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The application of artificial neural networks on adsorption modeling has significantly increased during the last decades. These
artificial intelligence models have been utilized to correlate and predict kinetics, isotherms, and breakthrough curves of a wide
spectrum of adsorbents and adsorbates in the context of water purification. Artificial neural networks allow to overcome some
drawbacks of traditional adsorption models especially in terms of providing better predictions at different operating conditions.
However, these surrogate models have been applied mainly in adsorption systems with only one pollutant thus indicating the
importance of extending their application for the prediction and simulation of adsorption systems with several adsorbates (i.e.,
multicomponent adsorption). This review analyzes and describes the data modeling of adsorption of organic and inorganic
pollutants from water with artificial neural networks. The main developments and contributions on this topic have been
discussed considering the results of a detailed search and interpretation of more than 250 papers published on Web of Science
® database. Therefore, a general overview of the training methods, input and output data, and numerical performance of
artificial neural networks and related models utilized for adsorption data simulation is provided in this document. Some
remarks for the reliable application and implementation of artificial neural networks on the adsorption modeling are also
discussed. Overall, the studies on adsorption modeling with artificial neural networks have focused mainly on the analysis of
batch processes (87%) in comparison to dynamic systems (13%) like packed bed columns. Multicomponent adsorption has not
been extensively analyzed with artificial neural network models where this literature review indicated that 87% of references
published on this topic covered adsorption systems with only one adsorbate. Results reported in several studies indicated that
this artificial intelligence tool has a significant potential to develop reliable models for multicomponent adsorption systems
where antagonistic, synergistic, and noninteraction adsorption behaviors can occur simultaneously. The development of
reliable artificial neural networks for the modeling of multicomponent adsorption in batch and dynamic systems is
fundamental to improve the process engineering in water treatment and purification.

1. Introduction

The removal of pollutants from industrial process streams,
groundwater, and wastewaters has an undoubtedly impor-
tance in terms of sustainability and human health protection

[1, 2]. Adsorption is a key treatment method for facing the
current challenges of water depollution. In particular, it is
a proven and well-known technology for water purification
due to its both technical and economic advantages [3–7].
The recent advances on adsorption for water treatment have
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mainly focused on the preparation and evaluation of new
materials with outstanding adsorption capacities for the
removal of different pollutants like dyes, heavy metals, geo-
genic compounds, pharmaceuticals, and other emerging
toxic chemicals [8–20]. Actually, there is a wide spectrum
of adsorbents that have been prepared and assessed to
remove inorganic and organic compounds from aqueous
solutions. Adsorption properties of these novel adsorbents
have been determined experimentally using batch adsorbers
and/or packed bed columns, which are the typical operating
modes of this purification method.

Experimental studies with batch adsorbers allow to
quantify the adsorption kinetics and isotherms as well as
other important thermodynamic parameters associated to
the adsorbent performance. Batch adsorbers are useful for
establishing the maximum adsorption capacities for the
adsorbate(s)-adsorbent system under ideal and controlled
conditions since the experimental data are obtained at the
thermodynamic equilibrium where the mass transfer resis-
tances are reduced [21, 22]. Note that the adsorption pro-
cesses in batch condition are not commonly employed for
the treatment of real fluids at large scale since equipment
with significant dimensions and long operating times is
required. The packed bed adsorption columns are the most
appropriate option for treating real fluids at industrial scale
operation including the adsorbent regeneration [23]. Break-
through curves obtained in packed-bed columns are funda-
mental to determine the maximum adsorption capacities at
dynamic operating conditions and the analysis of mass
transfer phenomena on the adsorbent performance.

Process systems engineering of adsorption for water
treatment requires the development of reliable models to pre-
dict the corresponding kinetic, thermodynamics, and mass
transfer parameters of the system at hand. The adsorption
modeling offers valuable data for the operation, control, opti-
mization, and design of water purification equipment. For
instance, the modeling of adsorption processes is fundamen-
tal to estimate the adsorbent performance at both dynamic
and batch operating conditions, to optimize the adsorption
process variables, to perform a sensitivity analysis of process
conditions on the adsorption performance, and to analyze
other design issues that are required to improve the operating
costs and removal efficacy in water treatment [24–27].
Herein, it is necessary to highlight that the adsorption pro-
cesses in liquid phase are highly dependent on the type, vari-
ety, and concentration of adsorbate(s) contained in the fluid,
the fluid physicochemical characteristics (e.g., ionic strength,
temperature, and pH), the operational conditions of adsorber
(e.g., stirring rate, adsorbent dosage, bed height, flow rate,
and residence time), and the adsorbent physicochemical
properties (e.g., particle size, surface chemistry, and textural
parameters). Therefore, the modeling of adsorption process
is a multivariable problem that involves nonlinear relation-
ships between the input and output variable(s). These math-
ematical characteristics imply that the reliable correlation
and prediction of adsorption processes are challenging, espe-
cially for multicomponent systems [28–30].

Overall, the available adsorption models can be classified
in theoretical, semitheoretical, and empirical, and they can

be also in the form of analytical and differential equations.
Some reviews have analyzed specific adsorption equations
[31–34], and results reported in a number of studies have
also illustrated their limitations and advantages [28, 29, 33,
35–38]. In particular, the drawbacks of adsorption models
are magnified when they are applied in multicomponent
solutions. The simultaneous presence of several compounds
to be adsorbed from the fluid can affect the adsorbent behav-
ior due to their antagonic, synergic, and noninteraction
effects [39–41]. These adsorption effects depend significantly
on the properties of the adsorbates dissolved in the fluid and
their concentrations. Multicomponent adsorption models
derived from the traditional equations of Langmuir, Freun-
dlich, or Sips are regarded as empirical approaches that
can fail to simulate adsorption systems with several adsor-
bates. Consequently, it is important to develop and improve
the available modeling tools for analyzing the multicompo-
nent adsorption involved in the treatment and purification
of real-life fluids.

Artificial intelligence-based models are an alternative to
improve the simulation of adsorption processes for water
treatment. Several authors have recognized the contribution
of this type of models to obtain better correlations and esti-
mations of the adsorption of inorganic and organic adsor-
bates in single and multicomponent solutions [42–47]. The
artificial neural networks (ANN) have been introduced as
an effective and reliable approach to overcome the problems
associated to the simulation of adsorption systems especially
those corresponding to fluids with more than one adsorbate
at different operating conditions [43, 46, 48, 49]. ANN are
based on human brain structures and capable to represent
the nonlinear interactions between a set of input and output
variable(s) of a given system without considering a sophisti-
cated theory [50]. They have been employed to resolve engi-
neering problems such as fault detection, prediction of
materials properties, soil degradation analysis, water treat-
ment modeling, data reconciliation, process modeling, and
control [50–54]. The advantages of ANN (e.g., reliable corre-
lation, simplicity, versatility, and prediction capabilities) to
handle multivariable problems with nonlinear behavior have
justified their application in the analysis and simulation of
adsorption processes [50, 52, 55–58].

In this direction, this review covers the ANN-based
modeling of adsorption processes in dynamic and batch
operating schemes. The objective of this review was to
provide the readers a general perspective of the develop-
ments, contributions, and opportunities on the modeling
of adsorption data with artificial neural networks. A brief
description of the theory and basis of ANN is provided in
the first section of this review. The modeling of kinetic, iso-
therms, and breakthrough curves with ANN is analyzed
and discussed. Some important guidelines concerning the
parameter estimation problem to be resolved for ANN
training, the selection of the input and output variables to
be modeled with ANN, the details of its numerical imple-
mentation in terms of adsorption data correlation and pre-
diction, and some challenges to be faced and resolved
besides perspectives on this topic are also covered in this
manuscript.
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2. Brief Introduction of Artificial
Neural Networks

ANN were initially developed using the concept for artificial
intelligence with the aim of simulating the activities and
functions of nervous system and human brain in terms of
memorizing and learning [48, 59]. They came from the
analogy made between the human brain and computer pro-
cessing. Basically, ANN are a computational system that
replicates the function of the brain to carry out a specific
task [60]. Input value(s) (i.e., independent variables of the
system under study) are provided to the network and are
manipulated via internal mathematical operations to pro-
duce an output value(s) (i.e., dependent variables of the sys-
tem under study) [60]. ANN are considered as black-box
models useful when a mathematical relationship between
the output and input variables is not available to describe
the phenomenon to be analyzed and/or where the tradi-
tional models may fail [61, 62]. ANN contain multiple inter-
connected nonlinear processing elements that “learn” to
represent and extrapolate the nonlinear relationships
between the dependent and independent variables of the
case of study [48].

Mathematically, ANN are composed of simple elements
to perform the calculations where these elements are inter-
connected with a certain topology or structure. The percep-
tron (neuron) is the simplest elements of a network. The
basic model of a neuron is illustrated in Figure 1(a) and is
integrated by the next components [63, 64]: (1) a set of syn-
apses, which are the inputs of a neuron given by a weighted
vector; (2) an adder that simulates the neuron body and gets
the level of arousal; and (3) an activation function that gen-
erates the output if it reaches the level of excitement and
restricts the output level, thus, avoiding the network conges-
tion. Formally, the neuron output (y) in ANN is given by
the expression

yi = 〠
n

j=1
wijsj +wi0

 !
, ð1Þ

where n indicates the number of inputs to the neuron i, and
φ denotes the excitation or activation function [65, 66]. The
argument of the activation function is the linear combina-
tion of the neuron inputs. Considering the set of entries s
and weights W of the neuron i as a vector of dimension n
+ 1, Equation (1) can be defined as follows

yi = φ WT
i s

� �
,

s = −1, s1, s2,⋯, sn½ �T ,

wi = wi0,wi1,⋯,win½ �T :

ð2Þ

ANN can be classified into static and dynamic networks
where the first one has a broad range of application mainly
due to its characteristic of not change with respect to time.
Dynamic networks are applied for those problems that have

changes with respect of time [67, 68]. Multilayer ANN are
widely utilized because they resemble the structures of
human brain and can be spread with forward and backward
configurations where the selection depends on the case of
study [69, 70]. Particularly, the multilayer ANN with for-
ward spread has been successfully applied in the correlation
and prediction of batch and dynamic adsorption processes
[6, 11, 27, 41, 57, 71–80].

A multilayer ANN structure includes an input layer,
one or more hidden layers, and an output layer, see
Figure 1(b). Input layer contains the independent variables
of the case of study, while the output layer corresponds to
the corresponding dependent variables. The structure defi-
nition of a multilayer ANN seeks to reduce the problems
associated to the prediction of nonlinear behavior of a mul-
tivariable system. Therefore, an important issue is to estab-
lish the suitable ANN architecture (i.e., the number of
hidden layers and their neurons). This task is commonly
based on a trial-error approach. In this sense, the theorem
of Kolmogorov [81] indicates that “the number of neurons
in the hidden layer need not be larger than twice the num-
ber of entries.” Hecht-Nielsen et al. [82] proposed the next
equation to estimate the number of neurons in the hidden
layers of ANN [83]:

h −
2
3

� �
n +mð Þ, ð3Þ

where h is the number of hidden layer neurons, n is the
number of entries, and m is the number of hidden layers
used in the ANN, respectively. Equation (3) suggests that
the number of neurons required in the hidden layer should
be h < 2n. For the case of a multilayer structure with a sin-
gle hidden layer, it has been recommended that the number
of neurons should be 2/3 of the corresponding number of
entries [84, 85].

The next step for building an ANN model is the appli-
cation of excitation or activation function(s). These func-
tions are required to spread the information and used
for ANN training (i.e., the adjustment of the correspond-
ing synaptic weights to model the system at hand) [86,
87]. There are different excitation/activation functions
where the most common ones are the tangential sigmoidal
(Equation (4)), logarithmic (Equation (5)), and radial basis
(Equation (6))

φ = e−wi + ewi

e−wi + ewi
, ð4Þ

φ =
1

1 + e−wi
, ð5Þ

φ = 〠
N

i=1
wiΦ w −wcik kð Þ: ð6Þ

The radial basis function is commonly used for
dynamic systems and can be utilized in nondynamic pro-
cesses but at the expense of increasing the computation
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and data processing time [88–91]. Note that there are
different radial functions, for example:

Gaussian

Φ wð Þ = ew
2
i : ð7Þ

Multiquadratic

Φ wð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w2

i

q
: ð8Þ

Inverse multiquadratic

Φ wð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w2

i

p : ð9Þ

Polyharmonic

Φ wð Þ =wk
i k = 1, 3, 5,⋯,

Φ wð Þ =wk
i ln wið Þ k = 2, 4, 6,⋯:

ð10Þ

After selecting the excitation/activation function(s), it is
necessary to train the ANN model. This training can be per-
formed with different approaches but the most common one
is the training of back-propagation (BP), which has been the
basis to apply other numerical methods like Levenberg-

Maquart (LM) and Broyden-Fletcher-Goldfarb-Shannon
(BFGS) [92–95], or even more sophisticated optimization
algorithms like the metaheuristics also known as stochastic
optimizers [96, 97]. BP algorithm is used to define the
parameters of a multilayer ANN with a fixed architecture
with the aim of “learning” the system behavior. An optimi-
zation algorithm is required to minimize the sum of errors
between the ANN output values and the given target values
of the system to be modeled. Interested readers on advance
topics of ANN, its characteristics and developments are
encouraged to consult the reviews of Basheer and Hajmeer
[73], Abraham [66], Poznyak et al. [98], Alam et al. [99],
Gopinath et al. [29], Chong et al. [97], and Aani et al. [100].

Finally, ANN have been combined and/or hybridized
with other numerical approaches to resolve complex engi-
neering problems. Stochastic global optimization methods
(e.g., particle swarm optimization, genetic algorithm, cuckoo
search, and ant colony optimization), fuzzy logic, and prin-
cipal component analysis have been employed to improve
the performance of ANN modeling in several fields includ-
ing adsorption [29, 96–102].

3. Applications of ANNs to Model the
Adsorption of Water Pollutants

A wide variety of theoretical and empirical models have
been proposed to analyze, correlate, and predict adsorption
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Figure 1: Illustration of (a) neuron element and (b) structure of a multilayer artificial neural network (ANN).

4 Adsorption Science & Technology



processes. However, these models are generally based on
restrictive assumptions and theories, which can limit signifi-
cantly their application [7]. For instance, the traditional
adsorption isotherms like Langmuir and Freundlich have
adjustable parameters that neglect the impact of solution
temperature or pH on the adsorption capacities at equilib-
rium. These traditional models have been extended to handle
the multicomponent adsorption but their errors are signifi-
cant for those systems with the simultaneous presence of
antagonistic and synergistic adsorption effects [31, 34, 38,
103, 104]. Other examples corresponded to statistical physics
models that are theoretical equations utilized to estimate
physicochemical parameters of adsorption processes but
with the limitation of neglecting the role of solution pH or
other fluid characteristics. Similar remarks can be formulated
for the conventional kinetic equations (e.g., pseudofirst and
pseudosecond order models) or even mass transfer models.
Therefore, ANN are an alternative to overcome these disad-
vantages and also to develop improved versions with better
correlation and prediction capabilities. However, it is conve-
nient to remark that ANN can be considered as black-box
(i.e., empirical) models that are effective for correlation and
prediction but without providing an additional theoretical
understanding of the system under analysis. This drawback
of ANN can be partially resolved via its hybridization with
theoretical adsorption models [105, 106].

Mathematically, the performance of an adsorption
system is a nonlinear function depended on the adsorbent
properties, chemistry of adsorbate(s), operating conditions,
fluid properties, and equipment configuration. This nonlin-
ear functionality can be modeled using ANN based on the
fact that there is no a limitation to incorporate all the
independent variables affecting the adsorption system, see
Figure 2. ANN can also predict the performance of multi-
component adsorption systems where the adsorption capac-
ities or other performance metrics, like the concentration
profiles of breakthrough curves, of all adsorbates are incor-
porated as output variables.

For the preparation of the current manuscript, a litera-
ture review was performed in Web of Science® database
using the keywords “adsorption,” “water,” and “artificial
neural network(s).” All articles found with these keywords
were scrutinized to identify papers out of the scope of this
review. Several references were identified with a significant
lack of information in terms of type of characteristics of
ANN, input and output data, and other relevant points,
which were discarded for the analysis and discussion. This
review covers more than 250 papers related to ANN model-
ing of adsorption data. For illustration, Figure 3 provides an
overview of paper published on ANN and adsorption of
water pollutants since 1999 to 2021 (July) according to
Web of Science® database using the keywords. It is clear that
the number of publications about this topic has continuously
increasing where a diversity of adsorption systems (i.e.,
adsorbents, adsorbates, process configurations, and operat-
ing conditions) has been analyzed via ANN with different
topologies, activation functions, and training methods
including hybrid approaches. This set of publications has
briefly described and discussed to provide an overview of

the advantages, limitations, and current challenges on the
adsorption modeling using ANN. Consequently, this section
summarizes the main findings on the application of ANN for
the modeling of kinetics, isotherms, and breakthrough curves
obtained in the adsorption of different water pollutants.

3.1. Kinetic and Isotherms. Batch adsorption tests are
required to quantify kinetics and isotherms thus characteriz-
ing the performance of adsorption processes. First applica-
tions of ANN in adsorption modeling were associated to
the correlation and prediction of kinetics and isotherms.
Tables 1 and 2 summarize the ANN modeling of kinetic
and equilibrium studies for the adsorption of several pollut-
ants from water. For instance, the adsorption data of arsenic,
dyes, fluorides, heavy metals, pesticides, and organic com-
pounds using activated carbons, bone char, lignocellulosic
biomasses, clays, nanocomposites, hydrogels, and metal-
organic frameworks have been modeled with ANN. These
experimental studies have covered different operating condi-
tions (e.g., 20–60 °C and pH 1–11) and a broad spectrum of
adsorption capacities (3-270mg/g). Several input variables
have been considered in the ANN modeling such as pH,
temperature, adsorbent dosage, contact time, initial concen-
tration, physicochemical properties of the pollutant(s), and
adsorbent, among others. Adsorption systems with one pol-
lutant (i.e., adsorbate) dominate in the literature (~87%),
and a limited number of multicomponent adsorption studies
with two or more pollutants have been reported although
the recognized capabilities of ANN to handle multiresponse
processes. A brief description of representative studies on
ANN modeling of kinetics and isotherms for different water
pollutants is provided below.

Brasquet and Le Cloirec [107] were pioneers in the
modeling of batch adsorption data with ANN. These authors
formulated the question “why use neural networks in
adsorption processes?” thus determining that ANN can be
excellent predictors for this separation process if properly
implemented. They studied the adsorption of 368 organic
compounds on three activated carbons and used an ANN
with four input variables: molecular size and flexibility with
the variable 3Xp (0–10.33), molecular volume and topology
of insaturation and heteroatoms with the variable 2Xvp (0–
9.58), the critical dimension with the variable 6Xvp (0–
5.06), and a dummy variable “D” (-1.15–1.08). ANN with
three neurons in the hidden layer were applied considering
log ðqe/CeÞ as the output variable where qe is the equilibrium

Adsorbent properties
qe,i

Pollutants properties

Adsorption conditions

Process configuration

Input variables Output variables

ANN model

[F−]outlet
[F−]Feed

Figure 2: Input and output variables of an adsorption process that
can be incorporated in ANN modeling.
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adsorption capacity and Ce is the adsorbate equilibrium
concentration [108]. These authors used 333 quantitative
structure-activity relationship (QSAR) data for learning
and 35 for testing of ANN from Blum et al. [109]. They used
a classical neural network with BP algorithm as a training
method and hyperbolic tangent sigmoid as activation func-
tion. This study concluded that an excessive number of neu-
rons in the hidden layer was not necessary to achieve
satisfactory modeling results with R2 = 0:875. It was also
analyzed the impact of the number of neurons on the
ANN overtraining.

Chu and Kim [110] compared the modified Langmuir
model and feed-forward ANN for the prediction of com-
petitive adsorption of cadmium and copper by a plant bio-
mass. Equilibrium adsorption data at pH 4-5 and 25 °C
were taken from Pagnanelli et al. [111] where a mutual
suppression of the adsorption of both metals occurred in
the binary metallic system due to the competition for the
binding sites of this adsorbent. Input variables for ANN
modeling were the copper and cadmium equilibrium con-
centrations (0.124–2.243mmol/L) and pH, while the ANN
outputs were the copper and cadmium adsorption capaci-
ties (0.006–0.165mmol/g). ANN training was performed
with 83.3% of data set, while the remaining 16.7% was uti-
lized for testing. The logistic sigmoid function was applied
in neuron activation. The best ANN configuration con-
sisted of 1 hidden layer with 10 neurons and BP training.
These models were compared using the relative errors
where the best values were obtained for the ANN thus out-
performing the data correlation with the modified Lang-
muir model.

Singh et al. [112] employed an adapted neural fuzzy
model and a BP-ANN for the prediction of cadmium adsorp-
tion by hematite. Specifically, a 3-layered feed-forward
BP-ANN was employed where the input variables were the
cadmium concentration (44.48–88.96μmol/L), agitation rate
(50–125 rpm), pH (9.2), temperature (20.5–40.5 °C), and
contact time (29–222min), while the output variable was
the final cadmium concentration (43–103μmol/L). The
training database consisted of 15 datasets. The activation
functions were the logistic sigmoid and symmetric Gaussian

for classical ANN model and hybrid neural fuzzy model,
respectively. Results showed that the cadmium adsorption
depended on the five input variables. The hybrid neuro-
fuzzy model (R2 = 0:96) provided better predictions of the
cadmium adsorption than BP-ANN (R2 = 0:88).

ANN were used by Aber et al. [113] for modeling the
kinetic adsorption data of the acid orange 7 dye using pow-
dered activated carbon. In the kinetics experiments, the
effect of initial concentration (150-350mg/L) and pH (2.8-
10.5) was evaluated. Input variables were the initial concen-
tration (150–350mg/L), pH (2.8–10.5), and contact time
(75-600min), while the final concentration after adsorption
(5.48–178mg/L) was the output variable to obtain the
ANN model. Conventional adsorption kinetic equation
(i.e., pseudosecond order) and feed-forward BP-ANN with
3-2-1 neurons and logistic sigmoid and hyperbolic tangent
sigmoid functions were used for modeling the experimental
data. A total of 219 experimental data were employed with
146 for training and 73 for prediction. The performance of
these models was assessed, and ANN achieved the lowest
mean relative error (5.81%). This study concluded that
ANN was a predictive approach that could replace conven-
tional kinetic models.

Yetilmezsoy and Demirel [114] proposed the use of a
three-layer ANN for predicting the removal of lead with
antep pistachio shells. The input variables were the adsor-
bent dosage (2–16 g/L), contact time (5–120min), tempera-
ture (30–60 °C), pH (2–9), and lead initial concentration
(5–100mg/L), while the output variable was the lead
removal (26.45-98.70%). 34, 16, and 16 data were used for
training, validation, and testing, respectively. Tangent sig-
moid function at the hidden layer and a linear function at
the output layer were used, while LM algorithm was the best
alternative for ANN modeling. This ANN model was able to
fit the adsorption data showing a minimum value of the
mean square error of 2:28 × 10−04 and R2 = 0:94. Sensitivity
analysis revealed that pH was the most influencing variable
on the metal adsorption where a maximum lead removal
of 99% was obtained.

Three-layer feed-forward ANN was used to model the
adsorption kinetics of auramine O by activated carbon
[115]. ANNwere trained using the parameters obtained from
the pseudosecond order kinetic equation. LM method was
employed to train ANN with the next input variables: initial
dye concentration (85–200mg/L), contact time (1–120min),
agitation speed (400–800 rpm), temperature (305–333K),
initial solution pH (3–8), and activated carbon mass (0.3–
1.8 g). The output variable was the dye adsorption capacity.
The best ANN architecture was 6-7-1 with linear and hyper-
bolic tangent sigmoid activation functions. Overall, the
difference of mean squared errors between the ANN and
the pseudosecond order kinetic model varied only by <2%.
This study was among the early attempts to combine ANN
and a traditional kinetic adsorption equation to improve
the adsorption modeling.

Garza-González et al. [116] proposed an approach to
compare ANN and conventional isotherm models in the
methylene blue adsorption by Spirulina sp. Simulated
annealing and genetic algorithms were applied with ANN
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Figure 3: Survey of papers published on the ANN modeling of the
adsorption of inorganic and organic pollutants from water. Source:
Web of Science (July 2021).
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with two hidden layers and hyperbolic tangent sigmoid
function. Temperature (25–50 °C), pH (2–8), and adsorbent
dosage (1.2–10 g/L) were used as input neurons, while the
adsorption capacities (3.09–66.98mg/g) or the removal effi-
ciency (23.56–86.89%) were considered as the output neu-
rons. Results showed that genetic algorithm outperformed
simulated annealing. Sensitivity analysis indicated that the
removal efficiency was impacted by the operating variables
as follows: pH > adsorbent dosage > temperature, while the
adsorption capacity was depended on adsorbent dosage >
pH > temperature. Finally, the experimental isotherms
indicated a maximum adsorption capacity of 900mg/g.
The optimized ANN model outperformed significantly the
Fritz-Schlunder equation.

Yang et al. [96] proposed the application of ANN and
genetic algorithm to determine the importance of adsorption
variables (e.g., initial dye concentration, time, temperature,
and pH) on the adsorption of dyes congo red and acid black
172 by Penicillium YW01 biomass. Experimental results
showed that the maximum adsorption capacities of this bio-
mass were 411.53mg/g for congo red and 225.38mg/g for
acid black 172. This dye separation process was endothermic
and pH dependent. Adsorption kinetics were modeled with
the pseudosecond order and Weber-Morris models, and
the isotherms were fitted with Langmuir equation. ANN
modeling was performed with 129 experimental data divided
in 77, 26, and 26 for training, validation, and testing. The
input variables were the contact time (5–360min), initial
dye concentration (50–800mg/L), pH (1–10), and tempera-
ture (20–40 °C), while the output variable was the dye
adsorption capacity (21.45–411.53mg/g). R2 values > 0.99
were obtained for the prediction of congo red and acid black
172 adsorption using ANN and genetic algorithm. This
combined approach was more effective than ANN. The
authors concluded that the initial adsorbate concentration
and temperature showed the highest impact on the adsorp-
tion of both dyes.

Response surface methodology (RSM) and ANN were
used to model the lead removal from industrial sludge leach-
ate using red mud [117]. pH (3–7), contact time (5–60min),
and adsorbent mass (1.25–10 g/L) were the input variables,
and the lead removal was the output variable. Box–Behnken
design (BBD) was utilized for RSM and to obtain the data
involved in ANN training. From this experimental design,
the lead removal ranged from 38.84 to 96.82% where adsor-
bent dosage was the main operating variable followed by the
contact time and pH. Feed-forward multilayer ANN with
hyperbolic tangent sigmoid and logistic sigmoid functions
and 3-12-1 architecture was used to predict the lead
removal. R2 and root mean squared error were used as the
statistical metrics to assess the model performance. Both
ANN and RSM models were satisfactory to correlate the
experimental data of this adsorption system but with an evi-
dent advantage of ANN for predictive purposes.

Masood et al. [118] applied an ANN to predict the
removal of total chromium using Bacillus sp. Experimental
results showed that this removal process was pH dependent
achieving a maximum adsorption capacity of 50mg/g
according to the equilibrium data, which were fitted to

Freundlich equation. Feed-forward BP-ANN with three
layers and logistic sigmoid activation function was employed
in data analysis. Solution pH (4–9), contact time (2–6h), and
initial adsorbate concentration (100–400mg/L) were the
input layer variables, while the adsorption capacity (16.5–
50mg/g) was the output variable. 360 data from adsorption
experiments were utilized for training (80%), testing (10%),
and validation (10%). Modeling errors and R2 were utilized
to test the ANN accuracy. A minimum root mean squared
error of 0.0001 and R2 = 0:971 were obtained for ANN with
10 neurons. It was identified that pH was the most influenc-
ing factor to model the chromium removal followed by the
adsorbate concentration and contact time.

Savic et al. [119] proposed a comparative study of a cen-
tral composite design (CCD) and multilayer ANN to model
and optimize the adsorption of iron on bentonite clay. This
experimental design consisted of 16 tests, and results showed
that the adsorption efficiency ranged from 71.24 to 89.85%
at pH 7 and room temperature. For the ANN modeling,
the training sample was 80%, and the test sample was 20%.
The initial metal concentration (17.09–51.91mg/L), contact
time (10–120min), and adsorbent concentration (1000–
7000mg/L) corresponded to the input layer, and the metal
removal was the output layer where the ANN architecture
was 3-9-1 with radial basis activation function. 3D and con-
tour plots for CCD and ANN were obtained. Multilayer
ANN showed higher R2 and lower errors than CCD thus
confirming its better prediction performance.

The performance of 9 adsorbents obtained from dead
fungal biomass was analyzed in the adsorption of reactive
black 5 from aqueous solution [120]. Adsorption isotherms
and kinetics were quantified to study the adsorption mech-
anisms. ANN were utilized to predict the impact of adsor-
bent textural parameters and physicochemical properties
on the dye adsorption capacities. Experimental adsorption
capacities of these adsorbents were 34.18-179.26mg/g. The
pseudosecond order and Langmuir equations were suitable
to fit the experimental kinetics and isotherms, respectively.
BP-ANN was used with the next input variables: pH (1–
9), contact time (5–360min), initial dye concentration
(50–250mg/L), BET area (0.0698–0.7656m2/g), pore volume
(1:62 × 10−04 – 2:40 × 10−03 m3/g), pore diameter (4.21–
4.70 nm), nitrogen content (2.29–4.70%), carbon content
(45.78–60.21%), and hydrogen content (9.18–7.20%), while
the output variable was the adsorption capacities (0.65–
172.67mg/g). 135, 45, and 45 experimental data were utilized
for training, validation, and testing. LM algorithm was the
training method with a feed-forward BP-ANN with 3 layers.
A sensitivity analysis was performed via the Garson method
obtaining the next tendency for tested input variables: pH
ð22%Þ > nitrogen content of adsorbent ð16%Þ > adsorbate
concentration ð15%Þ > carbon content of adsorbent ð10%Þ.
The authors concluded that the adsorption capacities were
affected by the chemical composition and not by the surface
area of these adsorbents.

Bingöl et al. [121] carried out a comparison between the
multiple linear regression and the adaptive neuro-fuzzy
inference system (ANFIS) for the cadmium adsorption with
date palm seeds. This analysis considered 20 experiments to
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assess the effect of adsorbent mass (0.05–0.5 g), initial adsor-
bate concentration (5–100mg/L), and pH (2–6) on the
adsorption capacity (0.01-4.18mg/g). ANFIS was trained
with 50% of the experimental data, and the remaining 50%
was utilized in testing. Results showed R2 = 0:9843 for
ANFIS and R2 = 0:7594 for the multiple linear regression.
These authors concluded that the multiple linear regression
could not represent the nonlinearity of this adsorption pro-
cess, and ANFIS was a better modeling alternative.

The application of ANN and gene expression program-
ming (GEP) was studied by Çelekli et al. [122] in the pre-
diction of the adsorption of lanaset red G dye using low-
cost lentil straw. They applied a three-layer BP-ANN with
1 input layer consisting of 4 input neurons, namely, adsor-
bent particle size (125–500μm), pH (1–4), contact time (0–
360min), and adsorbate concentration (50–800mg/L), and
an output layer corresponding to the adsorption capacity
(30.57–271.12mg/g). The training algorithm was the quick
propagation method with the logistic sigmoid function
where the data were divided in training (784), validation
(184), and testing (184). The maximum adsorption capac-
ity of this adsorbent was 271.12mg/g. R2 values were
0.999, 0.989, and 0.989 for ANN, pseudosecond order,
and GEP models, respectively. Therefore, ANN was the
best to adjust the experimental data. Solution pH and ini-
tial dye concentration were the operating variables with a
significant impact on the adsorption of this organic
pollutant.

Khajeh and Hezaryan [120] employed a hybrid ant
colony optimization and ANN for the simulation and opti-
mization of manganese and cobalt adsorption on SiO2 nano-
particles. Feed-forward multilayer ANN was utilized where
pH (7.5–10.5), adsorbent dosage (0.05–0.015 g), contact time
(10–30min), and the concentration of 1-(2-pyridylazo)-2-
naphthol (0.5–1.5mol/L) were the input neurons, while the
removal of manganese and cobalt (29–99%) was the output
neuron. Tangent sigmoid and linear activation functions
were used. LM algorithm was employed in ANN training
where 57 experimental data were split into 64, 18, and 18%
for training, validation, and testing, respectively. The exper-
imental conditions optimized with the ant colony optimiza-
tion were well predicted with ANN thus obtaining R2 = 0:94
and 0.98 and a root mean square error of 0.0979 and 0.04 for
manganese and cobalt, respectively.

Multilayer feed-forward ANN and genetic algorithm
were applied to analyze the effect of several operating
parameters on the adsorption of eosin Y dye by Co2O3-acti-
vated carbon [123]. The experimental maximum adsorption
capacity was 555.56mg/g at 25 °C and pH 3. A three-layer
ANN with linear and tangent sigmoid functions were tested.
LM method was the training algorithm. Input neurons
included the adsorbent dosage (0.005 – 0.02 g), initial adsor-
bate concentration (30 – 80 mg/L), and contact time (0.5–
30min), while the removal percentage (%) was the output
neuron. 70% of experimental data was used for training,
15% for validation, and 15% for testing. The lowest values
of mean squared error (0.00015) and highest R2 (0.9991) of
ANN and genetic algorithm confirmed their suitability to
model this adsorption system.

Çoruh et al. [124] proposed the use of nonlinear auto-
regressive model with exogenous input (NARX) neural
network for predicting the zinc adsorption on activated
almond shell. This model was developed considering as
input variables the adsorbent dosage (0.125–4.0 g), pH
(2–10), particle size (0.23–2.0mm), and initial metal con-
centration (15–100mg/L), where the output layer consisted
of 2 neurons, i.e., adsorption capacity (mg/g) and removal
percentage. These authors indicated that NARX was a
dynamic recurrent model that converged faster and gener-
alized better than other ANN. NARX architecture was 4-
10-2 with a tangent sigmoid function and BP algorithm
with a gradient descent momentum optimization. The per-
formance of this model was tested thus obtaining a
mean squared error < 0:001, and numerical results showed
that NARX was successfully to model this batch adsorp-
tion system.

Mendoza-Castillo et al. [125] implemented a classical
BP-ANN for modeling the adsorption isotherms and kinet-
ics of four heavy metals (i.e., lead, cadmium zinc, and
nickel) on several lignocellulosic wastes (i.e., jacaranda fruit,
plum kernels, and nut shells). These authors discussed that
the heavy metal adsorption on lignocellulosic biomasses
was a complex process with highly nonlinear interactions
among the adsorbent characteristics, the physicochemical
properties of adsorbates, and the removal operating condi-
tions. The input data were the biomass specific surface area
(23–33m2/g), the biomass contents of cellulose (29.54–
50.16%), hemicellulose (21.46–25.87%), and lignin (26.58–
20.50%), the concentration of acidic groups (0.87–
1.14mmol/g), the molecular weight (58.69–207.20 g/mol),
hydrated ionic radii (4.01–3.30Å), electronegativity (1.60–
1.90), and hydration energy (-1485–-2106 kJ/mol) of tested
heavy metals, the initial metal concentration (40 and
100mg/L), or equilibrium metal concentration (20–
250mg/L) depending on kinetics or isotherms were ana-
lyzed. The experimental adsorption capacities (1-7mg/g)
of all heavy metals were considered as the ANN outputs.
Different structures of ANN were assessed in terms of input
variables where 70% of experimental data were used for
training, 15% for testing, and 15% for validation. Linear
and tangent sigmoid activation functions were used with
one hidden layer and 10 neurons to avoid model overfitting.
Results of the mean relative errors and R2 showed that this
ANN fitted properly the experimental data. The lignin con-
tent, acidic group amount, molecular weight, and hydration
energy of heavy metals were the main factors affecting the
adsorption process.

Nia et al. [123] reported the reactive orange 12 adsorp-
tion on gold nanoparticle-activated carbon and its modeling
with ANN using an imperialist competitive algorithm. Neu-
ral Network Toolbox of MATLAB R2011a was utilized in
this study. LM and BP algorithm were utilized. The input
variables for ANN modeling were the adsorbent amount,
contact time, and dye initial concentration, while the output
variable was the dye removal (%). 168 experimental data
were used for training and 72 for testing. ANN model with
9 hidden neurons showed R2 = 0:972 and a mean squared
error of 0.0007 for this adsorption system.
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A hybrid approach using principal component analysis
and ANN was proposed by Zeinali et al. [43] for modeling
the competitive adsorption of brilliant green and methylene
blue by graphite oxide nanoparticles. The experimental
results indicated that the dye adsorption was pH dependent
where the maximum adsorption capacities were 410 and
129.41mg/g for methylene blue and brilliant green, respec-
tively. Dye adsorption was inhibited by the presence of the
second dye molecule in the aqueous solution. Adsorption
data were divided in 100 for training and 40 for testing of
ANN model. Input variable was the equilibrium concentra-
tion (mg/L) of dye mixture, and the output variable was
concentrations (mg/L). Tangent sigmoid and linear activa-
tion functions with BP algorithm were used for ANN. The
optimal ANN architecture included 10 neurons with R2 >
0:9944 and mean squared error < 0:0674. The competitive
isotherms were fitted with the conventional equations and
the extended Freundlich model adjusted properly the data.
Finally, the principal component analysis and ANN were
effective for the simultaneous modeling of the adsorption
capacity of brilliant green and methylene blue in binary
solutions.

The ternary adsorption of three dyes (i.e., methylene
blue, crystal violet, and brilliant green) on MnO2-loaded
activated carbon was optimized and predicted with RSM
and ANN [126]. Specifically, CCD and a three-layer feed-
forward structure for RSM and ANN were used, respectively.
Different ANN training algorithms were tested where the
LM method was the most suitable. Hyperbolic tangent sig-
moid and linear functions were used for hidden and output
layers, respectively. 90 experimental data were divided into
70% for training, 15% for testing, and 15% for validating.
R2 and modeling errors were used to test the performance
of the ANN model. Results indicated that ANN outper-
formed RSM with R2 > 0:99.

A novel quantum BP multilayer ANN was implemented
by Bhattacharyya et al. [127] to predict the adsorption of
iron by calcareous soil. Specifically, the quantum computing
is based on the principles of quantum mechanics with oper-
ations like superposition and entanglement. Superposition
is the characteristic of dynamical equations, while the
entanglement is the property that produces a nonlocal
interaction among bipartite correlated states. 6-6-1 topology
was used for the multilayer ANN and the quantum-based
ANN. The input variables were the initial adsorbate con-
centration (1.5–15mg/L), adsorbent amount (0.01–0.11 g/
mL), pH (2-10), contact time (20–180min), stirring rate
(100–300 rpm), and temperature (303-330K), while the
output variable was the iron removal (39.56–97.34%). Tan-
gent and sigmoid activation functions were evaluated. Cal-
culations demonstrated that the architecture of quantum
ANN was superior to multilayer ANN for describing this
adsorption process. The adsorbent achieved a maximum
adsorption capacity of 2.475mg/g, and the removal process
depended on solution pH and temperature.

Darajeh et al. [128] carried out a comparative study
between wavelet ANN and RSM to optimize the adsorption
of copper, nickel, and lead onto a magnetic/talc nanocom-
posite. This ANN used wavelet functions as an alternative

to the conventional sigmoid activation function. The initial
adsorbate concentration (32–368mg/L), adsorbent dosage
(0.07–0.13 g), and adsorption time (13–147 s) were the input
variables, and the removal percentages (21.6–98.5%) of these
adsorbates were the output variables. This ANN was trained
with 13 data, and the incremental BP, batch BP, quick-prop-
agation, genetic algorithm, and LM were applied and
assessed to obtain the best network. The best architecture
was the incremental BP with 3-14-3 with R2 = 0:982 −
0:993. It was concluded that the initial adsorbate concentra-
tion was the most influential factor (35.16%) on the heavy
metal adsorption followed by the adsorbate dosage. This
alternative ANN was more suitable than RSM to predict
the adsorption process.

The adsorption of cadmium on rice straw was modeled
with ANFIS [129]. As the authors stated, this model
combined the advantages of both fuzzy systems and ANN.
The influence of initial cadmium concentration (10 and
100mg/L), solution pH (2 and 7), and adsorbent mass (0.1
and 0.5 g/L) was analyzed. These operating conditions were
the ANFIS input variables, and the output variable was the
removal efficiency (%). LM method was utilized for ANN
training where the data were distributed in 70% for training
and 30% for validation. Hyperbolic tangent activation func-
tion was used with an architecture of 3-6-1. ANFIS showed
that the initial cadmium concentration had the highest
impact on the adsorption followed by pH and adsorbent
dose. This model achieved R2 = 0:99 for training, 0.82 for
validation, and 0.97 for testing, respectively.

The individual and simultaneous ultrasonic-assisted
removal of malachite green and methylene blue dyes by a
magnetic ɤ-Fe2O3-loaded activated carbon were studied by
Asfaram et al. [130] including its modeling with RSM and
ANN. A feed-forward BP ANN was used with the next
input variables: pH (4.5-7.5), initial dye concentration (10-
20 mg/L), sonication time (3-5), and adsorbent mass
(0.01-0.02 g). Dye removal (%) was the output variable.
Hyperbolic tangent sigmoid function was used in hidden
layer, and linear activation function was applied in output
layer. 50 data were divided for training, testing, and valida-
tion (70/15/15 %) where LM was the training method. R2

and different error functions were applied to test the ANN
performance. Both RSM and ANN were capable of predict-
ing the dye adsorption with high values of R2 but ANN out-
performed RSM.

Esfandian et al. [8] tested ANN using the experimental
data of the removal of pesticide diazinon using acid-
treated zeolite and modified zeolite by Cu2O nanoparticles.
Experimental results indicated that these zeolites showed
adsorption capacities of 15.10 and 61.73mg/g, respectively.
Adsorption depended on pH and temperature where an
exothermic process was identified. Data modeling was per-
formed considering pH (3-8), initial adsorbate concentra-
tion (50–120mg/L), adsorbent dosage (0.05–0.35 g), and
contact time (10–105min) as input variables, and the target
variable was the removal efficiency (%). Experimental data
was divided in training (70%), validation (15%), and testing
(15%). In this study, the multilayer feed-forward ANN with
7 hidden layer neurons and sigmoid function was utilized.
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This ANN showed the lowest modeling errors and was suit-
able to fit the experimental data of this adsorption system.

Fawzy et al. [131] also proposed the use of ANFIS to
establish the impact of operational parameters on the nickel
and cadmium adsorption by Typha domingensis biomass.
Five variables were analyzed: pH (2–8), adsorbent dosage
(2.5–40 g/L), particle size (0.25–1.0mm), contact time (5–
150min), and metal concentration (25–300mg/L). The out-
put variable was the metal removal efficiency (%). Experi-
mental data showed that this biomass achieved a maximum
adsorption capacity of 4.51 and 28.49mg/g for nickel and
cadmium at pH 6 and 25 ± 3°C, respectively. ANFIS training
was carried out with a hybrid methodology consisting of a
combination of the least-squares method and the BP gradient
descent method where the Sugeno-type fuzzy inference sys-
tem was applied. Results indicated that the initial concentra-
tion and pH had a significant influence on the metal
adsorption. ANFIS was useful to identify the role of these
operational parameters.

Ghaedi et al. [132] studied the application of ANN-
particle swarm optimization approach for the modeling of
methyl orange removal on lead oxide nanoparticles-loaded
activated carbon. The input ANN variables were the contact
time, adsorbent dosage, and dye concentration, while the
output variable was the removal of methyl orange (%).
ANN training was performed with LM algorithm using 270
data and 90 data for testing. ANN-PSOmodeling with 6 neu-
rons in the hidden layer offered the best results (R2 = 0:9685).

Gomez-Gonzalez et al. [133] utilized ANN to model the
lead adsorption by coffee ground. Its performance was com-
pared with traditional equations as Langmuir and Freun-
dlich. Specifically, pattern search, simulated annealing, and
genetic algorithm were used to adjust the parameters of
Langmuir and Freundlich and then to compare with ANN.
Tangent sigmoid function was used with ANN (3 layers)
and LM training. Input neuron was the equilibrium concen-
tration, and the adsorption capacity (mg/g) was the output
neuron. The architecture used was 1-13-1 for pH 3 and 1-
4-1 for pH 4 and 5. Experimental data were distributed in
70% for training, 15% for validation, and 15% for testing
with a tangent sigmoid activation function. A maximum
adsorption capacity of 22.9mg/g was obtained with coffee
ground at pH 5 and 30 °C. These authors concluded that
pattern search was the best optimization method, and
ANN outperformed the conventional isotherm equations
used in adsorption.

Podstawczyk and Witek-Krowiak [134] studied the mal-
achite green adsorption using a novel composite. Specifi-
cally, the rapeseed meal was modified with magnetic
nanoparticles. Adsorption kinetic data were modeled with
the surface diffusion, pseudosecond order, and pseudofirst
order models as well as ANN. These authors proposed a
feed-forward ANN with 2-3-1 topology that was trained
with LM method. The input variables were the adsorption
time (0–270min) and pH (4–6), while the adsorption capac-
ity (0–40mg/g) was the output variable. ANN outperformed
the conventional kinetic equations showing R2 = 0:995. Dye
adsorption isotherm indicated a maximum adsorption
capacity of 836.2mg/g.

Ahmadi et al. [135] tested random forest, radial basis
function ANN and CCD polynomial model to simulate and
optimize the ultrasonic-assisted removal of brilliant green
with ZnS nanoparticles loaded on activated carbon. In partic-
ular, the random forest is based on decision trees and uses
voting for classification and averaging for regression and pre-
dictions. The effect of several operational conditions such as
adsorbent dosage (10–30mg), initial adsorbate concentration
(4–20mg/L), and sonication time (2–6min) on the removal
efficiency (15.4–100%) was evaluated. Experimental data
were divided in 70% for training and 30% for validation.
Results showed that these approaches were suitable for data
fitting. However, the random forest outperformed the other
models. The optimized adsorption conditions allowed to
achieve 98% of brilliant green removal.

Asfaram et al. [136] applied RSM, ANN, and radial basis
function neural network (RBFNN) to model and predict the
efficiency of Mn@CuS/ZnS nanocomposite-loaded activated
carbon to remove malachite green and methylene blue dyes
in binary adsorption systems assisted by ultrasound. The
effect of pH (4-8), initial dye concentration (5-25mg/L), son-
ication time (1-5min), and adsorbent mass (0.01-0.03 g) on
the dye removal percentage was tested. For ANN modeling,
32 experiments were used and randomly divided in 70%
(training), 15% (testing), and 15% (validating) where LM
algorithm was the best training method. Hyperbolic tangent
sigmoid and linear functions with a BP algorithm were
applied. For RBFNN, the Kernel stone algorithm was used
as training method with 70% of data for training and 30%
for testing. The results demonstrated the effectiveness of
these models to predict the binary adsorption with the next
tendency RBFNN > ANN > RSM with R2 values of 0.9984-
0.9997, 0.9787-0.9997, and 0.917-0.9850, respectively.

The removal of indigo carmine and safranin-O using
nanowires loaded on activated carbon was analyzed by Dast-
khoon et al. [137]. Models based on RSM, multilayer ANN,
and Doolittle factorization algorithm were tested for this
adsorption system. CCD experimental design of 4 factors
and 5 levels with a total of 30 experiments was employed.
ANN model consisted of 3 layer feed-forward with tangent
sigmoid and linear functions. Input neurons were the indigo
carmine concentration (4–16mg/L), safranin-O concentra-
tion (4–16mg/L), adsorbent mass (20–40mg), and sonica-
tion time (1–5min), while the neuron output was the
removal of these dyes (71.91–96.32%). Hyperbolic tangent
sigmoid was the activation function. Doolittle factorization
algorithm consisted of a factorized matrix that contained
all the experimental data. Modeling results indicated that
ANN offered a better precision in comparison to the other
models, although Doolittle factorization algorithm was fas-
ter. The sensitivity analysis showed that the sonication time
was the most important parameter. The maximum adsorp-
tion capacities were 29.09 and 37.85mg/g for indigo carmine
and safranin-O, respectively.

Parveen et al. [138] evaluated the support vector regres-
sion, multiple linear regression and ANN model to predict
the chromium adsorption on maize brain waste. The effect
of adsorption time (10-180min), initial adsorbate concen-
tration (200-300mg/L), pH (1.4–8.5), and temperature (20-
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40 °C) on the adsorption capacity (mg/g) was analyzed. For
support vector regression model, the Gaussian radial basis
function was selected as the kernel function. 124 data were
utilized: 80% for training and 20% for testing. ANN with a
topology 4-10-1 was used where the experimental data were
divided in 65% for training, 15% for validations, and 20%
for testing where the kernel function was used as activation
function. Results indicated that the support vector regression
model was the best to predict the chromium adsorption
capacity with the highest R2 (i.e., 0.9986), followed by ANN
(R2 = 0:9331) and multiple linear regression (R2 = 0:8955),
respectively.

Natural and modified clinoptilolite were tested in the
fluoride adsorption from aqueous solutions, and the model-
ing was performed via the hybridization of ANN with Lang-
muir and pseudosecond order equations [105]. Specifically,
ANN was employed to calculate the parameters of pseudose-
cond order and Langmuir equations, and the adsorption
capacities were determined with these parameters and the
corresponding adsorption equation. A feed-forward ANN
was used where the input layer contained the temperature,
time, and initial fluoride concentration for the adsorption
kinetics and initial fluoride concentration, pH, and tempera-
ture for the adsorption isotherms. The output layer corre-
sponded to the adjustable parameters of tested adsorption
kinetic and isotherm equations. Experimental data were
divided in 70% for training and 30% for validation and test-
ing where a logistic sigmoid activation function was also uti-
lized. This hybrid ANN model outperformed the classical
adsorption equations showing R2 from 0.95 to 0.99. These
authors also indicated that the classical equations failed to
predict the experimental data in some particular operating
conditions. The maximum experimental adsorption capaci-
ties of these zeolites were 5.3 and 12.4mg/g at 40 °C and
pH 6, respectively.

Yildiz [139] reported the use of ANN for the modeling of
zinc adsorption on peanut shells. Input variables were the
initial solution pH, initial zinc concentration, and adsorbent
dosage, and the output variable was the adsorbed amount of
zinc. ANN with an architecture 3-16-1 and BP were utilized
where Matlab® was the software employed in these calcula-
tions. 12, 4, and 4 data were used for training, testing, and
validation of ANN. Overall, this ANN showed satisfactory
results in adsorption data modeling.

Ghosal and Gupta [140] studied the application of ANN
and Pareto front analysis for fluoride removal using Al/oliv-
ine. The impact of solution pH, agitation rate, temperature,
contact time, initial fluoride concentration, and adsorbent
dosage was studied. ANN modeling was performed with
these input variables, and the output variables were the
adsorption capacity and removal efficiency. LM was selected
as the training algorithm. Finally, the results of ANN showed
R2 > 0:99 and mean square errors of 2.035 and 0.018 for the
removal efficiency and adsorption capacity, respectively.

Karri and Sahu [141] tested the use of palm kernel shell
derived-activated carbon for the zinc removal. RSM and par-
ticle swarm optimization-ANN were compared to obtain the
optimal removal. First, RSM and CCD were utilized to cor-
relate the zinc removal with the independent variables: pH

(2-8), adsorbent mass (2-20 g/L), initial adsorbate concentra-
tion (10-100mg/L), contact time (15-75min), and tempera-
ture (30-70 °C). Different training algorithms as LM-BP,
gradient descent, resilient BP, and gradient descent with
adaptive linear regression were assessed. A feed-forward
ANN and PSO were employed to obtain better estimations
of this adsorption system. Several learning methods and
topologies were analyzed, and the optimal ANN model was
obtained with LM-BP training and 5-6-1 topology. Particle
swarm optimization and ANN outperformed the RSM
approach.

Mendoza-Castillo et al. [28] studied and discussed the
advantages and limitations of ANN for the modeling of mul-
ticomponent adsorption of heavy metals on bone char.
Experimental isotherms of single, binary, ternary, and qua-
ternary solutions of copper, nickel, cadmium, and zinc were
quantified experimentally and employed in ANN modeling.
A multilayer feed-forward ANN was utilized with 141 data
divided in 70% for training, 20% for testing, and 10% for val-
idation. Input layer included the initial concentration of the
metals in the solution, while the equilibrium concentration
and adsorption capacity were analyzed as the output layer.
Experimental results showed that the heavy metal adsorp-
tion in single solutions followed the tendency: copper >
nickel > cadmium > zinc. The adsorption in multimetallic
systems showed an antagonistic effect caused by the pres-
ence of other coions. ANN showed a proper fit of multicom-
ponent systems with R2 ≥ 0:96. However, these results
depended on the activation function and selected output
variable. Specifically, the use of equilibrium concentration
was not recommended because this extensive variable can
generate wrong predictions (i.e., desorption behavior not
observed in the experimental data) for this adsorption sys-
tem. These authors concluded that intensive variables such
as the adsorption capacity must be utilized in ANN model-
ing with the aim of generating reliable predictions. Results
of this study also revealed that a proper ANN training and
architecture are fundamental for a reliable prediction of the
complex adsorption behavior in multicomponent systems.

Naderi et al. [142] applied a hybrid model consisting of
simulated annealing and ANN to optimize and predict the
crystal violet dye removal on centaurea stem. RSM was used
to find the best experimental conditions. The maximum
adsorption capacity was 476.19mg/g. ANN with 6-10-1
topology and tangent sigmoid and linear activation functions
was employed to model the adsorption data. This network
was trained with the feed-forward BP algorithm where 32
data were divided in 80% for training and 20% for validation
and testing. Input neurons were pH (5–13), temperature (20-
40 °C), contact time (5–25min), initial dye concentration
(20-300mg/L), and adsorbent dosage (3–15 mg), while the
dye removal (%) was the output variable. R2 of RSM
(0.9942) and simulated annealing-ANN (0.9968) was very
similar but the lowest prediction errors were obtained with
the approach based on ANN.

The ultrasonic-assisted binary adsorption of sunset yel-
low and sidulfine blue dyes on oxide nanoparticles loaded
on activated carbon was optimized and modeled with RSM
and ANN [143]. A total of 26 experiments were performed
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where the effects of sonication time (6-12min), adsorbent
dosage (0.016-0.030 g), pH (7), and initial dye concentration
(8-16mg/L) on the dye removal percentage were tested. 17
BP algorithms were evaluated with ANN where LM and
resilient methods were the best. The performance of these
models was statistically compared by considering R2, root
mean squared error, mean absolute error, and absolute aver-
age deviation. Results showed that ANN (R2 > 0:999) out-
performed RSM (R2 ~ 0:986).

The modeling of adsorption of salicylic acid on SiO2/
Al2O3 nanoparticles was performed by Arshadi et al. [144]
with ANN. In this study, the input variables were the initial
salicylic acid concentration (5–1000mg/L), initial solution
pH (1–12), contact time (0.25–30min), temperature (15–
80 °C), and adsorbent dosage (0.25–10). The output variable
was the adsorption capacity of salicylic acid (mg/g). ANN
architecture of 5-12-1 was utilized. Results indicated that
the ANN-based simulation of the adsorption of this com-
pound was satisfactory obtaining R2 = 0:9841.

Gadekar and Ahammed [145] tested a hybrid RSM and
ANN model in the prediction of blue 79 dye removal using
aluminum-based water treatment residuals. RSM was used
to identify the optimum experimental conditions to achieve
a high dye removal, and these data were employed to train
ANN. ANN with 4-4-1 topology, tangent sigmoid, and lin-
ear activation functions was used. For ANN training, LM,
gradient descent, and scaled conjugate BP algorithms were
utilized. 45 data were employed in training (60%), validation
(20%), and testing (20%). ANN input layer contained the
adsorbent dose (10–30 g/L), initial pH (3–5), initial dye con-
centration (25–75mg/L), and final pH (3.01–5.80). Dye
removal (31.2-52%) was the ANN output neuron. Results
indicated that ANN and RSM were a reliable alternative to
predict the removal of this dye.

Ghaedi et al. [146] modeled the simultaneous ultrasonic-
assisted ternary adsorption of rose bengal, safranin O, and
malachite green dyes on copper oxide nanoparticles sup-
ported on activated carbon. ANN with 3 layers was applied
where the initial dye concentrations (8-12mg/L), pH (6-8),
adsorbent dosage (0.05-0.025 g), and sonication time (2-
4min) were the input variables, while the output variable
was the dye removal percentage (18.2-92.67%). LM and BP
were employed as learning method. Hyperbolic tangent sig-
moid and linear functions were utilized at hidden and out-
put layers. High R2 of ANN (>0.99) revealed a satisfactory
fitting of tested experimental data.

The multicomponent adsorption of nitrobenzene, phe-
nol, and aniline from a ternary aqueous system using gran-
ulated activated carbon was studied by Jadhav and
Srivastava [147]. ANN was tested with BP and different acti-
vation functions. The equilibrium concentrations of nitro-
benzene (0.003–0.8mmol/L), aniline (0.01–1.6mmol/L),
and phenol (0.01–1.8mmol/L) were the input variables,
and the adsorption capacities were the output variable.
Adsorption data were divided in 50% for training and 50%
for testing. R2 and mean squared errors were used to verify
the model performance. ANN model accurately predicted
(R2 > 0:99) the ternary adsorption in comparison to other
models.

Similarly, Nasab et al. [148] proposed a hybrid model
consisting of genetic algorithm and ANN to predict the
adsorption of crystal violet on chitosan/nanodiopside. CCD
with 5 levels and 4 factors (30 experiments) was chosen to
obtain the optimal dye removal. The input variables for the
ANN model were pH (4.5–8.5), contact time (15–55min),
initial dye concentration (15-35mg/L), and adsorbent
amount (0.001–0.01 g), while the output variable was the
dye removal (%). Feed-forward ANN with hyperbolic
tangent sigmoid and linear activation functions and LM
algorithm were employed. 70, 15, and 15% of experimental
data were used in training, validation, and testing, respec-
tively. The maximum dye removal was 99.5%. Genetic
algorithm was applied to identify the optimal factors for
obtaining the maximum adsorption. Results of ANN-
genetic algorithm showed a higher R2 (0.9708) than that of
RSM (0.9652). Overall, both approaches provided accurate
dye removal percentages.

Sharafi et al. [149] reported the phenol adsorption from
aqueous solution using scoria stone modified with different
acids (e.g., nitric, acetic, and phosphoric). Modeling of
adsorption data was performed with RSM and ANN. Clonal
selection algorithm was used with ANN modeling where the
input variables were the phenol concentration, adsorbent
dosage, and contact time. The output variable was the phe-
nol removal. Overall, both RSM and ANN showed satisfac-
tory results in data correlation.

Sadeghizadeh et al. [150] used ANFIS to predict the lead
adsorption with a hydroxyapatite/chitosan nanocomposite.
This adsorbent showed a maximum adsorption capacity of
225mg/g, and this removal process was also endothermic.
Concerning the data modeling, the input variables were tem-
perature (25–55 °C), adsorption time (15–360min), shaker
velocity (80–400 rpm), adsorbent amount (0.05–1.5 g), initial
lead concentration (0–5000mg/L), pH (2–6), and hydroxy-
apatite concentration (15–75%). Output variable was the
lead adsorption capacity (mg/g) where 57 experimental data
were modeled (38 for training and 19 for testing). ANFIS
was able to predict the lead adsorption with R2 = 0:999.

Takdastan et al. [6] used ANN to model the cadmium
adsorption on modified oak waste. Kinetic and isotherms
were quantified to characterize the effect of adsorption oper-
ating conditions. Experimental results revealed that the
adsorption increased with temperature, initial concentra-
tion, adsorbent dosage, and pH. Isotherms were modeled
with Liu, Temkin, Redlich-Peterson, Freundlich, and Lang-
muir equations, while the kinetics were fitted to intraparticle
diffusion, pseudosecond and pseudo-first order, Elovich, and
Avrami fractional order equations. Raw adsorbent and the
NaOH-modified adsorbent had a maximum adsorption
capacity of 155.9 and 771.4mg/g, respectively. A feed-
forward BP-ANN was applied using pH (2–8), contact time
(5–240min), adsorbent dosage (0.1–10 g/L), cadmium initial
concentration (25–100mg/L), and temperature (10–40 °C)
in the input layer with a hidden layer of 8 neurons, and
the cadmium removal (16–92.4% for ROW and 26–99.5%
for AOW) was in the output ANN layer. 219 experimental
data were employed in training (153), validation (33), and
testing (33). R2 > 0:999 for ANN modeling where pH had
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the highest impact on cadmium removal, while the adsorp-
tion temperature showed a slight effect.

ANN were used to model the lead adsorption on rice
husks treated with HNO3 [151]. Specifically, a feed-
forward BP-ANN and LM training were used. The input
variables of ANN were the adsorbent dosage, initial lead
concentration, and contact time, and the output variable
was the lead adsorption capacity. These authors concluded
that the adsorption modeling with ANN was effective.

The adsorption of 6 heavy metals (arsenic, nickel, cad-
mium, lead, zinc, and copper) on 44 biochars obtained from
lignocellulosic feedstocks was modeled using a multilayer
ANN and random forest [152]. 353 adsorption data were
collected from literature, and 14 input variables were studied
and divided in 4 sets (adsorbent properties, initial heavy
metal concentration, operational conditions, and heavy
metal properties), while the removal efficiency was the out-
put variable. ANN architecture included 14 input neurons,
8-28 hidden neurons, and 1 output neuron with sigmoid
activation function. Results showed that random forest out-
performed in 28% the ANN performance with R2 = 0:973. It
was concluded that biochar characteristics were the most
important variables in heavy metal adsorption. Surface area
did not show a significant impact on the metal removal.

Afolabi et al. [47] reported the use of ANN to model the
pseudosecond order kinetics of the paracetamol adsorption
using orange peel-activated carbon. The experimental condi-
tions used as input variables were the initial paracetamol
concentration (10–50mg/L), contact time (0–330min), and
temperature (30–50 °C), and the output variable was the
pseudosecond order kinetics. ANN with different hidden
neurons, training algorithms, and activation functions were
used for the data modeling. A total of 495 data were used
(i.e., 330 for training and 165 for testing). Results showed
the impact of training algorithms and activation functions
on the ANN performance. The best ANN showed R2 ≅ 1.

The removal of lead, cadmium, nickel, and zinc using a
natural zeolite was modeled with ANN, multivariate nonlin-
ear regression, particle swarm optimization-adaptive neuro-
fuzzy inference system, genetic programming (GP), and the
least squares support-vector machine [10]. The input model-
ing variables were the initial and equilibrium solution pH, sil-
ica concentration, molecular weight, first ionization energy,
hydrated ionic radii, and electronegativity of tested metals.
The adsorption capacity of heavy metals of the zeolite was
the output variable. Results showed that ANN outperformed
traditional adsorption equations with R2 = 0:9948. Other
tested models also offered a satisfactory data correlation.

Gopinath et al. [29] proposed the use of ANN with a
homogeneous surface diffusion model to analyze the single,
binary, and ternary adsorption kinetics of acid orange, acid
blue, caffeine, acetaminophen, and benzotriazole on acti-
vated carbon. The mass transfer model considered bulk dif-
fusion in the fluid phase and surface diffusion via the
internal adsorbent structure. Note that these phenomena
are not considered by the conventional pseudosecond and
pseudofirst order models. Feed-forward ANN with 5 layers
was utilized. Input variables were the type of adsorbent (car-
bon labelled and active char products), pH (3–8), tempera-

ture (25–45 °C), initial concentration (100–300mg/L), and
ratio of mass/volume (0.8–2 g/L), while the output variable
was the removal efficiency (%). Tangent sigmoid and linear
activation functions were used. Datasets were distributed in
90, 5, and 5 for training, testing, and validation, respectively,
where ANN was trained with LM algorithm. R2 of 0.999,
0.986, and 0.993 were obtained using the mass transfer
model and ANN for single, binary, and ternary systems,
respectively. Results of this study proved the advantages of
ANN in the simulation of multicomponent adsorption
kinetics considering more complex models based on mass
transfer phenomena.

The treatment of water polluted with atenolol, cipro-
floxacin, and diazepam in presence of COD and ammonia
was performed in a sequencing batch reactor with a com-
posite adsorbent consisted of bentonite, zeolite, biochar,
and cockleshell mixed with Portland cement [11]. Contact
time (2-24 h) and initial pharmaceutical concentration (1-
5mg/L) were the input variables for ANN modeling, while
the output variable was the pharmaceutical removal (90.3%
for atenolol, 95.5% for ciprofloxacin, and 95.6% for diaze-
pam). ANN with three layers (2-5-1) was utilized where
the model performance using the mean squared sum errors
and R2. Data were divided in training (60%), validation
(20%), and testing (20%), and LM was used for ANN train-
ing. Overall, ANN showed R2 > 0:99 for the modeling of
this system.

The single and competitive adsorption of acid blue 9 and
allura red AC on chitosan-based hybrid hydrogels were
modeled with ANN [7]. Experimental data indicated that
acid blue 9 was better adsorbed than allura red on five adsor-
bents. In binary dye solutions, an antagonistic adsorption
was observed. Input layer of ANN with the initial concentra-
tion of both dyes (0-0.126mmol/L and 0–0.201mmol/L for
acid blue 9 and allura red AC, respectively), carbonaceous
mass percentage of adsorbent (0-10% g/g), adsorbent poros-
ity (0.724–0.880), and contact time (0–200min). All experi-
mental data were used for training (70%), validation (15%),
and testing (15%). Several topologies were investigated, and
the best ANN architecture was 5-10-10-10-2 with tangent
sigmoid activation function. R2 > 0:99 and root mean square
error of 0.119 thus indicating that ANN could be an effective
model to predict the adsorption of dyes by these hybrid
hydrogels.

Franco et al. [153] applied the ANN and ANFIS to ana-
lyze the indium adsorption on 10 adsorbents: commercial
activated carbon, multiwalled carbon nanotubes, chitin, chi-
tosan, and other lignocellulosic agroindustrial wastes. The
indium adsorption capacities of these materials ranged from
8.20 to 1000mg/g. Modeling was performed considering the
next input variables: specific surface area (0.85–200.40m2/g),
pH of point of zero charge (4.5–7), adsorbent dosage (0.05–
2.0 g/L), and contact time (5–120min). Output variable was
the indium adsorption capacity. 1200 data were employed
in the modeling where 70% for training and 30% for testing
and/or validation. ANFIS utilized the Sugeno type with 4 hid-
den layers, while ANN was used with a 4-4-1 topology. ANN
obtained R2 = 0:9913 and a mean squared error of 1 × 10–03.
On the other hand, ANFIS achieved R2 = 0:9998 and a mean
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squared error of 8:42 × 10–05. Both models were capable of
predicting the adsorption data.

Nayak and Pal [154] employed ANN for the prediction
of nile blue A dye adsorption with overripe Abelmoschus
esculentus seeds. CCD with 31 experiments was utilized to
optimize the dye adsorption where the effect of adsorbent
dosage (1–9 g/L), initial adsorbate concentration (140–
750mg/L), pH (2-9), and contact time (5–125min) was
tested. The maximum dye adsorption capacity was
71.78mg/g. ANN with 3 layers and BP algorithm was used.
ANN architecture included 4 input neurons (contact time,
pH, initial dye concentration, and adsorbent dosage), one
output neuron (adsorption capacity), and 12 hidden neu-
rons. 31 experiments (including 16 factorial points, 8 axial
points, and 7 replicates) were divided in training (70%), val-
idation (15%), and testing (15%), and tangent sigmoid acti-
vation function was used. R2 and modeling errors were the
metrics to analyze the ANN performance. Sensitivity analy-
sis demonstrated that pH and contact time were the most
important parameters in this adsorption system. This adsor-
bent showed a maximum adsorption capacity of 105mg/g
according to the experimental isotherms.

Thirunavukkarasu and Nithya [155] reported the
removal of acid orange 7 using CaO/CeO2 and its modeling
via RSM and ANN. The input variables for ANN were the
adsorption temperature (301–338K), contact time (0–
300min), initial concentration of acid orange 7 (10–50mg/
L), adsorbent dose (0.02–0.2 g), and initial solution pH (2–
12). The output variable was the dye removal (%). LM and
BP were used in ANN training where the best architecture
was 5-10-1. ANN results indicated a satisfactory modeling
with a root mean square error of 0.3020.

Qi et al. [156] employed RSM, ANN-genetic algorithm,
and ANN-particle swarm optimization to analyze the meth-
ylene blue adsorption on mesoporous rGO/Fe/Co nanohy-
brids. The effect of pH (2–6), temperature (20–40 °C),
contact time (3–15min), and initial dye concentration
(200–600mg/L) on the dye adsorption was analyzed using
a CCD consisting of 30 experiments. The experimental
results showed that the nanohybrids achieved a maximum
dye removal of 89.41%, while a maximum adsorption capac-
ity of 909.1mg/g was obtained from the Langmuir isotherm.
ANN with 3 layers, BP algorithm, and linear and tangent
sigmoid activation functions was utilized. For the case of
ANN-genetic algorithm, its parameters were population
size = 20, crossover rate = 0:8, number of generations = 100,
and mutation probability = 0:01. On the other hand, the
parameters of particle swarm optimization were maximum
inertia weight = 0:9, minimum inertia weight = 0:3, global
learning coefficient = 2, individual learning coefficient = 2,
maximum iteration = 50, and swarm size = 20. The absolute
errors between the experimental and predicted values were
2.88, 0.52, and 1.35 for CCD, ANN-particle swarm optimi-
zation, and ANN-genetic algorithm, respectively. Therefore,
ANN–particle swarm optimization was the best option for
this adsorption system.

In the study of Samadi-Maybodi and Nikou [79], ANN
was used to predict the sarafloxacin adsorption on magne-
tized metal-organic framework Fe3O4/MIL-101(Fe). RSM

with CCD of 30 experiments was used to optimize the
removal efficiency obtaining a maximum value of 88.26%.
A multilayer ANN with three layers was employed where
the input variables were the solution pH (3-11), initial con-
centration (10–50mg/L), adsorbent dosage (5–25mg), and
contact time (15–45min), while the removal percentage
(35.73–88.26%) was the output variable. LM was the training
method with sigmoid tangent hyperbolic function for input
to hidden layers and linear transfer function for hidden to
output layers, while ANN was assessed using R2 and mean
squared error. Overall, ANN was reliable for predicting the
sarafloxacin removal with R2 = 0:9861.

Netto et al. [157] applied ANFIS and ANN to model the
adsorption equilibrium of silver, cobalt, and copper on three
zeolites ZSM-5, ZHY, and Z4A. Adsorption experiments
were conducted at different temperatures. The input vari-
ables for the models were the Si/Al ratios of zeolites (50:
50, 71:29, 90:3), molecular weights of metal ions (58.93–
107.87 g/mol), temperature (298-328K), and initial adsor-
bate concentration (0–300mg/L), while the equilibrium
adsorption capacities of these metals were the output vari-
ables. ANN was tested with two training functions (LM-BP
and Bayesian regularization BP). The linear and hyperbolic
tangent sigmoid functions were utilized. For the case of
ANFIS, the Gaussian curve was the input function, and the
tune sugeno-type was used for training. 324 experimental
data were divided in 85% for training and 15% for testing.
The performance of ANN and ANFIS was analyzed with dif-
ferent statistical metrics. Overall, both models predicted
accurately the adsorption data where ANFIS was slightly
better. Z4A zeolite showed the best adsorption capacities
where silver was more adsorbed in comparison to cobalt
and copper.

Other recent studies on the ANN modeling of adsorp-
tion isotherms and kinetics include the fluoride adsorption
on rice husk-derived biochar modified with Fe or Zn [158],
the removal of brilliant green dye using mesoporous Pd–Fe
magnetic nanoparticles immobilized on reduced graphene
oxide [15], the adsorption of diazinon pesticide on a mag-
netic composite clay/graphene oxide/Fe3O4 [159], the
removal of crystal violet and methylene blue on magnetic
iron oxide nanoparticles loaded with cocoa pod carbon com-
posite [160], the arsenide removal employing mesoporous
CoFe2O4/graphene oxide nanocomposites [161], the adsorp-
tion of perfluorooctanoic acid on copper nanoparticles and
fluorine-modified graphene aerogel [17], the uptake of
dicamba (3,6-dichloro-2-methoxy benzoic acid) by MIL-
101(Cr) metal-organic framework [16], the phosphorous
adsorption on polyaluminum chloride water treatment
residuals [162], the use of iron doped-rice husk for the chro-
mium adsorption/reduction [163], the removal of methyl
orange dye by an activated carbon derived from Acalypha
indica leaves [164], the lead adsorption by a hydrochar
obtained from the KOH activated Crocus sativus petals
[165], the adsorption of the cefixime antibiotic using
magnetic composite beads of reduced graphene oxide-
chitosan [13], the use of graphene oxide-cyanuric acid nano-
composite for the lead adsorption [14], the arsenic removal
by an adsorbent consisting of iron oxide incorporated
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carbonaceous nanomaterial derived from waste molasses
[12], the fluoride adsorption by chemically activated carbon
prepared from industrial paper waste [18], the methylene
blue adsorption with polyvinyl alcohol/carboxymethyl
cellulose-based hydrogels [166], the modeling of adsorption
properties of biochar and resin for the removal of organic
compounds [167], and the removal of lead from waster with
a magnetic nanocomposite [168].

3.2. Breakthrough Curves. The dynamic adsorption experi-
ments provide important engineering information about
the adsorption process especially for real-scale applications.
Breakthrough curves are commonly represented via the ratio
of effluent adsorbate(s) concentration(s) and feed adsor-
bate(s) concentration(s) (i.e., Ci/C0,i) versus the operating
time or treated volume. These curves characterize the adsor-
bent performance at dynamic operating conditions. Overall,
the breakthrough curves of water pollutants can correspond
to symmetric and asymmetric profiles depending on the
process operating conditions (e.g., feed flow, residence time,
and column length) and the impact of mass transfer phe-
nomena. The modeling of asymmetrical breakthrough is
more challenging because the conventional models like
Thomas and Yang equations are limited because they were
developed to handle the ideal “S” profile expected and
desired for adsorption columns. Therefore, ANN have been
utilized to improve the correlation and prediction of break-
through curves of the adsorption of water pollutants. ANN
modeling of breakthrough curves has covered the adsorption
of fluoride, dyes, heavy metals, pesticides, organic com-
pounds, and phosphates with bone char, activated carbon,
graphene, biochar, zeolites, biomasses, composites, nanoma-
terials, and other adsorbents like agroindustrial wastes. Dif-
ferent operating conditions such as temperature (15–50 °C),
feed flow (0.5–30mL/min), and pH (2–9) have been tested
in the modeling of breakthrough curves in aqueous solutions
with one or more adsorbates. Details of several studies on
the ANN modeling of dynamic adsorption process for differ-
ent pollutants and adsorbents are shown in Tables 3 and 4. A
brief description of the main findings and representative
studies of the ANN-based breakthrough adsorption model-
ing are provided in this subsection.

Texier et al. [169] proposed the application of a multi-
layer ANN to model the breakthrough curves of the adsorp-
tion of lanthanide ions (La, Eu, and Yb) using an
immobilized Pseudomonas aeruginosa in polyacrylamide
gel and a fixed-bed adsorber. The effect of superficial liquid
velocity (0.76–2.29m/h), particle size (125–500μm), influent
concentration (2–6mM), and bed depth (250–400mm) on
the adsorption capacities was analyzed. Experimental break-
through curves showed that the maximum bed adsorption
capacities were 208μmol/g for La, 219μmol/g for Eu, and
192μmol/g for Yb in single aqueous solutions. ANN model-
ing was performed considering the next input variables: ini-
tial concentration (2–6mM), bed depth (250 and 330mm),
operating time (min), and the modified Reynolds number.
Ratio C/C0 was the output variable. BP algorithm was used
in ANN training where the activation function of the hidden
layer was the hyperbolic tangent. Training and validation

were carried out with 392 adsorption data, and 40 additional
data were used for testing the ANN performance. Root mean
square error was used as the statistical metric to analyze the
calculations with ANN. Results showed that the prediction
ability of ANN was satisfactory for the first zone of the break-
through curve, which corresponded to the zone before the
breakthrough point. These authors also concluded that it
should be necessary to extend the experimental column data-
base to improve the ANN performance with the objective of
predicting reliably all the zones of breakthrough curves.

Park et al. [170] modeled the breakthrough curves of
chromium adsorption using a column packed with brown
seaweed Ecklonia biomass. These authors discussed the
effect of the operating parameters (feed concentration, initial
concentration, pH, flow rate, and temperature) on the
adsorption of this priority water pollutant. The experimental
results showed that this biomass achieved an adsorption
capacity of 50.2mg/g by the 274th bed. Chromium adsorp-
tion reduced with pH decrements, and this removal process
was endothermic. ANN modeling was done with the next
input variables: influent chromium concentration (100–
200mg/L), biomass concentration (70–140 g/L), pH (2), flow
rate (10–20mL/min), temperature (25–45 °C), and the bed
number (i.e., flow rate operating time/total column volume).
Chromium concentration of treated fluid (0–200mg/L) was
utilized in the output ANN layer. 127 data were utilized
for obtaining the ANN model with hyperbolic tangent func-
tion in the hidden layers and a linear function in the output
layer. The performance of the feed-forward BP-ANN was
assessed. Root mean square errors ranged from 2.52 to
3.20, thus, indicating that ANN was successful to model
the breakthrough curves of chromium adsorption.

The adsorption breakthrough curves of 3 pesticides
(namely, atrazine, atrazine-desethyl, and triflusulfuron-
methyl) using 5 commercial activated carbon filters were
modeled by Faur et al. [171]. Experimental isotherms of
pesticides in aqueous solutions and natural waters were car-
ried out in single and competitive adsorption between pes-
ticide and natural organic matter. In a second stage, the
breakthrough curves of pesticide were quantified for solu-
tions with only one adsorbate. 15 variables were identified
and ranked, in order of decreasing relevance and impact
on the pesticide adsorption, by Gram-Schmidt orthogonali-
zation. A static feed-forward ANN was used with the next
input variables: micropore volume (%), mesopore volume
(cm3/g), solubility (g/L), molecular weight (g/mol), initial
concentration (mg/L), initial total organic carbon, flow
velocity (m/h), time (min), Freundlich constants K
(ðmg/gÞðL/mgÞ1/n), and 1/n and elimination of natural
organic matter (%). Also, a recurrent ANN was used with
the next inputs: solubility (g/L), molecular weight (g/mol),
initial concentration (mg/L), initial total organic carbon,
secondary micropore volume (%), ðC/C0Þðk−1ÞT , isotherm
constants like K (ðmg/gÞðL/mgÞ1/n) and 1/n. In both
models, the output variable was C/C0. 9749 data were
employed and distributed in 67% for training and model
selection and 33% for the final testing. ANN provided reli-
able predictions with R2 > 0:981 and a rootmean square
error < 0:035. However, the recurrent ANN outperformed

30 Adsorption Science & Technology



T
a
bl
e
3:
Su
m
m
ar
y
of

th
e
A
N
N

m
od

el
in
g
of

th
e
ad
so
rp
ti
on

of
w
at
er

po
llu

ta
nt
s
at

dy
na
m
ic
op

er
at
in
g
co
nd

it
io
ns
.

A
ds
or
be
nt

A
ds
or
ba
te

A
N
N

m
od

el
E
xp
er
im

en
t

D
at
a
us
ed

(T
ra
in
in
g-

T
es
ti
ng
-

V
al
id
at
io
n)

In
pu

t
va
ri
ab
le
s

O
ut
pu

t
va
ri
ab
le
s

P
ol
lu
ta
nt

re
m
ov
al

R
ef
er
en
ce

B
on

e
ch
ar

N
ap
ro
xe
n

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
al
go
ri
th
m

(2
-1
0-
1)

Fi
xe
d-
be
d

98
-2
1-
21

C
0,
m
,t

C
t/
C
0

3.
2
m
g/
g

[3
6]

B
on

e
ch
ar

A
ci
d
bl
ue

25
,a
ci
d

bl
ue

74
,r
ea
ct
iv
e

bl
ue

4

Fe
ed

fo
rw

ar
d
ne
tw
or
k

ba
ck

pr
op

ag
at
io
n

(5
-1
0-
3)

K
in
et
ic
,

eq
ui
lib

ri
um

an
d
fi
xe
d-
be
d

70
-1
5-
15

C
0,
pH

,t
,r
at
io

M
/W

,T
A
ds
or
pt
io
n

ca
pa
ci
ty

an
d

C
t/
C
0

A
B
25

34
.9
1
m
g/
g,

A
B
74

32
.1
7
m
g/
g,

R
B
4
27
.9
8
m
g/
g

[3
8]

M
on

tm
or
ill
on

it
e–
ir
on

ox
id
e
co
m
po

si
te

C
s1
+
an
d
Sr

2+

H
yb
ri
d
Fr
eu
nd

lic
h

is
ot
he
rm

-A
N
N

Le
ve
nb

er
g-
M
ar
qu

ar
dt

ba
ck

pr
op

ag
at
io
n

(4
-2
5-
1)

Fi
xe
d-
be
d

80
-0
-2
0

C
0,
t,
D
b,

F
C
t

~
20

m
g/
L

[4
2]

D
at
e
pa
lm

bi
oc
ha
r

O
rt
ho

-c
re
so
l
an
d

ph
en
ol

Fe
ed

fo
rw

ar
d
an
d

no
nl
in
ea
r
re
gr
es
si
on

ge
ne
ra
liz
ed

de
ca
y-
fu
nc
ti
on

Fi
xe
d-
be
d

–
C
0,
F,

D
b,

m
,t

R
es
id
ua
l

co
nc
en
tr
at
io
n

–
[4
9]

A
ct
iv
at
ed

ca
rb
on

,
A
m
be
rl
it
e
X
A
D
-2

R
ha
m
no

lip
id

B
ac
k
pr
op

ag
at
io
n

(4
-6
-1
)

Fi
xe
d-
be
d

66
.7
-0
-3
3.
3

F,
D
b,

C
0,
t

C
t/
C
0

–
[5
0]

M
ac
ro
po

ro
us

re
si
ns

So
la
ne
so
l

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
w
it
h
gr
ad
ie
nt

de
sc
en
t

Fi
xe
d-
be
d

33
1-
14
8-
0

C
0,
F,

t,
R
at
io

of
H
ei
gh
t/

D
ia
m
et
er
,b

ed
vo
id

vo
lu
m
e
fr
ac
ti
on

,p
ar
ti
cl
e

vo
id

vo
lu
m
e
fr
ac
ti
on

,P
s,

B
E
T
ar
ea

C
t

11
0
m
g/
m
L

[5
5]

B
on

e
ch
ar

Fl
uo

ri
de

H
yb
ri
d
m
od

el
ba
se
d
on

T
ho

m
as

eq
ua
ti
on

an
d

fe
ed

fo
rw

ar
d
A
N
N

(3
-1
8-
18
-1
)

Fi
xe
d-
be
d

19
2-
96
-9
6

C
0,
m
,t

C
t/
C
0

2.
52

m
g/
g

[5
7]

P
se
ud

om
on

as
ae
ru
gi
no

sa
im

m
ob
ili
ze
d
in

po
ly
ac
ry
la
m
id
e
ge
l

La
,E

u
an
d
Y
b

M
ul
ti
-L
ay
er

pe
rc
ep
tr
on

(6
-3
-1
)

Fi
xe
d-
be
d

39
2
da
ta

C
0,
D
b,

su
pe
rfi
ci
al
liq

ui
d

ve
lo
ci
ty

ba
se
d
on

em
pt
y

co
lu
m
n,

R
ey
no

ld
s
nu

m
be
r

C
t/
C
0

19
0
μm

ol
/g

[1
69
]

B
ro
w
n
se
aw

ee
d
E
ck
lo
ni
a

bi
om

as
s

C
r6
+

Fe
ed
-f
or
w
ar
d
ba
ck
-

pr
op

ag
at
io
n
(6
-5
-3
-1
)

Fi
xe
d-
be
d

12
7
da
ta

C
0,
m
,p

H
,D

b,
F,

T
C
t

50
.2
m
g/
g

[1
70
]

E
uc
al
yp
tu
s
ca
m
al
du

le
ns
is

ba
rk
s

B
as
ic
bl
ue

41
,

re
ac
ti
ve

bl
ac
k
5

M
ul
ti
-L
ay
er

P
er
ce
pt
ro
n

(3
-5
-1
)

Fi
xe
d-
be
d

–
V
ol
um

e
of

w
at
er
,D

b,
C
0

C
t/
C
0

B
B
41

16
2.
2
m
g/
g,

R
B
5
4.
8
m
g/
g

[1
72
]

P
os
id
on

ia
oc
ea
ni
ca

(L
.)

B
io
m
as
s

M
et
hy
le
ne

bl
ue

M
ul
ti
-L
ay
er

fe
ed

fo
rw

ar
d

(3
-1
5-
1)

Fi
xe
d-
be
d

60
8-
30
4-
30
4

F,
D
b,

t
C
t/
C
0

48
2.
6
m
g/
g

[1
73
]

H
yd
ra
te
d
fe
rr
ic
ox
id
e-

ba
se
d
na
no

co
m
po

si
te

P
ho

sp
ha
te

T
hr
ee
-l
ay
er

fe
ed
-f
or
w
ar
d

ba
ck
-p
ro
pa
ga
ti
on

(4
-(
6-
20
)-
1)

E
qu

ili
br
iu
m

an
d
fi
xe
d-
be
d

75
-2
5-
0

B
at
ch
:p

H
,C

0,
T
,m

,
D
yn
am

ic
:p

H
,C

0,
T
,F

,D
b

R
em

ov
al

effi
ci
en
cy
,C

t
99
.5
0%

[1
74
]

A
ct
iv
at
ed

ca
rb
on

Fi
xe
d-
be
d

10
6-
20
-2
0

D
b,

F,
C
0,
T

C
t/
C
0

–
[1
75
]

31Adsorption Science & Technology



T
a
bl
e
3:
C
on

ti
nu

ed
.

A
ds
or
be
nt

A
ds
or
ba
te

A
N
N

m
od

el
E
xp
er
im

en
t

D
at
a
us
ed

(T
ra
in
in
g-

T
es
ti
ng
-

V
al
id
at
io
n)

In
pu

t
va
ri
ab
le
s

O
ut
pu

t
va
ri
ab
le
s

P
ol
lu
ta
nt

re
m
ov
al

R
ef
er
en
ce

P
he
no

l,
2-

ch
lo
ro
ph

en
ol
,4
-

ni
tr
op

he
no

l

M
ul
ti
-l
ay
er
ed

fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n

A
lu
m
in
um

-d
op

ed
bo
ne

ch
ar

Fl
uo

ri
de

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
(3
-2
-1
)

Fi
xe
d-
be
d

47
4-
23
7-
23
7

F,
C
0,
t

C
t/
C
0

18
.5
m
g/
g

[1
76
]

N
an
ofi

be
rs
,r
ic
e
po

lis
h,

liv
in
g
ba
ci
llu

s,
w
al
nu

t
hu

sk
,b

la
ck

cu
m
in
,o

le
ife
ra

se
ed
,h

ya
ci
nt
h
ro
ot
,fl

ax
m
ea
l

an
d
ri
ce

st
ra
w

A
s3
+
,P

b2
+
,C

u2
+
,

R
ed

G

Fe
ed
-f
or
w
ar
d
ba
ck

pr
op

ag
at
io
n
pe
rc
ep
tr
on

(5
-(
6-
16
)-
1)

Fi
xe
d-
be
d

21
5-
0-
47

R
at
io

of
th
e
co
nt
ac
t
ti
m
e

to
th
e
m
ax
im

um
ti
m
e,
B
E
T

ar
ea
,r
ot
at
io
n
of

pa
ck
in
g,
ra
ti
o

of
in
er
ti
a
to

vi
sc
os
it
y,
m
as
s
ra
ti
o

of
po

llu
ta
nt
s
to

pa
ck
in
g
pe
r

un
it
vo
lu
m
e

N
or
m
al
iz
ed

ad
so
rp
ti
on

ca
pa
ci
ty

–
[1
79
]

P
on

ga
m
ia

Z
n2

+
M
ul
ti
la
ye
r
pe
rc
ep
tr
on

Le
ve
nb

er
g
M
ar
qu

ar
dt

ba
ck

pr
op

ag
at
io
n
(3
-7
-1
)

R
SM

(C
C
D
)

60
-2
0-
20

pH
,C

0,
T
,m

,F
,D

b
R
em

ov
al

pe
rc
en
ta
ge

66
.2
9
m
g/
g

[1
80
]

Ja
ck
fr
ui
t,
m
an
go

an
d

ru
bb
er

le
av
es

C
d2

+
H
yb
ri
d
ar
ti
fi
ci
al
ne
ur
al

ne
tw
or
k–

ge
ne
ti
c

al
go
ri
th
m

Fi
xe
d-
be
d

70
-2
0-
10

C
0,
F,

D
b,

t
R
em

ov
al

pe
rc
en
ta
ge

98
.2
6%

[1
81
]

A
ct
iv
at
ed

ca
rb
on

fr
om

le
av
es

of
C
al
ot
ro
pi
s

G
ig
an
te
a

M
et
hy
le
ne

bl
ue

A
N
FI
S

Fi
xe
d-
be
d

40
-2
0-
0

C
0,
D
b,

pH
,F

,T
R
em

ov
al

pe
rc
en
ta
ge

–
[1
82
]

So
di
um

do
de
cy
l
su
lfa
te

m
od

ifi
ed

gr
ap
he
ne

C
u2

+
,M

n2
+

A
rt
ifi
ci
al
ne
ur
al
ne
tw
or
k

(3
-5
-1
)

Fi
xe
d-
be
d

–
T
,p

H
,m

,C
0

R
em

ov
al

effi
ci
en
cy

C
u2

+
48
.8
3
m
g/
g,

M
n2

+
45
.6
2
m
g/
g

[1
83
]

A
ct
iv
at
ed

ca
rb
on

P
he
no

l,
to
lu
en
e,

be
nz
en
e,
ca
ff
ei
ne
,

ci
pr
ofl

ox
ac
in
,

fl
um

eq
ui
ne
,

di
cl
of
en
ac

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
(8
-4
5-
1)

Fi
xe
d-
be
d

47
61
-5
95
-

59
5

M
ol
ar

w
ei
gh
t,
C
0,
F,

D
b,

P
s,

su
rf
ac
e
ar
ea
,p

or
e
di
am

et
er
,t

C
t/
C
0

–
[1
84
]

N
aO

H
-m

od
ifi
ed

ri
ce

hu
sk

M
et
hy
le
ne

bl
ue

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
(3
-1
3-
1)

Fi
xe
d-
be
d

50
-2
5-
25

F,
D
b,

t
C
t

10
1.
32

m
g/
g

[2
09
]

Si
lv
er

na
no

pa
rt
ic
le
s

M
et
hy
le
ne

bl
ue

H
yb
ri
d
ar
ti
fi
ci
al
ne
ur
al

ne
tw
or
k–

pa
rt
ic
le
sw

ar
m

op
ti
m
iz
at
io
n
(6
-1
4-
1)

Fi
xe
d-
be
d

75
-1
3-
12

pH
,m

,s
am

pl
e
fl
ow

,s
am

pl
e

vo
lu
m
e,
el
ue
nt

vo
lu
m
e

an
d
el
ue
nt

fl
ow

R
em

ov
al

pe
rc
en
ta
ge

99
.4
0%

[2
11
]

Li
gh
t
ex
pa
nd

ed
cl
ay

ag
gr
eg
at
e
(L
E
C
A
)

A
ni
lin

e
Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n

(3
-(
2-
7)
-(
2-
5)
-2
)

Fi
xe
d-
be
d

29
8-
0-
12
2

t,
F,

in
fl
ue
nt

ch
em

ic
al

ox
yg
en

de
m
an
d

R
ea
ct
or

effi
ci
en
cy
,C

t
90
%

[2
92
]

Sh
el
ls
of

su
nfl

ow
er

C
u2

+
M
ul
ti
-l
ay
er
ed

ne
ur
al

ne
tw
or
k
ba
ck

pr
op

ag
at
io
n

(7
:7
-5
-1
:1
)

Fi
xe
d-
be
d

16
2-
81
-8
1

t,
C
0,
m
,p

H
,F

,D
b,

P
s

C
t/
C
0

25
.9
5
m
g/
g

[2
93
]

C
ry
st
al
vi
ol
et

Fi
xe
d-
be
d

50
-2
5-
25

F,
D
b,

t
C
t

77
.1
8
m
g/
g

[2
94
]

32 Adsorption Science & Technology



T
a
bl
e
3:
C
on

ti
nu

ed
.

A
ds
or
be
nt

A
ds
or
ba
te

A
N
N

m
od

el
E
xp
er
im

en
t

D
at
a
us
ed

(T
ra
in
in
g-

T
es
ti
ng
-

V
al
id
at
io
n)

In
pu

t
va
ri
ab
le
s

O
ut
pu

t
va
ri
ab
le
s

P
ol
lu
ta
nt

re
m
ov
al

R
ef
er
en
ce

C
it
ri
c-
ac
id
-m

od
ifi
ed

ri
ce

st
ra
w

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
(3
-1
7-
1)

Z
in
c
ox
id
e
na
no

pa
rt
ic
le
s–

ch
it
os
an

M
et
hy
lo

ra
ng
e

C
uc
ko
o
Se
ar
ch
–A

N
N

Le
ve
nb

er
g–
M
ar
qu

ar
dt

(5
-1
1-
1)

Fi
xe
d-
be
d

29
-0
-1
2

pH
,v
ol
um

e
of

el
ut
io
n

so
lv
en
t,
m
,F

,e
lu
ti
on

so
lv
en
t

R
em

ov
al

pe
rc
en
ta
ge

48
1
m
g/
g

[2
95
]

A
lg
in
at
e-
ba
se
d
co
m
po

si
te

N
i2
+

T
hr
ee
-l
ay
er
ed

fe
ed
-

fo
rw

ar
d
(4
-1
0-
2)

D
yn
am

ic
22
-5
-5

C
0,
m
,t
,p

H

A
ds
or
pt
io
n

ca
pa
ci
ty

an
d

R
em

ov
al

pe
rc
en
ta
ge

24
8.
7
m
g/
g

[2
96
]

H
ya
ci
nt
h
ro
ot

P
b2

+

M
ul
ti
-l
ay
er

pe
rc
ep
tr
on

w
it
h
Le
ve
nb

er
g–

M
ar
qu

ar
dt

ba
ck
-

pr
op

ag
at
io
n
(4
-(
2-
20
)-
1)

Fi
xe
d-
be
d

53
4
da
ta

F,
D
b,

t
C
t

10
.9
4
m
g/
g

[2
97
]

H
yd
ro
us

fe
rr
ic
ox
id
e

Fl
uo

ri
de

H
yb
ri
d
m
od

el
ba
se
d
on

T
ho

m
as

eq
ua
ti
on

-
A
N
N

Fi
xe
d-
be
d

–
C
0,
m
,t

C
t/
C
0

6.
71

m
g/
g

[2
98
]

Sh
el
ls
of

su
nfl

ow
er

C
o2

+
M
ul
ti
-l
ay
er
ed

fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n

(7
-5
-1
)

Fi
xe
d-
be
d

14
7-
74
-7
4

C
0,
t,
m
,p

H
,F

,D
b,

P
s

C
t/
C
0

11
.6
8
m
g/
g

[2
99
]

Si
lic
a-
m
ol
ec
ul
ar

im
pr
in
ti
ng

C
ho

le
st
er
ol

Fe
ed

fo
rw

ar
d
ba
ck
-

pr
op

ag
at
io
n
Le
ve
nb

er
g-

M
ar
qu

ar
dt

Fi
xe
d-
be
d

50
-2
5-
25

D
b,

t,
F

R
em

ov
al

effi
ci
en
cy

67
.8
0%

[3
00
]

B
ac
ill
us

su
bt
ili
s
be
ad
s

C
d2

+

T
w
o
la
ye
r
fe
ed

fo
rw

ar
d

ba
ck

pr
op

ag
at
io
n

co
m
bi
ne
d
w
it
h
th
e

T
ho

m
as

an
d
Y
an

m
od

el
s

(6
-(
2-
22
)-
1)

Fi
xe
d-
be
d

27
3-
59
-5
9

C
0,
t,
D
b,

m
,c
ol
um

n
in
te
rn
al

di
am

et
er

of
co
lu
m
n

C
t/
C
0

10
4.
2
m
g/
g

[3
01
]

A
ct
iv
at
ed

ca
rb
on

D
ye
s

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n

(4
-(
9-
12
-8
)-
1)

Fi
xe
d-
be
d

15
6-
0-
52

H
ig
h
gr
av
it
y
fa
ct
or
,l
iq
ui
d

R
ey
no

ld
s
nu

m
be
r,
ad
so
rp
ti
on

ti
m
e
to

th
e
m
ax
im

um
ad
so
rp
ti
on

ti
m
e
an
d
pa
ck
in
g
de
ns
it
y
to

liq
ui
d
co
nc
en
tr
at
io
n

N
or
m
al
iz
ed

ad
so
rp
ti
on

ca
pa
ci
ty

–
[3
02
]

Ig
ni
m
br
it
e

Fe
3+

M
ul
ti
-l
ay
er
ed

ba
ck

pr
op

ag
at
io
n
(6
-4
-1
)

Fi
xe
d-
be
d

29
3-
14
7-
14
7

C
0,
t,
m
,p

H
,F

,D
b,

P
s

C
t/
C
0

3.
65

m
g/
g

[3
03
]

Sp
he
ri
ca
ln

an
os
ca
le

ze
ro
va
le
nt

ir
on

on
ce
llu

lo
se

P
ho

sp
ha
te

M
ul
ti
la
ye
r
pe
rc
ep
tr
on

ba
ck

pr
op

ag
at
io
n

Fi
xe
d-
be
d

–
C
0,
pH

,t
,T

R
em

ov
al

pe
rc
en
ta
ge

56
1.
m
g/
g

[3
04
]

O
liv
e
st
on

e,
pi
ni
on

sh
el
l

C
u2

+
A
N
N

-F
uz
zy

In
fe
re
nc
e

Sy
st
em

Fi
xe
d-
be
d

–
F,

C
0,
D
b,

t
C
t/
C
0

O
liv
e
st
on

e
5.
06

m
g/
g,
pi
ni
on

sh
el
l

7.
14

m
g/
g

[3
05
]

N
om

en
cl
at
ur
e:
ce
nt
ra
lc
om

po
si
te

de
si
gn

(C
C
D
),
de
pt
h
of

be
d
(D

b)
,fl

ow
ra
te

(F
),
in
le
t
co
nc
en
tr
at
io
n
(C

0)
,m

as
s
of

be
d
(m

),
ou

tle
t
co
nc
en
tr
at
io
n
(C
t)
,a
nd

re
sp
on

se
su
rf
ac
e
m
et
ho

do
lo
gy

(R
SM

).

33Adsorption Science & Technology



T
a
bl
e
4:
Su
m
m
ar
y
of

th
e
A
N
N

m
od

el
in
g
of

th
e
m
ul
ti
co
m
po

ne
nt

ad
so
rp
ti
on

of
w
at
er

po
llu

ta
nt
s
at

dy
na
m
ic
op

er
at
in
g
co
nd

it
io
ns
.

A
ds
or
be
nt

A
ds
or
ba
te

A
N
N

m
od

el
E
xp
er
im

en
t

D
at
a
us
ed

(T
ra
in
in
g-

T
es
ti
ng
-

V
al
id
at
io
n)

In
pu

t
va
ri
ab
le
s

O
ut
pu

t
va
ri
ab
le
s

P
ol
lu
ta
nt
s
re
m
ov
al

R
ef
er
en
ce

B
io
ch
ar

C
d2

+
,N

i2
+
,Z

n2
+
,C

u2
+

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n,

fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
w
it
h
di
st
ri
bu

te
d

ti
m
e
de
la
y,
C
as
ca
de

fo
rw

ar
d,

E
lm

an

Fi
xe
d-
be
d

99
4-
21
3-

21
3

C
0,
t

C
t/
C
0

C
d2

+
5.
17

m
m
ol
/g
,N

i2
+

2.
01

m
m
ol
/g
,Z

n2
+

4.
38

m
m
ol
/g
,C

u2
+

5.
40

m
m
ol
/g

[4
1]

D
at
e
pa
lm

bi
oc
ha
r

O
rt
ho

-c
re
so
l

an
d
ph

en
ol

Fe
ed
-f
or
w
ar
d
an
d
no

nl
in
ea
r

re
gr
es
si
on

ge
ne
ra
liz
ed

de
ca
y-
fu
nc
ti
on

Fi
xe
d-
be
d

co
lu
m
n

–
C
0,
F,

D
b,

m
,t

R
es
id
ua
l

co
nc
en
tr
at
io
n

–
[4
9]

C
hi
to
sa
n/
ze
ol
it
e

B
is
ph

en
ol

A
,

ca
rb
am

az
ep
in
e,

ke
to
pr
of
en
,

to
na
lid

e

T
hr
ee
-l
ay
er

fe
ed
-f
or
w
ar
d

Le
ve
nb

er
g
M
ar
qu

ar
dt

(2
-4
-1
)

Fi
xe
d-
be
d,

R
SM

(C
C
D
)

60
-2
0-
20

C
0,
pH

A
ds
or
pt
io
n

ca
pa
ci
ty

B
is
ph

en
ol

A
37
.1
1
m
g/
g,

ca
rb
am

az
ep
in
e
41
.2
4

m
g/
g,
ke
to
pr
of
en

5.
92

m
g/
g,
to
na
lid

e
3.
61

m
g/
g

[7
7]

A
ct
iv
at
ed

ca
rb
on

P
es
ti
ci
de
s

St
at
ic
an
d
re
cu
rr
en
t
ne
ur
al

ne
tw
or
k
(1
3-
6-
1)
,(
8-
3-
1)

Fi
xe
d-
be
d

60
44
-0
-

37
05

So
lu
bi
lit
y,
m
ol
ec
ul
ar

w
ei
gh
t,

C
0,
in
it
ia
lt
ot
al
or
ga
ni
c

ca
rb
on

,F
re
un

dl
ic
h

pa
ra
m
et
er
s,
se
co
nd

ar
y

m
ic
ro
po

re
vo
lu
m
e,
C
/C
o

at
ti
m
e
(k
-1
) T

N
or
m
al
iz
ed

co
nc
en
tr
at
io
n

C
/C

0
at

ti
m
e
k T
.

16
0
m
g/
g

[1
71
]

B
on

e
ch
ar

C
u2

+
,Z

n2
+

Fe
ed
-f
or
w
ar
d
ne
tw
or
k
an
d

ba
ck
pr
op

ag
at
io
n
al
go
ri
th
m

Fi
xe
d-
be
d

50
4-
10
8-

10
8
si
ng
le
,

10
08
-2
16
-

21
6
bi
na
ry

M
et
al
pr
op

er
ti
es

(m
ol
ec
ul
ar

w
ei
gh
t,
el
ec
tr
on

eg
at
iv
it
y
an
d

io
ni
c
ra
di
us
),
C
0,
F,

D
b,

t
C
t/
C
0

C
u2

+
51
.8
m
g/
g,
Z
n2

+

41
.1
m
g/
g

[1
77
]

B
on

e
ch
ar

C
d2

+
,N

i2
+
,Z

n2
+

Fu
zz
y
A
N
N

Fi
xe
d-
be
d

70
-1
5-
15

C
0,
hy
dr
at
io
n
en
er
gy
,

el
ec
tr
on

eg
at
iv
it
y,
hy
dr
at
ed

io
ni
c
ra
di
i,
m
ol
ec
ul
ar

w
ei
gh
t

C
t/
C
0

–
[1
78
]

R
ic
e
br
an

A
s3
+
,A

s5
+

M
ul
ti
-l
ay
er

fe
ed
-f
or
w
ar
d

ba
ck
-p
ro
pa
ga
ti
on

,
Le
ve
nb

er
g-
M
ar
qu

ar
dt

ba
ck
-p
ro
pa
ga
ti
on

(4
-7
-5
-1
),

(3
-5
-7
-1
)

E
qu

ili
br
iu
m

an
d
fi
xe
d-

be
d,

R
SM

/C
C
D
)

41
-0
-1
0

B
at
ch
:p

H
,C

0,
T
,m

;
D
yn
am

ic
:D

b,
F,

C
0

A
ds
or
pt
io
n

ca
pa
ci
ty

A
s3
+
41
.5
5
μg
/g
,

A
5+

45
.6
0
μg
/g

[3
06
]

A
ni
on

ba
se

re
si
n

R
es
id
ua
lc
ol
or

in
pa
lm

oi
lm

ill
effl

ue
nt

W
av
el
et

A
N
N

(3
-6
-1
)

Fi
xe
d-
be
d

70
da
ta

pH
,F

,D
b

R
es
id
ua
lc
ol
or

w
as

th
e

ex
pe
ri
m
en
ta
l

re
sp
on

se

4.
63

m
g/
g

[3
07
]

N
om

en
cl
at
ur
e:
ce
nt
ra
lc
om

po
si
te

de
si
gn

(C
C
D
),
de
pt
h
of

be
d
(D

b)
,fl

ow
ra
te

(F
),
in
le
t
co
nc
en
tr
at
io
n
(C

0)
,m

as
s
of

be
d
(m

),
ou

tle
t
co
nc
en
tr
at
io
n
(C
t)
,a
nd

re
sp
on

se
su
rf
ac
e
m
et
ho

do
lo
gy

(R
SM

).

34 Adsorption Science & Technology



the static ANN particularly for the breakthrough and sat-
uration zones. Note that this behavior was expected since
the dynamic character of the adsorption process was con-
sidered in the recurrent ANN. Operating conditions and
pesticide properties exhibited a significant impact on this
adsorption process according to both ANN models, while
the adsorbent properties showed a low impact on the pes-
ticide removal.

Balci et al. [172] used the bed depth service time model
and multilayer ANN for the correlation of breakthrough
curves of the adsorption of reactive black 5 and basic blue
41 on Eucalyptus camaldulensis barks. The input variables
were the volume of water treated (0.04–32.4 L), bed depth
(5–20 cm), and dye concentration (100-400mg/L), while
the output variable was the final concentration of treated
water (mg/L). These authors proposed a multilayer percep-
tron ANN with 3-5-1 architecture to model this adsorption
process. This ANN was able to fit the adsorption data show-
ing low modeling errors. They concluded that ANN was
effective in the modeling, prediction, and estimation of
adsorption processes.

Cavas et al. [173] applied the Thomas equation and
ANN for modeling the breakthrough curves of methylene
blue adsorption via Posidonia oceanica dead leaves. These
authors used a multilayer feed-forward ANN with LM algo-
rithm. Data modeling was performed considering the next
input variables: bed height (3–9 cm), flow rate (3.64–
7.28mL/min), and time (min), while the effluent methylene
blue concentration was the output. 1215 experimental data
were used to train and test the performance of ANN with
a hyperbolic tangent sigmoid activation function. Results
showed that this ANN outperformed Thomas equation with
R2 = 0:998 and a mean square error lower than 0.001453.

Tovar-Gómez et al. [57] applied a hybrid neural network
model and conventional adsorption models to predict the
breakthrough curves of fluoride adsorption on two commer-
cial bone chars. This study introduced the development of a
hybrid approach based on ANN to improve the prediction of
breakthrough curves with traditional adsorption equations.
In particular, ANN was used to estimate the parameters of
Thomas equation, and these estimated parameters were used
to calculate the corresponding concentration profiles of
asymmetric breakthrough curves. Input data for the hybrid
ANN were the feed fluoride concentration (9–40mg/L), col-
umn operating time (12.7-178.0 h), and feed flow rate
(0.198–0.396 L/h). The output variable was the ratio C/C0
for fluoride adsorption. All experimental data of two bone
chars (186 and 198 for these bone chars) were used for train-
ing (75%) and 25% remaining data for verification and test-
ing. A feed-forward ANN with two hidden layers with 18
neurons was chosen. This study utilized the classical BP
algorithm for ANN training and the sigmoid activation
function. This hybrid Thomas-ANN model outperformed
the traditional Thomas equation showing the lowest mean
square error thus reflecting its better accuracy for correlating
and predicting the fluoride adsorption breakthrough curves.
This study opened the possibilities of improving the perfor-
mance of traditional breakthrough equations via their
hybridization with ANN.

A comparison between hybrid Freundlich and wave
propagation model with ANN was carried out to simulate
the breakthrough curves of cesium and strontium on
montmorillonite-iron oxide composite [42]. For ANN
modeling, the input variables were the column operating
time (min), feed concentration (2–50mg/L), bed height (5–
15 cm), and feed flow rate (0.5–8mL/min), while the output
variable was the outlet concentration. LM algorithm was
applied in ANN training. ANN showed root mean square
error values of 0.321–0.561 with R = 0:99 for the modeling
of breakthrough curves of cesium and strontium adsorption.

A three-layer feed-forward BP-ANN was applied to
model the adsorption of phosphate by hydrated ferric
oxide-based nanocomposite in a fixed bed column [174].
ANN with tangent sigmoid and linear activation functions
was able to predict the performance of this adsorption sys-
tem. Input variables were pH (3–9), sulfate concentration
(0.42–1.68mM), phosphate (0.042–0.084mM), and temper-
ature (15–35 °C). Removal efficiency (%) was the output var-
iable. A feed-forward BP-ANN with 3 layers, 20 neurons,
quasi-Newton training algorithm, and logistic sigmoid acti-
vation function was utilized. Overall, this surrogate model
was suitable to predict the breakthrough curves, but it failed
to follow the trend of some experimental data. The authors
concluded that high-quality experimental data were required
to obtain reliable predictions of dynamic adsorption
systems. However, the characteristics of the studied break-
through curves were well described by this ANN
(R2 = 0:9931).

Masomi et al. [175] studied the dynamic adsorption of 4-
nitrophenol, 2-chlorophenol, and phenol using activated
carbon obtained from pulp and paper mill sludge where
ANN was also applied to model this removal process. The
experimental variables were bed height (2, 4, and 6 cm
equivalent to 0.1, 0.2, and 0.3 g of activated carbon), feed
flow rate (2, 3.5, and 5mL/min), feed concentration (50–
400mg/L), and temperature (20, 3,5 and 50 °C). C/C0 from
the breakthrough curves was the output variable for ANN.
An architecture with several hidden layers and neurons
was employed. 106 data were utilized for training, 20 for
testing, and 20 for validation. The authors concluded that
the use of ANN satisfactorily predicted the dynamic adsorp-
tion of phenol compounds.

Rojas-Mayorga et al. [176] performed a comparative
study of the prediction of asymmetric breakthrough curves
of fluoride adsorption on a modified bone char. The tradi-
tional models of Yan and Thomas, mass transfer model,
and ANN were assessed. ANN input variables were the
operating time (8–24 h), fluoride feed concentration (10–
100mg/L), and flow rate (0.18–0.36 L/h), while the output
variable was the ratio of C/C0 for fluoride removal. 948
experimental data were divided in 50, 25, and 25% for
training, validation, and testing. Modeling results showed
that ANN outperformed other models to predict these
breakthrough curves. In fact, the model performance was
ANN >mass transfermodel > Thomas andYan equations.
Due to the asymmetry of fluoride breakthrough curves, the
Thomas and Yan equations showed the worst fitting. In
fact, the main advantage of ANN relied on its capabilities
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to model asymmetric breakthrough curves that commonly
occur during water treatment.

Reynel-Avila et al. [38] applied an ANN model to ana-
lyze and characterize the adsorption of anionic dyes (i.e.,
reactive blue 4, acid blue 74, and acid blue 25) using fixed-
bed columns packed with bone char. ANN modeling was
performed considered dye feed concentration (50–300mg/
L), column operating time (2-448min), molecular weight
of the dye (g/mol), adsorption temperature (30–40 °C), and
dye molecular dimensions (X = length, Y = width, Z =
depth, Å) as the input neurons. Output neuron was associ-
ated to the profile C/C0 of the breakthrough curves. Adsorp-
tion experimental data and BP algorithm were used for
training (70%), validation (15%), and testing (15%). Experi-
mental results indicated that the maximum adsorption
capacities of bone char were 34.91, 32.2, and 27.9mg/g for
acid blue 25, acid blue 74, and reactive blue 4 molecules,
respectively. ANN was reliable to correlate the adsorption
profile of packed bed columns with R2 > 0:99. In particular,
the molecular dimensions of dyes were relevant in the
dynamic adsorption with this adsorbent.

A stratified adsorption column packed with bone char
was used for the binary adsorption of cadmium and zinc
where the data modeling was performed with ANN [177].
Results showed that the use of this adsorber configuration
reduced the antagonistic effects present in binary metallic
systems and outperformed the conventional fixed-bed col-
umns. A feed-forward BP-ANN was applied to model the
binary breakthrough adsorption curves. Input variables were
the molecular weight (g/mol), electronegativity and hydrated
ionic radius (Å) of heavy metals, feed concentration of both
adsorbates (100-200mg/L), feed flow rate (4-6mL/min),
stratified bed length (5–15 g), and the column operating time
(0-750min), while the profiles C/C0 for both metals were the
output variables. ANN was able to fit the highly asymmetric
behavior of cadmium and zinc breakthrough curves. These
authors indicated that the breakthrough zone was challeng-
ing due to ANN showed the highest modeling errors. This
study highlighted a limitation of ANN to model asymmetric
breakthrough curves in multicomponent adsorption systems.

Gordillo et al. [178] reported the study of dynamic fuzzy
ANN for the simulation of a fixed bed adsorption of zinc,
nickel, and cadmium on bone char in single and bimetallic
systems. Experimental dynamic adsorption studies were per-
formed at pH 5 and 30 °C with feed concentrations of 2–
60mg/L in single and binary systems. Breakthrough curves
were employed to calculate several parameters of fixed-bed
columns. The modeling of concentration profiles via ANN
considered the next input variables: initial feed concentra-
tion, hydration energy, electronegativity, hydrated ionic
radii, and molecular weight of tested metals besides the col-
umn operating time. The output variables were the ratios
C/C0 for both metals. 3 hidden layers were employed in
the ANN architecture where 70% of experimental data were
utilized for training, 15% for validation, and 15% for testing.
Results of this study indicated that this ANN was effective to
represent the main characteristics and behavior of the break-
through curves in the heavy metal adsorption in single and
binary systems with antagonistic adsorption.

Liu et al. [179] performed the ANN modeling of a collec-
tion of experimental data reported in the literature for the
adsorption of copper, chromium, and methylene blue on dif-
ferent waste residues (i.e., rice husk, tamarind fruit shell, and
catla fish scales) using a rotating packed bed. Cascade-
forward BP-ANN, Elman BP-ANN, and feed-forward BP-
ANN were employed in this study. Experimental data were
divided in 82 and 18% for training and testing, respectively.
The input variables were the Reynolds number, ratio of con-
tact time to maximum contact time, average high gravity
factor, ratio of particle size to bed height, and ratio of feed
concentration to packing density. The ratio of adsorption
capacity at given time to the maximum adsorption capacity
was the output variable. Tangent hyperbolic sigmoid func-
tion and a topology with 5 neurons in the hidden layer were
utilized. Feed-forward BP-ANN showed the highest R2

values and better accuracy followed by Cascade-forward
BP-ANN and Elman BP-ANN.

Moreno-Pérez et al. [41] analyzed and discussed the
capabilities and limitations of feed-forward BP-ANN, feed-
forward BP-ANN with distributed time delay, cascade for-
ward ANN, and Elman ANN for the modeling of multicom-
ponent adsorption of heavy metals on bone char. The
dynamic adsorption of these heavy metals generated asym-
metric breakthrough curves, which were difficult to model
with traditional adsorption equations. Twenty breakthrough
curves were obtained for the adsorption of zinc, nickel,
copper, and cadmium and their combinations in multime-
tallic solutions. Initial concentration of column feed (0.52–
0.85mmol/L) and column operating time (0–8h) was the
input variables, while the concentration profiles C/C0 were
the output variable. 1420 experimental data were divided
into 70, 15, and 15% for training, validation, and testing of
these ANN models. LM, Bayesian regularization, and scaled
conjugate gradient were used and assessed as training
algorithms. Experimental results showed that the highest
adsorption capacities were obtained for copper in single
and multicomponent solutions, which were 2.15-
5.14mmol/g. An antagonistic adsorption was identified in
the solutions containing two or more heavy metals, which
competed for the binding sites of the adsorbent surface.
ANN performance depended on the hidden layers and their
neurons, activation function, and training algorithm. Cas-
cade forward ANN outperformed the other tested ANN
models. Note that feed-forward BP-ANN is the most used
ANN in adsorption literature but it could fail in the model-
ing of high asymmetric breakthrough curves of both single
and multicomponent systems.

Shanmugaprakash et al. [180] developed an ANN model
and optimized the zinc adsorption using Pongamia oil cake
in both batch and dynamic systems. CCD was employed to
improve both batch (31 experiments) and dynamic adsorp-
tion (20 experiments). A multilayer ANN with a topology
of 3-7-1 and tangent sigmoid and linear activation functions
was used. LM algorithm was the training method. For the
column modeling, the input variables were the feed flow rate
(5–15mL/min), feed concentration (50–500mg/L), and bed
height (4–12 cm), while the output variable was the adsorp-
tion capacity (13.58–66.29mg/g). This adsorbent had an
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adsorption capacity of 66.29mg/g, and ANN outperformed
RSM modeling with R values of 0.99 and 0.84, respectively.

Cadmium adsorption on green adsorbents (i.e., jackfruit,
mango and rubber leaves) in a down-flow fixed-bed columns
was studied by Nag et al. [181]. They used a hybrid model
ANN-genetic algorithm for the simulation and optimization
of this adsorption process where the influence of bed height,
flow rate, and initial concentration was determined. ANN
model used the type of adsorbent, bed height (3–9 cm), feed
flow rate (10–25mL/min), column operating time (5–
600min), and feed concentration (20–80mg/L) as input var-
iables. Cadmium percentage removal (6–99.95%) was the
output variable. 556 experimental data were divided in 70,
20, and 10% for training, validation, and testing, respec-
tively. ANN modeling was done with the hyperbolic tangent
activation function. Cadmium adsorption capacities
followed the next trend: jackfruit > mango > rubber. The
adsorption of this metal depended on the operating param-
eters thus achieving a maximum removal of 98.26% at opti-
mized conditions. This ANN model showed R2 ≥ 0:997.

Vakili et al. [77] applied ANN to model the removal of
organic micro-pollutants (tonalide, ketoprofen, carbamaze-
pine, and bisphenol) with fixed-bed columns packed with
chitosan/zeolite. 30 experiments from CCD were employed
to optimize the removal of these pollutants. A three-layer
feed-forward ANN with 2-4-1 topology was used where the
input variables were pH (4–8) and adsorbate concentration
(0.5–2mg/L), and the removal percentage (47.3–96.1%) was
the output variable. LM algorithm was used for ANN train-
ing with several activation function as linear, hyperbolic tan-
gent, and logistic sigmoid. This ANN showed a high accuracy
with R2 = 0:993 − 0:999 indicating that it can be used to opti-
mize the adsorption process of organic micropollutants.

Anbazhagan et al. [182] analyzed the application of
ANFIS and ANN for the methylene blue adsorption using
activated carbon from leaves of Calotropis Gigantea
(CGLAC) in a fixed–bed column. Different experimental
conditions were tested including the initial concentration
of methylene blue (100–500mg/L), bed height (1-2 cm),
solution pH (2-10), flow rate (3.5-6.5mL), and temperature
(303-333K). These operating conditions were also used as
inputs in the ANN analysis, while the methylene blue
removal was the output variable. 60 experimental data were
used for ANN where 40 were employed for training and 20
for prediction. Bed Depth Service Time, Yoon-Nelson, Wol-
broska, Adams-Bohar,t and Thomas models were also
employed to model this adsorption column. Results showed
that ANN was effective to predict the adsorption of methy-
lene blue in dynamic operating conditions.

Yusuf et al. [183] predicted the copper and manganese
adsorption on surfactant decorated graphene packed in a
down-flow bed column using ANN. Breakthrough curves
were determined to identify the saturation time and bed
adsorption capacity. The optimum adsorption capacities
were 48.83 and 45.62mg/g for copper and manganese,
respectively, at bed height of 3 cm. A multilayer feed-
forward ANN with hyperbolic tangent sigmoid function
and a quick propagation algorithm were used. ANN model
with 4-5-1 topology obtained R2 > 0:996 for both heavy

metals where the input variables were the adsorbent dosage
(0.01–0.1 g), initial concentration (25–250mg/L), tempera-
ture (25–50 °C), and pH (2–5), and the output variable was
the heavy metal removal percentage.

ANN modeling of the adsorption of phenolic com-
pounds on activated date palm biochar in a down-flow
fixed-bed column was studied by Dalhat et al. [49]. Break-
through curves at several operating conditions were deter-
mined and modeled with ANN and nonlinear regression
generalized decay function model. A two-layer feed-
forward ANN was used with next input data: bed height
(10–40 cm), adsorbent mass (21.8–87.0 g), feed initial con-
centration (10–100mg/L), feed flow rate (5–30mL/min),
and column operating time (0–720min). Output data were
the final effluent concentration or the ratio C/C0. Adsorp-
tion data was divided in 70% for training, 15% for validation,
and 15% for testing. LM algorithm was used for ANN train-
ing with hyperbolic tangent sigmoid activation function.
Adsorption capacities were 560.55 and 647.28mg/g for
orto-cresol and phenol, respectively. ANN outperformed
the nonlinear regression model to fit the dynamic adsorption
data. The use of final effluent concentration as output vari-
able offered better adjustments that those with C/C0. Sensi-
tivity analysis revealed that column operating time and
feed initial concentration were the most relevant parameters
for the adsorption of these pollutants.

Finally, the modeling of simultaneous dynamic adsorp-
tion of organic pollutants (e.g., phenol, toluene, benzene,
caffeine, ciprofloxacin, flumequine, and diclofenac) on acti-
vated carbon was carried out with ANN [184]. A set of 15
systems with 5951 data collected from published papers were
used to build the ANN model where the input variables were
the molar mass (78.11-361.37 g/mol), initial concentration
(0.00019-500mg/L), feed flow rate (0.05-456.62mL/min),
bed height (2-200 cm), adsorbent particle diameter (0.1-
2.4mm), specific surface area (678-2869m2/g), average pore
diameter (1.29-3015 nm), and operating time (0-57170min),
while the ratio C/C0 was the output variable. ANN was
implemented using BP algorithm for learning with logistic
sigmoid and hyperbolic tangent sigmoid as activation func-
tions for hidden and output layers, respectively. The data
were divided into 80% for learning, 10% for testing, and
10% for validation. ANN architecture was 8-45-1. Modeling
results demonstrated the applicability of ANN to predict
these dynamic adsorption systems with R = 0:997, root mean
square error of 0.029, and absolute deviation of 1.81%. The
sensitive analysis showed that all variables impacted the sys-
tem performance where the flow rate and specific surface
area were the most relevant.

4. Remarks on the Application of ANN for a
Reliable Adsorption Modeling

This literature review indicates that the application of ANN
for the modeling and correlation of adsorption data has been
successfully adopted as an alternative approach to overcome
the limitations of traditional models. Unfortunately, it has
been identified that several published papers contain com-
mon mistakes related to the ANN implementation thus
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affecting the quality and reliability of developed models and
the corresponding conclusions obtained from them in the
adsorption modeling.

First, the output variables used in ANN modeling must
be intensive variables especially for multicomponent adsorp-
tion systems. Several studies have reported the ANN training
with removal percentages or final adsorbate concentrations
as the output variables especially in batch adsorption sys-
tems. They are extensive variables whose values are directly
related to the adsorbent amount and, consequently, the
ANN-based models can learn incorrectly the system perfor-
mance thus providing wrong estimations. In particular,
Mendoza-Castillo et al. [28] have demonstrated that the
use of extensive variables in the ANN modeling of binary,
ternary, and quaternary antagonistic adsorption of heavy
metal ions generated inaccurate estimations of the adsorp-
tion isotherms where a desorption process was erroneously
predicted. It is convenient to indicate that the selection of
proper output variables for ANN training will be more rele-
vant for systems with multiple adsorbates that could display
simultaneously different multicomponent adsorption behav-
iors. One example is the simultaneous adsorption of heavy
metals and acid dyes where this system has the presence of
both synergistic and antagonistic adsorption. Overall, the
adsorption capacities should be the output variable used in
the ANN modeling especially for real fluids (e.g., industrial
effluents and groundwater) where several adsorbates could
interact with the adsorbent utilized as separation medium.

After defining the ANN architecture (i.e., the number of
neurons and layers), ANN training should be performed to
determine the corresponding model parameters. This train-
ing relies on the resolution of a parameter estimation prob-
lem that is characterized by the presence of multiple
solutions (i.e., a global optimization problem should be
resolved). Training methods used in ANN-based adsorption
modeling are commonly based on the application of local
optimization methods, which are effective to find a set of
the ANN parameters but their numerical performance is
strongly related to the initial estimates, and there is no guar-
antee to find the global optimal solution that corresponds to
the best data modeling. Under this scenario, the ANN
parameters obtained with conventional training methods
generally correspond to a local optimum of the objective
function used. The identification of the ANN parameters
via the traditional training algorithms (e.g., LM method)
should imply several calculations with different initial esti-
mates to identify the best solution based on results from
proper statistical metrics. Therefore, ANN training should
be recognized as a global optimization problem that requires
reliable optimizers for its resolution. Stochastic global opti-
mization methods like differential evolution, particle swarm
optimization, genetic algorithm, and other recent metaheur-
istics are an alternative to solve the parameter identification
of ANN training. Some studies on adsorption research have
applied these optimizers as already discussed in Section 3 of
this review. However, it is important to remark that the
ANN training based on these optimizers will imply a signif-
icant increment on the computer time of the adsorption data
modeling.

Another common failure identified in several adsorption
studies is the ANN training with a limited number of exper-
imental data. Overall, the increment of hidden layers and
their neurons will improve the ANN performance thus
reducing the modeling errors and increasing the determina-
tion coefficient (R2). But the number of ANN parameters to
be determined on the model training should be significantly
lower than the number of available experimental data with
the aim of obtaining a reliable ANN model from a statistical
point of view. With this in mind, the verification of ANN
overtraining is a relevant issue that should be also analyzed
in adsorption modeling. This step is usually not considered
in the papers reported on the ANN-based adsorption model-
ing. As a general rule, the authors should select the ANN
architecture with the least number of parameters that offered
the best data fitting and modeling errors. These remarks also
apply for hybrid models obtained from the combination of
adsorption equations and ANN.

5. Conclusions

Artificial neural networks have proved to be a useful numer-
ical approach to develop new models for the adsorption
analysis. Several studies have demonstrated that ANN-
based models can outperform the traditional equations for
the correlation and prediction of isotherms, kinetics, and,
in less extent, breakthrough curves. ANN-based models have
been widely applied in the analysis and modeling of adsorp-
tion systems with one water pollutant. There are few studies
on the multicomponent adsorption modeling with ANN,
which are mainly related to the removal of heavy metals,
dyes, and other few organic pollutants. Therefore, the appli-
cation of ANN-based models in the analysis and simulation
of multicomponent adsorption systems is an interesting
topic to be studied and analyzed in forthcoming papers.
Also, the studies related to the modeling of dynamic adsorp-
tion systems involving several adsorbates should be
increased to complement the characterization of the capabil-
ities and limitations of ANN in this configuration mode,
which is fundamental for industrial and real-life applica-
tions. Literature review also indicated that several authors
have reported the utilization of ANN with extensive vari-
ables (e.g., removal percentages or final adsorbate concentra-
tions) as the output variables thus generating models that
could predict wrongly the performance of adsorption system
under analysis. ANN training with intensive adsorption var-
iables is fundamental and mandatory to obtain reliable
model for the process design of fluids with multiple adsor-
bates. The overtraining and the application of global optimi-
zation methods in the training stage are key issues to be
analyzed and resolved during the adsorption data modeling
via ANN. Data sets with a suitable amount of experimental
information of adsorption systems are also required to
obtain reliable ANN models from a statistical perspective.
In this context, it is convenient to remark that the main
drawback of ANN-based models relies on their limitation
to provide a theoretical understanding of the physical and
chemical phenomena present to the systems to be modeled.
These models are considered as black-box and empirical
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approaches that are effective for both data correlation and
prediction and, consequently, they can be employed as sur-
rogate model when the theoretical models are not proper
to simulate the adsorption system at hand. The hybridiza-
tion of ANN with theoretical-based adsorption equations is
an option to face this drawback and to develop advanced
models. Overall, this artificial intelligence tool has a signifi-
cant potential to overcome the limitations of traditional
adsorption models for real fluids where several adsorbates
are present thus causing different removal behaviors.
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