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With the rapid development of industrialization, the amount of copper-containing wastewater is increasing, thereby posing a
threat to the aquatic ecological environment and human health. Sludge biochar has received extensive concern in recent years
due to its advantages of low cost and sustainability for the treatment of heavy-metal-containing wastewater. However, the
heavy-metal-adsorption capacity of sludge biochar is limited. This study prepared a sodium pyrophosphate- (Na4P2O7-)
modified municipal sludge-based biochar (SP-SBC) and evaluated its adsorption performance for Cu(II). Results showed that
SP-SBC had higher yield, ash content, pH, Na and P content, and surface roughness than original sewage sludge biochar
(SBC). The Cu(II)-adsorption capacity of SP-SBC was 4.55 times than that of SBC at room temperature. For Cu(II) adsorption
by SP-SBC, the kinetics and isotherms conformed to the pseudo-second-order model and the Langmuir–Freundlich model,
respectively. The maximum adsorption capacity of SP-SBC was 38.49mg·g−1 at 35°C. Cu(II) adsorption by SP-SBC primarily
involved ion exchange, electrostatic attraction, and precipitation. The desired adsorption performance for Cu(II) in the fixed-
bed column experiment indicated that SP-SBC can be reused and had good application potential to treat copper-containing
wastewater. Overall, this study provided a desirable sorbent (SP-SBC) for Cu(II) removal, as well as a new simple chemical-
modification method for SBC to enhance Cu(II)-adsorption capacity.

1. Introduction

With the rapid development of industrialization, the heavy
metals that enter the water environment through human
activities inevitably increase [1–3]. Due to the persistence, bio-
accumulation, pathogenicity, and carcinogenicity of heavy
metals, the water-environment pollution they cause is attract-
ing extensive attention [1, 4]. Copper, as an important heavy
metal material, is widely used in the fields of electronics,
energy, communications, and machinery production, result-
ing in a large amount of copper-containing wastewater. The
concentration of copper in the wastewater varies from tens
to thousands of milligrams per liter [5]. Once the wastewater

is directly discharged into natural water bodies without proper
treatment, it harms aquatic organisms and leads to a series of
health problems to humans, such as nausea, diarrhea, liver,
and kidney damage [1, 6]. Thus, the removal of copper from
wastewater has become an important issue for heavy-metal
pollution control. Several methods are presently used to deal
with copper-containing wastewater, primarily including
chemical precipitation, bioremediation, membrane separa-
tion, and adsorption [7]. Among these methods, adsorption
has elicited extensive attention in view of its advantages of
convenient operation, considerable efficiency, low cost, and
strong anticontamination ability [8, 9]. For adsorption, sor-
bent development is an important research task [10–14].
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Biochar is a porous and carbon-rich solid material
obtained by pyrolyzing biomass under anoxic or anaerobic
conditions [15, 16]. Due to the high porosity, large surface
area, rich surface functional groups, and high pH value of
biochar, it receives extensive attention in the field of heavy-
metal-containing wastewater treatment [17]. In previous
years, a large number of biochar materials such as discarded
mushroom-stick biochar [18], corn straw biochar [19], date
seed biochar [20], tobacco stem biochar [21], industrial
alkali lignin biochar [22], and Ascophyllum nodosum sea-
weed biochar [23] have been successfully prepared to
remove heavy metal from wastewater. These studies show
that biochar is an environmentally friendly and cost-
effective adsorption material for heavy-metal adsorption.
With the deepening of research, some scholars have per-
formed studies on biochar modification, particularly chemi-
cal modification, to improve the heavy-metal-adsorption
capacity by raw biochar [24–31]. These studies have indi-
cated that the heavy-metal-adsorption capacity of biochar
can be significantly improved by an effective modifier. Such
a modifier adds adsorption sites and enhances electrostatic
attraction, surface complexation, or surface precipitation
on biochar.

In China, the growing sewage sludge produced from
sewage treatment has become a serious burden on ecology
and society [32]. Accordingly, China has the urgent need
for environment-friendly methods to realize the effective
treatment of sewage sludge. However, the commonly used
methods of incineration, sanitary landfilling, and land appli-
cation [32] have some shortcomings that could lead to sec-
ondary pollution. For example, NOx, SO2, and volatile
heavy metals produced from incineration can cause serious
air pollution [33]. Sanitary landfilling can occupy land.
Direct agricultural application may harm living organisms
[34]. Many researchers have reported the related studies on
converting sewage sludge to biochar for the treatment of
heavy-metal-containing wastewater [35–41]. They found
that preparing biochar from sewage sludge can realize the
harmless and reductive treatments of sewage sludge and
obtain a low-cost and sustainable sorbent for the treatment
of heavy-metal-containing wastewater. However, the
heavy-metal-adsorption capacity of sludge-based biochar is
unsatisfactory, which limits its promotion and application
to a certain extent [42, 43]. Some modifiers such as Fe3O4
[44], nanostructured CaCO3 [45], trithiocyanuric acid triso-
dium salt [46], α-Fe2O3 and α-FeOOH [47], K2FeO4 [48],
and hydroxyapatite [42] have been successfully applied to
prepare modified sewage sludge biochar, and satisfactory
heavy-metal-adsorption capacity has been achieved. At pres-
ent, chemical modification is a noteworthy research direc-
tion for improving the adsorption capacity of heavy metals
by sewage sludge biochar [45, 49]. In the present study, we
used sodium pyrophosphate (Na4P2O7), an additive widely
used in the food industry, water industry, and daily chemical
industry, as a modifier to prepare Na4P2O7-modified sewage
sludge-based biochar (SP-SBC). The desirable Cu(II)-
adsorption capacity of SP-SBC was hoped to be achieved
through the precipitation between pyrophosphate or phos-
phate and Cu(II). Although some similar reports exist on

sewage sludge biochar modified with chemical modification
for Cu(II) adsorption [42, 50, 51], to our knowledge, SP-
SBC and its Cu(II)-adsorption performance are reported
herein for the first time. Moreover, our one-pot preparation
method of SP-SBC was simpler than those of biochars
reported by Chen et al. [42], Phoungthong and Suwunwong
[50], and Tang et al. [51]. This study could provide an alter-
native path for modifying sewage sludge biochar, which is
beneficial to promote the practical application of sludge
biochar.

The aims of this study were as follows: (i) to prepare SP-
SBC and explore its properties, (ii) to investigate the adsorp-
tion behaviors of SP-SBC for Cu(II), and (iii) to understand
the application potential of SP-SBC for Cu(II)-adsorption
removal. Herein, SP-SBC was prepared. The properties of
SP-SBC and original sewage sludge biochar (SBC) were
characterized by the yield; ash content; pH, K, Ca, Na, Mg,
and P contents; SEM; and FTIR. Then, the effects of sorbent
dosage, initial pH, ionic strength, contact time, and temper-
ature on the Cu(II) adsorption by SP-SBC were determined
by batch-adsorption experiments. For Cu(II) adsorption by
SP-SBC, the kinetics and isotherms were explored. Lastly, a
fixed-bed column experiment was performed.

2. Materials and Methods

2.1. Materials. Sodium pyrophosphate (Na4P2O7; AR, 99%),
copper nitrate trihydrate (Cu(NO3)2·3H2O; AR, 99%),
sodium nitrate (NaNO3; AR, 99%), silica sand, nitric acid
(HNO3; AR, 65–68wt%), and sodium hydroxide (NaOH,
AR, 98%) were all supplied by Kelong Chemical Co., Ltd.
(Chengdu, China) without further purification. Ultrapure
water (18.25MΩ) was used to prepare the used solutions.
Sewage sludge was acquired from a local municipal
wastewater-treatment plant in Chengdu city, China.

2.2. Preparation of Biochar. SP-SBC was prepared with a
one-pot method (Figure 1). The specific procedures were
as follows. Sewage sludge was ground and sieved to pass a
10-mesh sieve after natural drying. A part of sieved sludge
was impregnated with Na4P2O7 (60 g·L

−1) at a ratio of 1/20
(mass/volume) for 12h in a constant-temperature shaker
under the conditions of 25°C and 130 rpm. Afterwards, the
impregnated sludge was dried at 60°C until the weight was
stable. The dried impregnated sludge and the other part of
the sieved sludge were loaded into different ceramic cruci-
bles, sealed, and capped. Then, they were pyrolyzed for 2 h
at 400°C in a muffle furnace. After grinding the pyrolyzed
product of the original sludge and sieving (60 mesh), the
acquired particles under the sieve were recorded as SBC.
The pyrolyzed product of the impregnated sludge was
washed several times with 55–65°C deionized water and
dried at 60°C until the weight was stable. The dried product
was passed through a sieve (60 mesh) after grinding. The
obtained particles under the sieve were recorded as SP-SBC.

2.3. Properties of Biochar. The analysis methods for the
properties of SBC or SP-SBC were as follows. Equation (1)
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was used to calculate the yield (Y , %):

Y =
m0
mt

� �
× 100%, ð1Þ

where m0 and mt denote the weight of SBC (or SP-SBC) and
sewage sludge (g), respectively. Ash content was detected by
burning 1.00 g of samples in a muffle furnace at 700°C for 2 h
and calculated by the following equation:

Ash %ð Þ = M0
Mt

� �
× 100%, ð2Þ

where M0 and Mt represent the weight of SBC (or SP-SBC)
after and before burning (g), respectively. The pH; contents
of Na, K, Ca, Mg, and P; and the surface structural morphol-
ogy (i.e., SEM images) were determined as in our previous
methods [52]. The surface functional groups on SBC, SP-
SBC, and SP-SBC after Cu(II) adsorption (SP-SBC+Cu)

were recorded with a Nicolet iS50-type FTIR spectroscope
(Thermo Fisher Scientific, Inc., Waltham, USA). At different
solution pH values, the zeta potentials of SP-SBC were mea-
sured based on our previous methods to calculate the iso-
electric point (pHIEP) [52].

2.4. Batch Experiments. The influences of sorbent dosage,
initial solution pH, ionic strength, contact time, and temper-
ature on Cu(II) adsorption by SP-SBC were determined with
batch experiments. For all batch experiments, the Cu(II)
solution with a preset concentration was prepared by dilut-
ing 1000mg·L−1 of Cu(II) stock solution, which was in turn
prepared with Cu(NO3)2·3H2O and ultrapure water
(18.25MΩ). In a typical procedure, a certain amount of
SP-SBC was mixed with 50mL of Cu(II) solution with a
designed concentration, followed by adjusting the pH to a
predesigned value. Then, the mixture was shaken for a cer-
tain time period at a preset temperature and at 130 rpm in
a constant-temperature shaker. The specific conditions for
each batch experiment are shown in Table 1. Furthermore,

Figure 1: Flow chart of SP-SBC preparation.

Table 1: Specific conditions for each batch experiment.

Batch
experiment

Experimental conditions

Sorbent dosage (g)
Initial

solution pH
Ionic strength
(NaNO3, M)

Contact time (h)
Temperature

(°C)

Cu(II)
concentration

(mg·L-1)
Sorbent
dosage

0.025, 0.05, 0.075, 0.1,
0.2, 0.3, 0.5

5 0 12 25 50

Initial
solution pH

0.1
3, 3.5, 4, 4.5,

5, 6
0 12 25 50

Ionic
strength

0.1 5
0, 0.005, 0.01, 0.03, 0.05,

0.08, 0.10, 0.50
12 25 50

Contact time 0.1 5 0
0.5, 1, 2, 3, 4, 6, 8,

10, 12, 14
25 50

Temperature 0.1 5 0 12 15, 25, 35
50, 150, 200, 300,

400, 600

3Adsorption Science & Technology



SP-SBC was replaced by SBC and subjected to the same
experiment processes in the batch experiment of the effect
of contact time to compare the difference in adsorption
capacity between SP-SBC and SBC.

Once a batch experiment was completed, the mixture
was taken out and the suspension was passed through a
0.45μm microfiltration membrane. In the filtrate, the Cu(II)
concentration was tested with a PinAAcle900T-type flame
atomic adsorption spectrophotometer (FAAS) (PerkinElmer
Instrument Co., Ltd., Akron, USA). Then, Equation (3) was

used to calculate the Cu(II)-adsorption capacity (qe):

qe =
0:05 C0 − Ceð Þ

W
, ð3Þ

where C0 refers to the initial Cu(II) concentration (mg·L−1)
at the beginning of experiment, Ce refers to the detected
Cu(II) concentration (mg·L−1) at the end of experiment,
and W is the amount of biochar (g).

2.5. Adsorption Kinetics and Isotherms. For Cu(II) adsorp-
tion by SP-SBC, the acquired data in the batch experiment
of the effect of contact time were simulated with the
pseudo-first-order (PFO) model, the pseudo-second-order
(PSO) model, and the intraparticle diffusion (IPD) model
(Equations (4)–(6)) to analyze the kinetic characteristics
[12].

Qt =Qet 1 − e−k1t
� �

, ð4Þ

Qt =
tQet

2k2
1 + tQetk2

, ð5Þ

Qt = kit
1/2 + C, ð6Þ

where Qet is the adsorption capacity (mg·g−1) at equilibrium
and Qt is the adsorption capacity (mg·g−1) at time t. k1, k2,
and ki denote the constants of the PFO model (h−1), the
PSO model (g·mg−1·h−1), and the rate constant of the IPD
diffusion (mg·(g·min0.5)−1), respectively. C indicates the
boundary-layer thickness (mg·g−1). The acquired data in
the batch experiment of the effect of temperature was
matched with the Langmuir (L) model, the Freundlich (F)
model, the Langmuir–Freundlich (L-F) model, and the
Dubinin–Radushkevich (D-R) model (Equations (7)–(12))
[16, 53–56] to explain the adsorption isotherms, respec-
tively.

Qe =
QmKLCe

1 + KLCe
, ð7Þ

Qe = K f Ce
1/n, ð8Þ

Qe =
Qm KaCeð Þn′

1 + KaCeð Þn′
, ð9Þ

ε = RTln 1 + 1
CeD

� �
, ð10Þ

QeD =QmD exp −βε2
À Á

, ð11Þ

E =
1ffiffiffiffiffiffi
2β

p , ð12Þ

where KL is the constant of the L model (L·mg−1). K f is the
constant of the F model (mg(1−n)·Ln·g−1). 1/n is an empirical
constant representing adsorption intensity. Ka is the con-
stant of the L-F model (L·mg−1), which can be used to reflect

Peristaltic
pump

Cu (II)
solution

Efuent
sample

2 cm

8.5 cm

30 cm

2 cm
2 cm

8.5 cm
9 cm

1

2

1

Figure 2: Sketch of fixed-bed column device (①: 2 cm thick quartz
sand-packed layer; ②: 9 cm thick SP-SBC-packed layer).

Table 2: Some properties of SBC and SP-SBC.

Items SBC SP-SBC

Yield (%) 60:57 ± 0:17 68:34 ± 0:21

Ash content (%) 66:77 ± 0:39 75:23 ± 0:33

pH value 8:13 ± 0:03 10:54 ± 0:05

Na (mg·g-1) 1:76 ± 0:41 31:72 ± 1:97

K (mg·g-1) 6:81 ± 0:36 3:68 ± 0:28

Ca (mg·g-1) 27:48 ± 0:57 20:63 ± 2:57

Mg (mg·g-1) 7:87 ± 0:18 5:34 ± 0:38

P (mg·g-1) 24:94 ± 1:46 40:86 ± 3:32
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the adsorption affinity. n′ is the heterogeneity factor. Qe is
the equilibrium adsorption capacity at the end of the exper-
iment (mg·g−1). Qm is the maximum adsorption capacity

(mg·g−1). ε is the Polanyi potential constant (J·mol−1). Ced
is the detected Cu(II) concentrations (mol·L−1) at the equi-
librium. QeD and QmD are the equilibrium adsorption capac-
ity (mol·g−1) and the maximum adsorption capacity
(mol·g−1), respectively. R is the gas constant
(8.314 J·(mol·K)−1). T is the absolute temperature (K).

2.6. Fixed-Bed Column Experiment. A fixed-bed column
experiment was conducted to understand the application
potential of SP-SBC for Cu(II) adsorption. The sketch map
of the fixed-bed column device is shown in Figure 2. Four
cycles were performed in the fixed-bed column experiment.
Each cycle included two processes, i.e., adsorption process
and desorption process. For the adsorption process, the
Cu(II) solution (Cin = 50mg · L−1, pH5) was pumped into
the top of the column (flow rate ðQÞ = 15mL · min−1). The
effluent samples were collected every 15min, and the Cu(II)
concentrations of samples (Cen, mg·L−1) were measured by
the FAAS to draw the breakthrough curve. Based on the
acquired breakthrough curve, the total inputted Cu(II)
amount (M, mg), total Cu(II)-adsorption amount (M ′,
mg), volume of treated Cu(II) solution (Veff , mL), and equi-
librium adsorption capacity of SP-SBC (qec, mg·g−1) were
calculated by Equations (13)–(16), respectively. For the
desorption process, a certain volume of 0.5M NaOH

200 nm EHT = 20.00 kV Signal A = SE1
Time : 14:03:00
Date : 10 Nov 2019

Mag = 50.00 K XWD = 8.0 mm

(a)

200 nm EHT = 20.00 kV Signal A = SE1
Time : 13:59:58
Date : 10 Nov 2019

Mag = 50.00 K XWD = 8.0 mm

(b)

Figure 3: SEM image of biochar: (a) SBC and (b) SP-SBC.
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solution was added to the fixed-bed column until the solu-
tion level was kept above the top quartz sand-packed layer.
After soaking for 12 h, the fixed-bed column was rinsed with
ultrapure water several times until the eluent pH was about
neutral. Then, the regenerated fixed-bed column reactor
was obtained. The regenerated fixed-bed column was reused
for the next cycle.

M =
QteCin
1000

, ð13Þ

M ′ = Q
1000

ðte
0
Cin − Cenð Þdt, ð14Þ

Veff =Qte, ð15Þ

qec =
M ′
m

, ð16Þ

where te is the adsorption saturation time (min), which is
the corresponding time when Ct/C0 = 0:9 [57, 58]. m is the
SP-SBC mass packed in the experimental device (g).

2.7. Statistical Analysis. To ensure the reliability of experi-
mental data, all experiments were repeated three times in
this study. Origin 8.0 was used for plotting. SPSS Statistics
23.0 was used to analyze the experimental data.

3. Results and Discussion

3.1. Properties of SBC and SP-SBC. The property parameters
of SBC and SP-SBC are shown in Table 2. The yields of SBC
and SP-SBC were 60.57% and 68.34%, respectively, which
were close to those of other sludge biochars prepared at
the same pyrolysis temperature [59, 60]. Compared with
those of SBC, the Na and P contents of SP-SBC significantly
increased (p < 0:05), indicating that pyrophosphate was suc-
cessfully introduced onto SP-SBC. However, the K, Ca, and
Mg contents of SP-SBC decreased, which may be related to

the dilution effect resulting from the increase in Na and P
contents after modification. The ash content of SP-SBC
was higher (p < 0:05) than that of SBC, which was due to
the introduction of Na and P elements after modification.
The alkalinity of SP-SBC was higher than that of SBC, which
could be attributed to the increase in ash content and the
alkalinity of the sodium pyrophosphate solution.

Figure 3 shows the scanning electron microscopy (SEM)
images of SBC and SP-SBC, which reflected the surface
structural morphology. The SP-SBC surface (Figure 3(b))
was rougher than that of SBC (Figure 3(a)) and filled with
many microparticles, which was caused by the introduction
of sodium pyrophosphate. The results of FTIR spectra of
SBC and SP-SBC (Figure 4) revealed peaks at around 790
and 1061 cm−1, which were due to the aromatic C-H out-
of-plane vibrations [61] and C-O stretching vibration,
respectively [15, 62, 63]. The peak at around 1433 cm−1 rep-
resented the C=C stretching vibration of aromatic hydrocar-
bons [64]. The peak at 1629 cm−1 was associated with the –
COOH stretching vibration [65]. The observed peak at
around 2924 cm−1 represented the C-H stretching vibration
[66]. The intense peak at around 3405 cm−1 was due to the
-OH stretching vibration [67]. Overall, the peaks of the
two biochars were consistent, suggesting that the categories
of functional groups did not change before and after modifi-
cation. However, for SP-SBC, the intensities of these peaks
weakened. These results suggested that the amounts of the
functional groups on the SP-BC surface (especially for –
OH and –COOH) decreased. This finding was consistent
with the above result that the alkalinity of SP-SBC was
higher than that of SBC.

3.2. Adsorption Capacities of SBC and SP-SBC for Cu(II). The
adsorption capacities of SBC and SP-SBC for Cu(II) varied
with increased contact time (Figure 5). For SBC, the
Cu(II)-adsorption capacity tended to be stable after 10 h.
For SP-SBC, the Cu(II)-adsorption capacity tended to reach
equilibrium at 12 h. At adsorption equilibrium, SP-SBC and
SBC achieved the Cu(II)-adsorption capacities of 20.01 and
4.40mg·g−1, respectively. Results showed that SP-SBC had
a higher Cu(II)-adsorption capacity (4.55 times) than SBC.
First, the surface of SP-SBC was rougher than that of SBC
(Figure 3), which helped in increasing the contact of Cu(II)
with SP-SBC [68]. Second, for SP-SBC, the increased equiv-
alent of sodium was greater than the sum of the decreased
equivalents of potassium, calcium, and magnesium
(Table 2), which enhanced the ion exchange with Cu(II)
[52]. Third, the significant increase in the phosphorus and
alkalinity of SP-SBC (Table 2) led to increased copper pre-
cipitation [69]. The above three reasons caused the signifi-
cant improvement in the Cu(II)-adsorption capacity of SP-
SBC.

For Cu(II) adsorption by biochar, the complexation and
π electron coordination of surface functional groups may be
involved [6, 70, 71]. In the Section 3.1, compared with SBC,
SP-SBC had fewer surface functional groups. However, the
Cu(II)-adsorption capacity of SP-SBC was 4.55 times higher
than that of SBC. This finding indicated that the increased
Cu(II)-adsorption capacity of SP-SBC was independent of
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Figure 6: Effect of SP-SBC dosage on the adsorption capacity of
SP-SBC for Cu(II).
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surface functional groups. Thus, the complexion and π elec-
tron coordination of surface functional groups may not be
the main mechanism for the Cu(II) adsorption by SP-SBC.
Additionally, the SP-SBC after Cu(II) adsorption (SP-SBC
+Cu) was characterized by FTIR (Figure 4). We found
inconspicuous changes in the positions and intensities of
peaks between the FTIR spectra of SP-SBC and SP-SBC
+Cu. These results suggested that surface functional groups
had little effect on Cu(II) adsorption, which strongly sup-
ported the above discussion of surface functional group
effects for Cu(II) adsorption.

Overall, modifying SBC with sodium pyrophosphate can
effectively improve its Cu(II)-adsorption capacity.

3.3. Effect of SP-SBC Dosage. For the Cu(II)-adsorption
capacity, the influence of SP-SBC dosage is shown in

Figure 6. With increased SP-SBC dosage (from 0.5 g·L−1 to
10 g·L−1), the Cu(II)-adsorption capacity decreased
(p < 0:05) from 26.06mg·g−1 to 4.983mg·g−1, in accordance
with those of other reported biochars [71, 72]. This decrease
in adsorption capacity for Cu(II) was associated with the fol-
lowing reasons: (i) the nonsaturated Cu(II) adsorption on
SP-SBC caused by the excessive amount of SP-SBC [72]
and (ii) the agglomeration and polymerization of SP-SBC
at a high dosage [73].

3.4. Effect of Initial pH. To avoid the experimental interfer-
ence caused by the extra precipitation of Cu(II) at the initial
pH of >6 [6, 69], the initial pH was adjusted to 3–6.
Figure 7(a) shows the effect of initial pH on the Cu(II)
adsorption by SP-SBC. As shown in Figure 7, with increased
initial pH from 3 to 5, the Cu(II)-adsorption capacity rapidly
increased from 4.52mg·g−1 to 20.63mg·g−1 (p < 0:05). pH
importantly influences the adsorption of metal ions because
it usually determines the surface charge of the sorbent [3, 6,
12, 23]. Figure 7 also displays the zeta potentials of SP-SBC
at different pH values. We found that the zeta potential
gradually decreased with increased initial pH (p < 0:05),
and the isoelectric point (pHIEP) of SP-SBC was 3.58. These
results suggested that the negative charges on the surface of
SP-SBC increased with increased pH to >3.58. It enhanced
the electrostatic attraction between Cu(II) and SP-SBC, lead-
ing to the increasing trend of Cu(II)-adsorption capacity
from the initial pH of 3 to 5 [4, 15]. Moreover, the adsorp-
tion competition between Cu(II) and H+ gradually weak-
ened with increased initial pH within the range of 3–5, also
resulting in increased Cu(II)-adsorption capacity of SP-
SBC. These findings suggested that electrostatic attraction
participated in the adsorption of Cu(II) by SP-SBC
(Figure 7(b)). When the initial pH was above 5, the Cu(II)-
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Figure 7: (a) Effect of initial pH on the adsorption capacity of SP-SBC for Cu(II), and (b) an illustration of the effect of initial pH on Cu(II)
adsorption by SP-SBC.
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Figure 8: Effect of ionic strength on the adsorption capacity of SP-
SBC for Cu(II).
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adsorption capacity remained unchanged (p > 0:05), consis-
tent with the results of Deng et al. [74].

3.5. Effect of Ionic Strength. Ionic strength usually has a sig-
nificant effect on adsorption [75]. The effect of ionic strength
(Na+) on Cu(II) adsorption by SP-SBC is displayed in
Figure 8. With increased ionic strength (0.005–0.5M), the
Cu(II)-adsorption capacity decreased significantly (p < 0:05
). The reasons for this trend were as follows: (i) Na+ com-
peted with Cu2+ in the adsorption [6]; (ii) a dense hydrating
shell formed on the surface of SP-SBC once Na+ was
adsorbed [76], which prevented Cu(II) from making contact
with the surface of SP-SBC; and (iii) the increase in ionic
strength greatly reduced the activity coefficient of Cu(II),
making it difficult for SP-SBC to capture Cu(II) [77]. In con-
clusion, ionic strength can significantly influence the Cu(II)-
adsorption capacity of SP-SBC, especially under the high-
ionic-strength condition. These results suggested that atten-
tion should be paid to the salinity control for the application
of SP-SBC in high-salinity copper-containing wastewater.

3.6. Effect of Contact Time and Adsorption Kinetics. Figure 9
shows the effect of contact time on Cu(II) adsorption by SP-
SBC. With increased contact time, the Cu(II)-adsorption
capacity increased (p < 0:05) within the initial 12 h and then

reached equilibrium (p > 0:05) (Figure 9). The Cu(II)
adsorption by SP-SBC was fast within the initial 0.5 h, and
the adsorption capacity at 0.5 h reached 58% of the adsorp-
tion capacity at equilibrium time. Then, the Cu(II)-adsorp-
tion rate gradually slowed down between 0.5 and 12 h,
finally reaching stability after 12 h. The high initial Cu(II)-
adsorption rate was due to the considerable amount of
unsaturated adsorption sites on SP-SBC, whereas the decel-
erating adsorption rate was due to the adsorption sites being
gradually saturated as adsorption proceeded [23].

Figure 9 exhibits the fitting curves of the PFO, PSO, and
IPD models for Cu(II) adsorption by SP-SBC. The fitting
curve of the PSO model showed a better approximation to
the experimental data than those of the PFO and IPD
models. The fitting parameters, i.e., Qet, k1, k2, ki, C, and cor-
relation coefficient (R2), are displayed in Table 3. Compared
with the PFO and IPD models, the PSO model had the high-
est R2 (0.980). Additionally, the simulated Qet (20.02mg·g−1)
obtained by the PSO model better agreed with the qe
(20.01mg·g−1) obtained in the experiment. Therefore, Cu(II)
adsorption by SP-SBC was better depicted by the PSO
model. The result implied that the number of active sites
of the SP-SBC surface restricted the Cu(II)-adsorption rate
of SP-SBC; i.e., chemical adsorption was the rate-limiting
step for Cu(II) adsorption by SP-SBC [15, 78, 79]. Thus,

20

15

10

5

0

0 2 4 6 8 10 12 14
Contact time (h)

Cu
 (I

I)
 ad

so
rp

tio
n 

ca
pa

ci
ty

 (m
g 

· g
-1

)

Pseudo-frst-order
Pseudo-second-order

(a)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10

12

14

16

18

20

22

t1/2 (h1/2)

Cu
 (I

I)
 ad

so
rp

tio
n 

ca
pa

ci
ty

 (m
g 

· g
-1

)

Intra-particle difusion model

(b)

Figure 9: Effect of contact time on the adsorption capacity of SP-SBC for Cu(II) and fitting results of the PFO and PSO models (a) and the
IPD model (b).

Table 3: Fitting parameters of three kinetic models.

Pseudo-first order Pseudo-second order

Qet (mg·g-1) k1 (h
-1) R2 Qet (mg·g-1) k2 (g·mg-1·h-1) R2

18.50 1.348 0.931 20.02 0.103 0.980

Intraparticle diffusion

Step 1 Step 2

C (mg·g-1) ki (mg·(g·min0.5)-1) R2 C (mg·g-1) ki (mg·(g·min0.5)-1) R2

8.91 4.12 0.98 14.91 1.43 0.95
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chemical adsorption may be a key mechanism in this study
[11, 13, 71], consistent with the discussion in Section 3.2.
Meanwhile, Figure 9(b) shows that the adsorption process
of Cu(II) by SP-SBC can be divided two stages: boundary-
layer diffusion with fast diffusion speed and intraparticle dif-
fusion with relatively slow diffusion speed. Notably, the fit-
ting curves of the above two stages did not pass through
the original point, indicating that intraparticle diffusion
was not the only rate-limiting step to control the Cu(II)-
adsorption process of SP-SBC [11, 13].

3.7. Effect of Temperature and Adsorption Isotherms. The
Cu(II) equilibrium adsorption capacities of SP-SBC (Qe) at

different initial Cu(II) concentrations and temperatures are
shown in Figure 10. At the same initial concentration, Qe
increased with increased temperature (15–35°C). This result
was due to the increased contact between Cu(II) and SP-SBC
at a high temperature. At the same temperature, Qe
increased sharply within the range of low initial Cu(II) con-
centration (i.e., <200mg·L−1) (p < 0:05) and then gradually
reached equilibrium.

To further ascertain the Cu(II)-adsorption behavior of
SP-SBC, the experimental data were simulated by the L, F,
L-F, and D-R models. Table 4 lists the fitting values of KL,
Qm, K f , 1/n, Ka, n′, QmD, E, and correlation coefficient
obtained using the four models. For the L model, KL can
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Figure 10: Effect of temperature on the adsorption capacity of SP-SBC for Cu(II), and fitting results of the F and L (a), L-F (b), and D-R (c)
models.
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be used to calculate the separation parameter (RL) and
reflect the type of isotherm [4, 12], as shown in the following
equation.

RL =
1

1 + C0KL
: ð17Þ

Figure 11 shows the RL values at different temperatures
and initial Cu(II) concentrations. The values of RL were all
less than 1, implying that Cu(II) adsorption by SP-SBC
was a favorable process [3, 4, 13]. Moreover, with increased
the temperature and Cu(II) initial concentration, the RL
value continuously decreased. This result suggested that
the Cu(II) adsorption was more favorable at a higher con-
centration and temperature [80]. For the F model, 1/n can
reflect the adsorption intensity [56]. If 1/n < 0:5, the adsorp-

tion of the adsorbate is easy, whereas if 1/n > 2, the adsorp-
tion of the adsorbate is difficult [80]. As shown in Table 4,
for the different temperatures, the calculated 1/n was always
less than 0.5, demonstrating that Cu(II) was easily absorbed
by SP-SBC. With increased temperature, the value of Kf also
increased. A larger value of Kf implies a higher adsorption
capacity [79]. Thus, a high temperature was favorable for
Cu(II) adsorption; i.e., the Cu(II)-adsorption capacity
strengthened with increased the temperature. For the L-F
model, the n′ values at three temperatures ranged within
0–1, and a higher temperature corresponded with a higher
Ka value in this work. The results also demonstrated that
Cu(II) adsorption by SP-SBC was a favorable process [81],
and the adsorption capability of SP-SBC for Cu(II) was
enhanced with increased temperature [82]. For the D-R
model, the values of E at all experimental temperatures
exceeded 16 kJ·mol−1, indicating that Cu(II) adsorption by
SP-SBC involved chemical adsorption [83–85].

Figure 10 shows that the experimental data were
matched better by the L-F model than the other three
models. Furthermore, the L-F model had the highest R2

among all models (Table 4). Thus, the L-F model was better
adapted to fit the isotherms, suggesting that both processes
(i.e., the Langmuir and Freundlich processes) were involved
in Cu(II) adsorption by SP-SBC. In other words, Cu(II)
adsorption was controlled by multiple mechanisms [86],
such as ion exchange, precipitation (in Section 3.2) and elec-
trostatic attraction (in Section 3.4). Additionally, the maxi-
mum Cu(II)-adsorption capacity of 38.49mg·g−1 was
achieved for SP-SBC at 35°C by the L-F model. Table 5 sum-
marizes the Cu(II)-adsorption capacities of different bio-
chars. Compared with these sorbents, SP-SBC had a
moderate adsorption capacity. The Cu (II)-adsorption equi-
librium time of SP-SBC was also less than those of most
adsorbents. Notably, the adsorption capacity of SP-SBC
exceeded those of reported commercial activated carbons
in Table 5. Overall, SP-SBC is a desirable and effective sor-
bent for Cu(II) removal from aqueous solutions.

3.8. Fixed-Bed Column Adsorption. Fixed-bed column
adsorption can be used to understand the application

Table 4: Fitting parameters of four isotherm models.

Temperature

Langmuir Freundlich

KL

(L·mg-1)
Qm

(mg·g-1)
R2 Kf

(mg(1-n)·Ln·g-1)
1/n R2

15°C 0.17 22.59 0.996 13.63 0.085 0.995

25°C 0.28 26.44 0.994 16.80 0.081 0.996

35°C 0.45 30.52 0.992 19.53 0.080 0.998

Temperature

Langmuir-Freundlich Dubinin-Radushkevich

Ka

(L·mg-1)
Qm

(mg·g-1)
n′ R2 E

(kJ·mol-1)
QmD

(mol·g-1)
R2

15°C 0.21 23.22 0.74 0.998 17.51 4.48 0.91

25°C 0.48 31.50 0.33 0.998 21.13 4.89 0.74

35°C 0.52 38.49 0.27 0.999 23.17 5.73 0.91
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Figure 11: Separation parameters (RL) for Cu(II) adsorption by
SP-SBC at different temperatures and initial Cu(II) concentrations.
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potential of SP-SBC and offer support for the large-scale
treatment of real copper-containing wastewater by SP-SBC
[98]. Figure 12 and Table 6 show the breakthrough curves
and the corresponding calculated parameters of four adsorp-
tion–desorption cycles in the fixed-bed column experiment,
respectively. The values of qec, M ′, and Veff in the first cycle
were 8.528mg·g−1, 153.5mg, and 5175mL, respectively,
indicating that SP-SBC can be used for fixed-bed column

adsorption. With the number of cycles increasing, the slope
of the breakout curve increased gradually, indicating that the
breakthrough (Ct/C0 = 0:1) and saturation (Ct/C0 = 0:9)
points came earlier, and the values of M, M ′, Veff , and qec
decreased. These changes may be due to the inactivation of
adsorption sites on the surface of SP-SBC during the adsorp-
tion–desorption cycles. After four adsorption–desorption
cycles, qec was still 2.794mg·g−1, indicating that SP-SBC
can be reused at least four times. Considering the large sew-
age sludge production in China ð>3 × 107tons per yearÞ, the
relatively simple preparation procedures, and the desired
adsorption performance in the fixed-bed column adsorption,
SP-SBC has a good application potential to treat copper-
containing wastewater. Nevertheless, to effectively guide
the practical application of SP-SBC, the following works
need to be carried out: (i) optimization of adsorption-
operating parameters to determine the optimum adsorption

Table 5: Cu(II)-adsorption capacities of different biochars.

Biochar Conditions
Cu(II) maximum adsorption capacity

(mg·g-1) References

Corn straw biochar pH = 5, t = 24 h, T = 22 ° C 12.52 [87]

Composted swine manure biochar pH = 5, t = 24 h, T = 25 ° C 21.94 [88]

S. hermaphrodita biochar pH = 5:5, t = 24 h, T = 22 ° C 33.33 [89]

Date seed-derived biochar pH = 6, t = 24 h, T = 23 ° C 26.94 [90]

Miscanthus giganteus biochar pH = 6, t = 1 h, T = 25 ° C 19.72 [91]

Sewage sludge biochar pH = 5:2, t = 20 h, T = 25 ° C 7.32 [36]

Municipal sewage sludge biochar pH = /, t = 24 h, T = 25 ° C 5.34 [37]

Steam-activated giant Miscanthus biochar pH = 6, t = 48 h, T = 20 ° C 15.4 [92]

Amino-modified sawdust biochar
pH = 5, t = 200 min, T = 30

° C 17.01 [25]

KOH-activated brewers draft biochar pH = 5, t = 24 h, T = / 10.30 [93]

KMnO4-modified loofah biochar pH = 5:5, t = 10 h, T = / 47.64 [71]

Modified date seed biochar with HCl pretreatment pH = 6, t = 24 h, T = 23 ° C 45.12 [24]

NaOH-modified Opuntia ficus-indica-activated
biochar

pH = 6, t = /, T = 30 ° C 49.36 [94]

Commercial activated carbon pH = 5, t = /, T = 25 ° C 19.21 [95]

Commercial activated carbon pH = 4, t = 4 h, T = 25 ° C 6.9 [96]

Commercial activated carbon pH = 6:5, t = 1 h, T = 22 ° C 13.7 [97]

SP-SBC pH = 5, t = 12 h, T = 35 ° C 38.49 This study
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Figure 12: Breakthrough curves of four adsorption–desorption
cycles in the fixed-bed column experiment.

Table 6: Adsorption parameters acquired by fixed-bed column
adsorption in four adsorption–desorption cycles.

Cycle
tb

∗

(min)
te

(min)
Veff
(mL)

M
(mg)

M ′
(mg)

qec (mg·g-
1)

1 110 345 5175 258.75 153.5 8.528

2 95 310 4650 232.50 133.71 7.428

3 50 195 2925 146.25 82.49 4.583

4 30 125 1875 93.75 50.29 2.794
∗tb is the breakthrough time (min), which is the corresponding time when
Ct/C0 = 0:1.
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conditions; (ii) evaluation of the desorption effect of various
desorbents, such as H2SO4, HNO3, and EDTA, to select the
effective desorbents; and (iii) design of feasible preparation
procedures of SP-SBC from the perspective of industrial
production to provide technical guidance for the market
promotion of SP-SBC.

4. Conclusions

Na4P2O7-modified biochar (SP-SBC) was successfully pre-
pared by a simple one-pot method. Compared with SBC,
the Cu(II)-adsorption capacity of SP-SBC improved 4.55
times. The Cu(II)-adsorption process of SP-SBC can be bet-
ter described by the pseudo-second-order and Langmuir-
Freundlich models. Cu(II) adsorption by SP-SBC involved
ion exchange, electrostatic attraction, and precipitation. For
Cu(II) adsorption, SP-SBC gained the maximum adsorption
capacity of 38.49mg·g−1 at 35°C, which was higher than
those of some reported commercial activated carbons. The
fixed-bed column experiment indicated that SP-SBC can be
used at least four times and had a good application potential
for the treatment of copper-containing wastewater. Overall,
SP-SBC can serve as an alternative sorbent to effectively
remove Cu(II) from aqueous solutions. For the practical
application of SP-SBC, the optimization of adsorption-
operation parameters, evaluation of the desorption effect of
various desorbents, and design of a feasible industrial-
production scheme are required.
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