn-
adeninate bio-MOF is a promising and effective adsorbent
for MB and DR-81 from wastewater, with high stability
and good reusability for numerous cycles.
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