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Background. Although it is common knowledge that the coronavirus disease of 2019 (COVID-19) and other viral infections have
an uneven impact globally, the reasons for this are still indistinct. The absence of equivalent capacities worldwide in screening,
testing, and reporting of cases is one of the ideas put forward to explain this discrepancy. The molecular developments are
noteworthy, particularly the role played by single nucleotide polymorphisms (SNPs) in ACEs (ACE1 and ACE2). The virus can
enter the host cell thanks to the transmembrane protein ACE2, which is a homolog of ACE1. Objectives. With a focus on the
I/D genotype of ACE1 and the rs2285666 SNV of ACE2, we elucidated the prevalence of SNPs in ACE1 and ACE2 in various
geographic locations. We examined the relationship between these SNPs and the global patterns of COVID-19 prevalence.
Methods. 66 of the 127 articles obtained using PubMed, Google Scholar, and Google directly conformed to the search terms;
geographical distribution of viral infections, the prevalence of COVID-19, ACE1, ACE2, SNPs, and prevalence of the DD
genotype, and rs2285666. Results. The DD genotype of ACE1 and the rs2285666 SNV of ACE2 are vital in their gene
expression and contribute greatly to viral disease susceptibility, development, and severity. There was generally a high
prevalence of the DD genotype in Europe and America, where COVID-19 had a more devastating effect than in Asia and
Africa. The prevalence of the SNV rs2285666 varied in the following order: East Asia> South Asia >America>Europe >Africa.
However, there were conflicting agreements in the association of rs2285666 with COVID-19 susceptibility and prevalence.
Conclusion. The ACE1 DD genotype and COVID-19 prevalence have been positively linked in a number of studies. The ACE2
rs2285666 SNV, however, has yielded no definitive results. To determine the relationship between these SNVs and COVID-19
incidence, more research is required.

1. Introduction

Coronavirus disease of 2019 (COVID-19), the pandemic
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has had an appalling effect [1, 2] on human-
ity, with 517,648,631 cases and 6,261,708 deaths reported by

the World Health Organization (WHO) as of 9th of May
2022 (WHO; https://covid19.who.int/). However, this effect
in terms of infection rates, morbidity, and mortality is geo-
graphically unevenly distributed with Africa that has pre-
dominately less developed countries having one of the
lowest rates while Europe and the Americas have the highest
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rates ([3–5]; https://covid19.who.int/). According to the
WHO COVID-19 weekly report of 4th February 2022, of
the 517,648,631 cases, Africa accounts for only 1.7%, while
Europe and America account for the largest percentages,
42.1 and 29.8, respectively (WHO; https://covid19.who.int/).
The geographical variation of COVID-19’s effects substan-
tially concurs with previous viral infections of global concern.
Noteworthy, Ebola virus disease (EVD) and the Middle East
Respiratory Syndrome (MERS) had geographical belonging
to West Africa and the Middle East, respectively [6–9]. As a
zoonotic, the geographical belonging of EVD is greatly attrib-
uted to suspected reservoirs, the wild primates, the rodents as
well as the bats [8, 10], and the dromedary camels of the Ara-
bian Peninsula for the MERS [9, 11]. Unlike EVD, cases of
MERS, like COVID-19, due to human movements were
reported in Europe and America, although with minimal
impact compared to COVID-19 [11–13].

The most intriguing question scientists have tried to
answer is why COVID-19 has had such a varied impact
globally, leaning more toward the first-world regions for its
greatest effects (WHO; https://covid19.who.int/). Several theo-
ries have explained this variation, with unequal screening, test-
ing, and reporting systems globally widely attributed.
However, this review will look at the contribution of the single
nucleotide polymorphisms (SNPs) of cell immunological mol-
ecules, specifically the angiotensin-converting enzymes 1 and
2 (ACE1 and ACE2), which are primarily vital in cardiovascu-
lar protection [14] and through which both MERS-CoV and
SARS-CoV-2 gain entry into the host cell [15].

2. Renin Angiotensin Aldosterone System and
Angiotensin-Converting Enzyme

2.1. Angiotensin-Converting Enzyme 1 (ACE1). The renin-
angiotensin-aldosterone system (RAAS) is involved in blood
pressure regulation. In RAAS, Renin, a vital enzyme in the
conversion of angiotensinogen to angiotensin I (Ang I), is
released from the juxtaglomerular cells by stimulants like
decreased blood flow [16, 17]. Ang I is subsequently con-
verted to Ang II, the main effector in RAAS. Ang II elevates
blood pressure through vasoconstriction, stimulation of
aldosterone secretion, and renal sodium retention [16–18].
Angiotensin-1 converting enzyme (ACE1) does the conver-
sion of Ang I to Ang II, and noteworthy, its gene has an
insertion/deletion (I/D) polymorphism on intron 16 that
affects the enzymes’ bioavailability. The homozygous DD
and II genotypes are associated with high and low ACE1
levels, respectively [17–19]. Several studies have also associ-
ated the (I/D) polymorphism with the pathophysiology of
several disorders, including cardiovascular, neurological,
and recent COVID-19 [16, 17, 20–26].

2.1.1. The Global Incidence of (I/D) Polymorphism and
COVID-19 Cases. Several studies have looked at the effect
of the ACE1 (I/D) polymorphism on the progression of
COVID-19, but its contribution to disease susceptibility
and hence incidence is still minimally studied. Therefore,
more studies looking at the prevalence of the (I/D) polymor-
phism with cases of COVID-19 globally are required to

achieve this. Bellone & Calvisi [27] reported a generally
higher prevalence of the D allele among Europeans, with
an average II, ID, and DD genotypic proportion of 0.21,
0.49, and 0.30, respectively. In total agreement, Livshits
et al. [28] also reported a lower prevalence of the II genotype
(18%) among Ukrainians, with an average proportion of
0.21 in general among Europeans. Interestingly, in both
studies, countries like Italy and Spain with the highest
COVID-19 cases and deaths, according to the weekly reports
from the European Centre for Disease Prevention and Con-
trol (https://www.ecdc.europa.eu/en/cases-2019-ncov-eueea,
8, June 2022), have a more profound D allele prevalence
(Table 1). Contrary to the European countries, Bellone &
Calvisi [27] reported a higher I allele than the D allele, with
a prevalence ratio of approximately 2 : 1 in China, which has
the highest population in Asia and the lowest COVID-19
cases. This is further reinforced by Pati et al. [29] who
reported a lower D allele frequency (38.43%) in China. Pati
et al. [29] also reported that, with the exception of a few
countries like Palestine, most of the other Asian countries
that have a low percentage frequency of the D allele have
had fewer COVID-19 cases and deaths compared to those
that have a higher D allele frequency. The lower frequency
of the D allele in Asia was also reported in admixed studies
involving European and Asian countries [30, 31]. Therefore,
there is a higher prevalence of the II genotype in general
among Asian populations than among Europeans (Table 1).
A look at the current COVID-19 cases in these two regions
shows that the high prevalence of the DD genotype, to some
extent, has a role to play in COVID-19 susceptibility and
hence the global variation in the cases as well as deaths. Yama-
moto et al. [31] reported a strong negative correlation between
the II genotype with COVID-19 cases (-0.847) and associated
deaths (-0.755). Statistics from studies done in Africa (Table 1:
OR = 0:4, R = −:0245), also suggested a protective advantage
of the II genotype to COVID-19 and its negative correlation
with the disease.

Several studies were done on the I/D polymorphism in the
USA to determine its effect on several disorders, which eventu-
ally uncovered the prevalence of the genotypes and alleles.
Goodman et al. [36] & Schürks et al. [39] reported a higher
DD genotype frequency (33.3 and 29%, respectively) among
women, while Lindpaintner et al. [37] reported a more or less
similar frequency (30.9%) of DD amongmen in the USA.Mar-
son et al. [41] further corroborate this with a much higher fre-
quency (40%) for the DD genotype and a very low II genotype
frequency of 14%. Interestingly, a study that differentiated
whites from African-Americans reported a significant differ-
ence in the frequency of the DD genotype, with the whites
and African-Americans having 29 and 38%, respectively [38].
Therefore, most of these studies reported a significantly higher
DD genotype which is associated with COVID-19 susceptibil-
ity than the II genotypes in America. This could partly explain
the high number of COVID-19 cases in that region.

In Africa, the prevalence of (I/D) polymorphism has not
been extensively studied, and the available literature shows
that most of the studies are from the far north and southern
parts of the continent. Aung et al. [33], in a global ecological
study, reported a lower prevalence of the advantageous II
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genotype among African countries, with an average preva-
lence of 48 and 9.8% for the DD and II genotypes, respec-
tively. This report concurs with other studies from South
Africa and Tunisia that also reported a lower prevalence of
the II genotype of 19.3 and 14%, respectively [34, 35].
Although these findings were generated using studies from
a few countries—Nigeria, Tunisia, Egypt, and South Afri-
ca—which are not representative enough to give a conclusive
report about Africa, these countries, except for Nigeria, have
the highest COVID-19 cases on the continent (https://
covid19.who.int/). A study performed in Zambia, an almost
central African country, to determine the allelic and geno-
typic frequency of genes including ACE1 reported a very
high prevalence of the protective genotype II (77.6%) com-
pared to the DD (5%) [32]. This finding does not correlate
with the number of COVID-19 cases in Zambia, which are
relatively high on average (https://covid19.who.int/). There-
fore, this calls for more prevalence studies on these genes of
concern if conclusive reports are to be generated.

2.2. Angiotensin-Converting Enzyme 2 (ACE2). ACE2, a
homology of angiotensin-1 converting enzyme (ACE1), is
an ectoenzyme that is transmembrane bound in the epithe-
lial cells of numerous organs such as the heart, kidney, liver,
testis, and lungs [48–50] and also in the plasma due to pro-
teolytic shedding [50]. ACE2 plays a vital role in mitigating
the cardiovascular damage of Angiotensin (Ang) II in the
renin-angiotensin-aldosterone system (RAAS) by converting
it to Ang (1-7) [14, 48]. Of biological importance is the role
ACE2 plays in the current COVID-19 pandemic. ACE2 acts
as the major receptor for SARS-CoV-2, the causative virus of
COVID-19, by binding to the receptor-binding domain
(RBD) of the virus and thus allowing viral entry into the cell
[48, 51]. This implies that the bioavailability of ACE2 is pro-
portional to COVID-19 susceptibility, a reason why several
studies have advocated against the use of Ang II blockers
and other agents that up-regulate ACE2 in the management
of cardiovascular disease patients [52]. Noteworthy, several
studies attribute the bioavailability of ACE2 to variants of
its single nucleotide polymorphism (SNP).

2.2.1. SNP in ACE2 and the Geographical SNV Stability. The
scientific community has shown a great deal of interest in
the ACE2 protein located on the human X-chromosome, gene
XP22.2, which has 19 exons [53–55]. Numerous studies, both
retrospective using previous ACE2 genetic information from
databanks and “wet-laboratory” experiments, have examined
the SNPs in the ACE2 gene with a common interest in ascer-
taining their implication on the severity and or susceptibility,
especially on various cardiovascular diseases (CVD), hyper-
tension, stroke [14, 56], and currently COVID-19 [52, 53].
This eventually emanated in the predetermination of the alle-
lic stability of its variants. Between 6 and 16 single nucleotide
variants (SNV) have been extensively analyzed to determine
their association with either disease susceptibility, develop-
ment, or severity. The SNV rs2285666 in the third intron that
affects the expression of the gene is currently the most
studied [57].

Shoily et al. [58] in trying to determine the patterns of
ACE2 variants using 15 variants of disease concern in,
reported a higher frequency of variants rs4830542,
rs2074192, rs4240157, and rs879922 among the African
population than the rest of the world. These variants, espe-
cially the rs2074192 and its G/A genotype in particular have
been reported to have a protective advantage of reducing the
risks of hospitalization [59]. Striking in this study, analogous
to various others, was the high frequency of the variant of
concern (rs2285666) among the Asian and American popu-
lations but with a rather low frequency among the Africans.
A meta-analysis of this ACE2 SNV rs2285666 showed its
predominance in terms of frequency (Figure 1) generally
descending from East Asia, South Asia, America, Europe,
and Africa [57, 58, 60–62]. These results seem to be
positively correlating with the current trend of the global
COVID-19 infection rate and its implications.

Several “wet-laboratory studies” have now been con-
ducted in different geographical localities on the rs2285666
variant with oscillating agreements regarding its association
with COVID-19 severity and susceptibility [59, 60, 63].
Srivastava et al. [63] reported a notably higher frequency
of the variant rs2285666 among the Indian population than
in other geographical areas. The results of his study showed
a negative correlation, especially for the TT on the plus allele
of the variant with the number of COVID-19 cases, which
concurs with Alimoradi et al. [64] who reported a higher
rs2285666 (G8790A) allele frequency among Iranians and
particularly its GG genotype in COVID-19 Intensive Care
Unit (ICU) patients than their counterparts. In Europe, sim-
ilar studies on the rs2285666 variants have conflicting
results. The risk of COVID-19 infection and hence the
development of complications is greatly associated with this
variant, especially the G-allele [53, 59] although Celik et al.
[65] and Gómez et al. [66] did not find any significant
association statistically.
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Figure 1: Global % prevalence of ACE2 SNV rs2285666 from
different studies. Footnote: these are frequencies of the SNV
rs2285666, genotypes G/A, and T/C admixed from various
retrospective studies that used information from databases.
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3. Discussion and Conclusion

There is sufficient evidence to suggest that the ACE1 II
genotype has a relative protective effect against COVID-19
compared to the DD genotype. In Asia where COVID-19
cases are less than in Europe and America, the II genotype
predominates over the DD genotype (Table 1). In addition,
there seems to be a trend in the increase of the II genotype
prevalence from western to eastern Europe. In the case of
Africa, there is very little conflicting information on the
prevalence of the ACE1 I/D genotypes. Despite the low
COVID-19 cases in Africa, most studies reported a high
prevalence of the DD genotype, which is associated with
high COVID-19 cases (Table 1). Whereas it is possible to
suggest that population density had a hand in the COVID-
19 cases, this argument may not explain the low numbers in
China. Therefore, more studies are needed, especially on the
ACE1 I/D polymorphism in Africa where COVID-19 cases
were insignificant.

With the exception of South-East Asia, the global epidemi-
ological COVID-19 cases correlated well with the prevalence
of ACE2 SNV rs2285666 from the various retrospective stud-
ies (Figure 1), which would lead to the conclusion that differ-
ences in the geographical impact of COVID-19 are associated
with this variant. However, most of the studies, especially
those conducted as wet-laboratory studies, performed in
COVID-19 high prevalence geographical areas with the intent
of determining the relationship of the ACE2 SNP to disease
susceptibility, development, and severity provided conflicting
conclusions. Although the prevalence of the allele of concern,
rs2285666, was categorized in different global geographical
regions as high, moderate, and low (Figure 1), its relation to
COVID-19 susceptibility is still inconclusive. Noteworthy,
from COVID-19 high prevalence regions, only a few studies
have associated the SNV rs2285666 with COVID-19 suscepti-
bility. To ascertain this association better, more studies on this
SNV of concern and others like rs2074192 that have a protec-
tive advantage need to be performed in high- and low-
COVID-19 prevalence geographical regions of the world.
These studies need to consider the COVID-19 disease variants
of concern, currently Omicron, and ascertain the existence of a
relationship, if any, with the SNVs.
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