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In this work, orange peel (OP) was used as raw material to produce biochar. The effect of oxygen-limited carbonization temperature
(200, 400, and 600°C) on the physicochemical properties and adsorption behavior of orange peel biochar (OPB) toward La(III) and
Y(III) in aqueous media was studied. The prepared OPB samples were characterized by SEM, FTIR, and XRD. The experimental
results exhibited effective removal of La(III) and Y(III) from aqueous solution by OPB. The carbonization promoted the pore
development, and the adsorption process occurred rapidly. The main chemisorption of La(III) and Y(III) on OPB was analyzed by
the Langmuir and pseudo-second-order kinetic model, and the participations of electrostatic attraction, exchange, and hydroxyl
and carboxyl complexation in OPB were confirmed. The Langmuir maximum capacity of 55.57mg/g and 31.49mg/g was obtained
at the optimum pH range of 4~6 and the OPB dosage of 1 g/L and 2 g/L for La(III) and Y(III). The efficient orange peel biochar
with high adsorption performance can be obtained by considering suitable carbonization temperature.

1. Introduction

Rare earth (RE) is a generic term for the seventeen metal ele-
ments in the periodic table, mainly divided into lanthanides,
scandium, and yttrium, known as industrial “gold.” Because
of their excellent physical and chemical properties such as
photoelectricity and magnetism, the RE group plays a signifi-
cant role in military, metallurgy, petrochemical, glass, and
ceramics, as well as agriculture and other applications. In
recent years, a huge amount of effluent with rare earth
elements (REEs) has been generated due to the year-round
continuous exploitation and smelting, resulting in serious loss
of rare earth resources and pollution of the surrounding envi-
ronment [1]. Therefore, separation and recovery of REEs in
solution have attracted considerable attention. Traditional
methods for treating rare earth wastewater mainly include
chemical precipitation, ion exchange, solvent extraction, and
membrane separation. Most of these methods have their
respective advantages in treatment, but there are still short-

comings such as low recovery rate, long separation time, high
price, complicated process, secondary pollution, and poor
effect of low concentration wastewater treatment [2].

The biochar adsorption technology that has emerged in
recent years has shown great potential in the field of heavymetal
removal due to its simplicity, low operating cost, high selectivity,
fast adsorption and desorption rates, environmentally friendly
nature, etc. [3, 4]. Based on the innovative concept of “treating
waste with waste,” researchers have worked to utilize biological
waste to prepare biochar adsorbents and achieved expected
recovery results in various metal adsorption applications.
Orange peel (OP) has been widely applied due to its low cost
and accessibility, mainly focusing on metal-containing [4],
organic drugs [5], toxic-oxygenated anions [6], and textile dyes
[7]. However, OP as an adsorbent has more restrictions on envi-
ronmental conditions, and its disadvantages such as weak reac-
tivity, low porosity, and surface area restrict their application in
selective and low concentration adsorption [8]. For the reason,
several techniques have emerged for the modification of OP,
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including chemical modification [9], carbonization [10], and
activated carbon preparation [11]. Researchers have found
that carbonization and thermal activation contribute to
improve the stability and adsorption effect of this biomaterial,
which is related to its growing specific surface area, abundant
mineral content, and pore structure [12–14]. Interestingly, the
carbonization temperature at which biochar is prepared plays
a crucial role in its quality [15]. Song et al. [15] focused on the
effects of biochar composite adsorption performance using
different hydrothermal methods (200°C) and pyrolysis tem-
peratures (350°C, 500°C, and 700°C); the optimal tempera-
tures (350°C) and the maximum adsorption (8.163mg/g)
were confirmed. Wu et al. [16] selected spent mushrooms as
substrates to carbonize at 300°C, 500°C, and 700°C.

In the literature, the minimum temperature of 200°C was
selected for the initial pyrolysis of volatile substance in OP,
while the endpoint temperature was 700°C; in general, bio-
char prepared at charring temperatures above the endpoint
temperature contains predominant carbon as the volatile
organic compounds have been completely thermally decom-
posed [17], and these biochars of higher alkalinity and ion
exchange capacity within less than 700°C were demonstrated
[17, 18]. In order to prevent excessive carbonization of
orange peel, a conservative temperature of 600°C was
selected in the present work. Therefore, orange peels were
exploited to prepare beneficial sorbents by the carbonization

at 200, 400, and 600°C; their performance and mechanisms
in La(III) and Y(III) adsorption were investigated; and, com-
bined with analysis of SEM, FTIR, and XRD, the physico-
chemical properties of prepared biochar at three pyrolysis
temperatures were compared.

2. Materials and Method

2.1. OPB Preparation. The orange peel (OP) was supplied by
local orchards in Ganzhou, China. The supplied OPs were cut
into small pieces, washed, and oven-dried to constant weight
at 60°C. The driedmaterial was subsequently heated from room
temperature to 200, 400, and 600°C (a heating rate of 10°C/min)
for 2h, respectively. This process was conducted under an
oxygen-limited condition by using covered corundum cruci-
bles. The resulting biochar was ground and sieved into desirable
sizes (less than 0.15mm) and labeled as OPB. As shown in
Figure 1, 35.02%, 30.79%, and 24.05% of OPB200, OPB400,
and OPB600 were acquired according to yield formula.

2.2. Characterization Studies. The surface morphology of
OPB was observed using an MLA650F-type field emission
scanning electron microscope (SEM) (FEI, USA). Infrared
spectra before and after adsorption in the wave range of 400-
4000 cm-1 were recorded by a Nicolet FTIR spectrometer
(Vertex 80+Hyperion 2000, China) to obtain the peak changes
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Figure 1: Preparation information of the OPB.
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of the material functional groups. An X-ray diffractometer
(XRD) (Empyrean, The Netherlands) was adopted for the
analysis to identify the crystalline phases in the material.

2.3. Adsorption Experiments. The experimental La(III) and
Y(III) solutions were prepared by diluting the stock solu-
tions that were produced from La2(SO4)3 and
Y2(SO4)3·8H2O. Batch adsorption experiments were specifi-
cally conducted: 50mL of La(III) and Y(III) solutions with a
concentration of 36mg/L was added to 60mL test tube bot-
tles, and OPB adsorbent was added at dosage of 1 and 2 g/L,
respectively. The mixture was shaken for 2 h at 200 r/min
and room temperature. The factor experiments, while
remaining other conditions, included the following: (i) the
effect of dosage ranged from 0.25 g/L to 5 g/L; (ii) the effect
of initial pH ranged from 2 to 7; (iii) adsorption isotherms
and thermodynamics at initial La(III) and Y(III) concentra-
tion ranged from 5mg/L to 100mg/L under temperature of
30, 40, and 50°C; and (iii) adsorption kinetics with contact
time ranged from 5min to 150min. Three parallel experi-
mental groups were used to calculate the average value. After
adsorption, the ion concentration of the supernatant filtered
through 0.45μm filter paper was measured by ultraviolet
spectrophotometer (UV-5100).

The adsorption amount (qe (mg/g)) and the adsorption
efficiency (Re (%)) were calculated as

qe =
C0 − Ce ⋅ V

M
,

Re =
C0 − Ce
C0

⋅ 100,
1

where C0 and Ce are the initial and equilibrium concentra-
tions (mg/L), V is the solution volume (L), and M is the
mass of OPB (g).

3. Results and Discussion

3.1. Physicochemical Properties. As shown in the SEM image
of Figure 2, the surface of OPB was rough and loose and
attached with a mass of ash particles. This is because high tem-
perature caused the decomposition of volatile compounds [10,
16]. Due to the adequate carbonation, OPB600 had higher ash
content and more surface-attached particles, which increased
surface area and available sites for adsorption.

The FTIR analysis of OPB is exhibited in Figure 3. The
broad peaks near 3400 cm-1 and 2900 cm-1 were identified
by -OH stretching and -NH bending vibration [9, 19]. The
2731, 2392, 2062, 1759, 824, and 714 cm-1 were attributed
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Figure 2: SEM images of OPB at different carbonization temperatures.
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Figure 3: The FTIR spectrum of OPB and OP before and after La(III) and Y(III) adsorption.
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to vibrations of C=O andC-OH from the alcohol, phenol, ether,
and lactone groups in OP, and these oxygen-containing groups
(like -OCH3) are mainly derived from cellulose [20]. The π-
electrons provided by these structures could contribute to the
adsorption [13, 17]. Similar peaks were displayed in the OPB
spectra, but some characteristic peaks near 3400, 2900, 1600,
1300, 1000, and 700cm-1 of intensity were weakened or disap-
peared with higher carbonization temperature. It is noteworthy
that for the vibration peak from water molecules, as the prepa-
ration temperature increased, the peak of OP shifted from
1759cm-1 to 1587cm-1 of OPB600 and the peak intensity
became weaker to inconspicuous. This is due to the decomposi-
tion of organic substance and breakdown of chemical bonds by
high temperatures, like peaks C=C, C=O, andC-OH; there were
fewer acidic functional group on the OPB600 [21, 22]. There-
fore, the aromatization was increased in OPB, which is in accor-
dance with most literature that high-temperature biochar has
lower O/C, H/C, and (O+N)/C ratios [8].

From the analysis of the XRD pattern of OPB in
Figure 4, the small peaks of OP and OPB200 at about
2θ=15.50° suggest that the samples persisted in some imper-
fect decomposed cellulose structures [16]. The carbon peaks
in most region appeared low reflection sharpness, especially
OPB400 and OPB600, indicating the noncrystallinity of the
structure. Two broad peaks appeared at 20°~25° and
40°~45° were considered to amorphous carbon [14, 24]. This
could confirm the presence of some graphite. However, the
characteristic peaks of OPB600 at 29.30°~42.84° exhibited
greater sharpness and intensity, which were reflections from
the mineral components, combined with the FTIR results;
this can suggest that higher carbonization temperatures pro-
mote organic matter decomposition and mineralization.

3.2. Effect of OPB Dosage. The capacity of adsorbent can be
visually expressed through its dosage (S/L). As illustrated in

Figure 5, the adsorption efficiency of La(III) and Y(III)
increased with increasing OPB dosage, and a maximum was
observed at 0.25g/L to 1 g/L and 2 g/L, respectively. The ions
and active sites were sufficiently matched at this optimal dos-
age; on this premise, the greatest adsorption efficiency of up to
100% could be reached with the appropriate dose of OPB. The
adsorption amount decreased as the OPB dosage was incre-
mented. At high biochar dosages, small OPB particles were
prone to agglomeration, leading to a decrease in the number
of effective adsorption sites, and the tortuous adsorption paths
resulting from overlapping particle surface areas can hinder
the mass transfer process [25, 26]. In addition, the elevation
of solution equilibrium pH value (pHe) in Figure 6 suggests
that the native alkalinity of OPB biochar increased the solution
pH, leading to the precipitation of partial RE ions and thus
affecting the adsorption [16]. Therefore, surface precipitation
contributed to the OPB adsorption.

3.3. Effect of pH. The adsorption trend by OPB at different
initial pH is shown in Figure 7. The solution pH often signif-
icantly affects the adsorption performance. This is because
pH exerts its effect by changing the adsorption system,
exactly adsorbate (i.e., RE ions) of species and adsorbent
(i.e., biochar) of surface charge in solution [3].

Under the strong acidity conditions, the oxygen-
containing functional groups of OPB underwent proton-
ation, resulting in the OPB surface with positive charge.
Also, electrostatic repulsion between OPB adsorbents and
La(III) and Y(III) occurred due to the undissociated of most
of the -COOH or -OH groups, leading to low sorption activ-
ity and capacity [3, 17]. In addition, especially low solution
pH less than 3.5, the adsorption efficiency of OPB400 and
OPB600 was significantly lower than that of OPB200. This
means that the herein studied higher temperature biochar
was more influenced than lower temperature biochar
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Figure 4: The XRD patterns of OPB and OP.
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through electrostatic attraction from pH. The elevation of
solution pH allowed RE ions to be present in the form of
hydroxyl RE ions (e.g., RE(OH)2+ and RE(OH)2

+) [27], and
the conversion of carboxylic acids into free -COO- forms
increased. Therefore, a greater number of RE ions were trans-
ferred to the OPB phase via a growing attraction force, which
facilitated the interaction of La(III) and Y(III) with the active

sites and thus adsorption. Since the smaller effective hydration
radius of hydronium ions (H3O

+ with 0.280nm) compared to
La(III) and Y(III) (~0.452nm), it is more competitive in occu-
pying the adsorption site on OPB, and the adsorption domi-
nates only when the solution acidity weakens [3, 28].

When the pH values increased from 2.0 to 5.5, the
adsorption capacity of OPB adsorbent for La(III) and
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Y(III) has increased and reached its maximum. Clearly,
this result suggests that electrostatic attraction was an
existence of dominating contribution in the adsorption
process (namely, pore filling and physical adsorption as
secondary contributions). With rising pH above 6, the

pHe values remained around 7 or 8; in this state, a por-
tion of RE ions precipitated as hydroxide (RE(OH)3),
which is the main factor for the diminished extent of
OPB adsorption, consequently reducing the adsorption
efficiency [3].
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(5.11~5.39), and room temperature (20~25°C)).
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3.4. Effect of Contact Time. As shown in Figure 8, the overall
adsorption was a process of first fast and then slow and
finally reaches equilibrium, which indicates the effective role
of surface sites and porous structure of the carbonaceous
adsorbent. Initially, the fast adsorption stage completed
within about 25min, and the La(III) and Y(III) adsorption
by OPB600 reached more than 98%. It is noteworthy that
this stage with relatively faster adsorption process was attrib-
uted to the abundance of vacant binding sites and the higher
gradient concentration between solute and adsorbent
phases, which prompted a greater accessibility of La(III)
and Y(III) to active sites in the OPB surface [25].

Then, the slow adsorption phase proceeded because of
the almost saturation in OPB surface sites. At this point,
prolongation of equilibrium time resulted from diffusion of
residual ions and obstruction of mass transfer processes
[4], OPB200 adsorption duration within 60min, while a
much shorter time, about 30min, was required for OPB600
and achieved a higher adsorption efficiency. This is mainly
because the increased pore structure of OPB600 after car-
bonization at high temperature was conducive to the adsorp-
tion process. In the final stage, the adsorption efficiency did
not vary with time, implying the equilibrium relationship
between the desorption and adsorption.

3.5. Effect of Initial La(III) and Y(III) Concentration. As can
be seen in Figure 9, the adsorption efficiency for La(III) and
Y(III) decreased almost linearly upon the increase of the initial
concentration from 5 to 100mg/L. At lower initial concentra-
tions, the optimum adsorption amount was 66.03mg/g for
La(III) and 35.14mg/g for Y(III). This is because of the driving
force provided by the gradient difference between the low con-
centration ions and the high mass adsorbent, which promotes
the approach of ions to adsorbents [25], which can also be
considered as a strong adsorption force generated from the
unsaturated sites of OPB and targeted to the low concentra-
tion of RE ions. However, a fixed amount of OPB has a limited
maximal adsorption capacity. As a result, as the initial concen-
tration increases, the adsorption efficiency of the RE ions was
negatively affected, mainly because the saturation of available
adsorption sites would limit the interaction between RE ions
and OPB. Consequently, the optimum adsorption depends
on the ratio of adsorbent dosage to ion concentration.

On the other hand, OPB600 kept the highest equilibrium
adsorption capacity, followed by OPB400. Similar results were
obtained on wood ear mushroom stick-derived biochar [26]
and microalgal residue-derived biochar [29], for adsorption
of Cd(II) and Pb(II). These observations disclosed that biochar
prepared at higher temperatures has an available surface struc-
ture for adsorption and greater adsorption affinity for ions,
resulting in better adsorption capacity.

4. Adsorption Model

4.1. Kinetic Studies. This study adopted the pseudo-first-
order kinetic (PFO) (Equation (2)), pseudo-second-order
kinetic (PSO) (Equation (3)), and Weber-Morris model
(intraparticle diffusion model) (Equation (5)) to analyze
the experimental results.

log qe − qt = log qe −
K1t
2 303 , 2

where qt is the adsorption amount at time t (mg/g) and K1 is
the PFO constant (1/min).

t
qt

= 1
K2q2e

+ t
qe
, 3

where K2 is the PSO constant (g/(mg·min)) and K2 can cal-
culate H, the initial adsorption rate constant (mg/(g·min)),
indicating the rapidity for attaining an equilibrium state,
according to the following:

H = K2q
2
e 4

As illustrated in Table 1, the OPB adsorption for La(III)
and Y(III) with higher fit coefficient R2 obeyed the PSO kinet-
ics, and the experimental result qe exp coincided with theo-
retical value qe cal . This implies that chemisorption
dominated the main rate-limiting step in the OPB adsorption
[30]. The K2, qe, and H values of OPB600 were larger than
OPB400 and OPB200, indicating the higher adsorption capac-
ity and shorter equilibrium adsorption time of prepared OPB
at higher carbonization temperature. One of the explanations
is the pore development of the carbonization process [10].

qt = Kpt
1/2 + C, 5

where Kp is the intraparticle diffusion rate constant (m·g/
(gmin1/2)) and C relate to the boundary layer thickness.

The graph plotted from qt versus t1/2 (Figure 10) was
divided into two kinetic adsorption phases. The diffusion
rate in the first stage was higher than that in the second
stage. The OPB surface was well adsorbed with La(III) and
Y(III) due to the greater external mass transfer process
[31]. These lines without passing through the origin indicate
that the adsorption rate depended on intraparticle diffusion
and were controlled by multiple steps together [4, 32]. The
increase in boundary layer thickness may affect the progres-
sion of equilibrium adsorption. Therefore, the value C1 was
less than C2, which further confirmed the intimate correla-
tions between particle internal diffusion and surface reac-
tion, external diffusion, and liquid film diffusion [33].

4.2. Adsorption Isotherm Studies. The interaction between
adsorbent and adsorbate can be elucidated by isothermal
adsorption. Three classical isothermal adsorption models,
Langmuir (Equations (6) and (7)), Freundlich (Equation (8)),
and Dubinin-Radushkevich (D-R) (Equations (9)–(11)), were
employed to calculate the model fitting parameters, and the
results are presented in Tables 2 and 3.

Ce
qe

= Ce
qmax

+ 1
qmaxKL

, 6

where qmax stands for the maximal monolayer adsorption
capacity (mg/g) and KL represents the equilibrium constant
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related to the apparent energy of adsorption (L/mg), which sig-
nifies the adsorption capacity. Both values can be afforded by
plotting Ce/qe against Ce. The essential feature of the Langmuir
model can be evaluated by equilibrium parameter RL [20].

RL =
1

1 + KLC0
7

If 0 < RL < 1, adsorption is favorable, RL > 1 unfavorable,
and RL = 0 irreversible process [34].

log qe = log KF +
1
n
log Ce, 8
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where KF (L/mg) and n denote the Freundlich constants, which
are associated with the adsorption capacity and intensity.

From the table results, the adsorption for La(III) and
Y(III) on OPB in this solution concentration range conformed
better to the Langmuir model. It can be concluded that the
adsorption has proceeded via a monolayer covering homoge-
nous process [35, 36]. The RL values of La(III) and Y(III) in
the range between 0 and 1 represent the satisfied condition
for favorable adsorption on OPB. Notably, OPB200 adsorp-
tion may occur multilayer chemisorption, as indicated by its
higher coefficient R2 for the Freundlich model, which reveals
that the increase of preparation temperature caused the bio-
char to tend to the incremental adsorption of monolayer.

The 1/n values < 0.4, suggesting a heterogeneous surface of
OPB and its great adsorption characteristics [5, 9]. Also, the
higher values of qmax and n in higher temperature environment
are indicative of the better adsorption performance in a certain
range. The rule that the KL, RL, and KF values of La(III) calcu-
lated were higher than those of Y(III) is consistent with their
ionic radius; that is, the smaller the radius of the hydrated ions,
the higher the affinity and adsorption strength for OPB.

The D-R model can be applied to estimate the apparent
free energy and determine the role of microporous adsorp-
tion [37]. The formulas are as follows:

ln qe = ln Qm − KDε
2, 9

where Qm (mg/g) is the saturation adsorption amount and ε
denotes the Polanyi potential (J/mol) and has the following
form:

ε = RT ln 1 + 1
Ce

10

R is the universal gas constant (8.314 J/(mol·K)), and T is
the absolute temperature. Generally, KD (mol2/kJ2) is a D-R
constant with energy dimension, which can obtain the Es
(kJ/mol), the average free energy of adsorption.

Es =
1
2KD

11

From the results, the less Es values of OPB600 than
OPB400 and followed by OPB200, which disclosed that
the physical action of OPB adsorption, were enhanced
via carbonization modification. Since the Es magnitude
for a physical adsorption process ranges from 1 to
8 kJ/mol and a chemical adsorption process ranges from
8 to 16 kJ/mol, the Es values are around 8 kJ/mol with
a rise in solution temperature, indicating that the
adsorption process proceeded with physical-chemical
cointeraction.

4.3. Thermodynamic Studies. The adsorption properties and
thermodynamic behavior of OPB on La(III) and Y(III) can
be predicted by the Gibbs parameter analysis. The relevant
equations are as follows:

Kd = KL × C0 × 103,

ln Kd = −
△Gθ

RT
= △Sθ

R
−
△Hθ

RT
,

△Gθ = −RT ln Kd,

12

where Kd is the equilibrium constant. The value of ΔGθ, Δ
Hθ, and ΔSθ can be calculated from the slope and intercept
by plotting the Van’t Hoff graph.

Table 4 shows the calculation results of thermodynamic
parameters. The adsorption behavior of La(III) and Y(III)
on OPB can be inferred as a spontaneous reaction from neg-
ative ΔGθ values. Furthermore, the increased ΔGθ with
increased temperature indicate that the adsorption process
is essentially an endothermic reaction, which is also evi-
denced by the positive ΔHθ values, and hence is more likely
to be carried out at higher temperatures. As mentioned in
the literature, the ΔHθ values at 20~400 kJ/mol indicates that
chemisorption mechanism plays a major role [29]. In this
study, the ΔHθ for La(III) and Y(III) ranged at
20.97~25.56 kJ/mol suggest that the adsorption on OPB
was of chemisorption type, and the processes proceeded
through electrostatic interactions and chelation from func-
tional portions of the adsorbent surface. Besides, the positive
values of ΔSθ suggest that the adsorption system was driven

Table 1: Kinetic model parameters of OPB adsorption.

Model Parameter
La(III) Y(III)

OPB200 OPB400 OPB600 OPB200 OPB400 OPB600

qe exp 34.09 35.31 36.16 16.10 17.02 17.31

PFO

K1 0.03 0.06 0.05 0.04 0.05 0.14

qe 2.36 4.47 1.88 2.59 2.50 2.57

R2 0.922 0.979 0.965 0.937 0.940 0.836

PSO

K2 0.03 0.04 0.08 0.04 0.05 0.20

qe 34.24 35.55 36.26 16.28 17.17 17.35

H 43.42 43.44 105.71 9.26 15.09 58.69

R2 0.999 0.999 1 0.999 0.999 0.999
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by an increase in entropy, which means that during the
adsorption process, the randomness of the solid-liquid inter-
face increased [38], which is considered to have more ion
exchanges [7].

4.4. Adsorption Mechanism. Table 5 compares the adsorp-
tion capacity of La(III) and Y(III) between the prepared bio-
char and other biochar reported in the literature. The orange
peel-derived biochar displays higher adsorption capacities
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Figure 10: Linear fitting of the Weber model for La(III) (a) and Y(III) (b).
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Table 2: Isotherm parameters of La(III) adsorption on OPB.

Model Parameter
OPB200 (K) OPB400 (K) OPB600 (K)

293 303 313 293 303 313 293 303 313

qm exp 41.46 47.34 51.85 43.35 50.63 52.79 49.01 53.10 55.57

Langmuir

qmax 46.93 46.93 47.42 49.63 50.40 50.56 53.82 53.71 54.62

KL 0.46 0.51 0.40 0.45 0.43 0.42 0.80 0.90 0.65

RL (5~100mg/L) 0.02~0.30 0.02~0.28 0.03~0.33 0.02~0.30 0.02~0.32 0.02~0.33 0.01~0.20 0.01~0.18 0.02~0.24
R2 0.992 0.992 0.990 0.988 0.991 0.991 0.999 0.997 0.996

Freundlich

KF 18.90 18.65 15.26 19.28 15.73 15.53 17.62 24.00 16.97

1/n 0.24 0.25 0.31 0.31 0.33 0.34 0.31 0.27 0.31

R2 0.978 0.948 0.933 0.915 0.856 0.867 0.690 0.573 0.541

D-R

KD 3.87 5.83 5.24 6.00 8.87 9.51 11.66 5.76 18.07

Qm 38.92 37.40 37.17 40.76 40.70 40.35 48.57 46.01 51.86

Es 11.37 9.26 9.77 9.13 7.51 7.25 7.63 9.31 5.26

R2 0.871 0.792 0.917 0.937 0.956 0.938 0.992 0.523 0.975

Table 3: Isotherm parameters of Y(III) adsorption on OPB.

Model Parameter
OPB200 (K) OPB400 (K) OPB600 (K)

293 303 313 293 303 313 293 303 313

qm exp 23.61 24.30 27.16 25.19 26.71 28.34 27.55 28.32 31.49

Langmuir

qmax 24.11 23.97 21.51 29.13 26.84 26.32 29.47 28.60 23.28

KL 0.20 0.21 0.22 0.16 0.17 0.18 0.17 0.17 0.20

RL (5~100mg/L) 0.33~0.90 0.33~0.91 0.31~0.90 0.38~0.93 0.36~0.92 0.36~0.92 0.37~0.92 0.37~0.92 0.33~0.91
R2 0.990 0.995 0.979 0.979 0.987 0.970 0.969 0.996 0.968

Freundlich

KF 6.65 9.08 10.27 6.97 7.61 8.48 7.78 8.86 11.30

1/n 0.37 0.27 0.24 0.38 0.36 0.34 0.40 0.38 0.34

R2 0.932 0.955 0.963 0.791 0.892 0.822 0.713 0.688 0.646

D-R

KD 9.26 5.60 3.13 24.17 9.35 8.70 29.19 17.99 7.37

Qm 17.88 18.72 21.02 21.98 20.38 21.22 26.05 25.63 26.75

Es 7.35 9.44 12.63 4.55 7.31 9.58 4.14 6.27 8.23

R2 0.798 0.712 0.9537 0.959 0.918 0.944 0.982 0.942 0.923

Table 4: Thermodynamic model parameters of La(III) and Y(III) adsorption by OPB.

Type Samples ΔGθ (kJ/mol)
ΔHθ (kJ/mol) ΔSθ (J/mol·K)

293K 303K 313K

La(III)

OPB200 -24.48 -25.56 -25.76 22.69 168.73

OPB400 -24.42 -25.11 -25.87 23.39 172.66

OPB600 -25.82 -27.00 -27.02 25.56 178.20

Y(III)

OPB200 -21.92 -22.89 -23.65 20.97 149.65

OPB400 -22.02 -22.79 -24.00 22.52 151.40

OPB600 -22.45 -23.21 -24.20 23.67 154.64
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than some other biochar. The result affirms that OPB could
be recruited as valuable adsorbents with high adsorption
capacities for recycle of rare earth ions from water medium.

Due to the plentiful nature of biomass and biochar, their
adsorption mechanism for RE ions is relatively complex. The
FTIR spectra in Figure 3 show various oxygen-containing
functional groups on OPB. These active groups adsorbed
RE ions in solution though hydrogen bonding and also π-
π interaction as a primary adsorption mechanism owing to
the high aromaticity structure of OPB, which can be found
from the shift of peak positions and the decrease of the peak
intensity [9, 13, 46]. Physisorption is critical for the adsorp-
tion of carbon-based adsorbent materials. OPB is a carbona-
ceous material with well-developed porous, and this porosity
property can utilize a pore filling mechanism to improve the
adsorption capacity for La(III) and Y(III), especially at high-
temperature adsorption [17]. The adsorbent dosage affected

the equilibrium pHe value of the solution and thus affected
the adsorption process along with the initial pH. Previous
literatures have mentioned that the alkalinity of inorganic
minerals in biochar would participate in the precipitation
process of ions [15]. In addition, the impact of pH deter-
mined the coexistence of electrostatic interaction and cou-
pling effect in the adsorption process. Based on the HSAB
theory (Hard-Soft-Acid-Base), the functional groups of
adsorbents and RE ions can act as the Lewis acid-base, and
this phenomenon plays a basic role in the surface complex-
ation on OPB [47]. According to the study of Kołodyńska
et al. [40], the equation was proposed:

ROOH + Re OH m+
n ⟶ ROORe OH n +mH+ 13

Taken together, as illustrated in Figure 11, OPB with
higher preparation temperatures, the main contributions in

Table 5: Comparison of the adsorption capacity of orange peel carbon and other biochar-modified materials for La(III) and Y(III)
(adsorption temperature: 22°C~25°C).

Adsorbents Metals Concentration (mg/L) Dosage (g/L) qm (mg/g) References

OPB (200~600°C) La(III) 36 1 41.46~49.01
This study

Y(III) 36 2 23.61~27.55
Sargassum fusiforme AC (300~700°C) La(III) 25~500 1 170.36~275.48 [39]

Biochar composites Lanthanides 50~200 5 11.10 [40]

Rice husk AC (500°C)
La(III) 150 10 14.46

[41]
Y(III) 150 10 13.42

AC La(III) 10~200 40 94.46 [42]

Bamboo charcoal La(III) 135~270 0.67 120 [43]

Pectin (banana peel) AC
La(III) Leachate — 21.80

[44]
Y(III) Leachate — 27.78

Banana peel AC Lanthanides 100 2 470.11(I) [45]

Note: AC: activated carbon. Lanthanides are the measured value of La(III) in lanthanide solution.
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Figure 11: Adsorption mechanism of La(III) and Y(III) on OPB.
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adsorption process were electrostatic attraction and pore fill-
ing, as well as functional group action, hydrogen bond for-
mation, and ion exchange [17, 48]. The isothermal, kinetic,
and thermodynamic analyses concluded that the driving
force of La(III) and Y(III) in solution enhanced at higher
ion concentrations and higher temperatures, which acceler-
ated their diffusion and purposeful approach to the OPB
adsorbents, thereby promoting the feasibility and spontane-
ity of adsorption.

5. Conclusions

This study demonstrates the properties of orange peel-
derived biochar prepared at three carbonization tempera-
tures, and the prepared samples were used as adsorbents to
study the adsorptive behavior of La(III) and Y(III). The pre-
pared OPB exhibited well-developed porosity characters and
were influenced by the carbonization temperature. OPB are
carbonaceous mesoporous adsorbents with abundant sur-
face sites and functional groups, which facilitated the coordi-
nation with ions. The OPB600 exhibited better adsorption
capacity, and the Langmuir adsorption amounts of La(III)
and Y(III) reached 55.57mg/g and 31.49mg/g. This study
confirms that orange peel biochar, as a cost-effective adsor-
bent, can be applied to the treatment of La(III)- and
Y(III)-contaminated water.
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