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In the present work, natural diatomite modified with manganese oxide (MnO2) was prepared via direct redox reaction with
KMnO4 and HCl. The product was characterized by using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning
electron microscopy, transmission electron microscopy, energy-dispersive X-ray, and nitrogen adsorption-desorption
isotherms. It was found that the nanorod manganese oxide was highly dispersed onto the diatomite porous matrix. The
specific surface area of the obtained manganese oxide/diatomite (SBET = 68 5m2 g−1) is larger than that of natural diatomite
(SBET = 55 4m2 g−1). It was utilized to remove Pb(II) in aqueous solutions. It exhibits an excellent Pb(II) adsorption capacity.
The adsorption data fits well with the pseudo-second-order kinetics model, and the adsorption process is endothermic and
spontaneous with an activation energy of 41.56 kJmol−1 and follows the Freundlich isotherm model. The Mn/diatomite
adsorption capacity for Pb(II) is 81.42mg g−1, calculated with the Langmuir model. In addition, the adsorption mechanism of
Pb(II) onto Mn/diatomite is also addressed.

1. Introduction

Heavy metals are commonly found in wastewater from the
chemical industry, paints, ceramics, glass, mining, and bat-
tery manufacturing and severely harm humans and ecosys-
tems [1, 2]. Among them, lead (Pb(II)) has an amphoteric
structure and is a metal with a high toxic level among heavy
metals. Pb(II) is easily dispersed through the soil and water
ecosystem, and by entering the food chain, it causes toxic
effects on human health [3]. Due to exposure to Pb(II) for
a long period, the kidneys and immune systems, in particu-
lar, can be severely destroyed. Therefore, various methods
have been utilized to remove heavy metal ions from aqueous
solutions, such as oxidation, coagulation and precipitation,
membrane filtration, adsorption, ion exchange, and biologi-

cal treatment [4–9]. Among them, adsorption is the most
effective because of its simplicity, low cost, and ability to
treat wastewater containing low concentrations of metal
ions [10–14].

Diatomite (SiO2·nH2O) is a soft, grey, low-density sedi-
mentary rock. The main component of diatomite is the shell
of diatoms consisting primarily of amorphous silica. Diato-
mite has unique properties, such as high porosity, high
adsorption capacity, and high heat resistance [15–19]. These
properties suggest that diatomite is a potential adsorbent for
the pollutants present in industrial wastewater. Furthermore,
natural diatomite is abundant, cheap, and environmentally
friendly [18]. In Vietnam, diatomite mineral is often applied
in shrimp pond treatment, sound and heat insulation, etc.
Recently, the modification of diatomite to increase its
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applicability has also attracted scientists [20–24]. The
modification via hydrothermal process exhibits advantages
including nanoparticles with the desired size and shape
[25] and formation of a well-crystallized powder [26].
Hence, these techniques have been widely applied to
introduce the inorganic compounds with active sites to
expand the application of diatomite in adsorption and catal-
ysis [12, 27–30].

Nanoscale manganese oxide (MnO2) particles, known to
be a porous material and a mild oxidant, possess a large sur-
face area and excellent chemical stability in acidic media
[31]. Manganese oxide has been widely employed as a
constituent material in air batteries [32] and a catalyst for
oxygen reduction [33]. In particular, manganese oxide
exhibits excellent adsorption toward heavy metals in aque-
ous sources. However, nanosized MnO2 particles suffer from
heavy agglomeration, limiting their application [34]. More-
over, using pure MnO2 as an adsorbent is not reasonable
regarding economic effectiveness, and it is very difficult to
separate the particles from the liquid phase [35]. To deal
with these limitations and to promote the treatment
efficiency and capabilities for eliminating heavy metals in
an aqueous solution with natural diatomite, numerous
researchers modified diatomite by coating nanosized MnO2
particles onto its surface. Al-Degs et al. [10] and Khraished
et al. [11] modified diatomite with manganese oxide by
treating it with manganese chloride and sodium hydroxide.
The results demonstrate that its heavy metal adsorption
capacity was much improved compared with that of the
original diatomite. The specific surface area of diatomite
and Mn/diatomite calculated with the simple and rapid
methods was 33 and 80m2 g−1. The adsorption capacity of
diatomite is 24.9, 27.6, and 16.1mg g−1 adsorbates for Pb2+,
Cu2+, and Cd2+, respectively, while the corresponding values
of Mn/diatomite are 99.0, 57.6, and 27.9mg g−1. Li et al. [36]
reported a two-step procedure for diatomite modification
with nano-MnO2, and the material has a maximum adsorp-
tion capacity of 56.84mg g−1 for Pb2+. Du et al. [12] also
successfully synthesized MnO2 nanowires on a diatomite
substrate. In addition, MnO2-modified diatomite was also
used for Zn(II) adsorption [13], dye adsorption [37], cata-
lysts [38], and electrode modifiers [39].

In this paper, a manganese-modified diatomite material
(Mn/diatomite) was prepared with the hydrothermal
method via the redox reaction of KMnO4 and HCl, where
diatomite was a substrate. The material’s physicochemical
properties and ability to remove Pb(II) ions from aqueous
solutions were investigated.

2. Experimental

2.1. Materials and Chemicals. Raw diatomite was taken from
Phu Yen province, Vietnam, washed several times with
water, filtered, dried at 100°C, sieved, and stored in closed
containers for further tests. KMnO4 (Merck, Germany),
Pb(CH3COO)2·3H2O, NaOH, HCl, and KCl (Guangdong,
China) are of analytical grade and are used without further
purification.

2.2. Preparation of Mn/Diatomite. Diatomite was modified
with manganese, according to Wu et al. [40] and Du et al.
[12]. Briefly, (i) 0.5 g of diatomite, 5mmol of KMnO4
(0.79 g), and 80mL of distilled water were mixed to obtain
mixture A; (ii) a certain volume of a 10M HCl solution
was added to mixture A under stirring to obtain mixture
B; (iii) the entire mixture B was transferred into a 200mL
Teflon-lined steel autoclave with a quantity of distilled water
to fill 80% of the Teflon-flask volume to obtain mixture C;
(iv) the Teflon flask was placed in an oven at a specified tem-
perature and for a certain time; and (v) the flask was cooled
to ambient temperature, and the solid product was collected,
filtered, washed with distilled water, and dried at 60°C for
24 h. The resulting solid is a modified diatomite material
and is denoted as Mn/diatomite.

The effects of reaction conditions on the modification,
including hydrothermal temperature (80, 120, and 160°C),
hydrothermal time (16, 24, and 48 h), and the KMnO4/HCl
molar ratio (1 : 1, 1 : 2, 1 : 4, and 1 : 8) were investigated. The
details of the experimental conditions used in the diatomite
modification are summarized in Table 1.

2.3. Preparation of Nano-MnO2. Nano-manganese oxide was
prepared according to a similar procedure in Section 2.2.
The 10M HCl solution was added drop-wise (the molar
ratio of KMnO4/HCl was adjusted in the ratio of 1 : 1, 1 : 2,
1 : 4, and 1 : 8). The Teflon flask was heated at 160°C for
16 h, and the yielded nano-manganese oxide was dried at
60°C.

2.4. Characterization. The morphology of the materials was
observed by using scanning electron microscopy (SEM,
IMS-NKL) with an acceleration voltage of 5 kV and trans-
mission electron microscopy (TEM, EMLab-NIHE) at a
voltage of 80 kV. X-ray diffraction (XRD) patterns were
recorded on a VNU-D8 Advance Bruker (Germany) powder
diffractometer with a Cu Kα radiation source and an angle
and time scan step of 0.03° and 0.04 s, respectively. Fourier-
transform infrared (FT-IR) spectra were obtained on a Jasco
FT/IR-4600 (Japan), with samples being dispersed on KBr
pallets and measured within the wavenumber range of 4000-
400 cm-1 with a spectral resolution of 1 cm-1. Nitrogen
adsorption measurements were conducted with a Micromeri-
tics Tristar 3000 apparatus at the liquid nitrogen temperature
(77K). The textural properties of the material were examined
via the specific surface area and porosity after a heat treatment
at 250°C in the N2 for 5h. The elemental composition on the
material surface was analyzed with energy-dispersive X-ray
(EDX) spectroscopy along with the SEM (JEOL JED-2300)
at 20kV. The Pb(II) concentration was determined with the
atomic absorption spectroscopy (AAS) method on a Shimadzu
AA-7000 (Singapore).

2.5. Adsorption Experiments

2.5.1. Evaluate the Pb(II) Adsorption Capacity of the Material.
A quantity of adsorbent (0.1 g) was placed into an Erlenmeyer
flask containing 100mL of a Pb(II) solution with a prescribed
concentration and shaken at ambient temperature for 3h to
achieve adsorption-desorption equilibrium. Then, the solution
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was filtered to remove the adsorbent, and the Pb(II) ion con-
centration in the solution was determined.

The adsorption capacity at equilibrium (qe) was calcu-
lated according to the following equation.

qe =
C0 − Ce ×V

m
, 1

where C0 and Ce (mgL-1) are the concentration of Pb(II) in
the solution at the beginning and at equilibrium, respec-
tively; V (L) is the volume of the Pb(II) solution; and m
(g) is the weight of Mn/diatomite used for each adsorption.

2.5.2. Pb(II) Adsorption Kinetics. Mn/diatomite (0.1 g) was
placed into a double-necked flask containing 100mL of the
Pb(II) solution with a prescribed concentration under mag-
netic stirring at a prescribed temperature, under natural pH.
At a specified interval, a certain volume of solution was
withdrawn and centrifuged to remove the adsorbent, and
the Pb(II) concentration in the supernatant was determined
with the AAS technique.

The adsorption capacity at time t (qt) was calculated
according to the following equation.

qt =
C0 − Ct × V

m
, 2

where Ct (mgL-1) is the concentration of Pb(II) in the solu-
tion at time t.

The pseudo-first-order (Eq. (3)) and pseudo-second-
order (Eq. (4)) kinetic models are commonly used to test
experimental data [13, 41–47].

qt = q1 × 1 − e−k1×t , 3

qt =
q22 × k2 × t

1 + q2 × k2 × t
, 4

where k1 (min-1) and k2 (gmg-1min-1) and q1 and q2 (mgg-1)
are the rate constants and the maximum adsorption capacities
of the pseudo-first-order and pseudo-second-order adsorp-
tion kinetic models, respectively.

2.5.3. Effect of Solution pH.Mn/diatomite (0.02 g) was placed
into an Erlenmeyer flask containing 50mL of the Pb(II)
solution with a specified concentration and pH (the pH
value of the solution was adjusted with a 0.1M HCl or
0.1M NaOH solution) and shaken at ambient temperature
for 3 h to achieve adsorption-desorption equilibrium. Then,
the adsorbent was removed, and the Pb(II) concentration
was determined.

2.5.4. Equilibrium Studies. In this section, the adsorption was
performed at 303K, and the initial concentration of Pb(II)
varied between 30.8 and 188.3mgL-1 (V = 0 1 L; m = 0 1 g).
To analyze the data of Pb(II) adsorption onto Mn/diatomite,
we used the Freundlich, Langmuir and Sips models.

The Freundlichmodel assumes heterogeneous energy distri-
bution of the active sites on the adsorbent surface with the inter-
actions within the adsorbate. The Freundlich isotherm can be
expressed in the following equation [13, 37, 41, 42, 45–47].

qe = KF × C1/n
e , 5

where KF is the Freundlich constant (mg(1-1/n) L1/n g-1) and n
is the adsorption intensity. Theoretically, the adsorption con-
ditions are favourable if the n constant is greater than 1.

The Langmuir isotherm is a theoretical model for mono-
layer adsorption to a surface containing a finite number of
adsorption sites with uniform adsorption energies without
the displacement of the adsorbate in the plane of the adsor-
bent surface. The Langmuir isotherm is expressed in the
following equation [10, 11, 37, 41–43, 45–47].

qe =
qm × KL × Ce

1 + KL × Ce
, 6

where the KL constant is related to the adsorption energy
(L g-1) and qm is the Langmuir monolayer adsorption
capacity (mg g-1).

The Sips isotherm has a form similar to the Freundlich
isotherm, but it has a finite limit when the concentration is
sufficiently high. The Sips equation can be expressed in the
following equation [48].

Table 1: Experimental conditions were carried out during the preparation of the Mn/diatomite samples.

Sample
Mass of diatomite

(g)
Mass of KMnO4

(g)
10M HCl volume

(mL)
KMnO4/HCl molar

ratio
Hydrothermal

temperature (°C)
Hydrothermal

time (h)

1 0.5 0.79 4 1 : 8 80 16

2 0.5 0.79 4 1 : 8 120 16

3 0.5 0.79 4 1 : 8 160 16

4 0.5 0.79 0.5 1 : 1 80 16

5 0.5 0.79 1 1 : 2 80 16

6 0.5 0.79 2 1 : 4 80 16

7 0.5 0.79 2 1 : 4 80 24

8 0.5 0.79 2 1 : 4 80 48
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qe =
qmS

× KS × CmS
e

1 + KS × CmS
e

, 7

where the KS (L
mmgm-1) and qmS

(mg g-1) are the Sips equi-
librium constant and maximum adsorption capacity, respec-
tively, and mS is the Sips model exponent.

Isothermal and kinetic parameters were determined
from nonlinear regression with the Solver tool in Microsoft
Excel [49–51] with the root-mean-square error (RMSE)
function described in the following equation [49, 50].

RMSE =
1
N
〠
N

i=1
qe,exp − qe,cal

2

i
, 8

where qe,exp and qe,cal are the adsorption capacity values
obtained from the experiment and models, respectively,
and N represents the number of data points.

2.5.5. Thermodynamic Studies. In this section, the initial con-
centration of Pb(II) was kept constant (V = 0 1 L, m = 0 1 g,
C0 = 75mgL−1). The adsorption was performed at tempera-
tures ranging from 303 to 338K. The feasibility of the adsorp-
tion process can be estimated through thermodynamic
studies. The thermodynamic parameters of Pb(II) adsorption
on Mn/diatomite were calculated using the following equa-
tions [15, 37].

KC =
C0 − Ce

Ce
×
V
m

=
qe
Ce

, 9

ln KC = −
ΔH °
R × T

+
ΔS °
R

, 10

where R (8.314 Jmol-1K-1) is the ideal gas constant and T (K)
is the absolute temperature. ΔH° is the enthalpy change, and
ΔS° is the entropy change of the adsorption process.

The free energy change ΔG° of the adsorption process is
calculated according to the following equation [15, 37].

ΔG ° = ΔH ° −T × ΔS ° 11

The adsorption rate constant (k) of the adsorption pro-
cess is a temperature-dependent function expressed in the
following Arrhenius equation [41, 46].

ln k = ln A −
Ea

R × T
, 12

where Ea is the Arrhenius activation energy (Jmol-1) and A
is the Arrhenius constant.

2.5.6. Desorption Experiments. After each experiment, the
adsorbent was recycled. The desorption was performed by
mixing the used adsorbent with 0.1M HCl solution (a ratio
of 0.5 g/50mL). The mixture was then shaken with a shaker
at ambient temperature (29 ± 2°C) at 200 rpm for 120min,
filtered to recover the adsorbent, and washed with distilled
water for subsequent readsorption.

3. Results and Discussion

3.1. Modification of Diatomite with Manganese Oxide and
Pb(II) Adsorption Capacity Assessment

3.1.1. Effect of Hydrothermal Temperature. The morphology
of natural diatomite and the Mn/diatomite samples prepared
at different hydrothermal temperatures is presented in
Figure 1. Natural diatomite exists as cylindrical tubes with
a 5-7μm diameter. Its surface is relatively smooth and has
pores with a diameter of about 0.5μm (Figure 1(a)). The
morphology of manganese oxide varies from a flower-like
structure to a needle-like one with an increase in the hydro-
thermal temperature. The Mn/diatomite sample prepared at
80°C exhibits flower-like particles attached to the diatomite
surface and pores (Figure 1(b)). The morphology of the
flower-like particle with some hundred nanometers in
diameter consists of thin plates embroiled together. At the
hydrothermal temperatures of 120 and 160°C, needle-like
manganese oxide appears and is dispersed on the surface
and in the pores of natural diatomite (Figures 1(c) and 1(d)).

Natural diatomite has a moderate adsorption capacity
(15.6mgg-1) compared with Mn/diatomite (26.3-32.9mgg-1).
Although all samples have a higher adsorption capacity, the
one prepared at 80°C outweighs the others (32.9mgg-1) despite
its lowest manganese content (Table S1). Thus, it can be
assumed that manganese does not support Pb(II) adsorption.
Instead, the material structure may favour adsorption because
the denaturation at 80°C forms a material with a flower-like
configuration. Therefore, this temperature was chosen for
further experiments.

3.1.2. Effect of Molar Ratio of Precursors. The molar ratio
between KMnO4 and HCl was chosen at 1 : 1, 1 : 2, and
1 : 4. At the ratio of 1 : 1 (Figures 2(a) and 2(b)), the sample
has a large number of circular or rod-shaped clusters
attached to the surface of diatomite. At the ratio of 1 : 2
(Figures 2(c) and 2(d)), the circular clusters become larger,
and spheres with a flower-like membrane structure appear
(like the Mn/diatomite sample prepared at the molar ratio
of KMnO4/HCl 1 : 8; Figure 1(b)). Finally, at the ratio of
1 : 4 (Figures 2(e) and 2(f)), besides the spheres with the
flower-like membrane structure, film-like structures are
formed uniformly on the surface of the diatomite, thus
increasing the Pb(II) adsorption efficiency. In this case, the
structure of Mn-modified diatomite decides the Pb(II)
adsorption efficiency, and the ratio of 1 : 4 provides the
highest efficiency (43.1mg g-1, Table S1). Therefore, this
ratio was chosen for subsequent experiments.

3.1.3. Effect of Hydrothermal Time. In this section, we inves-
tigate the hydrothermal time under the conditions found
above (Figure 3). The figure shows the SEM images of the
24 and 48 h samples with flower-like spheres and a regular
layer of membranous structures. This topography is similar
to that of the 16 h samples (Figures 2(e) and 2(f)). Concern-
ing the content of manganese, it seems that a longer hydro-
thermal time favours the amount of this element in the
sample and thus, together with the membranous structures,
enhances Pb(II) adsorption (Table S1). From these results,
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we choose 24 h (54mg g-1 Pb(II) adsorption efficiency) as the
appropriate time for further studies. The 24 h sample was
denoted as Mn/diatomite and used for characterization.

The crystalline phase of natural diatomite and the Mn/
diatomite was analyzed based on the X-ray data. For natural
diatomite, the XRD pattern displays characteristic diffraction
peaks of amorphous silica (broad diffraction centered at
20-25°) [52–56]. As forMn/diatomite samples prepared at dif-
ferent hydrothermal temperatures, no characteristic diffraction
peaks of manganese oxide are observed (Figure 4(a)), which is
probably because manganese oxide particles are very small and
evenly distributed on the surface of diatomite or because diato-
mite hinders the X-ray diffraction of manganese oxide. This
result is consistent with that reported by Li et al. [36].

The XRD pattern of Mn/diatomite (Figure 4(b)) shows
characteristic diffraction peaks of amorphous silica at 20–25°

[52–56] and the peaks forMnO2 (JCPDSNo. 00-024-0735) with
low intensity because of the oxide’s small size and its uniform
distribution on the surface of diatomite, as mentioned above.

The textural properties of natural diatomite and Mn/
diatomite indicate the type II isotherm and a H3-type hys-
teresis loop (Figure 4(c)), corresponding to the existence of
macropores of nonuniform size and/or shape [57]. Besides,
the Mn/diatomite sample with significant condensation at
high relative pressures (P/P ° ~ 1) indicates the existence of
a slit-pore structure because the pores formed between the
membrane of the modified material.

The pore-size distribution curve (Figure 4(d)) indicates
that natural diatomite has pores of about 4.3 nm in diameter,
while the Mn/diatomite sample has smaller pores (3.9 nm).
This decrease is caused by the manganese oxide film coated
on the surface. However, the specific surface area of Mn/
diatomite (SBET = 68 5m2 g−1) is larger than that of natural
diatomite (SBET = 55 4m2 g−1) (Table S2) because of the
space formed between the sheets of manganese oxide
attached to the diatomite surface. However, this specific
area difference is insignificant.

3.2. Characteristic Properties and Pb(II) Adsorption Capacity
of Nano-MnO2. Nano-MnO2 was prepared from KMnO4
and HCl with four molar ratios of 1 : 1, 1 : 2, 1 : 4, and 1 : 8.
All the samples have a bar shape with sides of about 60 to
100 nm (Figure 5), very similar to what was prepared by
Wu et al. [40]. Some bars have a hollow tip like a tube.
Except for the 1 : 1 KMnO4/HCl sample, which has the bars
stacked together, the other three samples have more or less
separate bars with an insignificant number of stacks.

The MnO2 samples have the crystalline structure of an
α-MnO2 crystal with characteristic XRD peaks at 28.8,
37.6, 42.1, 49.8, 56.0, and 60.2° (Figure 6), corresponding
to the (310), (211), (301), (411), (600), and (521) planes
(JCPDS No. 00-024-0735) [40, 58, 59]. The sharp peaks with
high intensity of the 1 : 2 to 1 : 8 KMnO4/HCl samples indi-
cate that the formed α-MnO2 has high crystallinity and

(a) (b)

(c) (d)

Figure 1: SEM images of diatomite (a) and the Mn/diatomite samples prepared at different hydrothermal temperatures: (b) 80°C; (c) 120°C;
(d) 160°C, and the insets present TEM images (experimental conditions: hydrothermal time of 16 h and molar ratio of KMnO4/HCl 1 : 8).
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order. The sample at the KMnO4/HCl 1 : 1 ratio has sharp
peaks with low intensity, showing a low-ordered material.
This observation is completely consistent with the results
observed with SEM in Figure 5(a).

The nano-MnO2 samples were subjected to Pb(II)
adsorption in the aqueous solution. Their adsorption
capacities are similar with low values (16.2-18.9mgg-1 at
C0,Pb II = 70 6mg L−1) (Figure S1). However, the Pb atoms
are uniformly distributed over the entire area of the MnO2
nanomaterial (Figure S2). The distribution of elements on
the Mn/diatomite samples before Pb(II) adsorption shows
that the material contains primarily Si and O with some
Fe, Al, and Mn (Figure S3). After adsorption, the mapping

displays Pb besides other elements. Manganese and Pb are
uniformly distributed throughout the material surface,
indicating that Pb adsorbs onto the Mn/diatomite material
(Figure S4).

The FT-IR spectra of natural diatomite, Mn/diatomite,
and Mn/diatomite after Pb(II) adsorption are relatively sim-
ilar (Figure 7(a)), with a broad band at 1100 cm-1 and two
narrow bands at 797 and 470 cm-1, corresponding to the
asymmetric and symmetric stretching vibrations and bend-
ing vibration of the Si-O-Si bonds, respectively [13, 19, 55].
The peaks at 3697 and 3621 cm-1 are typical for surface
hydroxyl groups in diatomite, with the former correspond-
ing to the isolated hydroxyl group (Si-OH) on the surface

(a) (b)

(c) (d)

(e) (f)

Figure 2: SEM images of Mn/diatomite samples prepared at different KMnO4/HCl molar ratios: (a, b) 1 : 1; (c, d) 1 : 2; (e, f) 1 : 4
(experimental conditions: hydrothermal time and temperature are 16 h and 80°C, respectively).
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of diatomite [55, 60, 61], and the latter due to O-H stretch-
ing vibration of the aluminol groups (≡AlOH) [61]. These
bands of Mn/diatomite have a lower intensity, indicating
the chemical interaction between the surface silanol groups
and the oxides [13]. The broad bands at 3441 and
1637 cm-1 are thought to be due to the vibrations of the O-
H bonds of adsorbed H2O molecules, including free
adsorbed water and hydrogen-bonded water with surface
hydroxyl groups. The absorption band at 533 cm-1 is thought
to be the stretching vibration of the Fe-O bond [55] or the
Me-O bond (with Me being a metal). The bands observed
at 431-435 and 419-426 cm-1 in Mn/diatomite and nano-
MnO2 (Figure 7(b)) are probably another vibration charac-
teristic for Mn-O binding (not present in the diatomite sam-
ple). For the Mn/diatomite sample after Pb(II) adsorption,
the intensity of the absorption bands is very low, probably
because of the adsorbed Pb(II) layer. In particular, no vibra-
tions are observed at wavenumbers lower than 470 cm-1.
This is probably because the Pb(II) ions are bound to the
manganese oxide adsorption sites.

3.3. Adsorption of Pb(II) on Mn/Diatomite

3.3.1. Adsorption Kinetics of Pb(II) on Mn/Diatomite. Chem-
ical kinetics is indispensable in adsorption studies to
determine the adsorption rate of the adsorbate at the solid
interface. Kinetic models allow the estimation of adsorption

rates and lead to suitable rate expressions and suggestion of
possible reaction mechanisms.

We can see that the adsorption efficiency of Pb(II)
increases with an increase in contact time and initial concen-
tration (Figure 8). This increase probably depends on the con-
centration difference of Pb(II) ions on the adsorbent surface
and in the solution (driving force). When the initial concen-
tration is small, the driving force is also small, leading to a
low adsorption efficiency. The adsorption efficiency increases
with the driving force, but this increase becomes smaller when
the initial concentration is higher. Figure 8 also shows that the
Pb(II) adsorption occurs very rapidly during the first 10min of
contact; then, it decreases slowly in the next 60min and
becomes stable after 240min. Thus, the time required for the
adsorption of Pb(II) on Mn/diatomite to reach the
adsorption-desorption equilibrium is 60min.

The adsorption kinetics were described by using the
pseudo-first/second-order kinetic models, and the results
are presented in Tables 2 and 3. It was found that the equi-
librium adsorption capacity values, q2, calculated from the
pseudo-second-order equation, are very close to the experi-
mental equilibrium adsorption capacity values, qe. The
kinetic data fit the pseudo-second-order kinetic model better
than the pseudo-first-order kinetic model because the for-
mer’s RMSE values are smaller, and the data points are
closer to the theoretical line than the latter’s (Figure S5).
Since the pseudo-second-order kinetic model is derived

(a) (b)

(c) (d)

Figure 3: SEM images of Mn/diatomite samples prepared at different hydrothermal times: (a, b) 24 h; (c, d) 48 h (experimental conditions:
hydrothermal temperature of 80°C and molar ratio of KMnO4/HCl 1 : 4).
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from the assumption that the rate-limiting step is chemical
adsorption, it is concluded that the adsorption process is
controlled by chemisorption.

3.3.2. Effect of Solution pH. Figure 9(a) displays the pH effect
on the Pb adsorption efficiency. Overall, it is clear that the
adsorption efficiency increases consistently with increasing
pH. The adsorption efficiency soars from pH2 to pH5 and
then increases steadily up to pH6. The Pb(II) species can
be in the forms of Pb2+, Pb(OH)+, Pb3(OH)4

2+, Pb(OH)2,
and Pb(OH)3

-, depending on the solution pH [62]. The cat-
ion form Pb2+ mainly exists at pH < 5, while hydroxyl anions
of lead are predominant at pH > 5. The increasing adsorp-
tion at low pH (<pHPZC, Figure 9(b)) is explained by the fact
that the adsorbent surface becomes less positively charged
with increasing pH, enhancing the electrostatic interaction
between the adsorbate and the surface. At higher pH
(>pHPZC), the adsorption capacity increases slightly because
of the electrostatic repulsion of the more negative adsorbate
and the negatively charged surface. This fact also indicates
that the electrostatic interaction is not the only mechanism
of the adsorption process. The pHPZC of Mn/diatomite after
Pb adsorption shifts to low pHs, indicating that the high

adsorption efficiency of Mn/diatomite under weak acidic/
alkaline conditions could be attributed to the formation of
complexes between Pb(II) and the surface hydroxyl groups
of the Mn/diatomite. The formation of outer-sphere surface
complexes could not shift the point of zero charge of the
absorbent because there are no specific chemical reactions
among the lead cations that could change the surface charge.
The shift of the point of zero charge to a lower pH range
indicates the formation of anionic negatively charged surface
complexes [63]. Hence, the decrease in pHPZC to 3.2 implies
that the adsorption of lead would be a result of the formation
of both outer-sphere complexes and the negatively charged
inner-sphere complexes between lead and the adsorbent.
Then, the possible adsorption reaction of Mn/diatomite with
Pb(II) can be shown schematically as follows:

At low pH, Pb(II) reacts with hydroxyl groups (silanol,
Mn-OH) on the surface of Mn/diatomite to form complex
adsorption:

Mn/diatomite −OH + Pb2+ ⟶Mn/diatomite −O − Pb+ + H+

2 Mn/diatomite −OH + Pb2+ ⟶ Mn/diatomite −OH 2Pb + 2H+
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Figure 4: (a) XRD patterns of natural diatomite and the Mn/diatomite samples prepared at different hydrothermal temperatures
(experimental conditions: hydrothermal time of 16 h and molar ratio of KMnO4/HCl 1 : 8); (b) XRD pattern of the Mn/diatomite sample
(experimental conditions: hydrothermal time and temperature of 24 h and 80°C, respectively, and molar ratio of KMnO4/HCl 1 : 4); (c)
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At high pH, hydroxyl anions of lead react with hydroxyl
groups (silanol, Mn-OH) on the surface of Mn/diatomite to
form complex adsorption:

Mn/diatomite −OH + Pb OH + ⟶Mn/diatomite −O − Pb+ + H2O

Mn/diatomite −OH + Pb3 OH 2+
4 ⟶Mn/diatomite −O − Pb3 OH 2+

3 + H2O

Mn/diatomite −OH + Pb OH 3− ⟶Mn/diatomite −O − Pb OH 2− +H2O

2 Mn/diatomite −OH + Pb OH 3− ⟶ Mn/diatomite −O 2Pb OH − + 2H2O

14

3.3.3. Adsorption Isotherms. The study of adsorption iso-
therms is essential in describing the characteristic relation-
ship between the concentration of the adsorbate and the
adsorption capacity of the adsorbent, especially when
designing an ideal adsorption system in industry [42, 45].

The results of the determination of isotherm parameters
of Pb(II) adsorption on Mn/diatomite, natural diatomite,
and nano-MnO2 are presented in Table 4 (and Figure S6).
Based on the RMSE value, it can be assumed that the
Freundlich and Sips models are more suitable to describe
the adsorption of Mn/diatomite and natural diatomite than
the Langmuir model. On the contrary, the Sips and
Langmuir models are more suitable than the Freundlich
model to describe the adsorption on nano-MnO2. To
evaluate the compatibility of models with experimental
data, numerous authors have used statistical methods, such
as the paired-sample t-test [49], Akaike’s information
criteria (AIC) [51], and the sum of normalized errors
(SNE) [50]. In general, these methods are based on the
relationship between the experimental and calculated
adsorption capacities. Figure 10(a) depicts the Langmuir,
Freundlich, and Sips isotherms for Pb(II) adsorption on
Mn/diatomite. The complete fit occurs when the points lie
on the diagonal (x = y). It can be seen that the Freundlich
and Sips models have a lower dispersion; that is, there are
smaller gaps between the prediction of these models and
the experimental data. However, the Sips maximum
adsorption capacity values (qmS

) for Mn/diatomite and

(a) (b)

(c) (d)

Figure 5: SEM images of MnO2 samples synthesized at different molar ratios of KMnO4/HCl: (a) 1 : 1; (b) 1 : 2; (c) 1 : 4; (d) 1 : 8
(experimental conditions: hydrothermal time and temperature are 16 h and 160°C, respectively).
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Figure 6: XRD pattern of MnO2 samples synthesized at different
KMnO4/HCl molar ratios (experimental conditions: hydrothermal
time and temperature are 16 h and 160°C, respectively).
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natural diatomite are much larger than the experimental
equilibrium adsorption capacity values (see Tables 2 and 3
and Table S1), indicating that the Sips model does not
sufficiently satisfy describing these adsorption processes.
Meanwhile, the maximum adsorption capacity values
obtained from the Langmuir and Sips equations of nano-
MnO2 are approximately the same, indicating the similarity
between these two models.

The maximum capacity of monolayer adsorption deter-
mined with the nonlinear Langmuir model is 81.42mgg−1.
Our value is slightly smaller than that published by Khraished
et al. [11] (99.00mgg−1) but higher than Li et al.’s value
(56.843mgg−1) [36] and other authors’ values (Table 5). The
maximum adsorption capacity of natural diatomite and
nano-MnO2 is 16.31 and 19.42mgg−1, respectively. These
values are significantly smaller than the maximum adsorption

4000 3500 3000 2500 2000 1500 1000 500

43
1

20

42
6

47
0

53
379

71383
1637

1100

3441
3621

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm−1)

3697

Natural diatomite
Mn/diatomite
Mn/diatomite after Pb (II) adsorption
MnO2

(a)

600 580 560 540 520 500 480 460 440 420 400

43
5

41
9

42
6

43
1

533

470

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm−1)

20

Natural diatomite
Mn/diatomite
Mn/diatomite after Pb (II) adsorption
MnO2

(b)

Figure 7: FT-IR spectra of natural diatomite, Mn/diatomite, Mn/diatomite after Pb(II) adsorption, and MnO2: (a) wavenumber region
4000-400 cm-1; (b) wavenumber region 600-400 cm-1.
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capacity of Mn/diatomite. Because a layer of manganese oxide
coats the diatomite, this material has an increased adsorption
capacity, indicating that Mn/diatomite is not merely a physical
mixture of natural diatomite and nano-MnO2 but is a com-
posite with a high adsorption capacity.

3.3.4. Adsorption Thermodynamics. We can see that the
adsorption capacity depends on the temperature in a similar
manner to that of the initial concentration (Figure 10(b)). At
lower temperatures (303–323K), the maximal capacity
increases more rapidly than at higher temperatures (323–
338K), and it remains practically the same at 333 and
338K. This behaviour is also revealed from the slope of the
lines during the first 10min of adsorption. The higher the

temperature, the steeper the line is. For all the temperatures,
the adsorption-desorption equilibrium is reached after
around 60min.

The plot of ln KC against 1/T is shown in Figure 11(a).
From the intercept and slope of the regression line, we calcu-
late ΔH° and ΔS° from Eq. (10) and ΔG° from Eq. (11)
(Table 6). Figure 11(a) shows that Pb(II) adsorption on
Mn/diatomite is strongly dependent on temperature. The
temperature range from 303 to 338K can be divided into
two ranges: range 1 from 303 to 323K and range 2 from
323 to 338K. In both temperature ranges, ΔH ° >0, indicat-
ing that the adsorption is endothermic; that is, as the tem-
perature increases, the adsorption capacity increases. This
result is entirely consistent with the adsorption data shown

Table 2: Kinetic parameters of Pb(II) adsorption on Mn/diatomite at different initial concentrations of Pb(II) solutions.

Initial Pb(II) concentration
(mg L-1)

qe (mg g-1)
Pseudo-first-order Pseudo-second-order

k1 (min-1) q1 (mg g-1) RMSE k2 (gmg-1min-1) q2 (mg g-1) RMSE

31.8 31.5 0.2321 31.1 0.334 0.0272 31.7 0.208

57.6 52.2 0.1085 49.2 1.724 0.0038 52.4 0.689

91.4 74.4 0.1149 68.4 3.113 0.0029 72.8 1.497

115.5 77.9 0.1561 73.1 3.408 0.0041 76.8 1.500

145.1 88.2 0.2037 84.4 2.877 0.0059 87.3 1.373

188.3 90.3 0.1809 86.5 3.150 0.0046 90.0 1.211

Table 3: Pb(II) adsorption kinetic parameters on Mn/diatomite at different adsorption temperatures.

Temperature (K) qe (mg g-1)
Pseudo-first-order Pseudo-second-order

k1 (min-1) q1 (mg g-1) RMSE k2 (gmg-1min-1) q2 (mg g-1) RMSE

303 52.4 0.1347 49.8 2.003 0.0052 52.4 0.577

313 61.8 0.1461 58.9 2.810 0.0047 62.1 1.112

323 67.5 0.3386 66.0 0.860 0.0283 66.7 0.517

328 71.8 0.2527 69.7 1.678 0.0115 71.4 0.777

333 74.5 0.3319 72.6 1.412 0.0200 73.7 0.907

338 74.8 0.3345 73.3 0.994 0.0237 74.2 0.536
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Figure 9: (a) Pb(II) adsorption capacity on Mn/diatomite at different solution pHs; (b) point of zero charge of Mn/diatomite in 0.01M KCl
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in Figure 10(b). Furthermore, range 2 has a much larger ΔH°

(234.222kJmol−1) than range 1, in which ΔH ° = 55 451 kJ
mol−1. This suggests that the adsorption process occurs
favourably at high temperatures, suggesting chemical adsorp-
tion onto the composite.

The negative value of ΔG° in the 303–338K range shows
that the Pb(II) adsorption in aqueous solutions on Mn/diato-
mite is spontaneous. Meanwhile, the positive ΔS° reflects the
increase in the degree of free movement at the solid/solution
interface in the adsorption process [13, 43, 44, 46].

Since the Pb(II) adsorption on Mn/diatomite follows the
pseudo-second-order kinetic model, the adsorption rate
constant k2 is used in Eq. (12). Figure S7 depicts the plot
of ln k2 versus 1/T , and the activation energy of Pb(II)
adsorption in aqueous solutions on Mn/diatomite material
is 41.56 kJmol−1. Usually, physisorption has an activation

energy in the range of 5-40 kJmol−1, while that of
chemisorption is generally in the range of 40-800 kJmol−1

[46]. Therefore, the adsorption of Pb(II) on Mn/diatomite
could occur via the formation of weak chemical bonds
between the adsorbent and the adsorbate [41].

3.3.5. Recycling Studies. The regeneration of the spent Mn/
diatomite adsorbent was carried out in three adsorption-
desorption cycles. The readsorption experiments were
performed on 50mL of Pb(II) solution with pH and initial
concentration of 5.45 and 80.1mgL-1, respectively, and
0.05 g of the adsorbent. The mixture was shaken with a
shaker at 200 rpm for 3 h at ambient temperature
(29 ± 2°C). Then, the adsorbent was removed by filtration,
the remaining Pb(II) concentration was determined, and
the adsorption capacity was calculated. The results show

Table 4: Parameters of the nonlinear models for the adsorption of Pb(II) in an aqueous solution on Mn/diatomite, natural diatomite, and
nano-MnO2.

Isotherm model Parameter
Adsorbent

Mn/diatomite Natural diatomite Nano-MnO2

Langmuir (2p)∗
KL (L g-1) 1.18 4.98 7.54

qm (mg g-1) 81.42 16.31 19.42

RMSE 10.17 1.63 0.73

Freundlich (2p)∗
KF (mg(1-1/n) L1/n g-1) 41.09 11.20 15.43

n 5.54 5.95 10.35

RMSE 3.46 0.49 1.45

Sips (3p)∗

KS (L
mmgm-1) 0.27 0.05 18.49

qmS
(mg g-1) 188.74 240.09 18.93

mS 0.28 0.18 1.58

RMSE 3.10 0.50 0.62
∗Number of parameters.
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Figure 10: (a) Relationship between the experimental and the calculated adsorbed amount for the adsorption of Pb(II) on Mn/diatomite; (b)
effect of temperature and contact time on the adsorption capacity of Pb(II) in aqueous solution of Mn/diatomite (pHinitial = 5 48).
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that the adsorption capacity of Pb(II) decreases with the
number of recycles, and Mn/diatomite could still exhibit
approximately 55% of its original adsorption capacity in
the 3rd recycle (Figure 11(b)).

Mn/diatomite after each recycle was subjected to FT-
IR measurement, and it was found that the characteristic
vibration bands of the diatomite modified by manganese
oxide remain (Figure S8a). However, the peaks at the
wavenumbers less than 470 cm-1 are observed only in the
first recycled sample (Figure S8b). This indicates that the
chemical bonding between Pb(II) and the manganese
oxide adsorption sites reduces desorption. This is also
the cause of the reduced adsorption capacity of the
recycled samples.

Table 5: Pb(II) adsorption capacity of different adsorbents.

Adsorbent Adsorption capacity (mg g–1) pH Reference

Mn/diatomite 81.42 (303K) Neutral This work

Natural diatomite 16.31 (303K) Neutral This work

Nano-MnO2 19.42 (303K) Neutral This work

Mn/diatomite 99 (289K) 4 [10]

Diatomite 24.94 (296K) 4 [11]

Mn/diatomite 99 (296K) 4 [11]

Raw DE 8.5058 (303K) Neutral [36]

MnO2@DE 56.843 (303K) Neutral [36]

Silicalite-1-NH2 43.5 (298K) 5.5 [65]

MCM-48-NH2 75.2 (298K) 5.5 [65]

MCM-48-SH 31.2 (298K) 5.5 [65]

Aminopropyl-MCM-41 64.21 (300K) Neutral [49]

Leonardite 23.89 (303K) 6 [50]

Biological sludge through ferric activation 42.96 (298K) 5 [7]

Chitosan-tripolyphosphate bead 57.33 (300K) 4.5 [44]
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Figure 11: (a) Linear plot of ln KC versus 1/T and (b) Pb(II) adsorption capacity in aqueous solution of reused Mn/diatomite samples
(experimental conditions: 0.05 g of the adsorbent and 50mL of Pb(II) solution with C0 = 80 1mg L−1; each experiment was repeated
three times).

Table 6: Thermodynamic parameters of Pb(II) adsorption on Mn/
diatomite.

T (K) ΔGo (kJmol-1) ΔHo (kJmol-1) ΔSo (Jmol-1 K-1)

303 -2.111 55.451 189.975

313 -4.011

323 -5.911

323 -5.667 234.222 742.690

328 -9.380

333 -13.094

338 -16.807
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4. Conclusions

The manganese-modified diatomite material was successfully
prepared with the hydrothermal method from KMnO4, HCl,
and diatomite. The resulting Mn/diatomite possesses a high
manganese content (20.47% by weight) and a large specific
surface area (SBET = 68 5m2 g−1). Themanganese oxide covers
the diatomite surface. Mn/diatomite can be used as an adsor-
bent to remove Pb(II) ions from aqueous solutions with a
maximum adsorption capacity of 81.42mgg−1. The Pb(II)
adsorption onMn/diatomite is spontaneous and endothermic,
with an activation energy of 41.56 kJmol-1. The material is a
stable, potential adsorbent in environmental treatments.
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Figure S1: Pb(II) adsorption capacity in an aqueous solution of
nano-MnO2 samples prepared at different KMnO4/HCl molar
ratios: (a) 1 : 1; (b) 1 : 2; (c) 1 : 4; (d) 1 : 8 (experimental condi-
tions: 0.1g of adsorbent; 100mL of Pb(II) solution with C0 =
70 6mg L−1). Figure S2: SEM image and EDX mapping of the
nano-MnO2 sample after Pb(II) adsorption. Figure S3: SEM
image and EDX mapping of Mn/diatomite. Figure S4: SEM
image and EDX mapping of Mn/diatomite after Pb(II) adsorp-
tion. Figure S5: plot depicting Pb(II) adsorption kinetics onMn/
diatomite according to the pseudo-first-order and pseudo-
second-order equations: (a) at different initial concentrations
of Pb(II) solutions; (b) at different adsorption temperatures.
Figure S6: simulation of adsorption isotherms determined by a
nonlinear method of Pb(II) adsorption on different materials:
(a) Mn/diatomite; (b) natural diatomite; (c) Nano-MnO2.
Figure S7: the dependence of ln k2 versus 1/T of Pb(II)
adsorption onMn/diatomite. Figure S8: FT-IR spectra of reused
Mn/diatomite samples: (a) wavenumber region 4000-400cm-1;
(b) wavenumber region 600-400 cm-1. Table S1: manganese
element content and Pb(II) adsorption capacity in aqueous
solution of the Mn/diatomite samples. Table S2: textural
properties of diatomite samples. (Supplementary Materials)
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