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To achieve intelligent grading of hepatic steatosis, a deep learning-based method for grading hepatic steatosis was proposed by
introducing migration learning in the DenseNet model, and the effectiveness of the method was verified by applying it to the
practice of grading hepatic steatosis. )e results show that the proposed method can significantly reduce the number of model
iterations and improve the model convergence speed and prediction accuracy by introducing migration learning in the deep
learning DenseNet model, with an accuracy of more than 85%, sensitivity of more than 94%, specificity of about 80%, and good
prediction performance on the training and test sets. It can also detect hepatic steatosis grade 1 more accurately and reliably, and
achieve automated and more accurate grading, which has some practical application value.

1. Introduction

)e liver, as an important organ of the body, is the key to
regulating lipid metabolism in the body. When the body’s
lipid metabolism is abnormal, it will lead to lipid accu-
mulation in the liver and liver steatosis. Severe liver steatosis
is irreversible and threatens human life and health, while
milder liver steatosis can be completely cured by treatment.
)erefore, early screening for hepatic steatosis is of clinical
importance. At present, the degree of hepatic steatosis is
mainly determined by manual grading, in which the imaging
physician analyzes the patient’s imaging data to score the
grade of hepatic steatosis. )is approach suffers from sub-
jective grading bias and low efficiency. In recent years, with
the widespread use of deep learning in medicine, new op-
portunities for intelligent grading of hepatic steatosis have
been presented. For example, Qiblawey Yazan andMontalbo
Francis Jesmar P. proposed a cascade system to detect, lo-
calize, and quantify COVID-19 infection from CT images
using encoder-decoder convolutional neural networks (ED-
CNNs), UNet, and feature pyramid network (FPN) [1, 2].
Ben Jabra Marwa used 16 deep learning classifiers to di-
agnose the validity of COVID-19 from chest X-ray images

and found that the combination of deep learning models and
integrated classification techniques resulted in the highest
confidence level for class 3 classification [3]. Liu Zhenguo
et al. identified patients with myasthenia gravis effectively
based on the 3D DenseNet deep learning (DL) model of
preoperative CT of patients as a complement to the con-
ventional diagnostic criteria for identifying thymoma-as-
sociated MG [4]. Riasatian Abtin et al. used a DenseNet
topology with four dense blocks, fine tuned and trained with
different structures to propose a KimiaNet histopathology
image recognition model, and tested KimiaNet using three
publicly available datasets of TCGA, endometrial cancer
images, and colorectal cancer images to verify the effec-
tiveness of the model [5]. )e model has certain search and
classification performance when used for image represen-
tation. Considering the correlation of multilead ECG, sys-
tematically mining the correlation of interlead signals, and
enhancing the multiplexing of feature information between
interlead and intralead signals by using the dense connection
of DenseNet, Xiong Peng et al. proposed a novel multilead
myocardial infarction localization method based on a
densely connected convolutional network (DenseNet),
which automatically captures valid myocardial infarction,
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improves its recognition rate, and can be introduced into
clinical practice to assist in the diagnosis of myocardial
infarction [6]. Albahli Saleh et al. proposed three different
BiT models: the DenseNet, InceptionV3, and Inception-
ReNetV4 for the diagnosis of coronavirus pneumonia pa-
tients by X-ray chest radiographs, and the results showed
that the pretrained DenseNet model had the highest clas-
sification efficiency of 92%, the accuracy of Inception V3 was
83.47% and that of Inception-ResNetV4 was 85.57%. )is is
sufficient to show the advantages of the DenseNet algorithm
[7]. Wang Gaihua et al. proposed an image classification
model with a residual attention mechanism based on the
improved DenseNet, extracting image features from the
training set, which can improve the accuracy of
DenseNet algorithm by 8.89% [8]. It can be seen that deep
learning has been effective in identifying various diseases in
medicine, and it has certain auxiliary functions for physi-
cians to diagnose diseases. )erefore, based on the above
research studies, this paper combines the
DenseNet algorithm of deep learning with transfer learning
to propose a migration learning-based method for grading
hepatic steatosis with the improved DenseNet model.

2. Basic Methods

2.1. Introduction to DenseNet Algorithm. )e
DenseNet algorithm is a neural network that uses feature
combinations and set bypasses to improve the performance
of the network, which enables the summation of the features
of the two pathways before and after the block by means of
dense connections [9], which in turn improves the reuse of
the features by the network. One L-layer DenseNet network
includes L(L + 1)/2 connections to ensure that model
short-circuit values occur in blocks. However, to ensure no
short circuiting between blocks, the model adds a pooling
layer to approximately reduce the parameters, while en-
suring a relatively small model size. )e DenseNet model
block is shown in Figure 1. )e input of layer i is Xt, which
can be expressed as

Xt � Ht X0, X1, ..., Xt−1 ( , (1)

where H is the nonlinear transform, usually a combination
of BN+ReLU+Conv(3∗ 3); X0 and Xt−1 are all layers
before the i-th layer; [ ] is the stitching, indicating that all
outputs from X0 to Xt−1 are stitched.

2.1.1. DenseNet Algorithm Improvements. )e DenseNet
model extracts features by training from scratch, which
tends to lead the model fall into local optimum. In addition,
to obtain the best prediction, the model often needs a large
amount of data support, which leads to a deepening net-
work, and a too deep network will reduce the learning ability
of the model, which in turn is prone to overfitting. At the
same time, the radio image used for liver steatosis grading is
usually small compared to conventional image datasets so
that the model is less effective in classification recognition.
To solve the above problems, the DenseNet model is im-
proved in this paper. According to the literature [10, 11], if

two domains have commonality, their “knowledge” can be
transferred; i.e., the knowledge learned from one domain
can be used in the other domain. )erefore, this paper
improves the DenseNet model by combining transfer
learning. In this paper, we improve the training accuracy of
the model by transferring the pretrained model from the
world’s largest image recognition library (ImageNet dataset)
into the DenseNet model [12].

When training a DenseNet model based on transfer
learning, the amount of data (batch-size) fed into each it-
eration is only a small fraction of all the data, and the larger
the batch-size, the less time it takes to train themodel for one
round (epoch). After increasing the batch size n times, the
time per batch is

��
n

√
. Considering the existence of a local

minimum in the design training, the objective of the training
is to minimize the softmax function. During the training
process, the learning rate determines the update step of the
iterations, and if its value is too large, it tends to cause the
loss function not to converge, too small to fall more slowly.
)e best value can be selected by observation.

)e regular model gradient descent update weight is as
follows [13]:

w′ � w − a · ∇c, (2)

where w′ and w denote the connection weights after and
before the update, a denotes the learning rate, and ∇c de-
notes the backpropagation gradient. After adding the mo-
mentum, the above equation can be rewritten as

v′ � momentum · v − a · ∇c, (3)

w′ � w + v′, (4)

where v denotes the iterative gradient cumulative infor-
mation and momentum is the momentum coefficient, which
usually takes the value of 0.9 to 0.99 [14].

3. Deep Learning for Liver Steatosis
Grading Practice

Based on the above analysis of the DenseNet model related
to transfer learning, the specific method of using deep
learning for liver steatosis grading study in this paper is as
follows:

(1) Dataset construction. All patients’ clinical infor-
mation is concealed, the grade of hepatic steatosis is
labeled and used as a tag, and the dataset with their
corresponding ROI is constituted.

(2) Data preprocessing. To improve the convergence
speed of the network, the datasets are dealed with
normalization, the patient MRI image pixels are
normalized to [0, 1] without changing the stored
information of images, and the training set and test
set are divided in a certain ratio [15].

(3) Model construction and training. Based on the basic
structure of DenseNet, a DenseNetmodel is built and
transfer learning feedforward and backpropagation
algorithms are trained on low-level weights and
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high-level weights, respectively, to identify the fea-
tures of the discovered structures and specific images
in the images. In this paper, 1.28 million natural
images from the ImageNet dataset are selected for
pretraining the model.

(4) Model fine tuning. Model fine tuning usually in-
cludes by training the whole network, freezing the
convolutional base, and freezing some layers to train
some layers [16]. Considering the difference in data
volume between the experimental dataset and the
ImageNet dataset on the hepatic steatosis study in
this paper, it was decided to choose the approach of
freezing some layers to train some layers for model
fine tuning[17]. After the model is pretrained, the
fully connected layer is removed, 2 dense blocks are
frozen, and 1 untrained dense block and the fully
connected layer are added immediately afterwards,
with the aim of extracting and classifying advanced
features, which then connected by batch normali-
zation and pooling layers [18]. Ultimately, the model
structure used in this paper for liver steatosis grading
study is shown in Figure 2. In the figure, Dense
Block1, Dense Block2, and Dense Block3 are densely
connected in 4, 4, and 32 layers, respectively.

4. Simulation Experiments

4.1. Experimental Environment Setup. )e experiments were
conducted on an Nvidia GeForce RTX 2080 Ti GPU,
implemented through the Keras deep learning framework,
and programmed in Python 3.6.

4.2. Data Source and Preprocessing. )e data of this ex-
periment were obtained from abdominal MR imaging data
and clinical information of 50 patients from June to July
2020 in a hospital in Beijing. Among them, hepatic fat grade
grading was done independently by two professional im-
aging physicians based on patient imaging data, and he-
patocellular steatosis was divided into four degree scores,
noting hepatocellular adipocyte deformation 0–5% as 0,
5–33% as 1, 34%–66% as 2, and more than 66% as 3, re-
spectively [19]. )e statistics of patients’ hepatic steatosis
grade shows that there were 38 patients with grade 0, 24male
patients and 14 female patients; 12 patients with grade 1, 6
male patients and 1 female patient; there were no patients
with grade 2 or 3.

Figure 2 shows an example of anMR abdominal mDixon
imaging slice of a patient. Six square ROI regions were set for
each MR sequence of DICOM images under the premise of
avoiding large blood vessels, focal liver lesions, and signif-
icant liver artifacts [20]. Four of the ROIs were located in the

parenchyma of the right lobe of the patient’s liver, i.e.,
segments V, VI, VII, and VIII of the liver, and the other two
ROIs were located in the parenchyma of the left lobe of the
patient’s liver, i.e., segments II and III of the liver. Each
region of the liver parenchyma has 16∗16 pixels.

Considering the small amount of experimental data, only
300 ROIs of 50 patients, it is difficult to meet the demand of
deep learning data volume, so the experiment uses panning,
rotation, mirroring, and other enhancement processing on
the data [21]. In addition, since the difference in the number
of data between samples with liver fat deformation as grade 0
(38 cases) and grade 1 (12 cases) is more obvious, if directly
input into the depth model, it will easily lead to the neglect of
the minority class samples, which are of important research
value inmedical image analysis.)erefore, to avoid the effect
of unbalanced data samples on the results, the experiments
combined the actual number of minority class samples and
majority class samples and used the method of oversampling
minority class samples to deal with unbalanced data samples
[22, 23]. )e 648 ROIs with grade 1 hepatic steatosis were
amplified twice with 2-fold data to obtain a total of 2,592
cases of grade 1 hepatic steatosis ROI data. Finally, 2,052
cases of grade 0 ROI data and 2,592 cases of grade 1 ROI data
of hepatic steatosis were obtained in this experiment, where
3,766 and 878 ROIs were used for model training and
testing, respectively, and Adam was selected as the opti-
mization algorithm during the modeling process.

4.3. Evaluation Indexes. In this experiment, precision,
sensitivity, specificity, and AUC were chosen as the indexes
to evaluate the model performance. Precision reflects the
probability that the model predicts correctly for all samples
and is calculated as in equation (5). Sensitivity is a measure
of the probability that the model predicts correctly for
positive class samples and is calculated as in equation (6).
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Figure 1: Dense connection of DenseNet blocks.

Figure 2: Example of mDixon slice image.
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)e specificity is a measure of the probability that the model
correctly predicts the negative class samples and is calculated
as in equation (7). )e higher the values of precision,
sensitivity, and specificity, the better the model performance.
AUC, the probability of predicting a positive case before a
negative case, is an important index of the predictive ef-
fectiveness of a dichotomous classification model. )e closer
its value is to 1, the better the model performance is indi-
cated [24].

precision �
TP

(TP + FP)
, (5)

sensitivity �
TP

P
, (6)

specificity �
TN

N
, (7)

where TP denotes true positive; FP denotes false positive; P
denotes all positive; TN denotes true negative; N denotes all
negative. )e accuracy and the loss function were selected to
evaluate the metrics for evaluating the change of the model
during training and testing. )e accuracy rate reflects the
probability of correct prediction during the model iteration
and is calculated as in equation (8). )e closer its value is to
1, the higher the model prediction accuracy is. )e loss
function reflects the difference between the predicted label
and the true label, and is calculated as in equation (9). )e
closer its value is to 0, the better the model prediction is, and
the closer the predicted value is to the true value [25].

accuracy �
TP + TN

P + N
, (8)

loss � [y log y +(1 + y)log(1 − y)]. (9)

In equation (9), y and y denote the true label and the
predicted label, respectively.

4.4. Experimental Results

4.4.1. Model Validation. To verify the effectiveness of the
proposed model transfer learning for model improvement,
the experiments compare the training error of the model
before and after the transfer learning with the test set ac-
curacy, and the results are shown in Figure 3, where a and b
are the model training error and test set accuracy before
transfer learning, with the number of iterations, respectively,
and c and d are the model training error and test set accuracy
after transfer learning, with the number of iterations, re-
spectively. As can be seen from the figure, before transfer
learning, the model reached convergence at about 100,000
iterations and its accuracy on the test set was 80%; after
transfer learning, the model converged at about 30,000 it-
erations and its accuracy on the test set was 83.4%. It shows
that transfer learning can improve the model convergence
speed and prediction accuracy.

To further validate the effectiveness of transfer learning,
the confusion matrix of the model’s prediction of each grade

of hepatic steatosis after transfer learning was experimen-
tally analyzed, as shown in Figure 4, where the horizontal
and vertical coordinates are the sample prediction and the
true grade, respectively, and the diagonal line is the pro-
portion of correct predictions. As can be seen from the
figure, the proposed model has a high accuracy in predicting
the grade of hepatic steatosis, which is more than 80%.

In addition, the experiments also compared the pre-
diction effects of the proposed model with other models
before and after transfer learning, and the results are shown
in Table 1. As can be seen from the table, the accuracy of the
model after transfer learning is improved in different degrees
on the test set compared with the model before transfer
learning; the proposed model has a higher accuracy of 83%
on the test set compared with other transfer learning models,
and the smaller the model size is, the shorter the time to
predict a single image, which shows that the proposed model
has certain superiority.

4.4.2. Model Prediction Results. To verify the validity of the
proposed model for liver steatosis grading practice, the
accuracy, sensitivity, specificity, and AUC values of the
model on the training and test sets were collected experi-
mentally, and the results are shown in Table 2. As shown in
the table, the accuracy of the model on the training and test
sets was more than 85%, the sensitivity was more than 94%,
the specificity was about 80%, and the AUC value was more
than 0.8, which is closer to 1.)is indicates that the proposed
model has good predictive performance and can predict the
grade of hepatic steatosis of patients more accurately. )e
sensitivity and specificity indicate that the model has a
strong ability to detect positive cases, indicating that the
model can detect hepatic steatosis grade 1 more reliably and
has some practical application value.

Figure 5 shows the changes of loss and accuracy curves
on the training and testing sets during the iterations of the
model. From the figure, it can be seen that with the increase
of iterations, the loss and accuracy curves gradually leveled
off and reached a stable state after 400 iterations; the model
did not show any overfitting phenomenon during the whole
training and testing process, which indicates that the pro-
posed model exhibits good prediction performance through
transfer learning.

4.4.3. Statistical Analysis. Spielman correlation analysis was
performed using MATLAB R2018b on the obtained clinical
information, such as gender and age of the patients, and the
grade of hepatic steatosis, and the results are shown in
Table 3, where P< 0.05 indicates a statistically significant
difference, and ∗ indicates a significant correlation at the
0.05 level. )e table shows that the p value of pancreatic
steatosis grade and hepatic steatosis grade was 0.003, and the
correlation between them was significant; the p value of
other clinical information such as patient age and gender
and hepatic steatosis grade was larger than 0.05, indicating
that the correlation between them was not significant.

Correlation analysis between clinical information and
hepatic steatosis grade in patients of different genders
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revealed significant correlations between hepatic steatosis
grade and metabolic syndrome and pancreatic steatosis
grade in female patients P � 0.007 and P � 0.002, while there
was no correlation between hepatic steatosis grade and its

clinical information in male patients. )e change in liver fat
content with age of the patients was analyzed, and the results
are shown in Figure 6. As can be seen from the figure, there
was no correlation between liver fat content and the age of
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Figure 3: Performance comparison before and after model transfer learning.
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Figure 4: Confusion matrix of model prediction results.
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Table 1: Comparison of prediction results of different models.

Network name
Testing set accuracy

Model size (MB) )e time of predicting single image(s)
Nontransferable learning (%) Transfer learning (%)

ResNet52 68.34 70.33 235 0.2447
VGG16 77.25 79.48 521 0.0630
VGG19 77.31 80.27 561 0.0704
SqueezeNet 73.09 77.36 2.77 0.0072
GoogleNet-inception
V1 78.42 80.46 39.4 0.0221

DenseNet 16 80.27 83.46 101 0.2721

Table 2: Model performance.

Items Accuracy (%) Sensitivity (%) Specificity (%)
Training sets 88.49 95.44 81.6
Test sets 85.79 94.55 79.82
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Figure 5: Model performance iteration curve.

Table 3: Analysis results of clinical information and hepatic steatosis grade of patients.

Clinical information Correlation coefficient P value
Age 0.003 0.959
Gender 0.035 0.570
Pancreatic steatosis grade 0.702∗ 0.003
Metabolic syndrome 0.890 0.147
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the patients, but there was a peak between the ages of 50 and
60 years for women and one peak each between the ages of
40 and 50 years and 70 to 80 years for men.

5. Conclusion

In summary, applying deep learning to liver steatosis time
can achieve automated and more accurate grading, and by
introducing transfer learning into the deep learning Den-
seNet model, the number of model iterations can be sig-
nificantly reduced and the model convergence speed and
prediction accuracy can be improved, which has some
potential application value. Applying it to the practice of
liver steatosis grading, the accuracy of the proposed model
on the training and test sets reached more than 85%, the
sensitivity exceeded 94%, the specificity was about 80%, and
the AUC value reached more than 0.8, which is closer to 1. It
has good predictive performance and can detect liver
steatosis grade 1 more accurately and reliably, which has
some practical application value. Statistical correlation
analysis shows that hepatic steatosis correlates significantly
with pancreatic steatosis and has some correlation with
metabolic syndrome; hepatic steatosis was correlated with
age and metabolic syndrome in women only. However, due
to the limitations, there are still some shortcomings in this
paper; the amount of patient data is too small, the pre-
liminary results obtained need to be further validated, and
among the 50 patients with hepatic steatosis, there are no
patients with grade 1 or higher, which leads to the accuracy
and generalization ability of the model to be demonstrated.
)erefore, the amount of hepatic steatosis imaging data will
be further collected and expanded in the next study.
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