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Herein this study, pure and manganese- (Mn-) doped ZnO (2wt. %) nanoparticles have been synthesized using the chemical
precipitation method and characterized for the photodegradation of methyl green (MG) pollutant dye under natural sunlight.
The structural analysis via XRD patterns has revealed that both intrinsic and Mn-doped ZnO (2wt. %) samples have
hexagonal wurtzite structures with appropriate phase purity, clearly indicating the absence of any external impurity. The
incorporation of Mn in the host ZnO lattice has decreased the crystallite size (21.10→ 18.76 nm), and nanoparticle-type
surface features with sizes in the 50–100 nm range have been observed through FESEM-based surface morphological studies.
Both aforementioned observations have merit in providing more active area and a high surface area to volume ratio for
photocatalytic reaction. The investigation of photophysical properties indicates that in Mn-doped ZnO nanoparticles, the
absorption peak is blue-shifted by 5 nm (365→ 360 nm), due to the widening of the bandgap. The degradation kinetics of MG
dye follow the pseudo-second-order kinetics, and the degradation efficiency has been observed to be 62.78% mediated by pure
ZnO and 66.44% by Mn-doped ZnO (2wt. %) photocatalyst under 60 minutes of sunlight irradiation. Specifically, the rate of
photocatalytic reaction (K)~0.01792min-1 and R2~0.97992 has been achieved for pure ZnO, whereas slightly higher
(K) ~0.02072min-1 and R2~0.97299 have been observed for Mn-doped ZnO, respectively. Conclusively, the synergistic
interactions with multiple charge transfer pathways, improvement of e−/h+ pair charge separation, improved surface area, and
efficient generation of hydroxyl radicals are supposed to be responsible for the highly efficient photocatalytic activity of the
Mn–doped ZnO photocatalyst for MG dye.

1. Introduction

Water pollution as a consequence of rapid industrial devel-
opment, urbanization, and the bulging human population
has become the most decisive and challenging environmen-
tal problem across the globe [1, 2]. In particular, the exten-

sive discharge of untreated organic dyes from the leather,
textile, and apparel industries is rapidly contaminating the
already dwindling water resources [3, 4]. Distressingly, these
synthetic dyes are intrinsically chemically and physically sta-
ble compounds; hence, based on their stability and solubility
in water, synthetic dyes (if not treated) pile up in industrial
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effluents and wastewater [5]. Rationally, there exists a dire
need for the development of highly efficient, economical,
easily accessible, eco benign, and sustainable green solutions
(based on a renewable energy approach) to mitigate the
water pollution crisis.

In the recent past, various research strategies/technolo-
gies have been adopted for the remediation of industrial
wastewater and dye-contaminated water bodies, including
plasma-based advanced oxidation process [6], ozonation
[7], membrane filtration [8], bioelectrochemical system [9],
heterogeneous Fenton catalysts [10], ion exchange removal
[11], adsorption, and electrocoagulation [12]. Among these,
the photocatalysis process mediated by metal oxide semi-
conductors is an environmentally safe process that simulates
the natural photosynthesis process to speed up the chemical
reactions requiring light [13]. In particular, the countries
where ample amount of sunlight is available, photocatalysis
involving sunlight may prove to be the most economical
and desirable process. Further, photocatalytic degradation
offers benefits over traditional wastewater treatment
methods in terms of high effectivity, cost-effectiveness, and
energy efficiency [14]. In literature, various synthetic routes
have been proposed, such as hydrothermal [15] and metal-
organic chemical vapor deposition method (MOCVD) [16]
for the synthesis of metal oxide photocatalysts.

Among the numerous metal oxide semiconductors, TiO2
and ZnO are known to be exceptional photocatalysts due to
their notably high photosensitivity, nontoxic nature, and
wide bandgap (WBG) [17]. However, ZnO is anticipated to
be an appropriate substitute for TiO2 due to its similar band-
gap energy, lower cost, and effective capability to degrade
organic pollutants in aqueous solutions [18]. ZnO nanopar-
ticles absorb more light photons than TiO2 nanoparticles
under the same ambient conditions [19]. ZnO is a versatile
inorganic compound with distinctive physicochemical and
optoelectronic properties such as high electron mobility,
large exciton binding energy, greater chemical and thermal
stability, and strong oxidation capability [20, 21]. Recently
nanosized ZnO particles have received considerable atten-
tion in photocatalytic applications due to high specific
surface area and low-cost production possibility [22]. How-
ever, ZnO exhibits high recombination of photogenerated
electron-hole pairs. One effective route to reduce the recom-
bination rate is by doping the ZnO with transition-metal
cations, which creates traps that immobilize the charge car-
riers and thus reduce the recombination rate [23]. Manga-
nese is considered one of the best dopant materials because
of its high solubility, abundant electron states, and large
magnetic moment [24]. Successful doping of ZnO with man-
ganese (Mn) has been previously reported to cause a hyper-
chromic shift in the optical absorption of ZnO, which may
be attributed to the shrinkage of the native optical bandgap
of ZnO [25]. Ruh Ullah and Dutta have previously experi-
mentally demonstrated that coupling of ZnO with Mn
(ZnO :Mn2+) leads to improved photodegradation towards
methylene blue dye owing to a substantial increase in defect
sites caused by Mn2+ doping [26].

In our previous study, we described an effective route for
the degradation of methyl green (MG) dye under visible

light illumination by pristine- and strontium- (Sr-) doped
zinc oxide (ZnO) photocatalysts [27]. So far, to reduce the
recombination rate, most of the R&D efforts have been
directed at narrowing the bandgap of photocatalysts by
introducing dopant(s) into the structure of the host semi-
conductor and resultantly harvesting visible instead of UV
light [28]. Improving the photocatalytic activity of WBG
photocatalysts, without sacrificing the high bandgap energy,
may also improve the disinfection process by UV light and
further reduce operating costs by process intensification [29].

2. Experimental Procedures

2.1. Chemical Reagents. For the synthesis of pure and Mn-
doped ZnO nanoparticles, the chemical precipitation syn-
thesis route has been adopted. The chemicals used in the
present study were all analytical-grade reagents and were
used without further refinement. For instance, the zinc and
manganese precursors, i.e., zinc nitrate hexahydrate (molar
mass = 297:46 g/mol, Zn(NO3)2.6H2O) and manganese (II)
nitrate (molar mass = 178:95 g/mol, Mn(NO3)2), respec-
tively, have been purchased from Duksan, Korea. The pre-
cipitating agent, 98% pure sodium hydroxide pellets (molar
mass = 40 g/mol, NaOH), has been purchased from Sigma-
Aldrich. In the present study, all the aqueous solutions have
been prepared in deionized (DI) water. Methyl green dye
(molar mass: 653.24 g/mol, C27H35Cl2N3.ZnCl2) has been
subjected to photocatalytic degradation mediated by pure
and Mn-doped zinc oxide photocatalysts, in this study.

2.2. Synthesis of Pure and Mn-Doped ZnO. In this chemical
synthesis procedure, one molar (1M) Zn(NO3)2.6H2O solu-
tion has been prepared in deionized water and subjected to
vigorous stirring (for one hour) by placing it on a hot plate
(T~100°C). Later, the base solution, i.e., unimolar NaOH
aqueous solution, has been prepared, under gentle magnetic
stirring for 30 mins at room temperature, to obtain a
homogenous alkaline solution. The precipitating agent, i.e.,
NaOH solution, has been gradually (dropwise) introduced
into zinc nitrate solution, accompanied by constant mag-
netic stirring, until the alkalinity of the solution increases
significantly (specifically, pH reaches 12). At this stage, the
white milky suspension is achieved, wherein the precipitates
are allowed to settle down, and the supernatant solution is
decanted, carefully. The white precipitates, so obtained, have
been washed (five times) with deionized water to remove
impurities, if any. Later, the precipitates have been filtered
and dried in an oven (overnight, at T~300°C) to remove
the moisture completely. Lastly, the as-prepared ZnO
powder (pure) has been finely grounded in a mortar with
the help of a pestle to obtain ZnO nanostructures. The
synthesis procedure (adopted in the present study) for
pure and metal-doped ZnO nanoparticles is well-reported
in the literature [30, 31].

For the preparation of Mn-doped ZnO nanostructures,
the same aforementioned synthesis procedure has been
followed, except for the further addition of manganese
precursor, i.e., 2wt. % manganese nitrate in zinc nitrate

2 Adsorption Science & Technology



solution. Figure 1 summarizes (in pictorial form) the
procedure adopted for the synthesis of Mn-doped ZnO
photocatalyst.

2.3. Photocatalytic Activity. Herein this study, we have inves-
tigated the photocatalytic activity (PCA) of pure and Mn-
doped ZnO nanoparticles for the effective degradation
application of MG dye under natural sunlight irradiation.
The MG dye has been specifically selected as a model dye
for our investigation, on account of its extensive discharge
as an industrial effluent coupled with its adverse effects on
human health. The MG dicationic dye exhibits peak absor-
bance in the visible range, specifically at λmax = 620 nm. To
perform the PCA, primarily 2mg MG dye has been dis-
solved in 100mL of deionized water (DIW) with persistent
stirring via a magnetic stirrer. Secondly, 3mg of both synthe-
sized photocatalysts (pure and Mn-doped ZnO) has been
sequentially dispersed in 30mL aliquots of MG aqueous
solution. To achieve adsorption saturation between the
photocatalyst and dye solution, their dispersion has been
vigorously stirred, in dark conditions, for half an hour. No
substantial evidence of MG dye degradation mediated by
synthesized photocatalysts was observed in the dark condi-
tion. It is pertinent to mention that we have selected the
catalyst dosage and MG dye concentration after optimiza-
tion through the UV-visible spectrophotometer. Still, higher
concentrations would hamper light transmission through
the aqueous dispersion in the optical study via UV-vis
spectrophotometer.

The vials containing MG dye and the synthesized photo-
catalysts were later sequentially irradiated with sunlight

under constant stirring, per 10 minute time intervals for
about an hour. The reaction mixture has been irradiated by
natural sunlight, specifically between the hours of 11 a.m.
and 12 p.m. on a bright sunny day (27th September 2021,
Lahore, Pakistan), where variation in sunlight intensity was
monitored to be nearly minimum. As it is well understood
that society has become increasingly conscious of the
adverse impacts of rapid industrial development on the
global ecosystem and resultantly, sustainable development
has become a popular catchphrase, recently. In general, the
UV light used in photocatalysis requires an input of energy
for its generation, which increases both the cost and
environmental footprint of the processes as compared to
nonpolluting and renewable natural sunlight [32]. Contrari-
wise, in tropical countries, ample sunlight is readily available
throughout the year; therefore, using natural sunlight as a
light source is the logically more promising and sustainable
approach which may add substantially to the economic
and practicability of the photocatalytic process to meet the
actual needs of water decontamination [33].

The progress of photocatalytic decolorization of MG dye
has been experimentally monitored by extracting 3mL of
analytical samples, each after 10min intervals. Chiefly, after
photodegradation and decolorization, the characteristic dark
green color of the MG dye aqueous medium was observed to
fade away and, in the long run, turned pale green as the irra-
diation period progressively increased. Specifically, in our
study, the quantification of photocatalytic degradation of
MG dye has been achieved via UV-vis spectroscopy in the
near UV-visible wavelength range of 300-800 nm, wherein
the concentration of dye is estimated by registering the
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Figure 1: The synthesis route of Mn-doped ZnO nanoparticles via the chemical precipitation method.
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absorption spectrum of its aqueous solution. Figure 2 dis-
plays a pictorial rendition of the photocatalytic activity of
(a) pure ZnO and (b) Mn-doped ZnO towards MG dye.
The degradation efficiency has been determined by the fol-
lowing mathematical expression [34]:

Degradation Efficiency =
Co − Ct

Co

� �
x100 %ð Þ, ð1Þ

where Co represents the initial concentration of MG aqueous
solution under dark conditions and Ct represents the con-
centration at varied time intervals under natural sunlight
irradiation conditions.

The absorption spectrum of the pure and Mn-doped
nanostructures has been examined by AE-S60-2U UV-vis
spectrophotometer (A & E Lab Instruments, Guangzhou,
China). The UV-vis measurement has been accomplished
after the rigorous dispersion of metal oxide nanoparticles
in deionized water. The surface morphology of the pure
and Mn-doped ZnO (2wt. %) nanoparticles has been stud-
ied by a high-resolution Nova Nano-450 field emission scan-
ning electron microscope (FESEM). The XRD patterns of
the synthesized photocatalysts have been recorded using
D-8 Discover (Bruker, Germany). The structural characteri-
zation of pure and Mn-doped ZnO has been performed by
XRD over the range between 20° and 80° with the diffrac-
tometer functioning of Cu Kα1 radiations (λ = 0:15406nm)
generated at 40 kV voltage and a current of 40mA and the
repetition rate of 2° min−1.

3. Results and Discussion

To study the structural properties, phase purity, and crystal-
lite size estimation, the X-ray diffraction patterns of pure
and Mn-doped (2wt. %) ZnO nanoparticles have been
examined in the range of 2θ = 20 – 80°, as shown in
Figure 3(a). It may be observed that sharp peaks appear at
about 2θ = 31:92° corresponding to the (100) plane, 34.60°

(002), 36.40° (101), 47.68° (102), 56.61° (110), 62.92° (103),
66.56° (200), 67.97° (112), and 69.10° (201), which are envis-
aged to be characteristic peaks of ZnO crystalline structure
[35]. Specifically, the identified peaks for all planes are in
strong agreement with the standard peak positions of the
ZnO hexagonal wurtzite structure with space group P63mc
(JCPDS card no.: 00-036-1451). In general, the XRD diffrac-
tion pattern signifies the polycrystalline nature with strongly
preferred (101) plane direction of ZnO photocatalyst, syn-
thesized via chemical precipitation route. Notably, no crys-
talline by-products such as manganese, manganese oxide,
or mixed manganese-zinc oxide have been observed, which
further confirms the singularity of the hexagonal wurtzite
ZnO phase and the successful doping of manganese in the
ZnO host lattice. Additionally, the definite line broadening
of the XRD peaks may serve as an indirect indication that
the synthesized ZnO particles are in the nanoscale range
[36]. Furthermore, no significant loss in crystallinity was
observed after photocatalysis as evident from Figure 3(a)
(inset).

The synthesis of semiconductor materials with con-
trolled doping is a tedious task since either the doping ions
are found segregated at nanocrystal surfaces or they even

Pure/Mn-doped ZnO
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MG aqueous solution

Expose the resulting
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Dark green colour of 
MG solution starts to
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pale green
Extract 3 ml of sample

for UV-vis spectroscopy,
each after 10 min interval

Figure 2: Photocatalytic activity of pure and Mn-doped ZnO towards methyl green (MG) dye, under natural sunlight irradiation.
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form secondary phases, rather than being incorporated in
the core [37]. Albeit, the XRD pattern of the Mn-doped
ZnO seems nearly identical to that of the pure ZnO. How-
ever, from Figure 3(a), it may be primarily inferred that
the diffraction peak intensity has decreased with the doping
of Mn2+ content in the ZnO matrix. This observation indi-
cates that the dopant ions have substituted the inner lattice
of Zn2+ ions, as it has caused the crystallinity to degenerate
(i.e., lattice disorder) and increase in the concentration of
defects in the sample [38–40]. Secondly, interestingly, we
have also observed a shift of XRD peaks in the case of Mn-
doped ZnO towards higher 2θ values compared to those of
pure ZnO. Specifically, Figure 3(b) demonstrates a slight
shift in the center of the three most intense (100), (002),
and (101) diffraction peaks observed for the Mn-doped
ZnO nanostructures. This interesting observation indicates
that Mn has been successfully incorporated into the host
Zn2+ lattice sites. The ionic radius of the substitute Mn2+

(~0.80Å) is slightly higher than that of Zn2+ (~0.74Å)
[41], so a slender shift towards lower angles was expected
indicating the increase of the lattice parameters of the host
lattice, as observed in numerous prior studies [39, 42, 43].
In contrast, in various other studies [44–46] and likewise
in our present study, it has been experimentally observed
that the diffraction peaks have shifted towards higher angles,
instead. Shatnawi et al. also observed a decrease in the aver-
age crystallite size, and based on the X-ray photoelectron
spectroscopy (XPS), results attributed it to the introduction
of pronounced lattice defects (oxygen vacancies) with an
increase in the Mn-doping level in ZnO [47]. Othman
et al. have also observed (a) a shift in diffraction angle
towards the higher angles, (b) a decrease in Zn-O bond
length, and (c) a decrease in crystallite size with increasing

Mn content in ZnO [48]. This interesting experimental
observation may be sourced by the existence of multiple
ionization valence states of Mn, such as Mn3+ and Mn4+

with relatively smaller ionic radii, ca. 0.58Å, and 0.53Å,
respectively [49].

The X-ray diffractometer (XRD) remains a dominant
quantitative analysis tool for the estimation of crystallite size.
In general, the Scherrer formula is ubiquitously used to esti-
mate nanostructural parameters, but it only considers the
effect of crystallite size on the XRD peak broadening and
ignores the important intrinsic strain contribution [50, 51].
Crystallite size and lattice strain measure the size of coher-
ently diffracting domains and the distribution of lattice con-
stants from lattice dislocations, respectively [52]. The origin
of the lattice strain is mainly attributed to the point defect,
grain boundary, and stacking faults as a result of doping
which may ultimately cause lattice expansion or lattice con-
traction in the nanocrystals [53]. In the present study, the
Williamson-Hall (W-H) method has been adopted for the
estimation of the crystalline domain size of the synthesized
samples, i.e., pure and Mn-doped ZnO. The simplified W-
H diagnostic tool assumes that the broadening in Bragg’s
peaks is the sum of peak broadening due to finite crystallite
size and induced strain [54, 55]. The W-H equation is given
as [56]

βCosθ = Kλð Þ/D + 4εSinθ, ð2Þ

where “D” is the average crystallite size, K is the shape factor
that is equal to 0.9, “λ” is the wavelength of X-rays (1.5406
A°), “β” is the full width at half of the maximum of diffrac-
tion peaks, “θ” is the Bragg’s angle, and “ε” represents the
internal microstrain.
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Figure 3: (a) The XRD patterns of pure and Mn-doped (2wt. %) ZnO nanoparticles before and (inset) after photocatalysis and (b) the
relative peak shift towards higher angles with Mn-doping in the ZnO host matrix.
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The crystallite size of pure and Mn-doped ZnO has been
estimated to be ~21.10 nm and 18.76 nm, respectively, as
shown in Table 1. It has been observed that the crystallite
size of the Mn-doped ZnO sample has decreased as com-
pared to pure ZnO.

Field emission scanning electron microscopy (FESEM)
analysis has been conducted to investigate the morphologi-
cal properties of pure and Mn-doped ZnO nanoparticles.
FESEM images have been noted at different magnifications
to study the effect of Mn-doping on the shape, size, and
distribution of particles. Specifically, FESEM images of both
samples at 25,000x and 100,000x magnifications are
displayed in Figures 4(a) and 4(b) for pure ZnO and
Figures 4(c) and 4(d) for Mn-doped ZnO, respectively. In
general, the FESEM micrographs depict nanoparticle-based
surface morphology with inhomogeneity in particle size
and shapes. However, it may be observed that particles with
sizes in the 50–100nm range are the most frequent in both
photocatalysts. The nanoparticle-based surface morphology
has merit in providing more surface-to-volume ratio for
photocatalytic reaction. Admittedly, the FESEM of the syn-
thesized photocatalysts (in powder form) show aggregation;
however, it must be undermined that in the aqueous suspen-
sion form during the PCA study, the continuous stirring
effectively prevents aggregation and thus maintain a large
active surface area of the synthesized photocatalysts.

The light absorption property of the pure and Mn-doped
ZnO nanoparticles has also been investigated in the near
UV-visible (300–800 nm) wavelength range, as shown in
Figure 5. It may be easily observed that both synthesized
particles have considerably higher absorption in the UV-A

region (300–400 nm) and relatively feeble absorption in the
visible range (400–700nm). Specifically, the pure ZnO nano-
particles exhibit a strong excitonic absorption band at
365 nm, which is envisaged to be the characteristic absorp-
tion peak of ZnO nanostructures [57, 58], whereas a slight
hypsochromic shift in the absorption peak of the Mn-
doped ZnO (~360nm) is evident as compared to that of
pure ZnO nanoparticles. Resultantly, the energy bandgap
(Eg) of Mn-doped ZnO nanoparticles (3.4 eV) has increased
as compared to that of pure ZnO (3.3 eV), as evidently
observed by the Tauc plot depicted in Figure 5 (inset).

Wu et al. have observed similar results, i.e., a blue shift in
the absorption edge of ZnO and a broadening of Eg, which
indicates that Mn-doping not only produces elemental
energy levels but also affects the intrinsic defect energy levels
of ZnO [59]. Husain et al. suggest that the blue shift in opti-
cal absorption or increase in the Eg, by successive doping of
Mn in ZnO, may be attributed to the orbitals hybridized
between the Mn atom and host band [60]. Viswanatha
et al. also find it reasonable to expect the bandgap (Eg) to
increase with increasing concentration of Mn since the
bandgap of MnO (Eg~4.2 eV) is greater than that of ZnO
(Eg~3.3 eV) [61]. It must be undermined that the crystallite
size of as-synthesized ZnO (calculated from XRD) is signifi-
cantly higher than the Bohr exciton radius of ZnO (i.e.,
2.34 nm) [62]; therefore, the increase in bandgap or blue
shift in absorption may not be attributed to quantum con-
finement effect. Instead, similar bandgap widening has been
attributed to Burstein-Moss effect which is widely reported
(for ZnO) in literature [25, 63, 64]. Nevertheless, based on
the efficient absorption of pure and Mn-doped ZnO in the

Table 1: The estimation of crystallite size and microstrain in pure and Mn-doped ZnO samples using the W-H method.

Parameters Peak position FWHM X-axis Y-axis
Y-intercept

Crystallite size Microstrain (Є)
K λ(Å) 2θ (deg) β (deg) 4Sinθ βCosθ D (nm) No unit

Structural parameters for pure ZnO XRD’s data using Williamson-Hall plot

0.94 1.5406 36.20237 0.49032 1.242784353 0.008134172 0.00657 21.10410959 0:949 × 10−3

34.3841 0.42664 1.182301995 0.007113569

31.7238 0.46896 1.093278514 0.007873242

47.47716 0.51164 1.61025698 0.008174267

56.53489 0.51897 1.89435141 0.007977569

62.78453 0.57248 2.083577587 0.008529093

67.87294 0.62157 2.233093267 0.009000488

68.99383 0.60138 2.265447449 0.008650399

Structural parameters for Mn-doped ZnO XRD’s data using Williamson-Hall plot

0.94 1.5406 36.36538 0.59023 1.2481916 0.009787068 0.00739 18.7623816 1:5 × 10−3

34.54185 0.47705 1.1875614 0.007950683

31.90264 0.56533 1.0992822 0.009486951

47.60118 0.65403 1.6142189 0.010444196

56.66233 0.67434 1.8982682 0.010359701

62.88501 0.74308 2.0865708 0.011064849

67.96516 0.7939 2.2357633 0.01148964

69.10656 0.67618 2.2686894 0.009719761

6 Adsorption Science & Technology



near UV wavelength range, we have investigated the capabil-
ity of both photocatalysts in the presence of solar light irra-
diation instead of visible light, alone.

The Brunauer–Emmett–Teller (BET) method is ubiqui-
tously utilized in nanotechnology and is envisaged to be an

ideal experimental tool to estimate the specific surface area
of the nanomaterials [65]. In the present study, a linear
BET multipoint plot of 1/½WðP/PoÞ − 1� vs. P/Po has been
obtained for both pure and Mn-doped ZnO photocatalysts.
In multipoint BET analysis, five or a minimum of three data
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Figure 4: FESEM topographical analysis (surface view) of (a, b) pure ZnO and (c, d) Mn-doped ZnO at 25kx and 100kx magnification
scales, respectively.
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points are typically used in the P/Po range~0.025 to 0.30, to
successfully determine the surface area [66], using the BET
equation expressed as [67]

1
W P/Poð Þ − 1½ � =

1
WmC

+
C − 1
WmC

P/Poð Þ, ð3Þ

where “W” is the weight of adsorbed gas, “P/Po” is the rela-
tive pressure, “C” is the BET constant, and “Wm” is the
weight of the absorbate as a monolayer. Furthermore, the
linear plot of the multipoint BET equation may be used to
calculate the slope (s) and intercept (i) as expressed in
Figure 6. The mathematical expressions for s, i, and Wm
are as follows:

s = C − 1
WmC

, ð4Þ

i =
1

WmC
, ð5Þ

Wm =
1

s + i
: ð6Þ

The specific surface area of both synthesized photocata-
lysts may thus be mathematically determined by the follow-
ing equation:

SBET =
WmNaAcs

wM
, ð7Þ

whereby “Na” represents Avogadro’s number (i.e., 6:022 ×
1023), “Acs” is the adsorbate nitrogen cross-sectional area
(i.e., 16.200Å2), “M” is the molecular weight of the absorbate
nitrogen gas (i.e., 28.013 g/mol), and “w” is the utilized sam-
ple weight. Through Equation (7), the specific surface area
(SBET) of pure and Mn-doped ZnO has been calculated to
be 25.804m2/g and 79.834m2/g. The significant increase in
the SBET of the Mn-doped ZnO photocatalyst may be under-
stood in terms of the crystallite size. A similar increasing

trend of specific surface area has been previously reported
with decreasing crystallite size in various studies [68, 69].
Zhang et al. previously observed a similar consistent correla-
tion between crystallite size and specific surface area for
TiO2 nanoparticles subjected to various heat-treatment tem-
peratures [70]. It is pertinent to mention that in general, the
smaller nanoparticles exhibit superior photocatalytic perfor-
mance owing to their higher specific surface area [71]. With
the decrease in the size of nanoparticles, the reactivity and
the percentage of atoms on the surface of nanoparticles
increase, and hence, an increase in the photocatalytic activity
is observed.

Figure 7 depicts the UV-vis absorption spectrum of MG
dye (solution state in DI water) which implies the strong dis-
tinctive absorption peak positioned at λmax~620nm, accom-
panied by two prominent shoulder peaks at 315 and 425 nm,
respectively [16, 72, 73]. The shoulder peaks correspond to
benzoic rings in the dye structure [74]. Specifically, the
weaker absorption peak in the near UV region (i.e., at
315 nm) may be ascribed to n-π ∗ transitions [75]. The pho-
tocatalytic activity of MG dye solution has been studied,
mediated by the pure and Mn-doped ZnO, at the reference
wavelength of 620nm which corresponds to the absorption
maximum of MG dye.

During the PCA study, primarily, the light absorption
characteristics of the pure MG aqueous solution (devoid of
any photocatalyst) have been examined, under natural sun-
light irradiation (illumination time = 60 minutes). In gen-
eral, quite an insignificant decline in the absorption
maximum of MG dye solution has been observed, which
affirms that there is a diminutive decrease in MG dye con-
centration due to the photolysis phenomenon [16, 76]. Later,
the absorption peak of MG aqueous solution has also been
monitored in the presence of both catalysts (pure and Mn-
doped ZnO nanoparticles) under natural sunlight illumina-
tion (60 minutes duration). During this activity, ~3mL of
the reaction sample aliquots has been sequentially drawn
(each, after a regular 10 mins time interval) and subjected
to spectrophotometric study by UV-vis absorption spectros-
copy. Figure 8(a) depicts the relative concentration (Ct/Co)
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Figure 6: Linear plot of BET equation to determine the surface area of (a) pure ZnO and (b) Mn-doped ZnO nanoparticles.
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of MG dye solution in response to the irradiation time, in
the presence of pure and Mn-doped ZnO nanoparticles.
Here, “Co” symbolizes the original concentration of MG
dye solution before sunlight irradiation, and “Ct” signifies
the residual concentration of the solution after irradiation
for time (t). In general, it has been observed that under the
influence of natural sunlight irradiation, the MG solution
progressively loses its characteristic green color in the pres-
ence of photocatalysts. The progressive decrease in the reac-
tion sample’s absorption maximum (at λmax = 620nm) with
increased irradiation time may be ascribed to the photode-
gradation of the MG dye [73, 77]. It is well understood that,
as reaction time proceeds, the mutual interaction between
the MG dye molecule and the surface of photocatalysts also
increases, which effectively enhances the photodegradation
of the pollutant dye [78].

It may be easily observed from Figure 8(a) that both
photocatalysts exhibit significant photocatalytic properties
toward the degradation of MG pollutant dye. However, the
photocatalytic performance of ZnO has been observed to
improve substantially with Mn-doping. For detailed analysis,
the photocatalytic degradation kinetics of MG dye has been
investigated in time “t,” to estimate the photocatalytic reac-
tion rate constant (K) and correlation coefficient (R2). The
experimental data have been analyzed by the kinetic models,
such as pseudo-first-order and pseudo-second-order.

The linear expression for the pseudo-first-order is math-
ematically expressed as [79]

ln Co/Ctð Þ = K1t: ð8Þ

The value of “K1” has been calculated (fromFigure 8(b)) by
estimating the slope of the plot between irradiation time and
ln ðCo/CtÞ. Specifically, the rate of photocatalytic reaction
(K1)~0.01477min-1 and R2~0.92164 has been achieved for

pure ZnO, whereas slightly higher ~0.01617min-1 and R2

~0.93494 have been observed forMn-doped ZnO, respectively.
Here, it may be observed that the value of R2 (in both cases) is
significantly lower than that of unity and hence unacceptable.

Contrariwise, the pseudo-second-order relation may be
expressed as

1/Ctð Þ − 1/Coð Þð Þ = K2t: ð9Þ

The slope of graphs (presented in Figure 8(c)) helps to find
out the values of the second-order rate constant (K2) for pure
and Mn-doped ZnO photocatalysts. The data represented in
the graph (Figure 8(c)) clearly shows that the K2 value in the
case of pure ZnO is 0.01792min-1, and for Mn-doped ZnO,
it is comparatively higher, i.e., 0.02072min-1. Furthermore,
the R2 values for the pseudo-second-order reaction kinetic
model are 0.97992 and 0.97299 for pure and Mn-doped ZnO
photocatalysts, respectively, which are relatively adequate.

Figure 8(d) compares the photocatalytic performance
of both catalysts. It may be observed that after 60min irra-
diation of natural sunlight, ~62.78% and ~66.44% photo-
catalytic degradation of MG aqueous solution has been
achieved mediated by pure and Mn-doped (2wt. %) ZnO
photocatalyst, respectively. It may be established from
Figure 8 that Mn-doped ZnO nanoparticles exhibit dis-
tinctly higher PCA efficiency of MG dye as compared to
pure ZnO. Earlier, Li. et al. have also obtained similar
results in a study that investigates the potential of pure
and Mn-doped ZnO photocatalysts towards methyl orange
dye (MO) degradation. In their study, the superior photo-
catalytic activity of Mn-doped ZnO has been ascribed to
the dopant ions, which not only provide impurity energy
levels but also serve as electron trapping sites to promote
the separation and restrain the recombination of photo-
generated charge carriers [80].
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Figure 7: The solution state (DI water) absorption spectrum of methyl green pollutant dye.
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It is one of the major drawbacks of ZnO photocatalyst
that the rate of electron-hole recombination is significantly
higher [81]. Doping ZnO lattice with transition metals typi-
cally introduces intermediate energy states, wherein elec-
trons might get trapped, thereby impeding the probabilities
of electron-hole pair recombination [82]. For instance, Iba-
nescu et al. have previously confirmed a relatively blue shift
in absorption with the manganese doping in ZnO and a
reduction in the possibility of electron-hole pair recombina-
tion [83]. Similarly, Gupta et al. have also confirmed that the
synergistic interactions with multiple charge transfer path-
ways may considerably enhance the PCA efficiency of the
Mn-doped ZnO photocatalyst [84].

The photodegradation mechanism of methyl green dye
mediated by synthesized photocatalysts (pure and Mn-

doped ZnO) under sunlight may be described by the follow-
ing successive reactions:

ZnO + hν⟶�e + h+, Mn − doped ZnO + hν

⟶�e + h+ photon absorptionð Þ, ð10Þ

�e + h+ ⟶Heat undesired recombinationð Þ, ð11Þ
�e + O2 ⟶O−•

2 superoxide anion formationð Þ, ð12Þ
h+ + OH− ⟶ •OH Hydroxyl radical formationð Þ, ð13Þ

O−•
2 + H2O⟶ •OH, ð14Þ

•OH +MG⟶ CO2 + H2O +mineralized products: ð15Þ
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Figure 8: The photodegradation of MG dye mediated by pure and Mn-doped ZnO nanoparticles (a) normalized Ct/Co curves, (b) plot of
ln ðCo/CtÞ, (c) second-order reaction kinetics, and (d) dye degradation (%) as a function of irradiation time, respectively.
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In the first step, when a photon having energy equaling
or exceeding the bandgap energy (Eg) of photocatalysts
(pure and Mn-doped ZnO) is absorbed, an electron (e−) is
excited from the valence band (VB) and gets transferred to
the empty conduction band (CB), creating a hole vacancy
(h+) in the VB (as in Equation (10)). In the second step,
these photoinduced charge carriers may migrate to the active
sites of the surface of the photocatalyst, where they act as
reducing/oxidizing agents to facilitate redox reactions on
the surface. Specifically, the electrons react with oxygen to
produce superoxide anion, whereas the holes react with
water and hydroxide ions to produce hydroxyl radicals (as
expressed in Equations (13) and (14), respectively) [85].
However, numerous studies have previously indicated that
pure ZnO (as a photocatalyst) exhibits low-charge separa-
tion efficiency [85, 86]. Hence, photoinduced e−/h+ pairs in
ZnO may inevitably recombine producing heat as wasted
energy. Moreover, since the recombination process is much
faster than the charge transportation to the active sites, this
ultimately results in reduced photocatalytic efficiency of

ZnO [87]. The recombination process inhibits the photocat-
alytic performance of ZnO, since only a limited number of
photoinduced charge carriers produce the active radicals
(•OH and O−•

2 ) which are essentially required for the degra-
dation of the MG dye pollutants [73]. It is also pertinent to
mention that hydroxyl radicals are strong oxidizing agents
and may oxidize nearly all organic pollutant dyes with no
selectivity [88].

Contrariwise, when ZnO is doped with manganese
atoms, the dopant ions replace Zn ions in the host lattice
and tend to act like electron scavengers. The difference in
the bandgap of pure and Mn-doped ZnO is a direct indica-
tion of the variation in the electronic structure of hexagonal
ZnO with Mn2+ substitution [89]. The widening of the
bandgap may be attributed to the Burstein-Moss effect,
which causes a shifting in the position of the Fermi level into
the conduction band (as shown in Figure 9). Specifically, the
shift of Fermi level is the consequence of the Pauli exclusion
principle, since the enhanced charge carrier concentration
(sourced by Mn-doping) results in the occupancy of the
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Figure 9: Schematic representation of the Burstein-Moss effect in Mn-doped ZnO nanoparticles.

Table 2: Comparison of photocatalytic performance of synthesized photocatalysts with literature.

Light source (time)
Pollutant dye
(concentration)

Photocatalyst
Catalyst
amount

Rate constant
(K)

Degradation
efficiency

Ref.

UV (60min) Malachite green (15 ppm)
Ni-doped ZnO

(6wt. %)
0.1 g/L 0.0042min-1 76% [92]

UV (120min) Methyl green (40 ppm)
Nickel-dimethylglyoxime/

ZSM-5 zeolite
0.6 g/L 0.036min-1 76.5% [93]

Visible (50min) Methyl green Cu-doped ZnO (5wt. %) — 0.04min-1 75% [94]

UV (50min) Methyl green Tb-doped ZnO (1wt. %) — 0.022min-1 77% [95]

UV (120min) Methylene blue (10 ppm) Mn-doped ZnO (2wt. %) 0.3 g/L 0.03min-1 99% [82]

Natural sunlight (240min) Congo red (100 ppm) Mn-doped ZnO (7wt. %) 1 g/L 0.0089min−1 87% [24]

Natural sunlight (60min) Methyl green (20 ppm) Pure ZnO 0.1 g/L 0.01792min-1 62.78%
Present
study

Natural sunlight (60min) Methyl green (20 ppm) Mn-doped ZnO (2wt. %) 0.1 g/L 0.02072min-1 66.44%
Present
study
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low energy levels closer to the conduction band [64].
Resultantly, the low energy transitions are blocked, since
the Pauli exclusion principle forbids excitation into the
preoccupied states, and resultantly, the apparent bandgap
is increased (where apparent bandgap = bandgap energy
ðEgÞ + Burstein −Moss shift (ΔE)). Furthermore, it is well
understood that the metal dopant atoms (in particular
the transition metals like Mn) change the coordination envi-
ronment of ZnO and create surface defects in the ZnO host
[25]. The defect states subsequently trap excited electrons
and improve the separation of photogenerated e−/h+ pair
[90, 91]. The improved photocatalytic activity of Mn-doped
ZnO may therefore easily be attributed to the prominent
e−/h+ pair separation ability and subsequent efficient genera-
tion of hydroxyl radicals vital for effective dye degradation.

Table 2 compares the photocatalytic activity of the syn-
thesized photocatalysts (pure and Mn-doped ZnO) with
the literature.

4. Conclusion

In this study, we have utilized the chemical precipitation
method to synthesize pure and Mn-doped ZnO (2wt. %)
nanoparticles for photodegradation (of methyl green pollut-
ant dye). The XRD structural analysis has revealed the hex-
agonal wurtzite structure of both as-synthesized intrinsic
and extrinsic (Mn-doped) ZnO photocatalysts. The investi-
gation of photophysical properties by UV-vis indicates that
the absorption peak in Mn-doped ZnO nanoparticles is
blue-shifted by 5nm (365→ 360 nm), due to the widening
of the bandgap, which has been attributed to the Burstein-
Moss effect instead of quantum confinement. Furthermore,
the BET analysis has revealed that the specific surface area
(SBET) Mn-doped ZnO (79.834m2/g) is three-fold higher as
compared to that of pure ZnO (25.804m2/g), which is con-
sidered to be an advantage as it provides a relatively more
active area for photocatalytic reaction. In photocatalytic
activity calculations, following the pseudo-second-order
reaction kinetic model, the rates of photocatalytic reac-
tions (K2) have been observed to be 0.01792min-1 and
0.02072min-1 for pure and Mn-doped Zn, respectively. After
60 minutes of natural sunlight irradiation, pure and Mn-
doped (2wt. %) ZnO photocatalysts were found to achieve
62.78 percent and 66.44 percent photocatalytic degradation
of MG aqueous solution, respectively. The current findings
show that doping pure ZnO nanoparticles with manganese
improves their photocatalytic properties by 5.83 percent over
intrinsic ZnO. In summary, the synergistic interactions with
multiple charge transfer pathways, improvement of e−/h+

pair charge separation, enhanced surface area, and efficient
generation of hydroxyl radicals are supposed to be responsi-
ble for the considerably higher photocatalytic efficiency of
the Mn-doped ZnO photocatalyst.
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