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Herein, we report a simple and scalable synthesis route to prepare Ag-functionalized porous ZnO sheets and their enhanced NO2
gas sensing properties. Porous ZnO sheets functionalized with well-dispersed submicron Ag particles were prepared by using a
hydrothermal method-based one-pot synthesis route from Zn and Ag precursors. NO2 gas sensing performance (response,
selectivity, response time, and recovery time) was optimized at 200°C in the gas sensor fabricated with 3 at% Ag-functionalized
porous ZnO sheets. We demonstrated a response (Rg/Ra) of 17.18 to 10 ppm NO2 gas and also obtained a high response of
14.05 even at 60% relative humidity due to the synergetic effect of improved NO2 gas adsorption in the presence of Ag
particles and increased resistance by the formation of Schottky barrier at Ag-ZnO heterojunctions.

1. Introduction

Nitrogen dioxide (NO2) is a red-brown highly oxidizing gas
[1] and one of the major air pollutants [2], causes nose and
respiratory problems, coughs, fatigue, eye irritation, and
nausea, and affects patients with debilitating pulmonary sys-
tem diseases [3–5]. It also makes severe environmental
issues such as smog and acid rain [6, 7]; thus, the develop-
ment of NO2 gas sensors with high reliability and perfor-
mance is urgently required.

ZnO is widely used gas sensing materials due to its semi-
conducting nature (Eg = 3:37 eV) with high electron mobility
(200 cm2V-1 s-1), nontoxicity, and high thermal stability [8,
9]. After the first report on the gas sensing properties of
ZnO [10], many researches for gas sensing based on ZnO have

been carried out [11, 12]. One of the main approaches to
enhance the gas sensing properties of ZnO is morphological
or dimensional control since gas adsorption is directly related
to the surface area of gas sensing materials. Various forms of
ZnO such as nanowires [13], nanorods [14], nanotubes [15],
nanofibers [16], nanopetals [17], hierarchical architectures
[18], nanosheets [19], and nanowalls [20] have been studied
to improve gas sensing properties. However, a major obstacle
in the application of ZnO-based gas sensor is poor selectivity
of ZnO owing to the relatively good response to different gases
[21]. To address this, decoration or functionalization of noble
metal particles on ZnO surface, which improves the adsorp-
tion of gas molecules and forms a Schottky potential barrier
[22, 23], is commonly used [24]. Among noblemetal elements,
Ag can be a good choice due to its low price, high electrical
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conductivity, and good catalytic performance [25, 26]. Yin
et al. [27] and Wei et al. [22] reported the important roles of
Ag particles on the sensing properties of one-dimensional
ZnO structures to NO2 and ethanol gases. In particular, there
have been many studies onNO2 gas sensing [28–32], but there
are few reports on ZnO, which can simultaneously achieve a
two-dimensional nanosheet cross-sectional area and a nano-
composite with Ag in a single process.

In the present study, we aimed to prepare hybrid mate-
rials of Ag particles and ZnO powders in an effort to
improve the NO2 gas sensing properties. Notably, by using
hydrothermal method-based one-pot synthesis technique,
well-dispersed submicron Ag particles (1, 3, and 5 at%)
functionalized porous ZnO sheets were obtained from Zn
and Ag precursors. NO2 gas sensing properties including
response, selectivity, response time, and recovery time were
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Figure 1: Schematic of the synthesis method.
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Figure 2: TEM images of the (a, b) 1, (c, d) 3, and (e, f) 5 at% Ag-functionalized porous ZnO sheets.
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Figure 3: TEM elemental mapping of the (a–e) 1, (f–j) 3, and (k-o) 5 at% Ag-functionalized porous ZnO sheets.
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optimized in a sensor fabricated with 3 at% Ag-
functionalized porous ZnO sheets at 200°C. Possible mecha-
nisms for enhanced sensing properties in this hybrid mate-
rials were also discussed.

2. Experimental

2.1. Synthesis of Ag-Functionalized Porous ZnO Sheets. Ini-
tially, 0.02mol Zn(NO)3·6H2O and 0.06mol urea were
completely dissolved in a 180mL mixture of ethanol–water
(1 : 2, v–v) via mixing for 30min. Then, 0.06, 0.12, and
0.18 g AgNO3 (1, 3, and 5 at% Ag) were added to the solu-
tion, and a transparent mixed solution (zinc nitrate hexahy-
drate + urea + silver nitrate in ethanol-water) was obtained.
This solution was poured into a 250mL Teflon-lined auto-
clave and maintained at 180°C for 24 h. After this, the white
precipitate was collected and washed several times with
deionized water and absolute ethanol by centrifugation.
Next, the precipitate was dried under vacuum at 80°C for
6 h. Finally, the Ag-functionalized porous ZnO sheets were
obtained after annealing under Ar flow at 550°C for 4 h.
The corresponding schematic is shown in Figure 1.

2.2. Characterization. Crystallinity and phases were exam-
ined by X-ray diffraction (XRD, SmartLab, Rigaku) with
CuKα radiation (λ = 1:541Å). Morphology was analyzed
using a transmission electron microscope (TEM, Talos
F200X, FEI). An energy dispersive X-ray spectrometer
(EDS, Talos F200X, FEI) incorporated into the TEM was
used to verify chemical composition. X-ray photoelectron
spectroscopy (XPS, Thermo Fisher Scientific Co.) was
employed to investigate the chemical states using the C 1 s
peak (284.8 eV) as a reference. Photoluminescence (PL,
Ram Boss, Dongwoo Optron) was evaluated using a He–
Cd laser with 325nm excitation wavelength.

2.3. Gas Sensing Test. Au interdigitated electrodes were
sputter-deposited on the surface of an alumina substrate.
Sputtering was performed at 80mA for 12min, and the final
thickness of the electrodes was 300nm. The fabricated gas sen-

sor was placed on a ceramic heater, and its gas sensing proper-
ties were measured using a lab-made gas sensing system
(Supplementary Materials (SM), Figure S1). Desired
amounts of target gases were mixed with dry synthetic air as
a background using mass flow controllers (MFCs). The
resistance of the gas sensor in air (Ra) and in the existence of
the target gas (Rg) was checked using a multimeter. The
response was calculated as R = Rg/Ra for oxidizing gases and
R = Ra/Rg for reducing gases. The response time was
calculated as the time needed for the sensor to reach 90% of
the final resistance in the presence of NO2 gas. Furthermore,
the recovery time was evaluated as the time required for the
sensor to reach 90% of the final resistance after stoppage of
the NO2 gas flow.

3. Results and Discussions

3.1. Morphological, Chemical, and Structural Studies.
Figures 2(a)–2(f) indicate the TEM images of 1, 3, and 5 at%
Ag-functionalized porous ZnO sheets, respectively. Interest-
ingly, sheet-like ZnO with highly dense pore, which is desir-
able for sensing applications due to the large surface area,
was formed. Dark particles represent the Ag particles func-
tionalized on the surface of ZnO. Figures 3(a)–3(o)show the
TEM elemental mapping data of 1, 3, and 5 at% Ag-
functionalized porous ZnO sheets, respectively. Zn and O
are evenly distributed over the sheet surface, whereas Ag is
localized in certain places. Specifically in Figures 3(e), 3(j),
and 3(o), it can be clearly observed that the dark points are
pores, and the yellow points are Ag particles, which ensures
the formation of Ag-functionalized porous ZnO sheets. The
TEM–EDS point analysis results of 1, 3, and 5 at% Ag-
functionalized porous ZnO sheets are given in SM
Figure S2(a–d), (e–h), and (i-l), respectively. The white area
in SM, Figure S2(a and b) is mostly rich in Ag, whereas the
gray area in SM, Figure S2 (c and d) is rich in ZnO.
Similarly, in SM, Figure S2 (e and f) and SM, Figure S2(i
and j), a white area with 99.8wt% Ag and 98.9wt% Ag is
recorded, whereas in SM, Figure S2(g and h) and SM,
Figure S2(k and l), a gray area with 88.6wt% Zn and
90.0wt% Zn is observed. Overall, the TEM–EDS point
analysis results confirmed the formation of Ag-
functionalized porous ZnO sheets. SM, Figure S3(a) shows
the XRD patterns of 3 at% Ag-functionalized porous ZnO
sheets. Standard JCPDS files of Ag and ZnO are also shown
in SM, Figure S3(b and c) for comparison. In both cases, the
peaks related to both Ag and ZnO according to the JCPDS
file nos. 04-0783 and 36-1451 were observed [27] without
impurities. The crystallinity in XRD shows good agreement
with HRTEM (Figure 4). Figure 5(a) indicates the XPS
survey of 3 at% Ag-functionalized porous ZnO sheets,
revealing the presence of all expected elements, namely, Zn,
Ag, and O (peak related to C is due to the environment).
The high-resolution Zn 2p core-level region is shown in
Figure 5(b), where the two peaks at the binding energies of
1022.38 and 1045.38 eV are attributed to Zn 2p 1/2 and Zn
2p 3/2, respectively, with a spin-orbit splitting of 23.03 eV,
which is in accordance with the previously reported

ZnO (101)

10 nm

d = 0.24 nm

Figure 4: HRTEM image of the 3 at% Ag-functionalized porous
ZnO sheets.
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Figure 5: (a) XPS survey of the 3 at% Ag-functionalized porous ZnO sheets and high-resolution XPS core-levels of (b) Zn 2p and (c) Ag 3d.
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Figure 6: Dynamic resistance curves of the (a) 1, (b) 3, and (c) 5 at% Ag-functionalized porous ZnO sheet gas sensor at 200°C to 2, 10, and
20 ppm NO2 gas.
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literature [33]. This indicates that Zn is in the Zn2+ oxidation
state [34, 35]. Figure 5(c) shows the high-resolution Ag 3d
core-level region, where the Ag 3d 3/2 and Ag 3d 5/2 peaks
can be observed at the binding energies of 374.28 and
368.28 eV, in accordance with the literature [36].

SM, Figure S4 shows the PL spectrum of 3 at% Ag-
functionalized porous ZnO sheets. Based on literature, the
PL spectrum of ZnO indicates a band emission in the
ultraviolet (UV) region and a broad defect emission in the
visible range [37]. The UV emission is owing to the near-

band-edge emission of ZnO, which results from the
recombination of free excitons through an exciton–exciton
collisions [38]. Emissions in the visible region are because
of the recombination of different defects [37].

3.2. Gas Sensing Studies. We measured the resistance of the
gas sensors at 100, 200, and 300°C and found the optimum
operating temperature of 200°C. Figures 6(a)–6(c) show
the dynamic resistance curves of (Figure 6(a)) 1,
(Figure 6(b)) 3, and (Figure 6(c)) 5 at% Ag-functionalized

Table 1: Response, response time, and recovery time of 1, 3, and 5 at% Ag-functionalized porous ZnO sheets gas sensors to different
concentrations of NO2 gas at 200

°C.

ZnO-Ag 1 at% ZnO-Ag 3 at% ZnO-Ag 5 at%
2 ppm 10 ppm 20 ppm 2 ppm 10 ppm 20 ppm 2ppm 10 ppm 20 ppm

Response (Rg/Ra) 7.11 16.29 28.16 8.04 17.18 59.26 6.62 10.86 11.40

Response time (s) 210 294 375 203 199 102 189 23 14

Recovery time (s) 160 116 100 323 75 49 35 43 638
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Figure 7: (a) Response, (b) response time, and (c) recovery time of the 1, 3, and 5 at% Ag-functionalized porous ZnO sheet gas sensors to
NO2 gas at 200

°C.
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porous ZnO sheet gas sensors at various concentrations of
NO2 gas at 200°C, respectively. The sensors exhibit n-type
semiconducting behavior due to the n-type nature of ZnO.
Different sensor parameters including response, response
time, and recovery time were calculated and shown in
Figure 7 and Table 1. The response of the 3 at% Ag-
functionalized porous ZnO sheet sensor (8.04, 17.18, and
59.26 for 2, 10, and 20ppm NO2 gases, respectively) was
higher than those of the 1 at% (7.11, 16.29, and 28.16 for
2, 10, and 20ppm NO2 gases, respectively) and 5 at%
(6.62, 10.86, and 11.40 for 2, 10, and 20 ppm NO2 gases,
respectively) Ag-functionalized porous ZnO sheets sensors
at all NO2 gas concentrations (Figure 7(a)). Interestingly,
the response time of the 3 at% Ag-functionalized porous
ZnO sheet sensor (203, 199, and 102 s for 2, 10, and
20 ppm NO2 gases, respectively) was shorter than that of
the 1 at% Ag-functionalized porous ZnO sheet sensor (210,
294, and 375 s for 2, 10, and 20 ppm NO2 gases, respectively)
but longer than that of the 5 at% Ag-functionalized porous
ZnO sheets sensor (189, 23, and 14 s for 2, 10, and 20ppm
NO2 gases, respectively), at all NO2 gas concentrations
(Figure 7(b)). A comparison of the recovery times of three
gas sensors is shown in Figure 7(c). As the 3 at% Ag-
functionalized porous ZnO sheet sensor demonstrated a
higher response to NO2 gas, it was selected for further stud-
ies. In fact, ppb-based low concentration of NO2 gas can be
detected but their responses were too low as seen in Figure 8.
Figures 9(a) and 9(b) show the dynamic response graphs of
ZnO-Ag 3at% sensor and presents the relevant selectivity to
10 ppm of various gases at 200°C. The response of the gas
sensor to 10 ppm of NO2, H2S, C6H6, SO2, and C7H8 gases
was 17.18, 3.75, 2.74, 2.32, and 2.22, respectively. This dem-
onstrates the good selectivity of optimal gas sensor. In addi-
tion, Figures 9(c) and 9(d) show the resistance of the
patterned ZnO-Ag 3at % sensor to 10 ppm of NO2, 0, 30,
and 60% relative humidity at 200°C. The basic condition is
that all gases are dry. However, in an actual environment,
the target gas is inevitably a gas containing moisture that is
always present in the atmosphere. Therefore, dry air was
allowed to pass through the bubble system to control the

humidity of the dry gas. That is, by controlling the humidity
in the RH probe hygrometer, wet air can meet dry target gas,
so the change in response of gas sensing can be observed at
all gas humidity. However, it should be noted that the initial
resistance may change, as seen in Figure 9(c), depending on
the humidity. In other words, even if the gas sensing process
temperature (200°C) is the same, since the relative humidity
of the initial gases entering the chamber is different, it is pos-
sible to have different initial resistances. Due to the following
reactions, electron and oxygen vacancy (Vo) increase in n
-type ZnO, so the initial base line further decreases com-
pared to the dry gas state (Figure 9(c)) [39, 40].

H2O + Zn + O⟶ HO − Znð Þ + OH + e−, ð1Þ

H+O2− ⟶ OHð Þ− + e−, ð2Þ

H2O + 2Zn + O⟶ 2 HO − Znð Þ + Vo: ð3Þ
Therefore, in order to investigate the effect of humidity,

it is reasonable to compare the difference in response as
shown in Figure 9(d). The responses to 10ppm NO2 gas at
0, 30, and 60% relative humidity at 200°C were 17.18,
15.21, and 14.05, respectively. Even in the humid environ-
ment, the sensor can reliably detect low concentrations of
NO2 gas. Finally, regarding the performance of gas sensing,
even if measured after 3 months, the response value
decreases, but there seems to be no problem with the long-
term use of gas sensing (Figures 9(e) and 9(f)). Then, the
responses to 10 ppm NO2 gas at 200

°C in a fresh state and
after three months were 17.18 and 4.37, respectively.

3.3. Sensing Mechanisms. The basic sensing mechanism con-
ductometric gas sensors are the modulation of the resistance
of the sensing layer in the existence of the target gas [41, 42].
Initially, in air, when gas sensors are exposed to an oxygen
environment, oxygen adsorbs electrons from the surface of
ZnO because of its high electron affinity and is converted
to ionic species as follows [43, 44]:

O2 gð Þ⟶O2 adsð Þ, ð4Þ

O2 adsð Þ + e− ⟶O−
2 adsð Þ, ð5Þ

O−
2 adsð Þ + e− ⟶O−, ð6Þ

O− + e− ⟶O2−: ð7Þ
Due to the abstraction of electrons by the adsorbed oxy-

gen species, an electron depletion layer (EDL) is developed
on the ZnO surface, where a higher resistance relative to that
of the core parts is expected owing to the lower concentra-
tions of electrons. When NO2 gas is injected into the gas
chamber, the surface EDL expands because NO2 has a
higher electron affinity (2.28 eV) than oxygen (0.43 eV) and
leads to an increase in the resistance of the gas sensor [45].
The relevant reactions are as follows [46]:

NO2 + e− ⟶NO−
2 , ð8Þ
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NO2 + e− ⟶NO +O−, ð9Þ

NO−
2 + O− + 2e− ⟶NO + 2O2−: ð10Þ

Furthermore, in the homojunctions between ZnO sheets,
potential barriers are initially formed in air, and upon expo-

sure to NO2 gas, the height of these potential barriers
increases due to the further abstraction of electrons, contrib-
uting to the sensing signal.

In addition, the effects of Ag on the gas sensing charac-
teristics of ZnO sheets were investigated. Owing to the dif-
ferences between the work functions of Ag (4.72 eV) and
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Figure 9: (a) Dynamic response curves of the 3 at% Ag-functionalized porous ZnO sheet gas sensor to 10 ppm of various gases at 200°C. (b)
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ZnO (4.45 eV) [47], the electrons transfer from ZnO to Ag,
resulting in intimate contacts between Ag and ZnO to equate
the Fermi levels. Accordingly, a Schottky barrier is formed
near the interfaces of ZnO and Ag in air. This increases
the resistance of the gas sensor as compared to that of pris-
tine ZnO sheets. Upon exposure to NO2 gas and further
extraction of electrons from the surface of ZnO, the width
and height of the Schottky barriers increase, leading to
higher resistance of the gas sensor in the presence of Ag par-
ticles. This effect is an electronic effect or electronic sensiti-
zation of Ag. In other words, as the content of Ag

increases, the initial resistance of the ZnO sheets may
increase because more Schottky barriers are formed as seen
in Figure 6. In another effect, similar to Au [48], Ag catalyt-
ically decomposes the oxygen molecules into atomic species
when they come in contact with the surface of Ag particles.
Then, owing to the so-called spill-over effect, the oxygen
atoms move to the surface of neighboring ZnO and easily
adsorb on this surface [49]. Therefore, more oxygen species
adsorb on the surface of ZnO, and their more reactions with
NO2 lead to a higher response of the sensor to NO2 gas. In
addition, because of the process temperature of 200°C,

In air In air

Chemical
sensitization

Electronic
sensitization

In No2In No2

No2
– No2

–

No2
–

No2
– No2

–
No2

–

O–
O–

O–
O–

O–O–

EDLEDL

ZnOZnO

EDLEDL

ZnOZnO

Vacuum level

Vacuum level

Porous ZnOAg

Ec

Ef

EDL

Ev

𝛥E=0.27 eV

Vacuum level

Vacuum level

porous ZnOAg

Ec

EDL

Ev

𝛥E=0.27 eV

Porous ZnO sheet

NO2 gas

Ag

Ag

Ag
Ef

Figure 10: Schematic of the NO2 sensing mechanism of Ag-functionalized porous ZnO sheets.
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oxygen species can react with Ag to form Ag2O, but even at
this time, electrons are transferred from ZnO to Ag2O to
play a role in increasing the resistance of ZnO [50].
Figure 10 schematically shows the sensing mechanism of
the 3 at% Ag-functionalized sensor. Table 2 presents a com-
parison between the NO2 sensing capacities of ZnO-based
gas sensors reported in the literature and the present opti-
mized sensor [24, 46, 51–57]. It can be observed that the
present sensor has good performance when compared with
the performances of other relevant gas sensors mainly
because of the catalytic effect of Ag, formation of Ag/ZnO
Schottky contacts, and high surface area due to the porous
nature of the synthesized sheet, where the gas molecules
can diffuse into the deep parts of the sheets.

4. Conclusions

We proposed the hydrothermal route to prepare hybrid
materials of Ag and ZnO. Submicron Ag particles function-
alized porous ZnO sheets were formed during the chemical
reaction between Zn and Ag precursors in a mixed solution
of ethanol and water. From the designed measurements of
NO2 gas sensing properties of the sensors fabricated with
Ag-functionalized porous ZnO sheets, we found that
response and recovery time can be simultaneously improved
by the hybridization of Ag particles due to the chemical and
electrical sensitization effects even under high-humidity
atmosphere. The 3 at% Ag-functionalized porous ZnO sheet
sensor represents response of 17.18 and response time of
199 s under 10 ppm NO2 gas at 200

°C and shows good selec-
tivity. We believe that researches based on our synthetic
approach will provide enhanced sensing properties in any
oxide-based gas sensing materials and expand the applica-
tions of semiconductor metal oxide gas sensors.
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