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Potassium carbonate was tested as novel information for producing carbonaceous materials from jute cores. Two quadratic
models have been developed for both answers to link the preparatory parameters: activating temperatures, molar ratio, and
incubation time. The RSM and ANN models were used to improve the processing conditions to maximise the quantities of
iodine and methylene blue penetration. The best charcoal was obtained using 900°C activating temperatures, a 1.5 molar ratio,
and a 4-hour activating time. This resulted in iodine and methylene blue absorption of 1260.07mg/g and 369.21mg/g,
respectively. It was discovered that the K2CO3-based pyrolysis process might be anticipated to become a safe yet incredibly
efficient process of making activated carbons with a very well-defined and monocultural porous structure. Even though the
precise emphasis given to K2CO3 is unknown at the moment, given the creation of K2C3O4 just after evolvement with one
additional molarity of CO at approximately 870°C, these same porous and papule responses begun by K2CO3 stimulation
might be temporarily posited to be quite comparable to an initiation action needed to make progress by K2C3O4. The influence
of control parameters was examined in this study using variance analysis like the ANOVA test. Furthermore, the response
surface (RSM) and artificial neural networks (ANN) are employed to improve the output results while optimising the
methylene blue and iodine qualities. Consequently, the experimental findings correlate well with the statistics.

1. Introduction

Activated carbon is a flexible, highly porous concept widely
used as an adsorbent in fluid and gas processes and hetero-
geneous catalysis. As contamination has become a much
more significant issue, the demand for carbonaceous mate-
rials grows. The characteristics of carbonaceous materials

are determined by the activating agent’s quality and activat-
ing techniques [1, 2]. In practice, anthracite, hardwood, and
coconut husks are the historical documents of commercially
carbonaceous materials. Owing to their cheap cost, durabil-
ity, and ease of handling, several agricultural wastes have
subsequently gained a lot of interest as alternate materials
for manufacturing carbonaceous materials [3, 4].
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Pollutants encircled humans, which appears to be a sig-
nificant threat to all life forms. Developed countries attempt
to reduce pollution by adopting drastic measures to substi-
tute polluting resources with sustainable alternatives [5]. Sci-
entists have developed an organic biobased alternative to the
existing composite polymers. Composites are regarded as
essential components in a wide range of large-scale opera-
tions [6]. Substantial expenditures were invested in develop-
ing synthetic composites that have functioned admirably in
various uses. However, with increasing global warming and
risks, significant attention has shifted to creating biological
and nanocomposite materials [7]. Consequently, the pro-
duction of such hybrids has received considerable attention
in recent history. Biocomposites were already being
researched to replicate the success of synthetic fibre. Such
biocomposites are recyclable, and various natural fibres were
employed in their creation to make them sustainable and
environmentally friendly in origin, with fewer emissions [8,
9]. Compared to proprietary brands, the composite material
has also gained popularity due to its excellent compressive
and flexural qualities. Biocomposites are organic, compact,
lightweight, emitting little CO2, and having minimal mate-
rial and production costs. Above everything, the fibres
employed in the production of biocomposites are plentiful
in the environment. Because of their numerous practical
uses, biocomposites are now on the verge of being intrinsic
community members [10, 11].

Furthermore, jute fibres are environmentally benign,
recyclable, inexpensive, and disposable. Jute fibres are
mainly composed of lignocellulosic materials [12]. Cellulose
is a polymer that aids in the presence of hydrogen among
substrates with fibres, hence increasing interface contrac-
tures. Jute fibre is in significant demand outside the compos-
ites and biopolymer sectors [13]. Jute fibre qualities are often
influenced by the tree’s age, fibre content, and hybrid pro-
duction procedures. Jute fibre is now employed in various
industries, including fabrics, cars, and many uses [14]. Jute
plant, also known as ligno, was used in the automotive
industry to make a variety of components such as side
panels, hatchback linings, and centre consoles. In particular,
large automakers like Daimler, as well as numerous Euro-
pean and American automakers, are eager to incorporate
increasingly sustainable composite and polymeric materials.
Jute-based biocomposites comprising natural substances
have evolved in recent years with excellent tensile qualities
over native jute-based hybrids [15, 16].

Because jute core fibre has a considerably large lignin
concentration but little coal ash, it is a suitable substrate
for commercially generating quality charcoal filters to
increase financial benefit [17]. Munawar et al. [8] reported
the combustion accompanied by potassium iodide activation
of jute matting to produce active carbon fibre (ACF) with
the most excellent permeability of 582m2/g. To the aim of
contributing, published studies on the use of discarded jute
cores for the generation of chemical activation are scarce
[18]. Various activating processes are used in synthesising
carbonaceous materials: physiological, chemical, and bio-
physical engagement. Carbonization has unique benefits,
including solitary activation, higher production, and

improved micropores [19]. The more powerful and success-
ful molecular enhancers in manufacturing high surface
energy carbonaceous materials are phosphoric acid, zinc
chloride, potassium hydroxide, and potassium carbonate
[20]. Potassium salts were discovered to be more effective
activation chemicals than most in producing activated char-
coal materials of high porosity and permeability values.
Nonetheless, our understanding of carbonization pathways
is far from complete [21, 22].

The Box-Behnken experimental setup for RSM and ANN
ware was used to analyse the impact of important evaluation
factors using potassium iodide and methylene blue adsorbent
value systems as reactions to identify the most appropriate ini-
tiation method for creating jute-based charcoal filters to pre-
ferred adsorbent performance this season by K2CO3
stimulation. In the proposed investigation, potassium carbon-
ate has been used as an alternate efficient activating agent to
manufacture jute-based chemical activation. This is because
the iodine amount and adsorption isotherm values are the
most commonly used metrics for accurately measuring the
adsorption ability of the porous structure architectures of the
carbon materials generated. On the other hand, the iodine
number can be roughly comparable to the absorber plate area
of a charcoal molecule in m2/g. As a result, the iodine number
and the sorbent grade are commonly employed as adsorbed
species indicators, exhibiting excellent significant associations
with the adsorption process of sorbent material in small and
medium-scale molecules separately. The outcomes of this
study help generate a prospective new pharmacological activa-
tion and produce good use of jute tomake charcoal filters have
desirable characteristics by determining the ideal operating
settings using RSM and ANN approaches.

2. Investigational Works

2.1. Materials. The jute came from the Jute Research Farm
Salam in Tamil Nadu, India. That production’s chemical
products were of analytical reagents. Before any additional
interventions, the viscose cores were cleaned with water to
eliminate impurities, dry at 110°C for 48 hours, and crushed;
then, samples were filtered to 100-212 mesh size.

2.2. Creation of Activated Carbon. The research was con-
ducted at various K2CO3/forerunner insemination concen-
trations. The 25 g of dried precursors were steeped in a
25% K2CO3 mixture at ambient atmospheric conditions for
14 hours, with periodic mixing. The mixture was then con-
tinuously dried in a hot oven at 110 degrees Celsius. This
solvent temperature was increased to the specified ultimate
heat in a burner at a fluid velocity of 350mL/min of nitro-
gen. In addition, jute core carbon was made at 900°C for 3

Table 1: BBD constraints and their levels.

Sl. no Parameters L1 L2 L3

1 Impregnation ratio 1 1.5 2

2 Time (hrs) 3 3.5 4

3 Temperature (°C) 800 850 900
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Figure 1: Continued.
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hours before implantation using K2CO3 solutions. The com-
pounds were washed several times using 0.5ml of hydro-
chloric acid with rubbing alcohol till the pH of a
supernatant approached about 6.0, dried over 24 hours at
110°C, and then measured.

2.3. Adsorption Characteristics. Both the iodine amount and
methylene blue adsorption have been measured in accordance
with GB/T 12496.8-1999 and GB/T 12496.10-1999, respec-
tively. Iodine is a typical absorption coefficient probing chem-
ical, representing small pores with diameters greater than 1.0
nanometers. On the other hand, methylene blue is the most
widely used modelling structure for evaluating an adsorbent’s
most significant potential to reduce soluble compounds with
molecular sizes greater than 1.5 nanometers. The adsorbent
capabilities of iodine and MB are provided in milligrammes
of adsorbent surface captured by 1 gramme of charcoal. Nitro-
gen desorption at 77K has been used to characterise the tex-
ture of the indicated activated specimen.

2.4. Response Surface Methodology. The Box-Behnken design
includes specified placement of input parameters and has 3
dimensions for every element labelled as 1, 0, and +1. It
was designed to predict a statistical approach and deliver
high empirical results at the centre of a design project and
lower at the frame’s extremities. This is a rotational polyno-
mial pattern with part of what makes up the centre point at
the centre of the sides and even in the middle [23]. A Box-
Behnken statistically exploratory approach using the RSM
was employed to study the impacts of three variables: period,
molar ratio, and temperatures. The responsive factors were
selected as the iodine amount with methylene blue adsorbed.
The Box-Behnken design was selected owing to its low cost
and high efficiency [24, 25]. Experimentation results were
recorded and then matched towards the two multiple regres-

sions utilising the Design Expert 13 programme to assess the
importance of a dependent dimension.

Z = Ao + 〠
n

i=1
AiYi + 〠

n

i=1
AiiYi2 + 〠

n=1

i=1
AijYiY j + e: ð1Þ

Z would be the appropriate reaction, Yi and Y j are the
relevant factors, A0, Ai, Aii, and Aij were predicted values
for the interception, linearity, exponential, and interaction
components, e is the errors, where n is the number of possi-
bilities analysed. The F test was used to analyse the relevance
of a functional form and its resulting consequences. The
coefficient of determination R2 and modified R2 were used
to measure the experience of the polynomial system of equa-
tions. The statistically significant correlation of a design was
determined using variance analysis (ANOVA). The ideal
parameters were determined using the following linear rela-
tionship; then, contours were utilised to examine every var-
iable’s interaction influence [26].

3. Result and Discussions

3.1. RSM Models. The Box-Behnken model is a helpful
exploratory study using 3D surface methods based on 3
imperfect random effects. It aids in optimising the impacts
of many factors, either solitary or interactive, to get the opti-
mum results. The two elements in this concept are at the cen-
tre points of the processing satellite’s borders and the centre.
BBD is more effective for quadratic polynomials than orthog-
onal arrays (OA) and especially beneficial in preventing exces-
sive control variables [27]. Table 1 shows the three critical
parameters and the static loading with observable conse-
quences of iodine. The absolute errors and variability were cal-
culated using the cycle at the correct location. According to the
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Figure 1: Response 3D surface and contour plots of iodine number based on the input parameters.
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Figure 2: Continued.
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programme, the model equation was chosen for matching
iodine and methylene blue adsorption abilities. After exclud-
ing the statistically irrelevant impacts of salt and methylene
blue absorption, our final empirical regressors in terms of cod-
ing components were just as shown in the following:

Iodine = 1059:26 − 35:75A + 31:66B + 171:26C + 46:50AB
+ 9:21AC + 34:01BC − 2:96A2 + 2:96B2 − 6:61C2,

ð2Þ

Methylene blue = 225:55 − 38:43A + 22:69B + 74:13C
− 14:69AB + 4:82AC − 13:63BC
+ 1:94A2 + 4:36B2 − 3:76C2:

ð3Þ

The measured results of iodine and methylene blue
adsorbed were in excellent accordance with quantities antici-
pated by equations as shown in Figures 1 and 2. The corrected
reliability ratio (R2) estimates for Equations (2) and (3) of the
models remained at 0.9618 and 0.9793, correspondingly. All
values of R2 are near 1.0, suggesting that the constructed
regression analysis is very reliable in describing the variances
in the empirical observations.

In the instance of iodine absorption values in Figures 1(a)–
1(c), every linear regression graph exhibits a distinct peak
along with symmetrically filled arcs in the associated contour
showing that the peak amount of a reaction (Z1) is achievable
inside the design process. Figures 2(a)–2(c) exhibit multiple
(3D) linear regression graphs of a predicted quadratic polyno-
mial for methylene blue adsorption, correspondingly. As
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Figure 2: Response 3D surface and contour plots of methylene blue based on the input parameters.

Table 2: ANOVA predictions of iodine number.

Source SOS Df MS F value P value

Model 266749.359 9 29638.818 20.085 0.001

Impregnation ratio 10222.856 1 10222.856 6.928 0.034

Time 8020.301 1 8020.301 5.435 0.053

Temperature 234646.751 1 234646.751 159.012 0.001

AB 8649.651 1 8649.651 5.862 0.046

AC 339.112 1 339.112 0.230 0.646

BC 4626.040 1 4626.040 3.135 0.120

Â
2 36.794 1 36.794 0.025 0.879

Â
2 24.331 1 24.331 0.016 0.901

Â
2 183.709 1 183.709 0.124 0.735

Residual 10329.579 7 1475.654

Lack of fit 5049.996 3 1683.332 1.275 0.396

Pure error 5279.583 4 1319.896

Cor total 277078.938 16
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shown in Figures 2(a)–2(c), ignition delay has by far the most
dramatic influence (F value = 41.73) on methylene blue (Y2)
sorption of any three components tested (activating heat,
molar ratio, and reaction rate). However, according to
Figure 2(a), the combined impact of heating rate on iodine
has no substantial effect on the growth of adsorbent values
under the circumstances examined [28]. Figures 2(b) and
2(c) show that a prolonged incubation period is beneficial
for increasing methylene blue adsorbent dosage.

The design project’s desired spot predictions feature
was used to figure out how to maximise the absorption
coefficients of iodine and methylene blue within the
experiment limits investigated. The projected best adhe-
sion values were found by employing an activating tem-
perature of 898.91°C, an impregnation ratio of 1.52, and
an active duration of 3.5 hours. Considering the real-
time operating procedure, the altered optimal conditions
were determined as 900° C, impregnation ratio, and 3.5
hours. Adsorbent uptakes of iodine and methylene blue
were determined to be 1247.63mg/g and 340mg/g, corre-
spondingly. To validate the projected findings, several
desorption specimens were created under the ideal condi-
tions above for further iodine and methylene blue sorp-
tion experiments. The mean measurement results for
iodine and methylene blue desorption were 1055.89mg/g
and 226.74mg/g, correspondingly, which are in good
accordance with econometric methods’ impact on subse-
quent, having relatively little uncertainties of 1.56% and
1.80%, respectively. The operating parameters for the
coagulant are detailed in Table 2.

A descriptive analysis (ANOVA) was used to assess the
model’s relevance and appropriateness and to discover the
complicated link between factors and outcomes. Tables 2
and 3 summarise the presented iodine and methylene blue
summary statistics. Due to the absence of fitting rates, esti-
mated F values, and a very low probability for answers and
values of P (0.001) as shown in Table 2, the regression has
a firm fit and is considerable. Table 3 shows the ANOVA
prediction of methylene blue.

Figures 3(a) and 3(b) show the normal probability plots
of the outcomes of iodine and methylene blue. All Y12 inter-
action variables were found to be insignificant to the out-
comes of the two experiments. Furthermore, the overall
quadratic impacts of Y1 (temperature) and Y3 (time) are
optimistic, indicating that these factors have a beneficial or
cooperative influence on iodine and methylene blue desorp-
tion levels in the studied experimental location. Further-
more, the interaction factors Y1Y3 and Y2Y3, as well as Y2
and all exponential factors, show substantial as well as hos-
tile impacts on reactions, meaning that increasing these var-
iables further than the limitations is likely to lower iodine
and methylene blue desorption levels.

For a successful fit, the endpoints must be near the fitting
line, with small comfort intervals. Points just on the show’s
left or right, at the furthest average, have had the most lever-
age and can successfully drag the directly connected towards
the centre [29, 30]. Exceptions are locations that are substan-
tially distant from the line. All sorts of tips can degrade the
fitting. The chart depicts an ANOVA analysis, but every
piece of data is presented, giving readers far more informa-
tion than simply the hypothesis. This standard error over
the whole model range depicts the F-test, which indicates
that almost all variables except for the slope are 0. The
hypotheses test is practical when the standard error does
not contain the horizontally neutral product lineup [31].

Jute inner carbon has iodine and methylene blue desorp-
tion capabilities of 846mg/g and 98.21mg/g, correspond-
ingly. Those are all significantly less than all the
carbonaceous materials generated under the given circum-
stances as shown in Figures 1 and 2. It was also found that
the entire jute progenitor cell lump charcoal carbonised at
900°C for 3.5 hours had a methylene blue adsorption perfor-
mance of 340mg/g. As a result, adding an adequate weight
ratio of potash bicarbonate to a substrate substantially influ-
ences the growth of the more expanded permeability inside
the polymeric network. As the comparative temperature
builds, the empirical model of both materials rises slowly,
and a residual stress forms, indicating that the significant

Table 3: ANOVA prediction of methylene blue.

Source SOS Df MS F value P value

Model 61736.363 9 6859.596 41.736 0.001

Impregnation ratio 11812.614 1 11812.614 71.871 0.001

Time 4120.050 1 4120.050 25.068 0.002

Temperature 43956.125 1 43956.125 267.441 0.001

AB 862.891 1 862.891 5.250 0.056

AC 92.930 1 92.930 0.565 0.477

BC 742.563 1 742.563 4.518 0.071

AÂ2 15.794 1 15.794 0.096 0.766

BÂ2 80.105 1 80.105 0.487 0.508

CÂ2 59.550 1 59.550 0.362 0.566

Residual 1150.506 7 164.358

Lack of fit 561.290 3 187.097 1.270 0.397

Pure error 589.216 4 147.304

Cor Total 62886.869 16
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number of small pores is linked with significant microporos-
ity growth.

3.2. Optimization through ANN Modelling. In recent
decades, ANN has emerged as a critical technique in the
simulation and management of electrospun operations. As
a computer tool, the ANN provides a graphical view with a
slew of levels and multiple interacting processor parts that
are primarily aware of inputs [32]. However, ANNs may
adapt to real-world samples of a situation by utilising differ-
ent equations among neurons and specialised machine
learning built into the architecture of software applications.
Figure 4 demonstrates the ANN structure of the current
research.

The impregnation ratio, time length, and warmth were
selected as input variables for the ANN, and the iodine num-
ber and methylene blue were selected as output results. This
research explored the parabolic tangential, logistic digression,
and linear activation parameters to improve the backpropaga-
tion neural network [33, 34]. Backpropagation (BP) has been
used as a learning method to calculate performance gradients
for weight vector parameter X. All specimens were separated
into three subgroups at randomization to conduct an assess-
ment. The supervised learning comprised 60% of specimens,
the verification time series comprised 20% of specimens, and
the testing data source held 20% of all specimens. The verifica-
tion dataset is used to reduce the possibility of an over or for-
getting [35]. This implies that whenever the inaccuracy of a
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Figure 5: Continued.
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learning test dataset drops while the fault of a testing dataset
set grows, then network training is halted, and overtraining
is prevented. Figures 5(a) and 5(b) show the predicted features
of ANN results of iodine and methylene blue.

ANN can become caught in a minimum of errors, which
the velocity factor helps to avoid. As a result, adopting the
velocity factor reduces the probability of an under. This net-
work can be trained using the Levenberg-Marquardt (LM)
classification model. Although this approach handles general
contour issues, its LM may be locked on the shortest path.
To prevent the minimum error trapping, a velocity factor
is provided. The Levenberg-Marquardt method is much
more resilient than other algorithms that, in so many cir-
cumstances, result in the greatest network quality [36, 37].
A programme in MATLAB software was supplied to create
the architecture of the graze and return network (version
R2016). Since there is no predetermined procedure for
determining its cortex and levels in the ANN framework,

the network output and stages are determined through
experimentation. The number of nodes and levels was raised
throughout this experiment to minimise the error function.
Still, any growth in the population of neurons and levels
did not improve the accuracy.

The assessment subcategories for training, validation,
and assessment are shown in Table 4 along with the
expected failure rate. Figures 5(a) and 5(b) show how well
neurological systems predict what will happen. With values
of 0.9599 for iodine and 0.9675 for methylene blue, the aver-
age amount of anticipated errors was reduced by less than
3%. Figures 6(a) and 6(b) are excellent instances of that
one. Figures 7(a) and 7(b) provide iodine and methylene
effectiveness graphs, respectively. The investigation was
allowed since the measurement items were within the allow-
able levels. It can assess the accuracy of experiments con-
ducted [38, 39]. The reliability of investigation, prediction,
and artificial neural networks is summarised in Table 4.
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Figure 5: ANN performance features of (a) iodine number and (b) methylene blue.
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Statistical analysis revealed that the RSM or ANN
approaches yield accurate findings.

According to the transmittance finding given in Figure 8,
the adsorbed contains considerable microporous and meso-
porous, compared with an average pore diameter of 3.16 nm.
Comparison of experimental, RSM, and ANN-predicted
values of iodine number and methylene blue are shown in
Figures 8(a) and 8(b). Even though the precise emphasis
given to K2CO3 is unknown at the moment, given the crea-

tion of K2C3O4 just after evolvement with one additional
molarity of CO at approximately 870°C, these same porous
and papule responses begun by K2CO3 stimulation might
be temporarily posited to be quite comparable to an initia-
tion action needed to make progress by K2C3O4 [40]. The
additional CO launched during K2CO3 dissolution, on either
side, could act as a gas phase to aid in the removal of gasifi-
cation volatile matter from the carbonaceous mixture to a
high likelihood extent and have a moderate beneficial impact

Table 4: Predicted error based on the comparison of experimental and ANN values.

RUN
Experimental ANN Error

Iodine Methylene blue Iodine Methylene blue Iodine Methylene blue

1 1182.650 340 1212.650 340 -2.53668 −3:00936E − 13
2 800.360 97.82 800.630 97.82 -0.03373 8:78917E − 12
3 1042.280 210 1072.280 210 -2.87831 −1:43462E − 12
4 1207.170 256.21 1201.250 256.21 0.490403 −1:17587E − 12
5 1068.250 298.19 1098.250 298.19 -2.80833 −6:67199E − 13
6 1100.287 225.79 1100.270 225.79 0.001545 −2:21543E − 12
7 1042.280 235.96 1042.000 210 0.026865 11.00186472

8 1042.280 239.65 1023.000 210 1.849791 12.37220947

9 1042.280 220.71 1072.280 210 -2.87831 4.852521408

10 1260.077 310.28 1290.077 369.2163412 -2.38081 -18.99456659

11 907.900 114.78 937.900 114.78 -3.30433 4:35809E − 12
12 910.650 200.89 910.580 197.0881454 0.007688 1.892505633

13 905.570 189.78 935.570 189.78 -3.31283 5:24165E − 13
14 956.170 194.89 956.320 194.89 -0.01569 0

15 1214.591 289.78 1248.210 289.78 -2.76793 −1:03965E − 12
16 1042.280 221.45 1165.320 210 -11.8049 5.170467374

17 1110.140 208.54 1040.140 208.54 6.305511 −4:77012E − 13
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Figure 6: Error plots of (a) iodine and (b) methylene blue.
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on suppressing this same overaggressive porous broadening
advancement to accomplish a relatively homogenous porous
structure and high return [41]. Future studies should focus
on a more in-depth examination of the activating effect of
K2CO3 and K2C3O4 on the pore structure of these carbona-
ceous materials. The ANN approach produced more future
systems with a 95% reliability rate than response surface
data. The ANN optimum model helps the user to account
for the uncertainty associated with a particular cast
combination.

4. Conclusion

BBD effectively optimised the process of producing K2CO3-
activated carbons from the jute core. RSM and ANN model-

ling were used to maximise the findings appropriately. The
experimental results for iodine and methylene blue desorp-
tion were directly correlated very well with polynomial
model predictions. The best charcoal was obtained using
900°C activating temperatures, a 1.5 molar ratio, and a 4-
hour activating time. This resulted in iodine and methylene
blue absorption of 1260.07mg/g and 369.21mg/g, respec-
tively. It was discovered that the K2CO3-based pyrolysis pro-
cess might be anticipated to become a safe yet incredibly
efficient process of making activated carbons with a very
well-defined and monocultural porous structure. Both the
RSM and ANN models have to modify coefficients more sig-
nificantly than 95%. (i.e., R2 and adj. R2). The prediction of
ANN values of 0.9599 for iodine and 0.9675 for methylene
blue reduced the average amount of anticipated errors by
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Figure 7: Effectiveness plots of (a) iodine and (b) methylene blue.
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Figure 8: Comparison of experimental, RSM, and ANN-predicted values of (a) iodine number and (b) methylene blue.

12 Adsorption Science & Technology



less than 3%. This clearly demonstrates that the adsorbed
contains considerable microporous and mesoporous, com-
pared with an average pore diameter of 3.16 nm. Even
though the precise emphasis given to K2CO3 is unknown
at the moment, given the creation of K2C3O4 just after
evolvement with one additional molarity of CO at approxi-
mately 870°C, these same porous and papule responses
begun by K2CO3 stimulation might be temporarily posited
to be quite comparable to an initiation action needed to
make progress by K2C3O4.
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