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The separation of acetylene (C2H2) from carbon dioxide (CO2) and the purification of ethylene (C2H4) from C2H2 are quite
essential processes for the chemical industry. However, these processes are challenging due to their similar physical properties,
including molecule sizes and boiling points. Herein, we report an N-rich cage-based microporous metal-organic framework
(MOF), [Cd5(Tz)9](NO3) (termed as Cd-TZ, TZ stands for tetrazole), and its highly efficient separation of C2H2/CO2 and
C2H2/C2H4. Single-component gas adsorption isotherms reveal that Cd-TZ exhibits high C2H2 adsorption capacity
(3.10mmol g-1 at 298K and 1 bar). The N-rich cages in Cd-TZ can trap C2H2 with a higher isosteric heat of adsorption
(40.8 kJmol-1) than CO2 and C2H4 owing to the robust host-guest interactions between the noncoordinated N atoms and
C2H2, which has been verified by molecular modeling studies. Cd-TZ shows a high IAST selectivity for C2H2/CO2 (8.3) and
C2H2/C2H4 (13.3). The breakthrough simulations confirm the potential for separating C2H2/CO2 and the purification of C2H4
from C2H2.

1. Introduction

C2H2 and C2H4 are two of the most important chemical raw
feedstocks for producing various commercial chemicals [1].
C2H2 is mainly obtained from coal or coal-derived coke with
direct or indirect processes [2]. Thus, CO2 is usually con-
tained in the crude acetylene as an unavoidable impurity
generally removed in an aqueous sodium hydroxide wash.
C2H2 can also be purified by dissolving in organic solvents,
such as N-methylpyrrolidone and dimethylformamide.
C2H4 is typically produced by the pyrolysis of ethane gas
or light naphtha, with a small amount of C2H2 generated.
C2H2 in mixtures must be removed, reducing its content to
below 5ppm [3, 4] because of the effects of C2H2 in poison-
ing catalysis during the polymerization process of ethylene.
Solvent extraction and partial hydrogenation are the main

commercial techniques to separate trace C2H2 from C2H4.
However, both the purification methods of C2H2 and C2H4

used in the chemical industry are with poor separation selec-
tivity and are energy-intensive [5]. Alternatively, selective
adsorption and separation processes based on porous sor-
bents are energy-efficient and sustainable.

In recent decades, MOFs [6–12] have been studied
widely in separations and purifications for hydrocarbons

[13–24]. However, the molecular sizes (3:3 × 3:3 × 5:7Å3

for C2H2, 3:2 × 3:3 × 5:4Å3
for CO2, and 3:3 × 4:2 × 4:8Å3

for C2H4) and kinetic diameter (3.3Å for C2H2, 3.3Å for
CO2, and 4.2Å for C2H4) of acetylene, carbon dioxide, and
ethylene are very close [7, 25], making the efficient sepa-
ration of C2H2/CO2 and C2H2/C2H4 a challenge. Until
now, MOFs [7, 26–31] with highly selective separation
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performance for both C2H2/CO2 and C2H2/C2H4 are still
rare. Currently, the reported MOF materials with record
selectivity for C2H2/CO2 and C2H2/C2H4 is an anion-
pillared flexible MOF, UTSA-300a [26]. Because of the strong
C–H···F hydrogen-bonding interaction between UTSA-300a
and C2H2, C2H2 can easily open the pore and be adsorbed
into it while the other gases are blocked out of the pore. Lee
and co-workers [28] reported a cationic MOF, JCM-1, which
possesses imidazolium and nitrate groups in the pore chan-
nel, exhibiting a higher selectivity and adsorption affinity
for C2H2 than for CO2 or C2H4. A broad strategy in MOFs
to enhance the selectivity of C2H2/CO2 and C2H2/C2H4 is
to increase the polar groups or adsorption sites, such as
fluorine/nitrogen/oxygen-containing functional groups, to
strengthen the interaction with C2H2 over CO2 or C2H4.

Herein, we report a microporous MOF [Cd5(Tz)9](NO3)
[32] with N-rich cavities for the preferential adsorption of
C2H2 and the efficient separation for C2H2/CO2 and C2H2/
C2H4. At ambient conditions, Cd-TZ shows a higher adsorp-
tion capacity and isosteric heat of adsorption for C2H2 than
for CO2 and C2H4. Thus, Cd-TZ exhibits elevated C2H2/CO2
and C2H2/C2H4 selectivity. The modeling studies reveal that
the trapped C2H2 molecule is in the center of the cavity and
strongly interacts with the surrounding N atoms. The simu-
lated breakthrough curves demonstrate the effective separa-
tion of binary mixtures of C2H2/CO2 and C2H2/C2H4.

2. Materials and Methods

2.1. Materials. All reagents and solvents were commercially
available and, unless otherwise noted, were used without further
purification. Cadmium nitrate tetrahydrate (Cd(NO3)2·4H2O,
AR) was purchased from Aladdin Reagent Co. Ltd. Ethyl
tetrazole-5-carboxylate (>95%) was purchased from Bide-
pharm Co. Ltd.

High-purity CO2 (99.999%), C2H4 (99.95%), and C2H2
(99.9%) were purchased from Qingdao Tianyuan Gas Co.,
Ltd. C2H2 was filtered through activated carbon to remove
traces of acetone before use.

2.2. Synthesis of Cd-TZ. Cd-TZ was synthesized according to
the methods reported in the literature [32]. A mixture of
Cd(NO3)2·4H2O and ethyl tetrazole-5-carboxylate was
dissolved in 10mL H2O, then transferred to a 23mL
Teflon-lined autoclave and heated at 433K for 72h, followed
by cooling to room temperature. Colorless crystals were
collected by filtration and washed with H2O and methanol.
The activation process of the Cd-TZ sample was conducted
under a vacuum at 423K for 12 h.

2.3. Characterizations of Cd-TZ. Thermogravimetric analy-
ses (TGA) were examined using a Netzsch STA 449C instru-
ment under an N2 atmosphere with a heating rate of
5Kmin-1. Powder X-ray diffraction (PXRD) data were
performed on an X-ray diffractometer (Bruker D8 Adv.,
Germany) with Cu Kα radiation from 5 to 50° (λ = 1:5406)
and a step size of 0.0167° in 2θ.

2.4. Adsorption Studies for CO2, C2H2, and C2H4. The sample
was degassed in a vacuum for 12 h at 423K to remove
guest molecules before adsorption. Equilibrium and kinetic
adsorption experiments of CO2, C2H2, and C2H4 were mea-
sured using a XEMIS magnetic suspension balance sorption
analyzer (Hiden, UK) equipped with a circulating water bath
at 273K and 298K, respectively.

2.5. Calculation of Brunauer-Emmett-Teller (BET) Surface
Area and Langmuir Surface Area. Surface areas of Cd-TZ
were calculated using the BET equation and Langmuir equa-
tion based on the CO2 adsorption isotherm at 273K.

BET surface area:
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where P is the pressure (bar), P0 is the saturated vapor
pressure, n is the adsorption amount under the correspond-
ing pressure, nm is the amount related to the monolayer
surface coverage, C (C > 0) and b are constants, σm is the
cross-sectional area of CO2 (2:18 × 10−19 m2), and SBET and
SLangmuir are the calculated BET surface area and Langmuir
surface area, respectively.

2.6. Calculation of Isosteric Enthalpy of Adsorption. Isosteric
enthalpy of adsorption (Qst) was calculated from isotherms
measured at 273K and 298K for CO2, C2H2, and C2H4.
The isotherms were firstly fit to a virial equation:
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where P is the pressure expressed in mbar, N is the amount
adsorbed in mmol g-1, T is the temperature in K, ai and bi
are virial coefficients, and m and n represent the number
of coefficients required to describe the isotherms adequately.
To calculate Qst, the fitting parameters from the above equa-
tion were used for the following equation:

Qst = −R 〠
m

i=0
ai N

i: ð6Þ

2.7. Ideal Adsorbed Solution Theory (IAST) Selectivity
Calculation. The gas adsorption isotherms were firstly fitted
to a dual-site Langmuir-Freundlich (DSLF) equation:

q = q1
b1 p

n1

1 + b1 pn1
+ q2

b2 p
n2

1 + b1 pn2
, ð7Þ
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where q (mmol g-1) is the amount of adsorbed gas; p (mbar)
is the bulk gas phase pressure; q1 (mmol g-1) and q2 (mmol g-1)
are the saturation capacities of sites 1 and 2, respectively; b1
(mbar-n1) and b2 (mbar-n2) are the affinity coefficients of site
1 and site 2, respectively; and n1 and n2 represent the devia-
tions from an ideal homogeneous surface.

The adsorption selectivity is defined by

Sads =
x1/y1
x2/y2

, ð8Þ

where xi and yi are the mole fractions of component i (i = 1
and 2) in the adsorbed and bulk phases, respectively.

2.8. Density-Functional Theory Calculations. All the geome-
try optimizations and binding energies were calculated by
the periodic density functional theory (DFT) method using
the DMol3 module. The host framework and the gas
molecule were both regarded as rigid. The structures of the
framework were first optimized. Then, guest gas molecules
were introduced to the optimized framework, followed by a
full structure relaxation. An isolated gas molecule placed in
a supercell (with the same cell dimensions as the framework)
was also relaxed as a reference to obtain the gas binding
energy. The widely used generalized gradient approximation
(GGA) with the Perdew-Burke-Ernzerhof (PBE) functional
and the double numerical plus polarization (DNP) basis
set, the Grimme method for DFT-D correction, and the
DFT semicore pseudopots (DSPP) were used. The energy,
force, and displacement convergence criteria were set as
1 × 10−5 Ha, 2 × 10−3 Ha, and 5 × 10−3 Å, respectively. The
following equations then calculated the static binding
energy (at T = 0K):

ΔEbinding = EMOF + Egas − E MOF+gasð Þ, ð9Þ

where ΔEbinding is the static binding energy between the MOF
and the gas molecule and EMOF, Egas, and EðMOF+gasÞ are the
energies of the gas-free MOF, the free gas molecule, and the
MOF-gas system, respectively.

2.9. Breakthrough Simulation. Breakthrough simulations
were performed using the 3P-Sim software. In the simulated
separation experiment, the Cd-TZ (1.0 g) was packed into
the column with a length of 5 cm and an inner diameter of
0.45 cm. And the simulated operating condition is under 1
bar at 298K with a continuous gas (C2H2/CO2 (50/50, v/v)
or C2H2/C2H4 (50/50, v/v)) flow of 2mL (STP) min-1.

3. Results and Discussion

As shown in Figures 1(a) and 1(b), each Cd (II) atom in
the framework is surrounded by different tetrazole ligands
and coordinated with six nitrogen atoms to form an octahe-
dral coordination structure, resulting in a cationic three-
dimensional framework [Cd5(Tz)9]

+ which is balanced by
NO3

-. Cd (II) atoms interconnect such six second-building
units to form one-dimensional straight pore channels
(4.6Å), which have large cavities (5.3Å) parallel to each

other along the c axis (Figures 1(c) and 1(d)). The surface
of the cavities contains many uncoordinated tetrazole nitro-
gen atoms, which is conducive to capturing C2H2 molecules.
Cd-TZ was successfully prepared by hydrothermal reaction
at 433K, and the phase purity of the material was identified
by PXRD patterns which nicely match the calculated patterns
from single crystal data (Figure 2(a)). To investigate the ther-
mal stability of Cd-TZ, the synthesized Cd-TZ samples were
subjected to TGA under a nitrogen atmosphere, as shown in
Figure 2(b). The TGA curves show that the Cd-TZ sample
lost most of the free water molecules in the pore channels
as the temperature increased to 98°C. When the temperature
exceeded 300°C, the sample lost weight rapidly. This phe-
nomenon indicates that Cd-TZ has good thermal stability
under a nitrogen atmosphere and can maintain the structure
over a wide temperature range (<300°C). The specific surface
area of Cd-TZ was characterized using CO2 adsorption
experiments performed at 273K (Figure S1a). And the BET
surface area (Figure S1b) and Langmuir surface area
(Figure S2) were calculated to be 388m2 g-1 and 403m2 g-1,
respectively.

Considering the suitable pore size and the presence of
abundant uncoordinated nitrogen atoms in the pore surface
of Cd-TZ, we were intrigued to explore its potential to cap-
ture C2H2 and, further, to separate C2H2/CO2 and C2H2/
C2H4. Therefore, single-component adsorption-desorption
isotherms of C2H2, CO2, and C2H4 were collected at 273K
and 298K (Figures 3(a) and 3(b)). The adsorption capacity
of C2H2 is higher than those of CO2 and C2H4 in Cd-TZ
under the same conditions. The C2H2 capacity is
3.10mmol g-1 at 298K and 1 bar, higher than the capacity
of CO2 (2.07mmol g-1) and C2H4 (1.68mmol g-1) and out-
performing many reported MOFs, such as ZU-62-Ni
(3.0mmol g-1) [33], NKMOF-1-Ni (2.7mmol g-1) [34],
Zn(ad)(int) (2.32mmolg-1) [35], CPL-1-NH2 (1.84mmolg-1)
[36], and Zn-FBA (1.03mmolg-1) [37]. Furthermore, the
C2H2 adsorption isotherms rise rapidly in the low-
pressure region at 273K and 298K. At 298K and 0.01 bar,
the uptake ratio of C2H2/CO2 and C2H2/C2H4 in Cd-TZ is
1.8 and 3.0, respectively, indicating the stronger interaction
between C2H2 and Cd-TZ. The isosteric enthalpies of
adsorption for C2H2, CO2, and C2H4 were calculated based
on fitting using the virial method (Figure S3-S5) to evaluate
the interaction between the framework and the guest
molecule. As shown in Figure 3(c), the calculated value of Qst
for C2H2, CO2, and C2H4 at zero loading is 40.8kJmol-1,
35.6kJmol-1, and 31.8kJmol-1, respectively. Furthermore, the
Qst value of Cd-TZ for C2H2 is higher than those for CO2 and
C2H4 over the entire pressure range from 0 to 1 bar. All the
results demonstrate that Cd-TZ prefers to adsorb C2H2 and
has a stronger affinity for C2H2 than CO2 and C2H4, which
prompts us to explore the separation performance of Cd-TZ
for the binary gas of C2H2/CO2 and C2H2/C2H4.

The adsorption selectivity for C2H2/CO2 (50/50, v/v) and
C2H2/C2H4 (50/50, 1/99, v/v) was calculated based on the
IAST model based on fitting using the DSLF equation
(Figure S6-S8). The selectivity of Cd-TZ for C2H2/CO2
(50/50, v/v) is 8.3 at 298K and 1.0 bar (Figure S9), which
is compared to the reported UTSA-74a (9.0) [38], and
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superior to some of the benchmark MOFs like SIFSIX-21-Ni
(7.8) [39], TIFSIX-2-Cu-i (6.5) [40], FJU-90a (4.3) [41], and
ZrT-1-tetrazl (2.8) [42] under similar conditions. As shown

in Figure S10, the selectivity of Cd-TZ for the binary
mixtures of C2H2/C2H4 (50/50, v/v) is up to 20.1 at 273K
and 1 bar, with the temperature increasing to 298K, and
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Figure 2: (a) PXRD patterns of as-synthesized Cd-TZ and activated Cd-TZ and (b) thermogravimetry curves of Cd-TZ.
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Figure 1: The framework of Cd-TZ without hydrogen atoms and solvent molecules viewed along the a axis (a) and b axis (b) (Cd, C, N, and
O are represented by light yellow, gray, lavender, and red, respectively). The pore structure of Cd-TZ without hydrogen atoms and solvent
molecules viewed along the a axis (c) and b axis (d).
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the selectivity is about 13.3, which surpasses most of the
reported MOFs, such as cPAF-28 (12.2) [43], MUF-17
(8.73) [30], NbU-1 (5.9) [44], CuTiF6-TPPY (5.47) [45],
and Fe-MOF-74 (2.1) [46]. Consider that C2H2 is a minor
impurity in the crude C2H4 production by the cracking of
ethane. Therefore, the IAST selectivity of C2H2/C2H4 (1/99,
v/v) was also calculated in addition to that of C2H2/C2H4
(50/50, v/v). The calculated IAST selectivity value for the
binary mixtures of C2H2/C2H4 (1/99, v/v) is 7.3 higher
than those of SIFSIX-3-Ni (5.0) [47] and NUM-11a (1.65)
[48]. These calculation results further indicate that Cd-TZ
is a potential porous material in separating C2H2/CO2 and
removing C2H2 from C2H4.

The optimal adsorption sites of C2H2, C2H4, and CO2 in
the framework of Cd-TZ were elucidated by DFT calcula-

tions. The calculated static binding energy of C2H2 in Cd-
TZ is 75.1 kJmol-1, much higher than those of C2H4 with
54.4 kJmol-1 and CO2 with 35.6 kJmol-1. The lowest-energy
binding configuration of C2H2, C2H4, and CO2 in Cd-TZ
is shown in Figure 4, indicating that the adsorbed C2H2
molecule is trapped in the center of the cavity and strongly
interacts with the surrounding N atoms, which are highly
electronegative. Figure S11 shows that the optimized
distance between one H atom of C2H2 and the
noncoordinated N atom in the cavity is 2.14Å, which is
smaller than the sum of the van der Waals radius of the
H atom (1.20Å) and N atom (1.55Å). Moreover, the
calculated distances between C atoms of C2H2 and H
atoms of tetrazole are 2.72Å and 2.74Å, respectively,
shorter than the sum of the van der Waals radius of H

Pressure (mbar)
0 200

C2H2 ads
C2H2 des
C2H4 ads

C2H4 des
CO2 ads
CO2 des

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

400 600 800 1000

G
as

 u
pt

ak
e (

m
m

ol
 g

–1
)

(a)

Pressure (mbar)
0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

400 600 800 1000200

G
as

 u
pt

ak
e (

m
m

ol
 g

–1
)

C2H2 ads
C2H2 des
C2H4 ads

C2H4 des
CO2 ads
CO2 des

(b)

Coverage (mmol g–1)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

10

20

30

40

50

Q
st 

(k
J m

ol
–1

)

C2H2
C2H4
CO2

(c)

Figure 3: Single-component adsorption-desorption isotherms of C2H2, CO2, and C2H4 in Cd-TZ at (a) 273K and (b) 298K. (c) The
isosteric enthalpies of adsorption for C2H2, CO2, and C2H4 in Cd-TZ.
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and C atoms, 2.90Å. These results indicate the robust affinity
of the framework to the C2H2 molecules. C2H4 has a larger
size and planar configuration. Thus, only one end of the
=CH2 group is adsorbed in the cavity with side-on
orientation and forms a weaker interaction with the
surrounding tetrazoles (Figure S12). There are four C=C-
H···N dipolar interactions (2.89Å, 2.92Å, 3.10Å, and
3.10Å) observed between C2H4 and the tetrazoles in the
cavity. And the calculated H-C=C···H distances between
C2H4 and the tetrazoles in the cavity are 2.70~2.89Å
(2.70Å, 2.73Å, 2.87Å, and 2.89Å). As shown in
Figure S13, CO2 has two weak CCO2···N interactions and
three weak OCO2···H interactions with the tetrazoles. The
calculated distance of CCO2···N is 3.40Å and 3.47Å, while
the estimated distance of OCO2···H is 2.85Å, 3.41Å, and
3.49Å, indicating the weak interaction between CO2 and
the framework. The simulation calculations confirm that

the adsorption affinity of C2H2 is much stronger than C2H4
and CO2, consistent with the experimental results.

The separation performance of Cd-TZ was investigated
by breakthrough simulations with the binary gas mixture
of C2H2/CO2 (50/50, v/v) and C2H2/C2H4 (50/50, v/v) at
298K and 1 bar. As shown in Figure 5(a), CO2 gas was
first eluted at 31min from the column, whereas C2H2
was retained in the column until 50min, demonstrating
a stronger binding affinity of the framework to C2H2
molecules. Figure 5(b) shows that Cd-TZ can realize the
complete separation of C2H2/C2H4 (50/50, v/v). The
C2H4 broke through from the column after 30 minutes,
and no C2H2 was eluted out before 53 minutes, indicating
that high-purity C2H4 could be obtained with the frame-
work. All the above results demonstrate the great potential
of Cd-TZ in the separation of C2H2/CO2 and C2H2/C2H4
in practice.

(a) (b) (c)

Figure 4: Comparison of the optimal (a) C2H2, (b) C2H4, and (c) CO2 adsorption sites observed by DFT calculations along the b axis.
Cd, C, N, and H in Cd-TZ are represented by dark blue, bright grey, lavender, and white, respectively. C in C2H2 and C2H4 is
represented by bright yellow.
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Figure 5: Simulated breakthrough curves for (a) C2H2/CO2 (50/50, v/v) and (b) C2H2/C2H4 (50/50, v/v) at 298 K and 1 bar.
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4. Conclusions

In summary, we have investigated the N-rich cage-based
microporous metal-organic framework, Cd-TZ, showing a
stronger affinity for C2H2 than CO2 and C2H4, and effi-
ciently separating binary mixtures of C2H2/CO2 and C2H2/
C2H4. Owing to the abundant uncoordinated nitrogen atoms
on the pore surface and the cavities, Cd-TZ exhibits a high
capacity for C2H2 (3.10mmol g-1 at 298K and 1 bar). The
calculated IAST selectivity of Cd-TZ for C2H2/CO2 and
C2H2/C2H4 is 8.3 and 13.3, respectively. The breakthrough
simulation results well confirm the separation performance
of Cd-TZ. In addition, the preferential binding of C2H2 over
CO2 and C2H4 is clearly demonstrated by DFT calculations.
This study provides an exquisite example of MOF possessing
abundant electronegative nitrogen sites on the pore surfaces
and the cavities for the challenging separation of C2H2/CO2
and C2H2/C2H4.
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