
Research Article
Hyperspectral Image Classification Model Using Squeeze
and Excitation Network with Deep Learning

Rajendran T ,1 Prajoona Valsalan ,2 Amutharaj J ,3 Jenifer M ,4 Rinesh S ,5

Charlyn Pushpa Latha G ,6 and Anitha T 6

1Makeit Technologies (Center for Industrial Research), Coimbatore, Tamilnadu, India
2College of Engineering, Dhofar University, Salalah, Oman
3RajaRajeswari College of Engineering, Bangalore, Karnataka, India
4School of Engineering and Technology, Kebri Dehar University, Kebri Dehar, Ethiopia
5School of Engineering, Jigjiga University, Jigjiga, Ethiopia
6Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India

Correspondence should be addressed to Rajendran T; rajendranthavasimuthuphd@gmail.com, Rinesh S; rinesh@jju.edu.et, and
Charlyn Pushpa Latha G; charlynprishnalatha@gmail.com

Received 17 March 2022; Accepted 7 May 2022; Published 4 August 2022

Academic Editor: Arpit Bhardwaj

Copyright © 2022 Rajendran Tet al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the domain of remote sensing, the classi�cation of hyperspectral image (HSI) has become a popular topic. In general, the
complicated features of hyperspectral data cause the precise classi�cation di�cult for standard machine learning approaches.
Deep learning-based HSI classi�cation has lately received a lot of interest in the �eld of remote sensing and has shown promising
results. As opposed to conventional hand-crafted feature-based classi�cation approaches, deep learning can automatically learn
complicated features of HSIs with a greater number of hierarchical layers. Because HSI’s data structure is complicated, applying
deep learning to it is di�cult. �e primary objective of this research is to propose a deep feature extraction model for HSI
classi�cation. Deep networks can extricate features of spatial and spectral from HSI data simultaneously, which is advantageous
for increasing the performances of the proposed system.�e squeeze and excitation (SE) network is combined with convolutional
neural networks (SE-CNN) in this work to increase its performance in extracting features and classifying HSI. �e squeeze and
excitation block is designed to improve the representation quality of a CNN. �ree benchmark datasets are utilized in the
experiment to evaluate the proposed model: Pavia Centre, Pavia University, and Salinas. �e proposed model’s performance is
validated by a performance comparison with current deep transfer learning approaches such as VGG-16, Inception-v3, and
ResNet-50. In terms of accuracy on each class of datasets and overall accuracy, the proposed SE-CNN model outperforms the
compared models. �e proposed model achieved an overall accuracy of 96.05% for Pavia University, 98.94% for Pavia Centre
dataset, and 96.33% for Salinas dataset.

1. Introduction

With the advancements of remote sensing technology, the
use of hyperspectral imaging is becoming increasingly
common.�e precise classi�cations of ground features using
HSI is a signi�cant research topic that has received a lot of
interest. Because of its high resolving powers for good
spectra, hyperspectral images have a wide variety of uses in
the environmental, medical, defense, and mining. �e col-
lection of HSI is dependent on imaging spectrometer

deployed in various locations. In the 1980s, the imaging
spectrum was created. It was utilized to image electro-
magnetic waves in the ultraviolet, near-infrared, visible, and
midinfrared ranges. �e imaging spectrometer can photo-
graph in a variety of continuous and extremely narrow band,
allowing every pixel to obtain a completely emitted or re-
¡ected spectrum in the wavelength range of interest. As a
result, hyperspectral images feature great spectral resolution,
multiple bands, and a lot of information. Image corrections,
noise reductions, transformations, dimensionality
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reductions, and classification are themost commonmethods
for processing hyperspectral remote sensing images. As
opposed to conventional images, hyperspectral images in-
clude a wealth of spectral data. +ese spectral data could
represent the physical structures and chemical structures of
the target objects, which supports in classification of image
[1].

+e purpose of computer remote sensing image classi-
fication was to detect and classify data from the environment
and surface of Earth on remote sensing image in order for
determining the feature data matching to the image data and
extricate the valuable feature data. +e specific use of au-
tomated pattern identification technology in the remote
sensing domain is computer classification of remote sensing
images.+e count of imaging bands in HSI was more than in
multispectral image, and the capacity to resolve objects was
solid, that is, the higher the spectral resolutions. +us, be-
cause of the higher-dimensional features of HSI, as well as
the similarity among the mixed pixels and the spectra, the
HSI classification methodology still confronts a number of
difficulties; the most significant of those are listed below.

(i) Hyperspectral image data have a higher dimen-
sionality. Because HSIs are produced by combining
values of spectral reflectance acquired by space-
borne or airborne imaging spectrometer in hun-
dreds of bands, the related spectrum data dimension
of HSIs can likewise be hundreds of dimensions.

(ii) Variability of spectral information in space. +e
HSIs are affected by atmospheric conditions,
structures, and distributions of ground features,
sensors, and the surrounding environments.

(iii) +e interference of noise and background vari-
ables during the capture of hyperspectral images
has a significant impact on the quality of the
obtained data. +e classification accuracy of
hyperspectral images is directly affected by the
quality of image [1].

Deep neural network’s work is based on extracting
features from raw input data via processing layer-by-layer of
input data. Although the use of spectral characteristics in
isolation can be beneficial, it might not be sufficient in many
instances. When two diverse items have the similar spectral
signatures, their forms and textures can be used to distin-
guish them. As a result, spectral and spatial data could be
merged to enhance HSI classification. Deep networks could
extricate spatial and spectral characteristics fromHSI data at
the same time. However, traditional deep neural networks
have significant limitations. +ey need a large number of
training samples and a significant amount of work to tune
hyperparameters [2].

Deep learning networks are classified into many types.
+e convolutional neural networks is one of the most well-
known networks for extracting and classifying HSI features
[3].+e squeeze and excitation (SE) network was combined
with CNN (SE-CNN) in this work to increase its perfor-
mance in extracting features and classifying HSI images.
+e squeeze and excitation block is designed to improve the

representation quality of a convolutional neural network.
In the experiment, three HSI benchmark datasets were
utilized for evaluating the proposed model. +e proposed
model is verified based on the obtained performance by
comparing it to the existing approaches used for HSI
classification.

2. Related Works

Bandar and Munif proposed the deep hypernetwork ar-
chitecture capable of learning the deep features of HSIs and
provided fine performances without the need for dataset
augmentation or extensive preprocessing. +e primary aim
of this HSI classification algorithm was to anticipate the
type of land cover by allocating and labelling separate pixels
with multiple frequency bands into individual classes. By
integrating and merging the basic principles of both In-
ception and ResNet into a single model, a novel CNN
model was presented that used both the deep residual
network and inception models. +e performance was not
improved over conventional techniques because of the
minimal volume of labelled training sample [4]. Madhu-
mitha et al. proposed the HSI classification model using an
edge detection, optimization, dimensionality reduction,
and classification procedures. +e image denoising with
filter functionality and edge identification method were
used to implement the edge detection procedure. +e
optimization procedure was carried out by first producing
the initial populations, then computing fitness, Cauchy
mutation, crossover, and lastly determining the decreasing
rate with a value of optimal threshold. +e input HSI with
L-bands was segmented utilizing auto encoder after the
denoising was removed, and dimensionality reduction was
performed, yielding the output images with M compo-
nents. CNN was used to classify the HSI, and the M
components were categorized using two stages of convo-
lution and max-pooling. +e dimensionality reduction
technique in HSI improved overall performance while
reducing computing complexity [5].

Xin et al. presented the multisource deep transfer
learning framework (MS-DTL). +is multisource transfer
learning approach was utilized to classify HSIs in order to get
more information and ease the problem of limited samples.
+e ResNet-like basic model was created to address the
needs of many sources and a single target. A loss that in-
cluded the cross-entropy losses from each source HSI was
used to train this model. +e shallow layers were moved, the
number of classes was raised by utilizing various sources to
extract global features, and this method’s performance was
enhanced [6]. Yahya et al. used CNNs to automatically
detect haploid and diploid maize seeds using transfer
learning-based technique. For this work, AlexNet, VGGNet,
GoogLeNet, and ResNet were used particularly. In contrast,
the VGG-19 outperformed the others [7]. Fuding et al.
proposed a spectral–spatial HSI classification technique
based on superpixel pooling CNN and transfer learning
(SP–CNN). +e model was divided into three phases. +e
first section comprised of a convolution and pooling op-
eration, which was a down-sampling method used to extract
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the key spectral features of an HSI.+e next section used up-
sampling and super-pixel pooling to investigate an HSI’s
spatial structure information. Finally, the hyperspectral data
were loaded into a fully connected neural network using
each superpixel as a basic input rather than a pixel [8].
Yakoub et al. proposed a classification of remote sensing
scene model based on CNN and other deep transfer learning
algorithms.+e detailed performance analysis was discussed
in [9].

For extracting meaningful features of spectral–spatial
from HSI images, Yushi et al. presented the 3-D CNN-based
features extraction approach with combined regularization.
A regularized deep features extraction technique for HSI
classification using CNN was presented. +is model
extracted deep features from HSIs using multiple con-
volutional and pooling layers that were discriminant,
nonlinear, and invariant. +ese features were beneficial for
classification of image and identification of target. +is
model has an overfitting problem [10].

Shengjie et al. presented MDL4OW, a multitask deep
learning technique for HSI classification with unknown
classes, in which a multitask network was used to do
classification and reconstruction at the same time. +e
classification supplied the likelihood of known classes, but
the reconstruction estimated the unknown value.
According to the findings, the integrity of a classification
system was significant in HSI classification with unknown
classes [11]. To solve the overfitting problem, Haokui et al.
presented AINet, a 3D asymmetric inception network for
HSI classification. Initially, AINet utilized a lightweight 3D
CNN that was nevertheless highly deep, allowing deep
learning to be used to extract representative features and
ease the difficulty caused by the restricted annotation
datasets. Second, while assessing the HSI’s property,
spectral signatures were prioritized above geographical
contexts. Furthermore, a data fusion transfer learning
approach was used to improve model initialization and
reduce training time [12].

Xiangyong et al. presented an active deep learning
technique for HSI classification that combined active and
deep learning into a single framework. First, the CNN was
trained with a small quantity of labelled pixels. Following
that, the most informative pixels from the candidate pool
were actively chosen for labelling. +e CNN was then fine-
tuned using the newly generated training set, which included
the newly labelled pixels. Finally, for improving the classi-
fication performance, the Markov random field was used to
enforce class label smoothness [13]. From the review of
related works, it can be seen that most of the researches used
the deep learning techniques for the classification of HSI.
Deep learning proved as the best approach for the classi-
fication, especially CNN when it comes to image processing.
Although, the CNN has some drawbacks of degraded per-
formance due to the overfitting and underfitting issues. To
solve these issues, the deep transfer learning techniques can
be used, which is a pretrained model that supports to
overcome these issues and improves the performance of the
model in classification. Different DTL techniques have been
proposed earlier, from that the squeeze and excitation

network was a recently proposed model that is used in this
proposed research with the CNN for the classification of
HSI. +e SE-Net has an improved performance comparing
to the other DTL techniques like Inception, VGG, ResNet,
ResNext, and so on.

3. Proposed Methodology

+eHSI classification model developed in this work is based
on a feature extraction method that combines a squeeze and
excitation network with a deep convolutional neural net-
work. Deep learning is difficult to apply to HSI because HSI’s
data structure is complicated. In general, the neural network
has a strong representation capability and a larger volume of
training samples. +e primary objective of this work was to
create a deep feature extraction model for HSI classification.
Deep networks are capable of extracting spatial and spectral
characteristics from HSI data simultaneously, which is ad-
vantageous for increasing the performances of the presented
model. +e SE network was combined with CNN (SE-CNN)
in this research to increase its performance in extracting
features and classifying HSI.

3.1. Convolutional Neural Network. CNN is a feed forward
neural network with multiple convolutions and pooling
operations, which has the benefits of automated spatial data
learning and overfitting issue management. It performs
admirably in image recognition, tracking target, and natural
language processing. In this work, the CNN method was
used for extracting deep HSI classification features. +e
CNN training method consists mostly of forward propa-
gations and backward parameter updates, and every network
layer was described in detail in the following sections.

3.1.1. Forward Propagation Process. CNN convolves input
image to the C-layer by using varying widths of the con-
volution kernel. After applying the bias, the features of
abstract textures of the input image were extricated using the
activation function to accomplish feature improvement.
Convolution could be represented as follows:

x
l
j � f 􏽘

i∈Mj

x
l−1
i ∗w

l
ij + b

l
j

⎛⎜⎝ ⎞⎟⎠. (1)

Here, xl
i was jth factor of lth layer; Mj was jth convo-

lution segment of l-1 layered feature maps; xl−1
i was the

factor in that; wl
ij was the lth layer’s weight matrix; bl

j was the
bias; f was commonly the function of nonlinear ReLU ac-
tivations, and it was represented by,

f(x) � max(0, x). (2)

3.1.2. Pooling Layer. +e pooling layer, otherwise called as
down-sampling layer, was often found beyond the C-layer. It
could reduce unnecessary features through employing a
down-sampling mechanism for avoiding additional over
fitting and parameters of lower networks. Assuming that l-
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1th layer was C-layer, the following lth P-layer may be
written like,

x
l
j � f βl

j ∗down x
l−1
j􏼐 􏼑 + b

l
j􏼐 􏼑, (3)

where βl
j indicates the weight and bl

j indicates the bias of the
lth layer’s jth feature map, correspondingly. +e down (∗)
symbol represents the function of down-sampling, which
usually includes mean, max, and stochastic pooling. To
decrease the dimension of output feature maps, the max-
pooling with shift-invariances was utilized.

3.1.3. FC Layer. +e last FC layer can acquire the output
class or the input sample probability after numerous al-
ternative convolution and pooling processes. All neuron
nodes in the kth layer are linked to every output node in the
upper k-1th layer in the FC-layer, and its mathematical
expression is as follows:

y
k

� f w
k
x

k− 1
+ b

k
􏼐 􏼑, (4)

where k denotes the network layer’s numerical order; yk was
the FC-layer outcome; xk− 1 was the unfolded single di-
mension eigen vector; wk was the weighted coefficient; bk

indicates the bias; and f (∗), activation functions of the last
layer in a FC-layer was Softmax functions for classifications
operations. Furthermore, after every C-layer or FC-layer, a
dropout function called as a regularization approach could
be applied to improve the generalization capabilities of
proposed CNN approach and minimize overfitting while
training the approach [14].

3.1.4. Back Propagation for Parameters Update. +e input
samples target could be obtained after forward propagation.
+e network parameters are then returned to their original
state by reducing the loss functions of the actual and target
outputs. HSI classification may be viewed as an image
multiclassification process in this work. As a result, the
categorical cross-entropy loss function was used, which can
be expressed as:

E �
1
n

􏽘

n

k�1
yk ln tk + 1 − yk( 􏼁ln 1 − tk( 􏼁􏼂 􏼃, (5)

where n was the sample amount, yk was the actual target,
and tk was the kth sample’s predictive value, accordingly.
+e gradient descent approach could minimize the loss
function during model training. +e CNN model’s
adaptive parameters w and b are gradually updated by
computing the partial derivatives of (5). +e following are
the expressions:

w
l
ij � w

l
ij − α

zE

zw
l
ij

, (6)

b
l
j � b

l
j − α

zE

zb
l
j

. (7)

In (6) and (7), α is the learning rate that controls the
parameter updates stride. A suitable αmay increase network
convergence speed and prevent the network from declining
into the local optimal solution. As a result, the time-based
learning rate schedule used in this study is as follows:

α � α∗
1

(1 + decay ∗ epoch)
, (8)

where decay represents the reduction in learning value from
the earlier or prior epoch through the particular fixed values;
and epoch was present training epoch. At last, the afore-
mentioned back-propagation method completes the whole
CNN’s training process [15].

3.2. Channel Domain Attention. To improve the model’s
feature extraction performance and therefore to achieve
precise classification, the channel attention in Figure 1,
SENet, will be used in this work for recalibrating deep
featured maps produced by CNNs. SENet could learn global
data automatically and apply varying weight ratios for fil-
tering channels to choose target on key features and elim-
inate unnecessary data using the squeeze and excitation
procedures. A series of convolutional transformations Ftr
can convert the provided image X, as input with the di-
mension of (W′, H′, C′), it could be mapped to the feature
map U while U ∈RH×W×C. +e output U� [u1, u2, . . ., uC]
may be written as follows:

uc � vc ∗X � 􏽘
C′

s�1
v

s
C ∗X

s
. (9)

where ∗ represents the convolution operation; V �

[v1, v2 . . . vC] denotes the learnt convolution kernels; and
vC � [v1c , v2C . . . vc

C] is the Cth 2D spatial filter kernels; X �

[x1, x2, ..., xC′] and uc ∈ RH×W. +e squeeze transform Fsq
then translates feature mappings U to the global spatial
single dimension feature vectors, and a statistic z ∈RC

produced by compacting U with spatial dimension H ×W
may be expressed as follows:

zc � Fsq uc( 􏼁 �
1

H × W
􏽘

H

i�1
􏽘

W

j�1
uc(i, j). (10)

According to (10), the above procedure was a global
average pooling for obtaining the statistic z. Hence, using the
self-gating method with dual FC-layers, the excitation op-
eration was developed for performing evaluation of weight
on all channels for adaptive featured recalibrations. It may be
written as follows:

s � Fex(z, W) � σ(g(z, W)) � σ W2δ W1, z( 􏼁( 􏼁. (11)

where δ was the ReLU activation function, W1 ∈ RC/r×C and
W2 ∈ RC×C/r, and r represents a ratio of dimensionality
reduction. At last, the SE block’s output was obtained by
rescaling U with the activation s.

􏽥Xc � Fscale uc, sc( 􏼁 � sc · uc, (12)

4 Computational Intelligence and Neuroscience



where 􏽥X � [ 􏽥X1,
􏽥X2, . . . , 􏽥Xc] and Fscale(uc, sc) signify

channel-wise scalar multiplication sc and feature map
uc ∈ RH×W [17].

+e descriptive realization procedure of SE-CNN model
was on the basis of theoretical analysis discussed above,
where the deep featured maps were extricated initially by a
CNN approach, and single dimension weighted vectors of
filter channel were acquired by the group of consecutive
performances comprising FC-layer, global pooling, ReLU,
and Sigmoid activations in Figure 2. +us, for precise image
identification, the feature maps generated by the CNN were
recalibrated utilizing the aforementioned channel weight
ratio. As a result, this research will integrate CNN and SENet
for creating a SE-CNN model for HSI classification.

To train the CNN model more easily, the image size was
typically 2n, such as 32, 64, 128, 256, and so on. In addition,
based on the efficiency of detection and HSI classification
accuracy, this model resizes the image as 64× 64 pixels in
size. Following that, the SE-CNN model was created for
extracting deep features in comparison to other CNN
models. For input images, the SE-CNN model has several
interchanging P-layers and C-layers, as well as one or few
FC-layers.

Each of the aforementioned CNN models has 32, 32, 64,
or 128 filters in its C-layer, and strides of P-layers and
C-layer performances were fixed to one. In addition, a zero-
padding approach with the same padding was used on CNN
models for keeping feature maps the same size. +e SE
module recalibrates the CNNs’ output feature maps, in-
cluding squeeze, excitation, and scale procedures. Finally,
the FC-layers flatten the calibrated feature maps, allowing a
Softmax classifier to classify the images. Table 1 represents
the particular parameters of the proposed deep learning
model, where C1∼C4 denotes the convolutional layers, P1∼P4
denotes the max-pooling layers, and FC-layer finally for HSI
classification. Furthermore, the models described above all
were applied with batch normalization following the initial
C-layer and trained with a batch size of 32. Simultaneously,
to prevent the network from overfitting, a dropout operation
was presented after the FC-layer. Because the SE module’s
dimensionality reduction ratio r impacts classification ac-
curacy, relevant tests and analysis are carried out in this
research.

4. Experiment Analysis

+is section focuses on and presents a detailed review of
experiments based on HSI classification utilizing three HSI

datasets. Two evaluation measures were utilized to assess the
proposed method’s efficiency in distinguishing different
classes of hyperspectral images. +e accuracy of all classes in
the testing set was determined as the first measure, and the
overall accuracy was the second measure, which was com-
puted as the total of properly classified hyperspectral
samples split by the overall count of HSI samples in testing
set. To demonstrate the validity of the proposed technique,
different existing classification methods for hyperspectral
imagery were used for the comparison, namely, VGG-16,
Inception-v3, and ResNet-50. MATLAB 2017a was used
to run the tests using a system with Intel core i5 CPU
with 2.9GHz speed, RAM with 8GB, and a 64 bit Windows
10-OS [18–25].

4.1. Dataset Description. In this research, three HSI
benchmark datasets such as Pavia Centre, Pavia University,
and Salinas, were utilized for evaluating the proposed ap-
proach, and their descriptions are as follows.

4.1.1. Pavia Centre and University Datasets. Pavia Centre
and University are two images captured by the ROSIS sensor
during the fly above Pavia, Italy. Pavia University has 103
spectral bands, where Pavia Centre has 102. Pavia Centre has
the 1096×1096 pixels images, while Pavia University has the
610× 610 pixels images although some samples in both
images are insufficient in information and deleted before
processing. +e spatial resolution was 1.3 meters. Both
image ground truths distinguish nine groups. Table 2 rep-
resents the description of the Pavia Centre dataset, and
Table 3 represents the description of the Pavia University
dataset.

4.1.2. Salinas. +is dataset was collected by the airborne
visible/infrared imaging spectrometer (AVIRIS) sensor
above the city of Salinas Valley, California, USA. +is col-
lection incorporates images with the size of 512× 217 pixels,
a spatial resolution of 3.7 meters, and 204 bands after
eliminating 20 water absorption bands. +e accessible
ground references map includes 16 different classes, such as
vegetables, vineyards, and bare soil as shown in Table 4.

Figure 3 represents the ground truth images of the
datasets utilized in this research for evaluation. It is worth
noting that the zero value in the ground truth maps dis-
played in Figures 3(a)–3(c) indicates clutter pixels, which
could not be classified as a new class.

H'

X

W'

C'

W

C

H

W
C

H

U

Ftr

Fsq (.)
Fex (.,W)

Fscale (.,.)

1×1×C 1×1×C
X~

Figure 1: Squeeze and excitation block [16].
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4.2. Performance Analysis. For the performance evaluation,
the datasets are divided into 50% to train and 50% to test. As
shown in the following tabulations, Table 5 represents the
accuracy of every class and overall accuracy of total classes
based on the classification performance of the proposed
model using the Pavia Centre dataset. +is Pavia Centre
dataset is divided into 3728 samples for training and 3728
samples for testing for the experiment. +e classification
performance of the proposed model was compared with
other existing deep transfer learning approaches like In-
ception-v3, VGG-16, and ResNet-50.

As shown in Table 5, the proposed model has obtained
better classification results in most of the classes and ob-
tained an overall accuracy of 98.94%, which is 1.04–2.01%
improved than the other compared models. +e Inception-
v3 and ResNet-50 models have achieved some best results in
few classes compared to the proposed model, and in most
classes, both these models achieved some close results.
Figure 4 represents the graphical plot of overall accuracy
obtained by the models.

Table 6 represents the evaluation of the classification
performances of the proposed model based on the accuracy

Table 2: Pavia Centre dataset description.

Class Sample
Water 824
Trees 820
Asphalt 816
Self-blocking bricks 808
Bitumen 808
Tiles 1260
Shadows 476
Meadows 824
Bare soil 820
Total 7456

Table 3: Pavia University dataset description.

Class Sample
Asphalt 6631
Meadows 18649
Gravel 2099
Trees 3064
Painted metal sheets 1345
Bare soil 5029
Bitumen 1330
Self-blocking bricks 3682
Shadows 947
Total 42776

Table 4: Salinas scene dataset description.

Class Sample
Corn_senesced_green_weeds 3278
Celery 3579
Brocoli_green_weeds_1 2009
Fallow_smooth 2678
Fallow 1976
Brocoli_green_weeds_2 3726
Fallow_rough_plow 1394
Soil_vineyard_develop 6203
Stubble 3959
Vineyard_untrained 7268
Grapes_untrained 11271
Lettuce_romaine_6wk 916
Lettuce_romaine_4wk 1068
Vineyard_vertical_trellis 1807
Lettuce_romaine_7wk 1070
Lettuce_romaine_5wk 1927
Total 54129

C1

C2

P1 C3

P2

Conv2D (32, 3×3)

Conv2D (32, 3×3)

Conv2D (64, 3×3)
Maxpooling2D (2×2)

Maxpooling2D (2×2)

U

H

C
WDeep feature

maps

Input image
Feature extraction
block using CNN

model

Squeeze Excitation

Scale

SE NetworkBaseline CNN model

Feature extraction using
SE-CNN model

Classification

Fully-connected layer

Flatten

Softmax
classifier

ResultsX~

Figure 2: Proposed SE-CNN model for HSI classification.

Table 1: Parameters of CNN model.

Layer Parameters
Input Input image with a size of (64× 64, 3)
C1 Conv 2D (32, 3× 3)
BN1 Batch normalization
P1 Maxpooling 2D (2, 2)
C2 Conv 2D (32, 3× 3)
P2 Maxpooling 2D (2, 2)
C3 Conv 2D (64, 3× 3) drop out (0.35) ReLU
P3 Maxpooling 2D (2, 2)
C4 Conv 2D (128, 3× 3)
P4 Maxpooling 2D (2, 2)
FC1 1024
FC2 256
Output Classification of images
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achieved on every class and the overall accuracy of the
proposed model using the Pavia University dataset. +e
Pavia University dataset is divided into 21388 samples for
training and 21388 samples for testing in this performance
evaluation. As noted in Table 6, the proposed model has
obtained better classification results in majority of classes
and obtained an average accuracy of 96.05%, which is
0.48–1.2% improved than the other compared models. +e
Inception-v3 and ResNet-50 models have achieved some

best results in few classes compared to the proposed model,
and in most classes, both these models achieved some close
results. VGG-16 has the least performance in this evaluation.
Figure 5 represents the graphical plot of accuracy acquired
by the models with Pavia University dataset.

Table 7 represents the classifications performance
evaluation of the proposed system based on the accuracy
obtained in every class and the overall accuracy of the
proposed system using the Salinas dataset. Salinas dataset is
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Figure 3: Ground Truth images: (a) Pavia University; (b) Pavia Centre; (c) Salinas.

Table 5: Evaluation of accuracy on each class of Pavia Centre
dataset with overall accuracy.

Class VGG-
16

Inception-
v3

ResNet-
50 Proposed

Water 99.89 100 100 100
Trees 94.85 95.78 95.10 95.43
Asphalt 93.90 96.39 96.02 95.18
Self-blocking
bricks 87.56 89.08 90.17 90.38

Bitumen 95.44 96.71 96.50 97.84
Tiles 96.34 98.58 98.49 98.95
Shadows 95.04 95.20 94.99 95.46
Meadows 97.63 98.05 98.57 99.65
Bare soil 96.50 96.89 98.17 99.68
Overall accuracy 96.93 97.90 97.55 98.94

95
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98

99

100

VGG-16 Inception-v3 ResNet-50 Proposed

Figure 4: Graphical plot of overall accuracy on Pavia Centre
dataset.

Table 6: Evaluation of accuracy on each class of Pavia University
dataset with overall accuracy.

Class VGG-
16

Inception-
v3

ResNet-
50 Proposed

Asphalt 93.85 92.61 96.20 96.89
Meadows 96.04 96.35 97.52 98.74
Gravel 78.33 81.26 80.09 81.63
Trees 90.12 96.79 96.62 96.08
Painted metal
sheets 99.90 100 99.85 100

Bare soil 89.44 91.73 94.26 93.38
Bitumen 85.60 90.83 86.90 89.16
Self-blocking
bricks 86.75 89.48 92.07 92.94

Shadows 100 99.73 99.97 100
Overall accuracy 94.85 95.14 95.57 96.05
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95
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96
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Figure 5: Graphical plot of overall accuracy on Pavia University
dataset.
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divided into 27065 samples for training and 27064 samples
for testing in this performance evaluation.

+e above table shows that the proposed model has
obtained better classification results in many classes and
obtained an overall accuracy of 96.33%, which is 1.18–5.9%
improved than the other compared models. +e Inception-
v3 and ResNet-50 models have obtained better results in one
or two classes than the proposedmodel. Inmost classes, both

these models obtained some close results. VGG-16 has the
least performance in all these experiment evaluations. Fig-
ure 6 represents the graphical plot of accuracy acquired by
the models with the Salinas dataset. Figure 7 represents the
graphical plot of accuracy acquired by the proposed model
based on the three datasets used in this research.

5. Conclusion

In this research, the HSI classification model was proposed
based on a feature extraction method that combined a
squeeze and excitation network with a deep convolutional
neural network. +e primary objective of this research was
to create a deep feature extraction model for HSI classi-
fication. Deep networks were capable of extracting spatial
and spectral features from HSI data simultaneously, which
is a benefit for enhancing the performance of the proposed
model. +e squeeze and excitation network was proposed
in this work for this feature extraction model utilizing
CNN. +e squeeze and excitation block was designed to
improve the representation quality of a convolutional
neural network. +ree benchmark datasets, such as Pavia
Centre, Pavia University, and Salinas, were utilized in the
experiment to evaluate the proposed model. +e proposed
model’s performance was validated by a performance
comparison with current deep transfer learning approaches
such as Inception-v3, VGG-16, and ResNet-50. +e pro-
posed SE-CNN model outperforms the compared models
in terms of accuracy across all dataset classes as well as
overall accuracy. +e proposed model achieved an overall
accuracy of 98.94% for Pavia Centre dataset, 96.05% for
Pavia University dataset, and 96.33% for the Salinas dataset.
+e time required to train the proposed model is the
primary drawback of this study. In future, this limitation
will be solved by improving the preprocessing function and
adjusting the number of layers in the network and finding a
solution for solving the data imbalance in HSI
classification.

Table 7: Evaluation of accuracy on each class of Salinas dataset with overall accuracy.

Class VGG-16 Inception-v3 ResNet-50 Proposed
Brocoli_green_weeds_1 98.74 99.56 99.38 99.65
Brocoli_green_weeds_2 97.49 99.89 99.60 99.96
Fallow 98.50 99.93 100 99.92
Fallow_rough_plow 98.87 99.50 99.10 99.44
Fallow_smooth 98.79 98.27 99.74 99.50
Stubble 96.00 96.80 99.28 99.81
Celery 98.94 99.13 99.41 99.90
Grapes_untrained 86.52 91.95 93.82 94.14
Soil_vinyard_develop 99.87 100 100 100
Corn_senesced_green_weeds 94.38 97.58 98.25 97.40
Lettuce_romaine_4wk 93.82 97.75 99.01 98.57
Lettuce_romaine_5wk 97.06 99.49 99.72 99.80
Lettuce_romaine_6wk 98.31 99.24 98.90 99.35
Lettuce_romaine_7wk 91.95 98.89 99.05 99.26
Vinyard_untrained 65.15 78.36 81.29 82.90
Vinyard_vertical_trellis 97.87 98.21 99.00 99.28
Overall accuracy 90.43 92.89 95.15 96.33

88

90

92

94

96

98

100

VGG-16 Inception-v3 ResNet-50 Proposed

Figure 6: Graphical plot of overall accuracy on Salinas dataset.
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Figure 7: Proposed model’s accuracy on each dataset.
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