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This study highlights the benefits of optimizing the decolorization of bromocresol green (a colorant/pH indicator widely used in
the industry, whose degradation produces toxic byproducts) by adsorption on active carbon. A set of experiments were planned
and performed based on the design of experiments methodology for the following parameters: the colorant concentration (0.009-
0.045 g/L), the amount of adsorbent (0.5-3 g/L), and the contact time (60-240min). Modeling and optimization strategies were
employed to determine the working conditions leading to efficiency maximization. Using the response surface methodology,
the optimum values of the primary process parameters were established. In addition, a modified bacterial foraging
optimization algorithm was applied as an alternative optimizer in combination with artificial neural networks in order to
determine multiple combinations of parameters that can lead to maximum process efficiency. Different solutions were obtained
with the considered strategies, and the maximum efficiency obtained was >99%. The study emphasizes that adsorption on
active carbon is an effective method for bromocresol green decolorization in wastewater that can be further improved using
advanced optimization methods.

1. Introduction

For thousands of years, the dyes and the pigments used were
derived from natural sources. Only in the middle of the 19th

century, when the natural resources were insufficient to ful-
fill the increasing demand, did the genuine industry of syn-
thetic dyes and pigments start to grow [1–6]. Nowadays,
the production of dyes and pigments has reached millions
of tons per year [7], and almost every industry is a con-
sumer. On a global scale and in a relatively short time, such
tremendous growth generated massive amounts of air,
water, and soil pollutants [8–11].

Many manufacturing branches generate colored indus-
trial wastewaters such as dye industries, Kraft bleaching, tan-

nery, textiles, pulp and paper, food processing, cosmetics,
and pharmaceuticals [12, 13]. Consequently, over the years,
numerous physicochemical treatments and decolorization
methods have been proposed [14, 15]: coagulation and floc-
culation [16], electrocoagulation [17], adsorption [18–21],
wet oxidation [22], ozonation [23], photochemical degrada-
tion [24], biodegradation [25], and other advanced oxidation
processes [22], with each method having its own advantages
and drawbacks [26]. To be competitive, all these methods
must evolve with the technical progress and the continuous
tightening of the environmental standards and regulations
[27]. In this view, there are a series of directions that focus
on (i) finding new, more effective technologies [28, 29], (ii)
combining existing methods to increase their effectiveness
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[30–33], and (iii) optimizing existing technologies to
increase the efficiency and decrease the operation costs [34,
35].

One of the classical approaches with multiple applica-
tions in the optimization of industrial wastewater treatments
[23, 24, 36–38] is the response surface method (RSM) based
on central composite design (CCD), proposed in the ‘60s by
Box and Hunter [39]. RSM is based on a collection of statis-
tical and mathematical techniques (helpful in developing,
improving, and optimizing processes) that is widely used
to design an experiment, explain the main interaction effects
of the independent variables, and determine the optimal
conditions using a limited number of experiments [40–42].
On the other hand, artificial neural networks (ANNs),
although proposed roughly during the same period as
RSM, has recorded in the latest years a series of break-
throughs that demonstrated their extraordinary potential
to model complex systems with highly nonlinear interac-
tions. Therefore, ANNs have a large area of applicability,
being applied to many fields. Examples in the adsorption
area include (i) ultrasonic-assisted adsorption [43], (ii) dye
adsorption [44], and (iii) heavy metal biosorption [45].
However, despite their advantages and capabilities, ANNs
suffer from several drawbacks related to the model type
and hyperparameter tuning [46, 47], which depend on the
problem’s characteristics. In this context, neuroevolution
(combining ANNs with evolutionary-based algorithms) is a
strategy that can be used to overcome these problems, with
the hyperparameter optimization being performed by the
optimization strategy.

For the optimization step of this study, a population-
based algorithm represented by bacterial foraging optimiza-
tion (BFO) was used. BFO [48] is a bioinspired metaheuris-
tic that mimics the foraging behavior of E. coli. Among the
multitude of nature-inspired algorithms [49], BFO distin-
guished itself as an efficient approach. Its simplicity, ease
of use, and efficiency in solving a wide range of problems
represent the main reasons for selecting BFO from the mul-
titude of algorithms from its class [34] and applying it as an
alternative approach to RSM for optimizing the considered
process. Furthermore, it was successfully applied to various
synthetic [50, 51] and real-world problems [52].

Various types of adsorbents: conventional [53, 54], non-
conventional [55], ion-exchange [56], and biosorbents [57],
were employed in decolorization of dye-polluted wastewa-
ters [58]. Although rather costly, activated carbon is gener-
ally recognized as one of the most efficient adsorbents that
can be successfully used for various colored or noncolored
pollutants [26].

Typically, the chemicals that generate the effluent’s color
absorb light, directly impacting photosynthesis. They also
reduce visibility, making it more difficult for microorgan-
isms to eat or reproduce [59]. Bromocresol green (BCG) is
a member of the triphenylmethane (anionic) family and
has a variety of applications as a pH indicator, DNA tracer,
and tracking dye in the weaving industry (cotton, flax) [60,
61]. However, the three benzene rings’ molecular structure
makes it difficult to degrade once released into wastewater
naturally. As a result, there are numerous studies related to

its complete removal and/or decolorization using various
methods [62–66]. Among these, two strategies attract much
attention: advanced oxidation processes (AOPs) and adsorp-
tion on activated carbons (AC) or other materials such as
chitin [61] or polymers [67]. The AOPs usually involve
chemically assisted UV irradiation [68, 69] and/or heteroge-
neous photocatalysis [70, 71]. As for the active carbon-based
materials, the focus is on preparing activated carbon from
various low-value natural materials [72, 73] using pyrolysis
and, in some cases, additional chemical activation [34].
Although this method is one of the most cost-effective, the
properties of the resulting AC are highly dependent upon
the conditions under which the raw material is produced
(soil quality, precipitation, temperature, etc.).

As a result, this research focuses on commercial AC with
controlled and repeatable properties. This research is aimed
at evaluating the AC’s capacity for BCG decolorization and
underlining that process optimization using artificial
intelligence-based strategies can improve process efficacy.
In this context, the interaction among three parameters
(the BCG concentration, the amount of adsorbent, and the
contact time) and their influence on the process yield was
analyzed, modeled, and optimized using RSM, ANNs, and
a BFO-based approach. The variant of BFO used in this
work is a modified, improved version. In order to distinguish
between the two versions, the standard algorithm will be
referred to as BFO, while the modified version will be
denoted as iBFO. Graphical response surface and contour
plots were used to identify the best operating conditions.
This work’s novelty consists of applying classic (RSM) and
newer modeling and optimization methods (ANNs, iBFO)
for improving the bromocresol green decolorization using
active carbon. Moreover, to the author’s knowledge, iBFO
has never been applied to such a process.

2. Materials and Methods

2.1. Work Plan. This study is aimed at showing that even
classical and well-known processes (e.g., colorant adsorption
on active carbon) can be improved by using a combination
of (i) standard approaches for planning, modeling, and opti-
mization and (ii) artificial intelligence techniques that com-
bine ANNs with bioinspired metaheuristic optimizers.
Consequently, the knowledge about the considered process
was gathered through experimental analysis and planned
using a design of experiment (DOE) approach. Then, the
process was modeled using two approaches (RSM and
ANNs). Finally, the process optimization was performed
by two distinct strategies (RSM and iBFO). Figure 1 presents
the main workflow of data and the interconnection between
all the applied strategies.

2.2. Materials. BCG powder (analytical purity, supplied by S.
C. ChimReactiv Ltd.) and bidistilled water were used to pre-
pare the dye solutions. Irregular-shape particles of active
carbon, supplied by Romcarbon S.A., were used to perform
the experiments. Before performing the experiments, the
particles were washed several times with bidistilled water
to remove surface impurities, dried at 120°C for 24 h, and
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classified by sieving; the average diameter ranges between 2.5
and 3.15mm.

The main characteristics of the commercial active car-
bon (Table 1) were investigated by Secula et al. [74]. In addi-
tion, for this study, SEM images were registered (Figure 2).
The captured images emphasized the parallel arrangement
of the pores and their size similarity (Figure 2(b)). In addi-
tion, the micropores are perpendicularly placed on the
macropores (Figure 2(a)).

2.3. Experimental Design. In order to determine the optimal
parameters for BCG decolorization, three independent vari-
ables were considered based on the experience of our previ-
ous studies [34, 75]. Table 2 presents the considered
variables, their unit of measure, and the considered range
used in the experimental phase based on DOE.

The UV-Vis spectra and the absorbance values were
recorded using a JASCO V-550 UV-Vis spectrophotometer.
Disposable disc filters of 0.45μm were used for particle sep-
aration during solution sampling. The morphologies of the
AC particles were observed using a Vega-Tescan scanning
electron microscope.

Following the DOE procedure proposed by Box and
Hunter [39], a minimum number of relevant experiments
were statistically identified (Table 3) and further used in
the experimental analysis.

2.4. Experimental Procedure. Batch adsorption experiments
were performed using 100mL solution samples with the
required BCG concentration without additional pH adjust-
ments. The solutions were mixed with an adequate amount
of active carbon for a well-defined time, according to the
data presented in Table 3. In order to avoid settling, the
slurry was constantly stirred during all the experiments.

The AC performances were characterized by measuring
the rate of BCG decolorization by adsorption.

Since one of its typical applications is the pH indicator,
the BCG is highly sensitive to pH deviations. The pH
increase from being acidic to basic leads to a color variation
ranging from yellow to green and blue. The UV-Vis spec-
trum of BCG also varies with the pH change. BCG’s acid
and basic forms display an isosbestic point in their UV-Vis
spectrum, around 515 nm [68, 76]. Zaggout [76] and Fassi
et al. [68] show that at acidic and natural pH, the most
intense band is at around 614 nm, while at basic pH, the
most intense band is shifted to around 444nm. The pH sen-
sitivity of BCG, certified by the spectroscopic versatility, is
highlighted in various literature reports. Many authors
working with BCG reported different values of the reference
band (Table 4). Some followed the band at 440nm, while
others tracked it at 614nm.

During this study, the absorbance values at 412nm
(Figure 3(a)) were used to analyze the process course. BCG
concentration was calculated from an absorbance versus
concentration calibration curve with an R2 value of
0.99677 (Figure 3(b)). It is worth mentioning that the cali-
bration curve failed from linearity when parallel measure-
ments were done at 617 nm (results not shown).

The efficiency of BCG decolorization η (%) was calcu-
lated using the following equation:

η %½ � = BCG0 − BCGt

BCG0 , ð1Þ
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Figure 1: Workflow for the application of the different strategies used in this work.

Table 1: The specific surface areas and porous characteristics of
commercial activated carbon.

Physical properties Characteristics Value

Surface

BET surface 1403m2/g

External surface 38m2/g

Total surface 631m2/g

Volume

Mean pore size 1.62 nm

Specific microporous volume 0.48 cm3/g

Total microporous volume 0.66 cm3/g
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where BCG0 and BCGt are the BCG (g/L) concentrations at
the time t = 0 and at the time t = t.

2.5. Bacterial Foraging Optimization. BFO is an optimization
technique inspired by the foraging behavior of E. coli bacte-
ria. In order to provide solutions to a specific problem, it
simulates the evolution of a series of potential solutions
using a set of specific mechanisms that include chemotaxis,
reproduction, elimination, and dispersal (Figure 4).

All these steps are repeated until a stop criterion is
reached. For the standard BFO, this stop criterion is repre-
sented by the number of dispersal steps (Ned). In this work,
the stop criterion combines two criteria, and the algorithm
stops when one of them becomes true. These criteria are
(i) the number of dispersal steps and (ii) the number of func-
tion evaluations (FEs). The reason for this modification
relies on the fact that FEs can be relatively easily set as a stop
criterion for almost all bioinspired metaheuristics and can be
further used for comparison purposes, while the number of
internal repetitions an algorithm performs does not correctly
show the computational resources consumed versus the effi-
ciency of the solution provided.

As can be observed from Figure 3, there is a close inter-
connection between the steps of the algorithm. The most
iterated step is chemotaxis, which represents the movement

of bacteria from food-scarce areas to affluent areas through
swimming and tumbling. This is done by all bacteria (which,
for the sake of simplicity, will be further referred to as indi-
viduals, and the colony of bacteria will be referred to as pop-
ulation) several times indicated by the Nc parameter. In the
BFO algorithm, the mechanism used for food searching is
associated with the repellent-attraction biological princi-
ple [79].

In the reproduction step, the individuals are sorted based
on their fitness (a function that measures the individual’s fit-
ting to the environment). After that, the best individuals
reproduce, while the worst ones are removed. This is per-
formed Nre times, during which the population will be cen-
tered on several clusters and the overall diversity reduced.
Therefore, to simulate the migration of bacteria into a new
environment, with a probability indicated by a parameter
(ped), some individuals are randomly replaced with new ones
(the elimination-dispersal step).

In the initial BFO, ped has a fixed value; therefore, as the
population evolves, the probability of replacing good indi-
viduals is the same as replacing worse individuals. As a
result, individuals located in the vicinity of the global opti-
mum can be replaced with individuals far from the opti-
mum. Thus, potentially good solutions to the problem at
hand can be lost. In order to avoid this aspect, in this work,
ped is modified adaptively (equation (2)). This modification
represents the main idea of the iBFO variant used in this
work.

ped =

fitmin + fitavg
fitmax + fitmin

,  if the objective is fitnessminimization,

fitmax − fitavg
fitmax − fitmin

,  if the objective is fitnessmaximization,

8
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Figure 2: SEM images of the commercial AC: pore size, shape, and alignment.

Table 2: Designated variables and their variation range for BCG
decolorization with active carbon.

Independent variables Measure units
Range

Symbol
From To

BCG concentration g/L 0.009 0.045 BCG

Adsorbent amount g/L 0.5 3 AA

Contact time min 60 240 CT
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where fitmin, fitmax, and fitavg are the minimum, maximum,
and average of the fitness of all individuals in the population.

In order to determine the optimal conditions for the
considered process, two models were considered: (i) the
regression equations determined using the RSM-based
approach and (ii) ANNs. In the second case, the ANNs, on
their own, required a series of optimization to determine
their best parameters. Thus, in this work, iBFO is applied
to perform two optimization types: process and model
optimization.

Regarding process optimization, the process parameters
are evolved and then fed into the considered model to gen-
erate the necessary predictions. On the other hand, in the
case of ANN optimization, the necessary ANN parameters
are directly encoded into a vector containing real numbers
and then fed into the iBFO. This encoding is necessary
because iBFO cannot directly work with ANN structures.
Even though in neuroevolution, both topology (structure
and organization of the neurons) and training can be per-
formed by the optimizer, in this work, iBFO performs only

Table 3: Designated variables and their variation range for BCG decolorization with active carbon.

No.
Input variables

Response η (%)
Type1

BCG (g/L) AA (g/L) CT (min)
Real Coded2 Real Coded2 Real Coded2

1 O1 0.045 1 3.006 1 240 1 27.96

2 O2 0.009 1 3.004 −1 240 1 31.94

3 O3 0.045 1 3.002 1 60 −1 21.54

4 O4 0.009 1 3.002 −1 60 −1 28.95

5 O5 0.045 −1 0.506 1 240 1 13.37

6 O6 0.009 −1 0.506 −1 240 1 23.77

7 O7 0.045 −1 0.5 1 60 −1 9.23

8 O8 0.009 −1 0.501 −1 60 −1 32.21

9 S1 0.049 0 1.754 α 150 0 18.27

10 S2 0.0051 0 1.752 −α 150 0 44.60

11 S3 0.027 0 1.753 0 259.35 α 28.31

12 S4 0.027 0 1.757 0 40.65 −α 16.33

13 S5 0.027 α 3.27 0 150 0 21.23

14 S6 0.027 −α 0.23 0 150 0 12.16

15 C1 0.027 0 1.752 0 150 0 21.50

16 C2 0.027 0 1.752 0 150 0 21.59

17 C3 0.027 0 1.75 0 150 0 22.50

18 C4 0.027 0 1.754 0 150 0 24.32
1O = orthogonal design points; S = axial or star points; C = center points. 2-1 = low value, 1 = high value, 0 = center value, and −α, α = star point value.

Table 4: Literature reported BCG reference bands.

Authors Tracked band (nm) Ref.

Ghaedi et al.; this work 412 [62]; this work

Özdemir et al. 424 [63]

Salmalian et al. 430 [65]

Khan et al. 438 [73]

Bhanuprakash and Belagali; Murmu et al.; Shokrollahi et al. 442 [60, 64, 77]

Fassi et al.; Fassi et al. 444 [68, 69]

Palazzolo et al. 404 and 617 [78]

Bai et al. 613 [66]

Liu et al. 614 [61]

Chaleshtori et al. 616 [70]

Palazzolo et al. 617 [78]

Ying et al. 620 [71]

Torğut and Demirelli 623 [67]
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a topology determination. The training procedure is the
standard approach used in the Keras framework for the
ANN model implementation in combination with Adam, a
stochastic optimizer based on scaled gradient updates. The
type of model considered is sequential. The entire software
implementation (iBFO and ANNs) was performed in
Python.

3. Results and Discussions

3.1. Response Surface Method. The parameters that directly
affect the efficiency of the decolorization process are BCG,
AA, and CT, as presented in Table 2. In order to study the
combined outcome of these three factors, experiments were
performed, varying their values in carefully chosen intervals
(Table 2), following a statistically designed experimental
routine (Table 3). The experimental results were analyzed
and interpreted using the MINITAB 17.1.0 software pack-

age. The full quadratic model obtained (equation (3)) had
an R2 of 90.34% and an adjusted R2 of 79.47%.

η %½ � = 42:85 − 1741 · BCG − 0:0236 · CT + 7:04 · AA
+ 17631 · BCG2 − 0:000056 · CT2 − 2:72 · AA2

+ 1:231 · BCG · CT + 122:1 · BCG · AA + 0:0154 · CT · AA:

ð3Þ

By setting one parameter at a constant value, preferable
to the value in the middle of the designated interval of vari-
ation, three-dimensional plots (surface plots) were drawn as
presented in Figures 5(a)–5(c).

Such exposure of the parameter variation allows the
visualization of maximum and/or minimum points, which
leads to accurate identification of the optimal values, high-
lighting the impact of the selected parameters on the decol-
orization efficiency.
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Figure 3: Chemical structure of BCG: (a) UV-Vis spectra and absorbance; (b) concentration calibration curve.
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BCG = 0:02702 g/L; (c) efficiency vs. BCG (g/L) and CT (min) at AA = 1:75 g/L.

7Adsorption Science & Technology



0.015
0.030

10

20

30

0.000 60

0.045

180

120

240

40

η 
(%

)

CT (m
in)

BCG (g/L)

(a)

250

200

150

100

50

CT
 (m

in
)

0.010 0.015 0.0250.020
BCG (g/L)

0.030 0.0400.035 0.045

35

25

40

30 20

(b)

Figure 6: (a) Three-dimensional response surface displaying the effects of BCG and CT on the process efficiency. (b) Two-dimensional
contour plot showing the effects of BCG and CT on the process efficiency.

0.015
0.030

10

20

30

0.000
0

0.045

2

1

3

40

η 
(%

)

AA (g
/L)

BCG (g/L)

2

(a)

3.0

2.0

2.5

1.5

1.0

0.5

A
A

 (g
/L

)

0.010 0.015 0.0250.020
BCG (g/L)

0.030 0.0400.035 0.045

25

35

30

30

20 15

15

(b)

Figure 7: (a) Three-dimensional response surface displaying the effects of BCG and AA on the process efficiency. (b) Two-dimensional
contour plot showing the effects of BCG and AA on the process efficiency.

60 120
180

10

20

30

0240

2

1

3

40

η 
(%

)

AA (g
/L

)

CT (min)

2

(a)

3.0

2.0

2.5

1.5

1.0

0.5

A
A

 (g
/L

)

50 100 200150
CT (min)

250

25

20

20 15

25

(b)

Figure 8: (a) Three-dimensional response surface displaying the effects of CT and AA on the process efficiency. (b) Two-dimensional
contour plot showing the effects of CT and AA on the process efficiency.

8 Adsorption Science & Technology



The 3D (three-dimensional) surface plots and contour
plots were used to graphically describe decolorization effi-
ciency at different values of the main process parameters.
The interactive effect of bromocresol concentration and con-
tact time for an adsorbent concentration of 1.75 g/L is illus-
trated in Figures 6(a) and 6(b). The active carbon performs
better at lower BCG concentrations. The prolongation of
contact time after reaching the equilibrium does not have
positive outcomes towards decolorization efficiency.

The combined effect of AA and BCG after 150min CT
on the efficiency is depicted in Figures 7(a) and 7(b). It can
be observed that the percentage of adsorbed BCG is
increased with raising the adsorbent dosage especially at
lower BCG values. The growing of the adsorbent amount
besides a 2.5 g/L threshold does not improve the adsorption
yield.

Finally, the evolution of the decolorization efficiency as a
function of the contact time and the adsorbent amount is
presented in Figure 8, where the interactive effect of these
two parameters is studied at fixed values of BCG. As
expected, raising the adsorbent amount and the contact time
leads to an increase in BCG retention percentage.

According to the RSM method, the optimal values of the
considered variables are BCG = 5:135 E − 03 g/L, AA = 1:58

Table 5: Optimization results obtained with BFO and RSM for typical and extrapolation cases.

Case Sol. no. AA (g/L) CT (min) BCG (g/L) η (%)

(i) Typical (-1,1 from DOE)∗

1 1.683 81 0.010000 34.2

2 1.830 235 0.010086 34.0

3 1.632 122 0.010413 33.9

4 1.819 151 0.010711 33.8

5 1.948 216 0.011115 33.4

(ii) Extrapolation (−α, α from DOE)∗

6 1.844 197 0.005111 39.3

7 2.112 212 0.005184 39.1

8 2.018 99 0.007150 37.3

9 1.485 123 0.007219 37.1

10 1.162 79 0.007698 36.0
∗ − α, -1, 0, 1, and α are the coding levels for the values from Table 3.
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Figure 9: Evolution of the MSE in the training and validation phases for the best model obtained.

Table 6: Optimization results based on the ANN model.

Case
Sol.
no.

AA (g/
L)

CT
(min)

BCG (g/
L)

η
(%)

(i) Model limits

1 0.110 4080 0.001730 99.9

2 1.012 3862 0.001490 95.8

3 1.188 1813 0.000330 93.0

4 0.188 1737 0.000330 92.5

5 2.771 3551 0.043100 92.3

(ii) (-1,1) from
DOE∗

6 1.777 237 0.009000 45.6

7 1.685 235 0.009800 43.9

8 1.687 227 0.011010 43.9

9 1.795 238 0.009070 43.8

10 1.353 155 0.027460 37.1

(iii) (−α, α) from
DOE∗

11 1.844 197 0.005111 39.3

12 2.112 212 0.005184 39.1

13 2.243 202 0.006830 37.4

14 1.485 123 0.007219 37.1

15 1.162 79 0.007698 36.0
∗ − α, -1, 0, 1, and α are the coding levels for the values from Table 3.
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g/L, and CT = 62:74 min that lead to 39.92% process
efficiency.

As observed, there is a complex interdependency
between the process parameters. Therefore, the standard
analysis of the variation of efficiency considering two param-
eters at once does not provide a complete picture regarding
the output parameters’ lowest or highest surface points. Fur-
thermore, since the RSM performs the optimization by set-
ting some parameters fixed and varying only a few (usually
just one parameter), the search space is not efficiently
explored, and there is the possibility that other solutions
can be found. Thus, iBFO was applied to perform an exhaus-
tive search and identify promising high-efficiency regions.

The optimal results attained with this method (39.92%)
are comparable to those reported in other studies focusing
on the decolorization of bromocresol green with different
types of active carbon. For example, in [73], the maximum
efficiency of active charcoal from pine cones doped with
Co was 41.86%.

3.2. Bacterial Foraging Optimization. Two cases were con-
sidered for process optimization using bacterial foraging
optimization: (i) the statistical model determined using
RSM and (ii) an ANN model. However, the determina-
tion of the ANN model is, in its turn, an optimization
problem, and thus, iBFO was also applied for model
optimization. In both the model and process optimiza-
tion, the settings for the iBFO parameters were the
same: Nc = 20, Ns = 5, Nre = 8, Ned = 20, and the initial
value for ped = 0:25.

3.2.1. RSM-Based Optimization. Using the regression model
determined by the RMS approach (equation (3)), iBFO was
applied to determine if additional optimal points could be
found by thoroughly searching the search space indicated
by the process parameters. To this means, the maximum
process efficiency was identified based on AA, CT, and BCG.

As iBFO is flexible and permits an easy alteration of the
intervals for the process parameters, multiple optimization
cases were considered: (i) typical (when the minimum and
maximum values for the independent variables are identical
to the experiments, coded -1 and 1 from the DOE planning)
and (ii) extrapolation (where the limits are set to −α and α
from the DOE planning). Thus, in each considered case,
ten runs were performed. From the multitude of solutions
(from the vicinity of the optimum) provided by iBFO, for
each case, Table 5 presents the best five combinations of
parameters that optimize the process.

As observed in Table 5, the iBFO algorithm provided
various solutions indicating a high capability of exploring
the search space and finding promising areas. Depending
on the specific requirements at a given time, the end user
or the process manager can select a different optimization
solution. Compared to the RSM approach, the iBFO, in
combination with the statistical model, provided results sim-
ilar in terms of efficiency. However, iBFO generated multiple
solutions in the vicinity of the optimum, indicating that the
interaction between parameters is complex and that different
combinations of parameters lead to the same efficiency.

3.2.2. ANN-Based Optimization. In this case, the iBFO role is
to determine the optimal topology that best fits the

Table 7: Comparison of several adsorbents’ efficiency in decolorizing BCG.

Adsorbent Considered process parameters Optimization method
η
(%)

Ref.

Acid-treated charcoal
(ACT) UV irradiation time, catalyst dosage, recycled catalyst dosage. —

16.85
[73]

Co-adsorbed ACT 40.5

AC derived from rice husk
Contact time, temperature, adsorbent dosage, pH, and initial

concentration
— 93 [72]

Chitin nanofibers
Contact time, temperature, adsorbent dosage, pH, and initial

concentration
IBM SPSS statistics; one-

way ANOVA
92.75 [65]

Zeolitic imidazolate
framework (ZIF-11)

pH, stirring speed, contact time, temperature — 89 [80]

Almond husk
pH, adsorbent dosage, contact time, and initial and final

concentration
— 97.5 [77]

Rice straw biochar Biochar, pyrolysis temperature, solution pH, biochar dosage, initial
dye concentration, and contact time

—
80

[81]
Rice husk biochar 50

Activated biosorbent
Phragmites karka

pH, agitation speed, contact time, biosorbent dosage, initial dye
concentration, temperature

— 99.99 [64]

Fe3O4/MIL-88A
nanocomposite

Contact time, adsorbent dosage, initial concentration — 70 [82]

Commercial active carbon Contact time, adsorbent dosage, initial concentration

Differential evolution 99.83

[75]RSM 97.77

Differential search 99.99

Commercial active carbon Contact time, adsorbent dosage, initial concentration
RSM 39.3 This

workiBFO >99
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considered process. The sequential ANNs considered in this
work are trained using a supervised approach, and thus, the
experimental data describing the process is used for hyper-
parameter tuning. However, as the number of experiments
resulting from the standard DOE planning is relatively
small, a series of random experiments were performed to
increase the number of points that can be included in the
training/testing phase. As a result, the efficiency was mea-
sured for a more extended period compared with the DOE
plan. Thus, compared with the RSM strategy, the ANN
model can predict without extrapolating a higher number
of parameter combinations.

In order to perform the model determination, the stan-
dard data processing techniques used in the machine learn-
ing area were applied: (i) data normalization, (ii) data
randomization, and (ii) data splitting. For data normaliza-
tion, all the experimental points were normalized in the
[-1,1] interval to ensure that no specific process parameter
significantly influences the model based on the order of
magnitude for its values. After that, to ensure that training
is not performed on a subgroup of points, the data is ran-
domly assigned to one of the phases: training/testing. The
percentage of training data is 75%, and 25% is for testing.

After data processing, iBFO was applied to determine the
best-suited model. This suitability is measured by the fitness
function, which in the case of ANN determination is repre-
sented by the Mean Squared Error (MSE) in the training
phase. The elements evolved by iBFO are strictly related to
topology (hidden layers and neurons in each hidden layer).
As the current iBFO version works with a population of
fixed dimension, which for the current case corresponds to
a limit on the number of hidden layers, based on a series
of preliminary analyses, it was set to 5. Furthermore, the
activation function for each neuron from the hidden layer
is set to ReLU, while the activation function for the output
layer is linear. Finally, in order to train each identified topol-
ogy, the Adam optimizer was considered.

The best model obtained had two hidden layers with 33
and 22 neurons, respectively. The MSE was 16.14 in the
training phase and 26.7 in the testing phase. The average
absolute error and the correlation were 9.14% and 0.962
for training and 10.73% and 0.961 for testing. A comparison
between the experimental and predicted values for the test-
ing data is presented in Figure 9. As it can be observed, for
most exemplars, the differences are relatively small, indicat-
ing the model’s capability to capture the process efficiently.

iBFO and the determined ANN were then utilized to
optimize the process. Table 6 presents the best five solutions
provided by the model. In this case, two situations were con-
sidered: (i) when the limits for the search are the ones
obtained through the supplementary experiments performed
to expand the dataset, (ii) when the limits are set as in the
DOE approach (-1,1), and (iii) when the limits are set to
(−α, α).

As seen in Table 6, the results considering the extended
limits allow the identification of conditions that lead to
~100% efficiency. Regarding cases where the (-1,1) interval
was considered, the solutions provided with the ANN-
based model have a higher efficiency than those obtained

with the RSM-based model. On the other hand, for the ð−
α, αÞ, the solutions provided had a similar efficiency. There-
fore, the results obtained in this case are similar to those pre-
sented in the literature. For example, in [72], for an active
carbon produced from rice husks, the maximum efficiency
was 93%.

Overall, the results obtained with iBFO when using both
the RSM and the ANN-based models indicate that the opti-
mizer can explore the search space and identify distinct solu-
tions in the vicinity of the optimum. Furthermore, this
variety can support a large area of use cases where a specific
parameter can be limited within the desired interval (consid-
ering a maximum efficiency and a minimization of con-
sumed resources).

3.3. Comparison with Other Adsorbents. Several adsorbents
have been used for BCG decolorization/removal from waste-
water. Most of them are active carbons/charcoals prepared
from various lignocellulosic biomass. Chitins, polymers,
and various nanocomposites were also used, as presented
in Table 7.

Most authors report the direct influence of individual
process parameters on decolorization efficacy, such as adsor-
bent dosage, contact time, initial BCG concentration, pH,
and temperature. However, only a few show optimization
studies that report the conjugate influence of the process
parameters and classify them in order of their significance
for the process.

4. Conclusions

This study applied various modeling and optimization strat-
egies to BCG decolorization on commercial activated carbon
with the scope of demonstrating that the application of new
approaches from the artificial intelligence area can provide
optimal solutions. The methodologies included conventional
(RSM) and nonconventional artificial intelligence methodol-
ogies (ANNs and a modified version of bacterial foraging
optimization). iBFO was utilized as an optimizer for the
model and process, with its adaptability and capabilities sub-
stantiating the favorable results obtained.

First, in order to consume the minimum resources (time,
chemicals, etc.), the DOE methodology was applied to pro-
gram a minimal number of statistically relevant experiments.
Then, the most used strategy encountered in literature
(RSM) was applied. Using the MINITAB 17.1.0 software
suite, the findings were analyzed and interpreted and a sta-
tistical model was determined and then used for process
optimization, with the maximum efficiency obtained being
39.92% at BCG = 5:135 E − 03 g/L, AA = 1:58 g/L, and CT
= 62:74 min. Compared with the experimental data
obtained for the ½−α, α� DOE limits, this optimal value is
close, but lower. This can be explained by the RSM-based
model error (R2 = 90:34%). These results point out that this
approach is not able to find better solutions.

To further test if the issue of not finding better solutions
than the experimental data is related to the optimization
strategy or to the model, the statistical model was applied
in combination with iBFO. While the maximum efficiency

11Adsorption Science & Technology



obtained was similar when using the same statistic model,
iBFO could find multiple distinct combinations of parame-
ters that lead to the same efficiency. This proved the capabil-
ity of the optimizer to explore the search space efficiently
and identify the regions with promising potential (local
and global minima). These results also pointed out that
within the considered DOE limits of ½−α, α�, a higher effi-
ciency could not be obtained.

Thus, a series of additional random experiments were
performed and, together with the DOE plan, were used to
determine an ANN model. First, its optimized topology (2
hidden layers with 33 neurons in the first one and 22 neu-
rons in the second one) was identified using the iBFO
approach. Then, it is applied to optimize the process consid-
ering different limitations for parameters. In this case, condi-
tions that lead to >99% efficiency were identified, proving
that even the classical processes can be further improved
when good strategies are applied.

The strategy of starting with standard approaches and
then when they fail to provide improved solutions to replace
them with novel strategies from the area of artificial intelli-
gence demonstrated that process modeling and optimization
are not a straightforward fit-all approach and that there are
cases where multiple variants must be tested before reaching
an acceptable solution. The good results of the current case
study pave the way for the advanced optimization of other
types of processes, with a significant economic and industrial
impact.
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