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Preface

Since the late 1990s, the authors have produced an extensive portfolio of results on
differential equations and differential inclusions undergoing impulse effects. Both
initial value problems and boundary value problems have been dealt with in their
work. The primary motivation for this book is in gathering under one cover an
encyclopedic resource for many of these recent results. Having succinctly stated
the motivation of the book, there is certainly an obligation to include mentioning
some of the all important roles of modelling natural phenomena with impulse
problems.

The dynamics of evolving processes is often subjected to abrupt changes such
as shocks, harvesting, and natural disasters. Often these short-term perturbations
are treated as having acted instantaneously or in the form of “impulses.” Impulsive
differential equations such as

x′ = f (t, x), t ∈ [0, b] \ {t1, . . . , tm
}

, (1)

subject to impulse effects

Δx
(
tk
) = x

(
t+k
)− x(t−k

) = Ik
(
x
(
t−k
))

, k = 1, . . . ,m, (2)

with f : ([0, b] \ {t1, . . . , tm}) × Rn → Rn and Ik an impulse operator, have
been developed in modelling impulsive problems in physics, population dynam-
ics, biotechnology, pharmacokinetics, industrial robotics, and so forth; in the case
when the right-hand side of (1) has discontinuities, differential inclusions such as

x′(t) ∈ F
(
t, x(t)

)
, t ∈ [0, b] \ {t1, . . . , tm

}
, (3)

subject to the impulse conditions (2), where F : ([0, b] \ {t1, . . . , tm})×Rn → 2Rn
,

have played an important role in modelling phenomena, especially in scenarios
involving automatic control systems. In addition, when these processes involve
hereditary phenomena such as biological and social macrosystems, some of the
modelling is done via impulsive functional differential equations such as

x′ = f
(
t, xt
)
, t ∈ [0, b] \ {t1, . . . , tm

}
, (4)
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subject to (2), and an initial value

x(s) = φ(s), s ∈ [−r, 0], t ∈ [0, b], (5)

where xt(θ) = x(t + θ), t ∈ [0, b], and −r ≤ θ ≤ 0, and f : ([0, b] \ {t1, . . . , tm})×
D → Rn, and D is a space of functions from [−r, 0] into Rn which are continu-
ous except for a finite number of points. When the dynamics is multivalued, the
hereditary phenomena are modelled via impulsive functional differential inclu-
sions such as

x′(t) ∈ F
(
t, xt
)
, t ∈ [0, b] \ {t1, . . . , tm

}
, (6)

subject to the impulses (2) and the initial condition (5).
An outline of the book as it is devoted to articles published by the authors

evolves in a somewhat natural way around addressing issues relating to initial value
problems and boundary value problems for both impulsive differential equations
and differential inclusions, as well as for both impulsive functional differential
equations and functional differential inclusions. Chapter 1 contains fundamen-
tal results from multivalued analysis and differential inclusions. In addition, this
chapter contains a number of fixed point theorems on which most of the book’s
existence results depend. Included among these fixed point theorems are those rec-
ognized their names: Avery-Henderson, Bohnenblust-Karlin, Covitz and Nadler,
Krasnosel’skii, Leggett-Williams, Leray-Schauder, Martelli, and Schaefer. Chapter
1 also contains background material on semigroups that is necessary for the book’s
presentation of impulsive semilinear functional differential equations.

Chapter 2 is devoted to impulsive ordinary differential equations and scalar
differential inclusions, given, respectively, by

y′ − Ay = By + f (t, y), y′ ∈ F(t, y), (7)

each subject to (2), and each satisfies an initial condition y(0) = y0, where A is an
infinitesimal generator of a family of semigroups, B is a bounded linear operator
from a Banach space E back to itself, and F : [0, b] × E → 2E. Chapter 3 deals
with functional differential equations and functional differential inclusions, with
each undergoing impulse effects. Also, neutral functional differential equations
and neutral functional differential inclusions are addressed in which the deriva-
tive of the state variable undergoes a delay. Chapter 4 is directed toward impulsive
semilinear ordinary differential inclusions and functional differential inclusions
satisfying nonlocal boundary conditions such as g(y) = ∑n

k=1 ci y(ti), with each
ci > 0 and 0 < t1 < · · · < tn < b. Such problems are used to describe the diffusion
phenomena of a small amount of gas in a transport tube.

Chapter 5 is focused on positive solutions and multiple positive solutions for
impulsive ordinary differential equations and functional differential equations,
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including initial value problems as well as boundary value problems for second-
order problems such as

y′′ = f
(
t, yt
)
, t ∈ [0, b] \ {t1, . . . , tm

}
, (8)

subject to impulses

Δy
(
tk
) = Ik

(
y
(
tk
))

, Δy′
(
tk
) = Jk

(
y
(
tk
))

, k = 1, . . . ,m, (9)

and initial conditions

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η. (10)

Chapter 6 is primarily concerned with boundary value problems for periodic im-
pulsive differential inclusions. Upper- and lower-solution methods are developed
for first-order systems and then for second-order systems of functional differen-
tial inclusions, y′′(t) ∈ F(t, yt). For Chapter 7, impulsive differential inclusions
satisfying periodic boundary conditions are studied. The problems of interest are
termed as being nonresonant, because the linear operators involved are invertible
in the absence of impulses. The chapter deals with first-order and higher-order
nonresonance impulsive inclusions.

Chapter 8 extends the theory of some of the previous chapters to functional
differential equations and functional differential inclusions under impulses for
which the impulse effects vary with time; that is, y(t+k ) = Ik(y(t)), t = τk(y(t)),
k = 1, . . . ,m. Chapter 9, as well, extends several results of previous chapters on
semilinear problems now to semilinear functional differential equations and func-
tional differential inclusions for operators that are nondensely defined on a Banach
space.

Chapter 10 ventures into results for second-order impulsive hyperbolic differ-
ential inclusions,

∂2u(t, x)
∂t∂x

∈ F
(
t, x,u(t, x)

)
a.e. (t, x) ∈ ([0, a] \ {t1, . . . , tm

})× [0, b],

Δu
(
tk, x
) = Ik

(
u
(
tk, x
))

, k = 1, . . . ,m,

u(t, 0) = ψ(t), t ∈ [0, a] \ {t1, . . . , tm
}

, u(0, x) = φ(x), x ∈ [0, b].
(11)

Such models arise especially for problems in biological or medical domains.
The next to last chapter, Chapter 11, addresses some questions for impulsive

dynamic equations on time scales. The methods constitute adjustments from those
for impulsive ordinary differential equations to dynamic equations on time scales,
but these results are the first such results in the direction of impulsive problems on
time scales. The final chapter, Chapter 12, is a brief chapter dealing with periodic
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boundary value problems for first-order perturbed impulsive systems,

x′ ∈ F
(
t, x(t)

)
+G
(
t, x(t)

)
, t ∈ [0, b] \ {t1, . . . , tm

}
,

x
(
t+j
) = x

(
t−j
)

+ I j
(
x
(
t−j
))

, j = 1, . . . ,m, x(0) = x(b),
(12)

where both F,G : ([0, b] \ {t1, . . . , tm})×R→ 2R.
We express our appreciation and thanks to R. I. Avery, A. Boucherif, B. C.

Dhage, E. Gatsori, L. Górniewicz, J. R. Graef, J. J. Nieto, A. Ouahab, and Y. G. Sfi-
cas for their collaboration in research and to E. Gatsori and A. Ouahab for their
careful typing of some parts of this manuscript. We are especially grateful to the
Editors-in-Chief of the Contemporary Mathematics and Applications book series,
R. P. Agarwal and D. O’Regan, for their encouragement of us during the prepara-
tion of this volume for inclusion in the series.

M. Benchohra
J. Henderson

S. Ntouyas



1
Preliminaries

1.1. Definitions and results for multivalued analysis

In this section, we introduce notations, definitions, and preliminary facts from
multivalued analysis, which are used throughout this book.

Let (X ,d) be a metric space and let Y be a subset of X . We denote
(i) P (X) = {Y ⊂ X : Y �= ∅};

(ii) Pp(X) = {Y ∈ P(X) : Y has the property “p”}, where p could be cl =
closed, b = bounded, cp = compact, cv = convex, and so forth.

Thus
(i) Pcl(X) = {Y ∈ P(X) : Y closed},

(ii) Pb(X) = {Y ∈ P (X) : Y bounded},
(iii) Pcv(X) = {Y ∈ P(X) : Y convex},
(iv) Pcp(X) = {Y ∈ P (X) : Y compact},
(v) Pcv,cp(X) = Pcv(X)∩Pcp(X), and so forth.

In what follows, by E we will denote a Banach space over the field of real
numbers R and by J a closed interval in R. We let

C(J ,E) = {y : J �→ E | y is continuous
}
. (1.1)

We consider the Tchebyshev norm

‖ · ‖∞ : C(J ,E) �→ [0,∞), (1.2)

defined by

‖y‖∞ = max
{∣∣y(t)

∣
∣, t ∈ J

}
, (1.3)

where | · | stands for the norm in E. Then (C(J ,E),‖ · ‖) is a Banach space.
Let N : E → E be a linear map. N is called bounded provided there exists r > 0

such that

∣
∣N(x)

∣
∣ ≤ r|x|, for every x ∈ E. (1.4)

The following result is classical.
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Proposition 1.1. A linear map N : E → E is continuous if and only if N is bounded.

We let

B(E) = {N : E �→ E | N is linear bounded
}

, (1.5)

and for N ∈ B(E), we define

‖N‖B(E) = inf
{
r > 0 | ∀x ∈ E

∣
∣N(x)

∣
∣ < r|x|}. (1.6)

Then (B(E),‖ · ‖B(E)) is a Banach space.
We also have

‖N‖B(E) = sup
{∣∣N(x)

∣
∣ | |x| = 1

}
. (1.7)

A function y : J → E is called measurable provided that for every open U ⊂ E,
the set

y−1(U) = {t ∈ J | y(t) ∈ U
}

(1.8)

is Lebesgue measurable.
We will say that a measurable function y : J → E is Bochner integrable (for de-

tails, see [230]) provided that the function |y| : J → [0,∞) is a Lebesgue integrable
function.

We let

L1(J ,E) = {y : J �→ E | y is Bochner integrable
}
. (1.9)

Let us add that two functions y1, y2 : J → E such that the set {y1(t) �= y2(t) | t ∈ J}
has Lebesgue measure equal to zero are considered as equal.

Then we are able to define

‖y‖L1 =
∫ b

0

∣
∣y(t)

∣
∣dt, for J = [0, b]. (1.10)

It is well known that

(
L1(J ,E),‖ · ‖L1

)
(1.11)

is a Banach space.
Let (X ,‖ · ‖) be a Banach space. A multivalued map G : X → P (X) has

convex (closed) values if G(x) is convex (closed) for all x ∈ X . We say that G is
bounded on bounded sets if G(B) is bounded in X for each bounded set B of X , that
is, supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞. The map G is called upper semicontinuous
(u.s.c.) onX if for each x0 ∈ X , the setG(x0) is a nonempty, closed subset ofX , and
if for each open set N of X containing G(x0), there exists an open neighborhood
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M of x0 such that G(M) ⊆ N . Also, G is said to be completely continuous if G(B)
is relatively compact for every bounded subset B ⊆ X . If the multivalued map G
is completely continuous with nonempty compact values, then G is u.s.c. if and
only if G has a closed graph (i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply that
y∗ ∈ G(x∗)). Finally, we say that G has a fixed point if there exists x ∈ X such that
x ∈ G(x).

A multivalued map G : J → Pcl(X) is said to be measurable if for each x ∈ E,
the function Y : J → X defined by

Y(t) = dist
(
x,G(t)

) = inf
{‖x − z‖ : z ∈ G(t)

}
(1.12)

is Lebesgue measurable.

Theorem 1.2 (Kuratowki, Ryll, and Nardzewski). Let E be a separable Banach space
and let F : J → Pcl(E) be a measurable map, then there exists a measurable map
f : J → E such that f (t) ∈ F(t), for every t ∈ J .

Let A be a subset of J × B. A is L ⊗ B measurable if A belongs to the σ-
algebra generated by all sets of the form N × D, where N is Lebesgue measurable
in J and D is Borel measurable in B. A subset A of L1(J ,E) is decomposable if for
all u, v ∈A and N ⊂ J measurable, the function uχN + vχJ−N ∈A, where χ stands
for the characteristic function.

Let X be a nonempty closed subset of E and G : X → P (E) a multivalued
operator with nonempty closed values. G is lower semicontinuous (l.s.c.) if the set
{x ∈ X : G(x)∩ B �= ∅} is open for any open set B in E.

Definition 1.3. Let Y be a separable metric space and let N : Y → P (L1(J ,E)) be a
multivalued operator. Say that N has property (BC) if

(1) N is lower semicontinuous (l.s.c.);
(2) N has nonempty closed and decomposable values.

Let F : J × E → P (E) be a multivalued map with nonempty compact values.
Assign to F the multivalued operator

F : C(J ,E) �→ P
(
L1(J ,E)

)
(1.13)

by letting

F (y) = {v ∈ L1(J ,E) : v(t) ∈ F
(
t, y(t)

)
for a.e. t ∈ J

}
. (1.14)

The operator F is called the Niemytzki operator associated to F.

Definition 1.4. Let F : J × E → P (E) be a multivalued function with nonempty
compact values. Say that F is of lower semicontinuous type (l.s.c. type) if its asso-
ciated Niemytzki operator F is lower semicontinuous and has nonempty closed
and decomposable values.
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Next, we state a selection theorem due to Bressan and Colombo.

Theorem 1.5 (see [105]). Let Y be separable metric space and let N : Y → P (L1(J ,
E)) be a multivalued operator which has property (BC). Then N has a continuous
selection, that is, there exists a continuous function (single-valued) f : Y → L1(J ,E)
such that f (x) ∈ N(x) for every x ∈ Y .

For more details on multivalued maps, we refer to the books of Deimling
[125], Górniewicz [156], Hu and Papageorgiou [170], and Tolstonogov [225].

1.2. Fixed point theorems

Fixed point theorems play a major role in our existence results. Therefore we state
a number of fixed point theorems. We start with Schaefer’s fixed point theorem.

Theorem 1.6 (Schaefer’s fixed point theorem) (see also [220, page 29]). Let X be a
Banach space and let N : X → X be a completely continuous map. If the set

Φ = {x ∈ X : λx = Nx for some λ > 1} (1.15)

is bounded, then N has a fixed point.

The second fixed point theorem concerns multivalued condensing mappings.
The upper semicontinuous map G is said to be condensing if for any B ∈ Pb(X)
with μ(B) �= 0, we have μ(G(B)) < μ(B), where μ denotes the Kuratowski mea-
sure of noncompactness [32]. We remark that a compact map is the easiest exam-
ple of a condensing map.

Theorem 1.7 (Martelli’s fixed point theorem [196]). Let X be a Banach space and
let G : X → Pcp,cv(X) be an upper semicontinuous and condensing map. If the set

M := {y ∈ X : λy ∈ G(y) for some λ > 1
}

(1.16)

is bounded, then G has a fixed point.

Next, we state a well-known result often referred to as the nonlinear alterna-
tive. ByU and ∂U , we denote the closure ofU and the boundary ofU , respectively.

Theorem 1.8 (nonlinear alternative [157]). Let X be a Banach space with C ⊂ X
closed and convex. AssumeU is a relatively open subset of C with 0 ∈ U andG : U →
C is a compact map. Then either,

(i) G has a fixed point in U ; or
(ii) there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λG(u).

Theorem 1.9 (Bohnenblust and Karlin [98]) (see also [231, page 452]). Let X be
a Banach space and K ∈ Pcl,c(X) and suppose that the operator G : K → Pcl,cv(X)
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is upper semicontinuous and the set G(K) is relatively compact in X . Then G has a
fixed point in K .

Before stating our next fixed point theorem, we need some preliminaries.
Let (X ,d) be a metric space induced from the normed space (X , |·|). Consider

Hd : P (X)×P (X) → R+ ∪ {∞}, given by

Hd(A, B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)

}

, (1.17)

where d(A, b) = infa∈A d(a, b), d(a, B) = infb∈B d(a, b). Then (Pb,cl(X),Hd) is a
metric space and (Pcl(X),Hd) is a generalized (complete) metric space (see [177]).

Definition 1.10. A multivalued operator G : X → Pcl(X) is called
(a) γ-Lipschitz if there exists γ > 0 such that

Hd
(
G(x),G(y)

) ≤ γd(x, y), for each x, y ∈ X ; (1.18)

(b) a contraction if it is γ-Lipschitz with γ < 1.

The next fixed point theorem is the well-known Covitz and Nadler’s fixed
point theorem for multivalued contractions [123] (see also Deimling [125, Theo-
rem 11.1]).

Theorem 1.11 (Covitz and Nadler [123]). Let (X ,d) be a complete metric space. If
G : X → Pcl(X) is a contraction, then fix G �= ∅.

The next theorems concern the existence of multiple positive solutions.

Definition 1.12. Let (B,‖ · ‖) be a real Banach space. A nonempty, closed, convex
set P ⊂ B is said to be a cone provided the following are satisfied:

(a) if y ∈ P and λ ≥ 0 , then λy ∈ P ;
(b) if y ∈ P and −y ∈ P , then y = 0.

Every cone P ⊂ B induces a partial ordering, ≤, on B defined by

x ≤ y iff y − x ∈ P . (1.19)

Definition 1.13. Given a cone P in a real Banach space B, a functional ψ : P → R
is said to be increasing on P , provided that ψ(x) ≤ ψ(y), for all x, y ∈ P with
x ≤ y.

Given a nonnegative continuous functional γ on a cone P of a real Banach
space B, (i.e., γ : P → [0,∞) continuous), we define, for each d > 0, the convex
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set

P (γ,d) = {x ∈ P | γ(x) < d
}
. (1.20)

Theorem 1.14 (Leggett-Williams fixed point theorem [187]). Let E be a Banach
space, C ⊂ E a cone of E, and R > 0 a constant. Let CR = {y ∈ C : ‖y‖ < R}.
Suppose that a concave nonnegative continuous functional ψ exists on the cone C
with ψ(y) ≤ ‖y‖ for y ∈ CR, and let N : CR → CR be a completely continuous
operator. Assume there are numbers ρ,L and K with 0 < ρ < L < K ≤ R such that

(A1) {y ∈ C(ψ,L,K) : ψ(y) > L} �= ∅ and ψ(N(y))>L for all y∈C(ψ,L,K);
(A2) ‖N(y)‖ < ρ for all y ∈ Cρ;
(A3) ψ(N(y)) > L for all y ∈ C(ψ,L,R) with ‖N(y)‖ > K , whereC(ψ,L,K) =

{y ∈ C : ψ(y) ≥ L and ‖y‖ ≤ K}.
Then N has at least three fixed points y1, y2, y3 in CR. Furthermore,

y1 ∈ Cρ, y2 ∈
{
y ∈ C(ψ,L,R) : ψ(y) > L

}
,

y3 ∈ CR −
{
C(ψ,L,R)∪ Cρ

}
.

(1.21)

Theorem 1.15 (Krasnosel’skii twin fixed point theorem [163]). Let E be a Banach
space, C ⊂ E a cone of E, and R > 0 a constant. Let CR = {y ∈ C : ‖y‖ < R} and let
N : CR → C be a completely continuous operator, where 0 < r < R. If

(A1) ‖N(y)‖ < ‖y‖ for all y ∈ ∂Cr ;
(A2) ‖N(y)‖ > ‖y‖ for all y ∈ ∂CR.

Then N has at least two fixed points y1, y2, in CR. Furthermore,

∥∥y1
∥∥ < r, r <

∥∥y2
∥∥ ≤ R. (1.22)

Theorem 1.16 (Avery-Henderson fixed point theorem [26]). Let P be a cone in a
real Banach space B. Let α and γ be increasing, nonnegative, continuous functionals
on P , and let θ be a nonnegative continuous functional on P with θ(0) = 0 such
that for some c > 0 and M > 0,

γ(x) ≤ θ(x) ≤ α(x), ‖x‖ ≤Mγ(x), (1.23)

for all x∈P (γ, c). Suppose there exist a completely continuous operatorA : P (γ, c) →
P and 0 < a < b < c such that

θ(λx) ≤ λθ(x), for 0 ≤ λ ≤ 1, x ∈ ∂P (θ, b), (1.24)

and
(i) γ(Ax) > c, for all x ∈ ∂P (γ, c);

(ii) θ(Ax) < b, for all x ∈ ∂P (θ, b);
(iii) P (α, a) �= ∅, and α(Ax) > a, for all x ∈ ∂P (α, a).
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Then A has at least two fixed points x1 and x2 belonging to P (γ, c) such that

a < α
(
x1
)
, with θ

(
x1
)
< b,

b < θ
(
x2
)
, with γ

(
x2
)
< c.

(1.25)

1.3. Semigroups

In this section, we present some concepts and results concerning semigroups. This
section will be fundamental to our development of semilinear problems.

1.3.1. C0-semigroups

Let E be a Banach space and let B(E) be the Banach space of bounded linear oper-
ators.

Definition 1.17. A semigroup of class (C0) is a one-parameter family {T(t) | t ≥
0} ⊂ B(E) satisfying the following conditions:

(i) T(t) ◦ T(s) = T(t + s), for t, s ≥ 0,
(ii) T(0) = I , (the identity operator in E),

(iii) the map t → T(t)(x) is strongly continuous, for each x ∈ E, that is,

lim
t→0

T(t)x = x, ∀x ∈ E. (1.26)

A semigroup of bounded linear operators T(t) is uniformly continuous if

lim
t→0

∥
∥T(t)− I∥∥ = 0. (1.27)

We note that if a semigroup T(t) is class (C0), then we have the growth con-
dition

∥∥T(t)
∥∥
B(E) ≤M · exp(βt), for 0 ≤ t <∞, with some constants M > 0 and β.

(1.28)

If, in particular, M = 1 and β = 0, that is, ‖T(t)‖B(E) ≤ 1, for t ≥ 0, then the
semigroup T(t) is called a contraction semigroup (C0).

Definition 1.18. Let T(t) be a semigroup of class (C0) defined on E. The infinitesi-
mal generator A of T(t) is the linear operator defined by

A(x) = lim
h→0

T(h)(x)− x
h

, for x ∈ D(A), (1.29)

where D(A) = {x ∈ E | limh→0(T(h)(x)− x)/h exists in E}.
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Proposition 1.19. The infinitesimal generatorA is a closed linear and densely defined
operator in E. If x ∈ D(A), then T(t)(x) is a C1-map and

d

dt
T(t)(x) = A

(
T(t)(x)

) = T(t)
(
A(x)

)
on [0,∞). (1.30)

Theorem 1.20 (Pazy [210]). Let A be a densely defined linear operator with domain
and range in a Banach space E. Then A is the infinitesimal generator of uniquely
determined semigroup T(t) of class (C0) satisfying

∥
∥T(t)

∥
∥
B(E) ≤M exp(ωt), t ≥ 0, (1.31)

where M > 0 and ω ∈ R if and only if (λI − A)−1 ∈ B(E) and ‖(λI − A)−n‖ ≤
M/(λ− ω)n, n = 1, 2, . . . , for all λ ∈ R.

We say that a family {C(t) | t ∈ R} of operators in B(E) is a strongly continu-
ous cosine family if

(i) C(0) = I ,
(ii) C(t + s) + C(t − s) = 2C(t)C(s), for all s, t ∈ R,

(iii) the map t �→ C(t)(x) is strongly continuous, for each x ∈ E.
The strongly continuous sine family {S(t) | t ∈ R}, associated to the given

strongly continuous cosine family {C(t) | t ∈ R}, is defined by

S(t)(x) =
∫ t

0
C(s)(x)ds, x ∈ E, t ∈ R. (1.32)

The infinitesimal generator A : E → E of a cosine family {C(t) | t ∈ R} is defined
by

A(x) = d2

dt2
C(t)(x)|t=0. (1.33)

For more details on strongly continuous cosine and sine families, we refer the
reader to the books of Goldstein [155], Heikkilä and Lakshmikantham [163], Fat-
torini [145], and to the papers of Travis and Webb [226, 227].

1.3.2. Integrated semigroups

Definition 1.21 (see [21]). Let E be a Banach space. An integrated semigroup is a
family of operators (S(t))t≥0 of bounded linear operators S(t) on E with the fol-
lowing properties:

(i) S(0) = 0;
(ii) t → S(t) is strongly continuous;

(iii) S(s)S(t) = ∫ s0(S(t + r)− S(r))dr, for all t, s ≥ 0.

Definition 1.22 (see [175]). An operator A is called a generator of an integrated
semigroup if there exists ω ∈ R such that (ω,∞) ⊂ ρ(A)(ρ(A) is the resolvent
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set of A), and there exists a strongly continuous exponentially bounded family
(S(t))t≥0 of bounded operators such that S(0) = 0 and R(λ,A) := (λI − A)−1 =
λ
∫∞

0 e−λtS(t)dt exists for all λ with λ > ω.

Proposition 1.23 (see [21]). Let A be the generator of an integrated semigroup
(S(t))t≥0. Then, for all x ∈ E and t ≥ 0,

∫ t

0
S(s)x ds ∈ D(A), S(t)x = A

∫ t

0
S(s)x ds + tx. (1.34)

Definition 1.24 (see [175]). (i) An integrated semigroup (S(t))t≥0 is called locally
Lipschitz continuous if for all τ > 0, there exists a constant L such that

∣
∣S(t)− S(s)

∣
∣ ≤ L|t − s|, t, s ∈ [0, τ]. (1.35)

(ii) An integrated semigroup (S(t))t≥0 is called non degenerate if S(t)x = 0 for
all t ≥ 0 implies that x = 0.

Definition 1.25. Say that the linear operator A satisfies the Hille-Yosida condition
if there exist M ≥ 0 and ω ∈ R such that (ω,∞) ⊂ ρ(A) and

sup
{

(λ− ω)n
∣
∣(λI − A)−n

∣
∣ : n ∈ N, λ > ω

} ≤M. (1.36)

Theorem 1.26 (see [175]). The following assertions are equivalent:
(i) A is the generator of a nondegenerate, locally Lipschitz continuous inte-

grated semigroup;
(ii) A satisfies the Hille-Yosida condition.

If A is the generator of an integrated semigroup (S(t))t≥0 which is locally Lip-
schitz, then from [21], S(·)x is continuously differentiable if and only if x ∈ D(A)
and (S′(t))t≥0 is a C0 semigroup on D(A).

1.4. Some additional lemmas and notions

We include here, for easy references, some auxiliary results, which are crucial in
what follows.

Definition 1.27. The multivalued map F : J × E → P (E) is said to be L1-
Carathéodory if

(i) t �→ F(t,u) is measurable for each u ∈ E;
(ii) u �→ F(t,u) is upper semicontinuous on E for almost all t ∈ J ;

(iii) for each ρ > 0, there exists ϕρ ∈ L1(J , R+) such that

∥
∥F(t,u)

∥
∥

P (E) = sup
{|v| : v ∈ F(t,u)

} ≤ ϕρ(t), ∀‖u‖ ≤ ρ and for a.e. t ∈ J.
(1.37)
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Lemma 1.28 (see [186]). Let X be a Banach space. Let F : J × X → Pcp,c(X) be an
L1-Carathéodory multivalued map with

SF(y) =
{
g ∈ L1(J ,X) : g(t) ∈ F

(
t, y(t)

)
, for a.e. t ∈ J

} �= ∅, (1.38)

and let Γ be a linear continuous mapping from L1(J ,X) to C(J ,X), then the operator

Γ ◦ SF : C(J ,X) �→ Pcp,c
(
C(J ,X)

)
, y � �→ (Γ ◦ SF

)
(y) := Γ

(
SF(y)

)
(1.39)

is a closed graph operator in C(J ,X)× C(J ,X).

Lemma 1.29 (see [148]). Assume that
(1.29.1) F : J × E → P (E) is a nonempty, compact-valued, multivalued map

such that
(a) (t,u) �→ F(t,u) is L⊗B measurable,
(b) u �→ F(t,u) is lower semicontinuous for a.e. t ∈ J ;

(1.29.2) for each r > 0, there exists a function hr ∈ L1(J , R+) such that

∥∥F(t,u)
∥∥

P

:= sup
{|v| : v ∈ F(t,u)

} ≤ hr(t) for a.e. t ∈ J ; and for u ∈ E with ‖u‖ ≤ r.
(1.40)

Then F is of l.s.c. type.

Lemma 1.30 (see [163, Lemma 1.5.3]). If p ∈ L1(J , R) and ψ : R+ → (0, +∞) is
increasing with

∫∞

0

du

ψ(u)
= ∞, (1.41)

then the integral equation

z(t) = z0 +
∫ t

0
p(s)ψ

(
z(s)
)
ds, t ∈ J , (1.42)

has for each z0 ∈ R a unique solution z. If u ∈ C(J ,E) satisfies the integral inequality

∣∣u(t)
∣∣ ≤ z0 +

∫ t

0
p(s)ψ

(∣∣u(s)
∣∣)ds, t ∈ J , (1.43)

then |u| ≤ z.



2
Impulsive ordinary differential
equations & inclusions

2.1. Introduction

For well over a century, differential equations have been used in modeling the dy-
namics of changing processes. A great deal of the modeling development has been
accompanied by a rich theory for differential equations.

The dynamics of many evolving processes are subject to abrupt changes, such
as shocks, harvesting and natural disasters. These phenomena involve short-term
perturbations from continuous and smooth dynamics, whose duration is negli-
gible in comparison with the duration of an entire evolution. In models involv-
ing such perturbations, it is natural to assume these perturbations act instanta-
neously or in the form of “impulses.” As a consequence, impulsive differential
equations have been developed in modeling impulsive problems in physics, pop-
ulation dyamics, ecology, biological systems, biotechnology, industrial robotics,
pharmcokinetics, optimal control, and so forth. Again, associated with this de-
velopment, a theory of impulsive differential equations has been given extensive
attention. Works recognized as landmark contributions include [29, 30, 180, 217],
with [30] devoted especially to impulsive periodic systems of differential equa-
tions.

Some processes, especially in areas of population dynamics, ecology, and phar-
macokinetics, involve hereditary issues. The theory and applications addressing
such problems have heavily involved functional differential equations as well as
impulsive functional differential equations. The literature devoted to this study is
also extensive, with [6, 12–14, 25, 27, 28, 38, 42, 46, 49, 52, 53, 55, 57, 70, 71, 75,
85, 89–91, 94, 95, 117, 130–132, 134, 136, 147, 152, 159, 167, 176, 181, 183, 189,
191, 194, 195, 212, 214, 216, 228] providing a good view of the panorama of work
that has been done.

Much attention has also been devoted to modeling natural phenomena with
differential equations, both ordinary and functional, for which the part govern-
ing the derivative(s) is not known as a single-valued function; for example, a dy-
namic process governing the derivative x′(t) of a state x(t) may be known only
within a set S(t, x(t)) ⊂ R, and given by x′(t) ∈ S(t, x(t)). A common example
of this is observed in a so-called differential inequality such as x′(t) ≤ f (t, x(t)),
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where say f : R → R, which can also be expressed as the differential inclusion,
x′(t) ∈ (−∞, f (t, x(t))), or x′(t) ∈ S(t, x(t)) ≡ {v ∈ R | v ≤ f (t, x(t))}. Differen-
tial inclusions arise in models for control systems, mechanical systems, econom-
ics systems, game theory, and biological systems to name a few. For a thumbnail
sketch of the literature on differential inclusions, we suggest [22, 96, 97, 104, 106–
111, 118, 121, 146, 179, 198, 211, 213, 215, 221].

It is natural from both a physical standpoint as well as a theoretical view to
give considerable attention to a synthesis involving problems for impulsive differ-
ential inclusions. It is these theoretical considerations that have become a rapidly
developing field with several prominent works written by Benchohra et al. [36, 39–
41, 43–45, 47, 48, 50, 51, 54, 56, 59–64, 58, 65–68, 73, 80, 82, 87, 89, 92, 93], Erbe
and Krawcewicz [140], and Frigon and O’Regan [153].

This chapter is devoted to solutions of impulsive ordinary differential equa-
tions and to solutions of impulsive differential inclusions. Both first- and second-
order problems are treated. This chapter also includes a substantial section on
damped differential inclusions.

2.2. Impulsive ordinary differential equations

Throughout, let J = [0, b], let 0 < t1 < · · · < tm < tm+1 = b, and let E be a real
separable Banach space with norm | · | (at times E = Rn, but this will be indicated
when so restricted). In this section, we will be concerned with the existence of
mild solutions for first- and second-order impulsive semilinear damped differen-
tial equations in a Banach space. Existence of solutions will arise from applications
of some of the fixed point theorems featured in Chapter 1. First, we consider first-
order impulsive semilinear differential equations of the form

y′(t)− Ay(t) = By(t) + f (t, y), a.e. t ∈ J := [0, b], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y0,
(2.1)

where f : J ×E → E is a given function, A is the infinitesimal generator of a family
of semigroups {T(t) : t ≥ 0}, B is a bounded linear operator from E into E, y0 ∈ E,
Ik ∈ C(E,E) (k = 1, . . . ,m), and Δy|t=tk = y(t+k )− y(t−k ), y(t+k ) = limh→0+ y(tk +h)
and y(t−k ) = limh→0+ y(tk − h) represent the right and left limits of y(t) at t = tk,
respectively, k = 1, . . . ,m.

Later, we study second-order impulsive semilinear evolution differential equa-
tions of the form

y′′(t)− Ay(t) = By′(t) + f (t, y), a.e. t ∈ J , t �= tk, k = 1, . . . ,m, (2.2)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (2.3)

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (2.4)

y(0) = y0, y′(0) = y1, (2.5)
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where f , Ik, B, and y0 are as in problem (2.1), A is the infinitesimal generator of a
familly of cosine operators {C(t) : t ≥ 0}, Ik ∈ C(E,E), and y1 ∈ E.

The study of the dynamical buckling of the hinged extensible beam, which is
either stretched or compressed by axial force in a Hilbert space, can be modeled by
the hyperbolic equation

∂2u

∂t2
+
∂4u

∂x4
−
(

α + β
∫ L

0

∣
∣
∣∣
∂u

∂t
(ξ, t)

∣
∣
∣∣

2

dξ

)
∂2u

∂x2
+ g
(
∂u

∂t

)
= 0, (E1)

where α,β,L > 0, u(t, x) is the deflection of the point x of the beam at the time t,
g is a nondecreasing numerical function, and L is the length of the beam.

Equation (E1) has its analogue in Rn and can be included in a general mathe-
matical model:

u′′ + A2u +M
(∥
∥A1/2u

∥
∥2
H

)
Au + g(u′) = 0, (E2)

where A is a linear operator in a Hilbert space H , and M and g are real functions.
Equation (E1) was studied by Patcheu [209], and (E2) by Matos and Pereira [197].
These equations are special cases of (2.2), (2.5).

In the following, we introduce first some notations. Let J0 = [0, t1], J1 =
(t1, t2], . . . , Jm = (tm, b], (Jk = (tk, tk+1], k = 1, 2, . . . ,m), J ′ = J \ {t1, t2, . . . , tm},
(t0 = 0, tm+1 = b), PC(J ,E) = {y : J → E : y(t) is continuous everywhere except
for some tk at which y(t−k ) and y(t+k ), k = 1, . . . ,m exist and y(t−k ) = y(tk)}, and
PC1(J ,E) = {y : J �→ E : y(t) is continuously differentiable everywhere except
for some tk at which y′(t−k ) and y′(t+k ), k = 1, . . . ,m, exist and y′(t−k ) = y′(tk)}.
Evidently, PC(J ,E) is a Banach space with norm

‖y‖PC = sup
{∣∣y(t)

∣
∣ : t ∈ J

}
. (2.6)

It is also clear that PC1(J ,E) is a Banach space with norm

‖y‖PC1 = max
{‖y‖PC,‖y′‖PC

}
. (2.7)

Let us start by defining what we mean by a mild solution of problem (2.1).

Definition 2.1. A function y ∈ PC(J ,E) is said to be a mild solution of (2.1) if y is
the solution of the impulsive integral equation

y(t) = T(t)y0 +
∫ t

0
T(t − s)B(y(s)

)
ds +

∫ t

0
T(t − s) f (s, y(s)

)
ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
tk
))
.

(2.8)

Our first existence result makes use of Schaefer’s theorem [220].



14 Impulsive ordinary differential equations & inclusions

Theorem 2.2. Let f : J × E → E be an L1-Carathéodory function. Assume that
(2.2.1) there exist constants ck such that |Ik(y)| ≤ ck, k = 1, . . . ,m for each

y ∈ E;
(2.2.2) there exists a constant M such that ‖T(t)‖B(E) ≤M for each t ≥ 0;
(2.2.3) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)

and p ∈ L1(J , R+) such that

∣
∣ f (t, y)

∣
∣ ≤ p(t)ψ

(|y|), for a.e. t ∈ J and each y ∈ E, (2.9)

with

∫ b

0
m(s)ds <

∫∞

c

du

u + ψ(u)
, (2.10)

where

m(s) = max
{
M‖B‖B(E),Mp(s)

}
, c =M

[
∣
∣y0
∣
∣ +

m∑

k=1

ck

]

; (2.11)

(2.2.4) for each bounded B ⊆ PC(J ,E) and t ∈ J , the set

{

T(t)y0 +
∫ t

0
T(t − s)B(y(s)

)
ds +

∫ t

0
T(t − s) f (s, y(s)

)
ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

: y ∈ B

} (2.12)

is relatively compact in E.
Then the impulsive initial (IVP for short) (2.1) has at least one mild solution.

Proof. Transform the problem (2.1) into a fixed point problem. Consider the op-
erator N : PC(J ,E) → PC(J ,E) defined by

N(y)(t) = T(t)y0 +
∫ t

0
T(t − s)B(y(s)

)
ds +

∫ t

0
T(t − s) f (s, y(s)

)
ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(2.13)

Clearly the fixed points of N are mild solutions to (2.1).
We will show that N is completely continuous. The proof will be given in

several steps.
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Step 1. N is continuous.
Let yn be a sequence in PC(J ,E) such that yn → y. We will prove thatN(yn) →

N(y). For each t ∈ J , we have

N
(
yn
)
(t) = T(t)y0 +

∫ t

0
T(t − s)B(yn(s)

)
ds +

∫ t

0
T(t − s) f (s, yn(s)

)
ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
yn
(
t−k
))
.

(2.14)

Then

∣
∣N
(
yn
)
(t)−N(y)(t)

∣
∣ ≤
∫ t

0

∣
∣T(t − s)∣∣∣∣B(yn(s)

)− B(y(s)
)∣∣ds

+
∫ t

0

∣
∣T(t − s)∣∣∣∣ f (s, yn(s)

)− f
(
s, y(s)

)∣∣ds

+
∑

0<tk<t

∣∣T
(
t − tk

)∣∣∣∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣

≤ bM‖B‖B(E)
∥
∥yn − y

∥
∥

PC

+M
∫ b

0

∣
∣ f
(
s, yn(s)

)− f
(
s, y(s)

)∣∣ds

+M
∑

0<tk<t

∣
∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣.

(2.15)

Since Ik, k = 1, . . . ,m are continuous, B is bounded and f is an L1-Carathéodory
function, we have by the Lebesgue dominated convergence theorem

∥∥N
(
yn
)−N(y)

∥∥
PC ≤ bM‖B‖B(E)

∥∥yn − y
∥∥

PC

+M
∫ b

0

∣
∣ f
(
s, yn(s)

)− f
(
s, y(s)

)∣∣ds

+M
∑

0<tk<t

∣∣Ik
(
yn
(
t−k
))− Ik

(
y
(
tk
))∣∣ �→ 0,

(2.16)

as n→∞. Thus N is continuous.
Step 2. N maps bounded sets into bounded sets in PC(J ,E).

Indeed, it is enough to show that for any q > 0, there exists a positive constant
� such that for each y ∈ Bq = {y ∈ PC(J ,E) : ‖y‖PC ≤ q}, one has ‖N(y)‖PC ≤ �.
Let y ∈ Bq. By (2.2.1)-(2.2.2) and the fact that f is an L1-Carathéodory function,
we have, for each t ∈ J ,

∣
∣N(y)(t)

∣
∣ ≤M

∣
∣y0
∣
∣ +M

∫ b

0

∣
∣B
(
y(s)
)∣∣ds +M

∫ b

0
ϕq(s)ds +M

m∑

k=1

ck

≤M
∣
∣y0
∣
∣ +Mbq‖B‖B(E) +M

∥
∥ϕq
∥
∥
L1 +M

m∑

k=1

ck := �.

(2.17)
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Step 3. N maps bounded sets into equicontinuous sets of PC(J ,E).
Let τ1, τ2 ∈ J ′, τ1 < τ2, and let Bq be a bounded set of PC(J ,E) as in Step 2.

Let y ∈ Bq, then for each t ∈ J we have

∣
∣N(y)

(
τ2
)−N(y)

(
τ1
)∣∣ ≤ ∣∣[T(τ2

)− T(τ1
)]
y0
∣
∣

+
∫ τ1

0

∣
∣T
(
τ2 − s

)− T(τ1 − s
)∣∣
∣
∣By(s)

∣
∣ds

+
∫ τ2

τ1

∣∣T
(
τ2 − s

)∣∣∣∣By(s)
∣∣ds

+
∫ τ1

0

∣
∣T
(
τ2 − s

)− T(τ1 − s
)∣∣ϕq(s)ds

+
∫ τ2

τ1

∣
∣T
(
τ2 − s

)∣∣ϕq(s)ds

+
∑

τ1<t<τ2

ck
∣∣T
(
τ2 − tk

)− T(τ1 − tk
)∣∣.

(2.18)

The right-hand side tends to zero as τ2 − τ1 → 0.
This proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m + 1. It

remains to examine the equicontinuity at t = ti. First we prove equicontinuity at
t = t−i . Fix δ1 > 0 such that {tk : k �= i} ∩ [ti − δ1, ti + δ1] = ∅.

For 0 < h < δ1, we have that

∣∣N(y)
(
ti
)−N(y)

(
ti − h

)∣∣ ≤ ∣∣(T(ti
)− T(ti − h

))
y0
∣∣

+
∫ ti−h

0

∣
∣(T
(
ti − s

)− T(ti − h− s
))
By(s)ds

∣
∣

+
∫ ti

ti−h

∣
∣T
(
ti − h

)
By(s)ds

∣
∣

+
∫ ti−h

0

∣
∣[T
(
ti − h− s

)− T(ti − s
)]
ϕq(s)

∣
∣ds

+
∫ ti−h

0

∣
∣T
(
ti − h− s

)
ϕq(s)

∣
∣ds

+
i−1∑

k=1

∣∣[T
(
ti − h− tk

)− T(ti − tk
)]
I
(
y
(
t−k
))∣∣.

(2.19)

The right-hand side tends to zero as h→ 0.
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Next we prove equicontinuity at t = t+i . Fix δ2 > 0 such that {tk : k �= i}∩ [ti−
δ2, ti + δ2] = ∅. For 0 < h < δ2, we have that
∣
∣N(y)

(
ti + h

)−N(y)
(
ti
)∣∣ ≤ ∣∣(T(ti + h

)− T(ti
))
y0
∣
∣

+
∫ ti

0

∣
∣(T
(
ti + h− s)− T(ti − s

))
By(s)ds

∣
∣

+
∫ ti+h

ti

∣∣T
(
ti − h

)
By(s)ds

∣∣

+
∫ ti

0

∣
∣[T
(
ti + h− s)− T(ti − s

)]
ϕq(s)

∣
∣ds

+
∫ ti+h

ti

∣
∣T
(
ti − h

)
ϕq(s)

∣
∣ds

+
∑

0<tk≤ti

∣∣[T
(
ti − h− tk

)− T(ti − tk
)]
Ik
(
y
(
t−k
))∣∣

+
∑

ti<tk≤ti+h

∣
∣T
(
ti − h− tk

)
Ik
(
y
(
t−k
))∣∣.

(2.20)

The right-hand side tends to zero as h→ 0.
As a consequence of Steps 1 to 3 and (2.2.4) together with the Arzelá-Ascoli

theorem we can conclude that N : PC(J ,E) → PC(J ,E) is a completely continuous
operator.
Step 4. Now it remains to show that the set

E(N) := {y ∈ PC(J ,E) : y = λN(y), for some 0 < λ < 1
}

(2.21)

is bounded. Let y ∈ E(N). Then y = λN(y) for some 0 < λ < 1. Thus, for each
t ∈ J ,

y(t) = λ

[

T(t)y0 +
∫ t

0
T(t − s)By(s)ds +

∫ t

0
T(t − s) f (s, y(s)

)
ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
]

.

(2.22)

This implies by (2.2.1)–(2.2.3) that for each t ∈ J we have

∣
∣y(t)

∣
∣ ≤M

∣
∣y0
∣
∣ +
∫ t

0
m(s)

(∣∣y(s)
∣
∣ + ψ

(∣∣y(s)
∣
∣))ds +M

m∑

k=1

ck. (2.23)

Let us denote the right-hand side of the above inequality as v(t). Then we have

∣∣y(t)
∣∣ ≤ v(t), ∀t ∈ J , v(0) =M

[
∣∣y0
∣∣ +

m∑

k=1

ck

]

,

v′(t) = m(t)
(∣∣y(t)

∣∣ + ψ
(∣∣y(t)

∣∣)), for a.e. t ∈ J.

(2.24)
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Using the increasing character of ψ, we get

v′(t) ≤ m(t)
(
v(t) + ψ

(
v(t)
))

, for a.e. t ∈ J. (2.25)

Then for each t ∈ J we have

∫ v(t)

v(0)

du

u + ψ(u)
≤
∫ b

0
m(s)ds <

∫∞

v(0)

du

u + ψ(u)
. (2.26)

Consequently, there exists a constant d such that v(t) ≤ d, t ∈ J , and hence
‖y‖PC ≤ d where d depends only on the functions p and ψ. This shows that E(N)
is bounded.

Set X := PC(J ,E). As a consequence of Schaefer’s fixed point theorem
(Theorem 1.6) we deduce that N has a fixed point which is a mild solution of
(2.1). �

Remark 2.3. We mention that the condition (2.2.1), (i.e., |Ik(y)| ≤ ck), is not
fulfilled in some important cases, such as for the linear impulse, Ik(y) = αk(y(t−i )).
However, the boundedness condition can be weakened by assuming, for example,
that Ik is sublinear, or in some cases by invoking Cauchy function arguments as in
[7, 8]. In many results that appear later in this book, it is sometimes assumed that
the impulses, Ik, are bounded. In each such case, this remark could be made.

Now we present a uniqueness result for the problem (2.1). Our considerations
are based on the Banach fixed point theorem.

Theorem 2.4. Assume that f is an L1-Carathéodory function and suppose (2.2.2)
holds. In addition assume the following conditions are satisfied.

(2.4.1) There exists a constant d such that

∣
∣ f (t, y)− f (t, y)

∣
∣ ≤ d|y − y|, for each t ∈ J , ∀y, y ∈ E. (2.27)

(2.4.2) There exist constants ck such that

∣
∣Ik(y)− Ik(y)

∣
∣ ≤ ck|y − y|, for each k = 1, . . . ,m, ∀y, y ∈ E. (2.28)

If

Mb‖B‖B(E) +Mbd +M
m∑

k=1

ck < 1, (2.29)

then the IVP (2.1) has a unique mild solution.
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Proof. Transform the problem (2.1) into a fixed point problem. Let the operator
N : PC(J ,E) → PC(J ,E) be defined as in Theorem 2.2. We will show that N is a
contraction. Indeed, consider y, y ∈ PC(J ,E). Then we have, for each t ∈ J ,

∣
∣N(y)(t)−N(y)(t)

∣
∣ ≤
∫ t

0
M
∣
∣B
(
y(s)
)− B(y(s)

)∣∣ds

+
∫ t

0
M
∣
∣ f
(
s, y(s)

)− f
(
s, y(s)

)∣∣ds

+M
m∑

k=1

∣∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

≤M‖B‖B(E)

∫ t

0

∣
∣y(s)− y(s)

∣
∣ds

+Md
∫ t

0

∣
∣y(s)− y(s)

∣
∣ds +M

m∑

k=1

ck
∣
∣y
(
t−k
)− y

(
t−k
)∣∣

≤M‖B‖B(E)

∫ b

0

∣∣y(s)− y(s)
∣∣ds

+Md
∫ b

0

∣
∣y(s)− y(s)

∣
∣ds +M

m∑

k=1

ck‖y − y‖PC

≤Mb‖B‖B(E)‖y − y‖PC +Mbd‖y − y‖PC

+M
m∑

k=1

ck‖y − y‖PC

=
(

Mb‖B‖B(E) +Mbd +M
m∑

k=1

ck

)

‖y − y‖PC.

(2.30)

Then

∥∥N(y)−N(y)
∥∥

PC ≤
(

Mb‖B‖B(E) +Mbd +M
m∑

k=1

ck

)

‖y − y‖PC, (2.31)

showing that N is a contraction, and hence it has a unique fixed point which is a
mild solution to (2.1). �

Now we study the problem (2.2)–(2.5). We give first the definition of mild
solution of the problem (2.2)–(2.5).
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Definition 2.5. A function y ∈ PC1(J ,E) is said to be a mild solution of (2.2)–(2.5)
if y(0) = y0, y′(0) = y1, and y is a solution of the impulsive integral equation

y(t) = (C(t)− S(t)B
)
y0 + S(t)y1 +

∫ t

0
C(t − s)B(y(s)

)
ds

+
∫ t

0
S(t − s) f (s, y(s)

)
ds

+
∑

0<tk<t

[
C
(
t − tk

)
Ik
(
y
(
tk
))− S(t − tk

)
Ik
(
y
(
tk
))]

.

(2.32)

Theorem 2.6. Let f : J × E → E be an L1-Carathéodory function. Assume (2.2.1)
and the following conditions are satisfied:

(2.6.1) there exist constants dk such that |Ik(y)| ≤ dk for each y ∈ E, k =
1, . . . ,m;

(2.6.2) there exists a constant M1 > 0 such that ‖C(t)‖B(E) < M1 for all t ∈ R;
(2.6.3) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞) and

p ∈ L1(J , R+) such that

∣∣ f (t, y)
∣∣ ≤ p(t)ψ

(|y|), for a.e. t ∈ J and each y ∈ E (2.33)

with
∫∞

1

dτ

τ + ψ(τ)
= +∞. (2.34)

(2.6.4) for each bounded B ⊆ PC1(J ,E) and t ∈ J , the set

{
(
C(t)− S(t)B

)
y0 + S(t)y1 +

∫ t

0
C(t − s)B(y(s)

)
ds +

∫ t

0
S(t − s) f (s, y(s)

)
ds

+
∑

0<tk<t

[

C
(
t − tk

)
Ik
(
y
(
t−k
))

+ S
(
t − tk

)
Ik
(
y
(
t−k
))
]

: y ∈ B

}

(2.35)

is relatively compact in E.
Then the IVP (2.2)–(2.5) has at least one mild solution.

Proof. Transform the problem (2.2)–(2.5) into a fixed point problem. Consider
the operator N : PC1(J ,E) → PC1(J ,E) defined by

N(y)(t) = (C(t)− S(t)B
)
y0 + S(t)y1 +

∫ t

0
C(t − s)B(y(s)

)
ds

+
∫ t

0
S(t − s) f (s, y(s)

)
ds

+
∑

0<tk<t

[
C
(
t − tk

)
Ik
(
y
(
t−k
))

+ S
(
t − tk

)
Ik
(
y
(
t−k
))]

.

(2.36)
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As in the proof of Theorem 2.2 we can show thatN is completely continuous. Now
we prove only that the set

E(N) := {y ∈ PC1(J ,E) : y = λN(y), for some 0 < λ < 1
}

(2.37)

is bounded. Let y ∈ E(N). Then for each t ∈ J we have

y(t) = λ

[
(
C(t)− S(t)B

)
y0 + S(t)y1 +

∫ t

0
C(t − s)B(y(s)

)
ds

+
∫ t

0
S(t − s) f (s, y(s)

)
ds

]

+ λ
∑

0<tk<t

[
C
(
t − tk

)
Ik
(
y
(
t−k
))

+ S
(
t − tk

)
Ik
(
y
(
t−k
))]

.

(2.38)

Also

y′(t) = λ

[
(
AS(t)− C(t)B

)
y0 + C(t)y1 + By(t)

+
∫ t

0
AS(t − s)By(s)ds +

∫ t

0
C(t − s) f (s, y(s)

)
ds

]

+ λ
∑

0<tk<t

[
AS
(
t − tk

)
Ik
(
y
(
t−k
))

+ C
(
t − tk

)
Ik
(
y
(
t−k
))]

.

(2.39)

This implies by (2.2.1) and (2.6.1)–(2.6.3) that for each t ∈ J we have

∣
∣y(t)

∣
∣ ≤M1

(
1 + b‖B‖B(E)

)∣∣y0
∣
∣ + bM1

∣
∣y1
∣
∣

+M1‖B‖B(E)

∫ t

0

∣∣y(s)
∣∣ds

+M1b
∫ t

0
p(s)ψ

(∣∣y(s)
∣
∣)ds +M1

m∑

k=1

[
ck + dk

]

≤M1
(
1 + b‖B‖B(E)

)∣∣y0
∣
∣ + bM1

∣
∣y1
∣
∣

+
∫ t

0
m̂(s)

(∣∣y(s)
∣
∣ + ψ

(∣∣y(s)
∣
∣))ds

+M1

m∑

k=1

[
ck + dk

]
,

(2.40)

where

m̂(t) = max
{
M1‖B‖B(E), bM1p(t)

}
. (2.41)
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Let us take the right-hand side of (2.40) as w(t), then we have

w(0) =M1
(
1 + b‖B‖B(E)

)∣∣y0
∣
∣ + bM1

∣
∣y1
∣
∣ +M1

m∑

k=1

(
ck + dk

)
,

∣
∣y(t)

∣
∣ ≤ w(t), t ∈ J ,

w′(t) = m̂(t)
(
w(t) + ψ

(
w(t)

))
, for a.e. t ∈ J.

(2.42)

From (2.39) we have

∣
∣y′(t)

∣
∣ ≤M1

(‖A‖B(E)b + ‖B‖B(E)
)∣∣y0

∣
∣ +M1

∣
∣y1
∣
∣ + ‖B‖B(E)w(t)

+ bM1‖A‖B(E)‖B‖B(E)

∫ t

0

∣∣y(s)
∣∣ds

+M1

∫ t

0
p(s)ψ

(∣∣y(s)
∣
∣)ds +M1

m∑

k=1

[‖A‖B(E)bck + dk
]
.

(2.43)

If we take the right-hand side of (2.43) as z(t), we have

w(t) ≤ z(t), t ∈ J ,
∣
∣y′(t)

∣
∣ ≤ z(t), t ∈ J ,

z(0) =M1
(‖A‖B(E)b + ‖B‖B(E)

)∣∣y0
∣
∣ +M1

∣
∣y1
∣
∣ + ‖B‖B(E)w(0),

z′(t) = ‖B‖B(E)w
′(t) + bM1‖A‖B(E)‖B‖B(E)

∣
∣y(t)

∣
∣ +M1p(t)ψ

(∣∣y(t)
∣
∣)

≤ ‖B‖B(E)w
′(t) + bM1‖A‖B(E)‖B‖B(E)w(t) +M1p(t)ψ

(
w(t)

)

≤ ‖B‖B(E)m̂(t)
(
w(t) + ψ

(
w(t)

))

+ bM1‖A‖B(E)‖B‖B(E)w(t) +M1p(t)ψ
(
w(t)

)

≤ m1(t)
[
w(t) + ψ

(
w(t)

)]

≤ m1(t)
[
z(t) + ψ

(
z(t)
)]

,

(2.44)

where

m1(t) = max
{‖B‖B(E)

(
m̂(t) + bM1‖A‖B(E)‖B‖B(E)

)
,‖B‖B(E)m̂(t) +M1p(t)

}
.

(2.45)

This implies for each t ∈ J that

∫ z(t)

z(0)

dτ

τ + ψ(τ)
≤
∫ b

0
m1(s)ds <∞. (2.46)
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This inequality implies that there exists a constant b∗ such that z(t) ≤ b∗ for each
t ∈ J , and hence

∣
∣y′(t)

∣
∣ ≤ z(t) ≤ b∗,

∣
∣y(t)

∣
∣ ≤ w(t) ≤ z(t) ≤ b∗.

(2.47)

Consequently ‖y‖∗ ≤ b∗.
Set X := PC1(J ,E). As a consequence of Schaefer’s theorem we deduce that N

has a fixed point which is a mild solution of (2.2)–(2.5). �
In this last part of this section we present a uniqueness result for the solutions

of the problem (2.2)–(2.5) by means of the Banach fixed point principle.

Theorem 2.7. Suppose that hypotheses (2.2.1), (2.4.1), (2.4.2), (2.6.2), and the fol-
lowing are satisfied:

(2.7.1) there exist constants ck such that

∣∣Ik(y)− Ik(y)
∣∣ ≤ ck|y − y|, for each k = 1, . . . ,m, ∀y, y ∈ E. (2.48)

If

θ = max
{
θ1, θ2

}
< 1, (2.49)

where

θ1 =M1b‖B‖B(E) + b2M1d +M1
[
ck + bck

]
,

θ2 = ‖B‖B(E) +M1b
2‖A‖B(E)‖B‖B(E) + bM1d +M1

[
b‖A‖B(E)ck + ck

]
,

(2.50)

then the IVP (2.2)–(2.5) has a unique mild solution.

Proof. Transform the problem (2.2)–(2.5) into a fixed point problem. Consider the
operator N defined in Theorem 2.6. We will show that N is a contraction. Indeed,
consider y, y ∈ PC1(J ,E). Thus, for t ∈ J ,

∣
∣N(y)(t)−N(y)(t)

∣
∣ ≤M1

∫ t

0

∣
∣B
(
y(s)
)− B(y(s)

)∣∣ds

+M1b
∫ t

0

∣
∣ f
(
s, y(s)

)− f
(
s, y(s)

)∣∣ds

+
m∑

k=1

∣
∣C
(
t − tk

)∣∣
∣
∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

+
m∑

k=1

∣∣S
(
t − tk

)∣∣∣∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣
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≤M1‖B‖B(E)

∫ b

0

∣∣y(s)− y(s)
∣∣ds

+ bM1d
∫ b

0

∣
∣y(s)− y(s)

∣
∣ds

+M1

m∑

k=1

[
ck + ck

]‖y − y‖PC

≤M1b‖B‖B(E)‖y − y‖PC +M1b
2d‖y − y‖PC

+M1

m∑

k=1

[
ck + ck

]‖y − y‖PC.

(2.51)

Similarly we have

∣
∣N(y)′(t)−N(y)′(t)

∣
∣ ≤ ‖B‖B(E)‖y − y‖PC

+ ‖A‖B(E)b
2M1‖B‖B(E)‖y − y‖PC

+M1db‖y − y‖PC

+
m∑

k=1

[‖A‖B(E)bM1ck +M1ck
]
.

(2.52)

Then

∥∥N(y)−N(y)
∥∥

PC1 ≤ θ‖y − y‖PC1 . (2.53)

Then N is a contraction and hence it has a unique fixed point which is a mild
solution to (2.2)–(2.5). �

2.3. Impulsive ordinary differential inclusions

Again, let J = [0, b] and let 0 = t0 < t1 < · · · < tm < tm+1 = b. In this section,
we will be concerned with the existence of solutions of the first-order initial value
problem for the impulsive differential inclusion:

y′(t) ∈ F
(
t, y(t)

)
, t ∈ J , t �= tk, k = 1, . . . ,m,

y
(
t+k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y0,

(2.54)

where F : J × R → P (R) is a compact convex-valued multivalued map defined
from a single-valued function, y0 ∈ R, and Ik ∈ C(R, R) (k = 1, 2, . . . ,m), and
y(t−k ) and y(t+k ) represent the left and right limits of y(t) at t = tk, respectively. In
addition, let PC(J ,E) be as defined in Section 2.2, with E = R and let AC(J , R) be
the space of all absolutely continuous functions y : J → R.
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Definition 2.8. By a solution to (2.54), we mean a function y ∈ PC(J ,E)∩AC((tk,
tk+1), R), 0 ≤ k ≤ m, that satisfies the differential inclusion

y′(t) ∈ F
(
t, y(t)

)
, a.e. on J\{tk

}
, k = 1, . . . ,m, (2.55)

and for each k = 1, . . . ,m, the function y satisfies the equations y(t+k ) = Ik(y(t−k ))
and y(0) = y0.

For local purposes, we repeat here the definition of a Carathéodory function.

Definition 2.9. A function f : J ×R→ R is said to be Carathéodory if
(i) t �→ f (t, y) is measurable for each y ∈ R;

(ii) y �→ f (t, y) is continuous for almost all t ∈ J .

Definition 2.10. A function f : J × R → R is said to be of type M if for each
measurable function y : J → R, the function t �→ f (t, y(t)) is measurable.

Notice that a Carathéodory map is of type M.
Let f : J ×R→ R be a given function. Define

f (t, y) = lim
u→y inf f (t,u), f (t, y) = lim

u→y sup f (t,u). (2.56)

Also, notice that for all t ∈ J , f is lower semicontinuous (l.s.c.) (i.e., for all t ∈ J ,

{y ∈ R : f (t, y) > α} is open for each α ∈ R), and f is upper semicontinuous

(u.s.c.) (i.e., for all t ∈ J , {y ∈ R : f (t, y) < α} is open for each α ∈ R).
Let f : J ×R→ R. We define the multivalued map F : J ×R→ P (R) by

F(t, y) = [ f (t, y), f (t, y)
]
. (2.57)

We say that F is of “type M” if f and f are of type M.
The following result is crucial in the proofs of our main results.

Theorem 2.11 (see [148, Proposition (VI.1), page 40]). Assume that F is of type M
and for each k ≥ 0, there exists φk ∈ L2(J , R) such that

∥
∥F(t, y)

∥
∥ = sup

{|v| : v ∈ F(t, y)
} ≤ φk(t), for |y| ≤ k. (2.58)

Then the operator F : C(J , R) → P (L2(J , R)) defined by

F y := {h : J �→ R measurable : h(t) ∈ F
(
t, y(t)

)
a.e. t ∈ J

}
(2.59)

is well defined, u.s.c., bounded on bounded sets in C(J , R) and has convex values.

We are now in a position to state and prove our first existence result for the
impulsive IVP (2.54). The proof involves a Martelli fixed point theorem.
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Theorem 2.12. Assume that F : J × R → Pcp,cv(R) is of type M. Suppose that the
following hypotheses hold:

(2.12.1) there exist {ri}mi=0 and {si}mi=0 with s0 ≤ y0 ≤ r0 and

si+1 ≤ min
[si,ri]

Ii+1(y) ≤ max
[si ,ri]

Ii+1(y) ≤ ri+1; (2.60)

(2.12.2)

f
(
t, ri
) ≤ 0, f

(
t, si
) ≥ 0, for t ∈ [ti, ti+1

]
, i = 1, . . . ,m; (2.61)

(2.12.3) there exists ψ : [0,∞) → (0,∞) continuous such that ψ ∈ L2
loc([0,∞))

and

∥
∥F(t, y)

∥
∥ = sup

{|v| : v ∈ F(t, y)
} ≤ ψ

(|y|), ∀t ∈ J. (2.62)

Then the impulsive IVP (2.54) has at least one solution.

Proof. This proof will be given in several steps.
Step 1. We restrict our attention to the problem on [0, t1], that is, the initial value
problem

y′(t) ∈ F
(
t, y(t)

)
, t ∈ (0, t1

)
,

y(0) = y0.
(2.63)

Define the modified function f1 : [0, t1]×R→ R relative to r0 and s0 by

f1(t, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f
(
t, r0
)

if y > r0,

f (t, y) if s0 ≤ y ≤ r0,

f
(
t, s0
)

if y < s0,

(2.64)

and the correponding multivalued map

F1(t, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
f
(
t, r0
)
, f
(
t, r0
)]

if y > r0,
[
f (t, y), f (t, y)

]
if s0 ≤ y ≤ r0,

[
f
(
t, s0
)
, f
(
t, s0
)]

if y < s0.

(2.65)

Consider the modified problem

y′ ∈ F1(t, y), t ∈ [0, t1
)
,

y(0) = y0.
(2.66)

We transform the problem into a fixed point problem. For this, consider the
operators L : H1([0, t1], R) → L2([0, t1], R) (where H1([0, t1], R) is the standard
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Sobolev space) defined by Ly = y′, j : H1([0, t1], R) → C([0, t1], R), the com-
pletely continuous imbedding, and

F : C
([

0, t1
]
, R
)
�→ P

(
L2([0, t1

]
, R
))

(2.67)

defined by

F y = {v :
[
0, t1
]
�→ R measurable : v(t) ∈ F1

(
t, y(t)

)
for a.e. t ∈ [0, t1

]}
.

(2.68)

Clearly, L is linear, continuous, and invertible. It follows from the open map-
ping theorem that L−1 is a bounded linear operator. F is by Theorem 2.11 well-
defined, bounded on bounded subsets ofC([0, t1], R), u.s.c. and has convex values.
Thus, the problem (2.66) is equivalent to y ∈ L−1F j y := G1y. Consequently, G1

is compact, u.s.c., and has convex closed values. ThereforeG1 is a condensing map.
Now we show that the set

M1 := {y ∈ C
([

0, t1
]
, R
)

: λy ∈ G1y for some λ > 1
}

(2.69)

is bounded.
Let λy ∈ G1y for some λ > 1. Then y ∈ λ−1G1y, where

G1y :=
{
g ∈ C

([
0, t1
]
, R
)

: g(t) = y0 +
∫ t

0
h(s)ds : h ∈ F y

}
. (2.70)

Let y ∈ λ−1G1y. Then there exists h ∈ F y such that, for each t ∈ J ,

y(t) = λ−1y0 + λ−1
∫ t

0
h(s)ds. (2.71)

Thus

∣
∣y(t)

∣
∣ ≤ ∣∣y0

∣
∣ + ‖h‖L2 for each t ∈ [0, t1

]
. (2.72)

Now since h(t) ∈ F1(t, y(t)), it follows from the definition of F1(t, y) and assump-
tion (2.12.3) that there exists a positive constant h0 such that ‖h‖L2 ≤ h0. In fact

h0 = max

{
∣
∣r0
∣
∣,
∣
∣s0
∣
∣, sup

s0≤y≤r0

∣
∣ψ(y)

∣
∣
}

. (2.73)

We then have

‖y‖∞ ≤
∣∣y0
∣∣ + h0 < +∞. (2.74)

Hence the theorem of Martelli, Theorem 1.7 applies and so G1 has at least one
fixed point which is a solution on [0, t1] to problem (2.66).



28 Impulsive ordinary differential equations & inclusions

We will show that the solution y of (2.63) satisfies

s0 ≤ y(t) ≤ r0, ∀t ∈ [0, t1
]
. (2.75)

Let y be a solution to (2.66). We prove that

s0 ≤ y(t), ∀t ∈ [0, t1
]
. (2.76)

Suppose not. Then there exist σ1, σ2 ∈ [0, t1], σ1 < σ2 such that y(σ1) = s0 and

s0 > y(t), ∀t ∈ (σ1, σ2
)
. (2.77)

This implies that

f1
(
t, y(t)

) = f
(
t, s0
)
, ∀t ∈ (σ1, σ2

)
,

y′(t) ∈ [ f (t, s0
)
, f
(
t, s0
)]
.

(2.78)

Then

y′(t) ≥ f
(
t, s0
)
, ∀t ∈ (σ1, σ2

)
. (2.79)

This implies that

y(t) ≥ y
(
t1
)

+
∫ t

t1
f
(
s, s0
)
ds, ∀t ∈ (σ1, σ2

)
. (2.80)

Since f (t, s0) ≥ 0 for t ∈ [0, t1], we get

0 > y(t)− y
(
σ1
) ≥
∫ t

σ1

f
(
s, s0
)
ds ≥ 0, ∀t ∈ (σ1, σ2

)
, (2.81)

which is a contradiction. Thus s0 ≤ y(t) for t ∈ [0, t1].
Similarly, we can show that y(t) ≤ r0 for t ∈ [0, t1]. This shows that the

problem (2.66) has a solution y on the interval [0, t1], which we denote by y1.
Then y1 is a solution of (2.63).
Step 2. Consider now the problem

y′ ∈ F2(t, y), t ∈ (t1, t2
)
,

y
(
t+1
) = I1

(
y1
(
t−1
))

,
(2.82)

where

F2(t, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
f
(
t, r1
)
, f
(
t, r1
)]

if y > r1,
[
f (t, y), f (t, y)

]
if s1 ≤ y ≤ r1,

[
f
(
t, s1
)
, f
(
t, s1
)]

if y < s1.

(2.83)
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Analogously, we can show that the set

M2 := {y ∈ C
([
t1, t2

]
, R
)

: λy ∈ G2y for some λ > 1
}

(2.84)

is bounded. Here the operatorG2 is defined byG2 := L−1F j where L−1 : L2([t1, t2],
R) → H1([t1, t2], R), j : H1([t1, t2], R) → C([t1, t2], R) the completely continuous
imbedding, and F : C([t1, t2], R) → P (L2([t1, t2], R)) is defined by

F y = {v :
[
t1, t2

]
�→ R measurable : v(t) ∈ F2

(
t, y(t)

)
for a.e. t ∈ [t1, t2

]}
.

(2.85)

We again apply the theorem of Martelli to show that G2 has a fixed point,
which we denote by y2, and so is a solution of problem (2.82) on the interval
(t1, t2].

We now show that

s1 ≤ y2(t) ≤ r1, ∀t ∈ [t1, t2
]
. (2.86)

Since y1(t−1 ) ∈ [s0, r0], then (2.12.1) implies that

s1 ≤ I1
(
y
(
t−1
)) ≤ r1, i.e. s1 ≤ y

(
t+1
) ≤ r1. (2.87)

Since f (t, r1) ≤ 0 and f (t, s1) ≥ 0, we can show that

s1 ≤ y2(t) ≤ r1, for t ∈ [t1, t2
]
, (2.88)

and hence y2 is a solution to

y′ ∈ F(t, y), t ∈ (t1, t2
)
,

y
(
t+1
) = I1

(
y1
(
t−1
))
.

(2.89)

Step 3. We continue this process and we construct solutions yk on [tk−1, tk], with
k = 3, . . . ,m + 1, to

y′ ∈ F(t, y), t ∈ (tk−1, tk
)
,

y
(
t+k−1

) = Ik−1
(
yk−1
(
t−k−1

))
,

(2.90)

with sk−1 ≤ yk(t) ≤ rk−1 for t ∈ [tk−1, tk]. Then

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1(t), t ∈ [0, t1
]
,

y2(t), t ∈ (t1, t2
]
,

...

ym+1(t), t ∈ (tm,T
]
,

(2.91)

is a solution to (2.54). �
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Using the same reasoning as that used in the proof of Theorem 2.12, we can
obtain the following result.

Theorem 2.13. Suppose that F : J×R→ Pcp,cv(R) is of type M. Suppose the follow-
ing hypotheses hold.

(2.13.1) There are functions {ri}mi=0 and {si}mi=0 with ri, si ∈ C([ti, ti+1]) and
si(t) ≤ ri(t) for t ∈ [ti, ti+1], i = 0, . . . ,m. Also, s0 ≤ y0 ≤ r0 and

si+1
(
t+i+1

) ≤ min
[si(t−i+1),ri(t−i+1)]

Ii+1(y)

≤ max
[si(t−i+1),ri(t−i+1)]

Ii+1(y)

≤ ri+1
(
t+i+1

)
, i = 0, . . . ,m− 1.

(2.92)

(2.13.2)

∫ wi

zi
f
(
t, si(t)

)
dt ≥ si

(
wi
)− si

(
zi
)
,

∫ wi

zi
f
(
t, ri(t)

)
dt ≤ ri

(
wi
)− ri

(
zi
)
, i = 0, . . . ,m

(2.93)

with

zi < wi, zi,wi ∈
[
ti, ti+1

]
. (2.94)

Then the impulsive IVP (2.54) has at least one solution.

Consider now the following initial value problem for first-order impulsive
differential inclusions of the type

y′(t) ∈ F
(
t, y(t)

)
, a.e. t ∈ J , t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y0,

(2.95)

where F : J ×Rn → P (Rn) is a multivalued map with nonempty compact values,
y0 ∈ Rn, P (Rn) is the family of all subsets of Rn, Ik ∈ C(Rn, Rn) (k = 1, 2, . . . ,m),
Δy|t=tk = y(t+k )− y(t−k ), y(t−k ) and y(t+k ) represent the left and right limits of y(t)
at t = tk, respectively. Our existence results in this scenario will involve the Leray-
Schauder alternative as well as Schaefer’s theorem.

Definition 2.14. A function y ∈ PC(J , Rn)∩ AC((tk, tk+1), Rn), 0 ≤ k ≤ m, is said
to be a solution of (2.95) if y satisfies the differential inclusion y′(t) ∈ F(t, y(t))
a.e. on J − {t1, . . . , tm} and the conditions Δy|t=tk = Ik(y(t−k )), and y(0) = y0.

The first result of this section concerns the a priori estimates on possible so-
lutions of the problem (2.95).
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Theorem 2.15. Suppose that the following is satisfied:
(2.15.1) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)

and p ∈ L1(J , R+) such that

∥
∥F(t, y)

∥
∥ ≤ p(t)ψ

(|y|), for a.e. t ∈ J and each y ∈ R
n, (2.96)

with

∫ tk

tk−1

p(s)ds <
∫∞

Nk−1

du

ψ(u)
, k = 1, . . . ,m + 1, (2.97)

where

N0 =
∣
∣y0
∣
∣, Nk−1 = sup

y∈[−Mk−2,Mk−2]

∣
∣Ik−1(y)

∣
∣ +Mk−2,

Mk−2 = Γ−1
k−1

(∫ tk−1

tk−2

p(s)ds

)

,
(2.98)

for k = 1, . . . ,m + 1, and

Γl(z) =
∫ z

Nl−1

du

ψ(u)
, z ≥ Nl−1, l ∈ {1, . . . ,m + 1

}
. (2.99)

Then for each k = 1, . . . ,m + 1 there exists a constant Mk−1 such that

sup
{∣∣y(t)

∣∣ : t ∈ [tk, tk−1
]} ≤Mk−1, (2.100)

for each solution y of the problem (2.95).

Proof. Let y be a possible solution to (2.95). Then y|[0,t1] is a solution to

y′(t) ∈ F
(
t, y(t)

)
, for a.e. t ∈ [0, t1

]
, y(0) = y0. (2.101)

Since |y|′ ≤ |y′|, we have

∣
∣y(t)

∣
∣′ ≤ p(t)ψ

(∣∣y(t)
∣
∣), for a.e. t ∈ [0, t1

]
. (2.102)

Let t∗ ∈ [0, t1] such that

sup
{∣∣y(t)

∣
∣ : t ∈ [0, t1

]} = ∣∣y(t∗)
∣
∣. (2.103)

Then

∣
∣y(t)

∣
∣′

ψ
(∣∣y(t)

∣
∣) ≤ p(t), for a.e. t ∈ [0, t1

]
. (2.104)
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From this inequality, it follows that

∫ t∗

0

∣
∣y(s)

∣
∣′

ψ
(∣∣y(s)

∣
∣)ds ≤

∫ t∗

0
p(s)ds. (2.105)

Using the change of variable formula, we get

Γ1
(∣∣y(t∗)

∣
∣) =

∫ |y(t∗)|

|y(0)|
du

ψ(u)
≤
∫ t∗

0
p(s)ds ≤

∫ t1

0
p(s)ds. (2.106)

In view of (2.15.1), we obtain

∣∣y(t∗)
∣∣ ≤ Γ−1

1

(∫ t1

0
p(s)ds

)
. (2.107)

Hence

∣
∣y(t∗)

∣
∣ = sup

{∣∣y(t)
∣
∣ : t ∈ [0, t1

]} ≤ Γ−1
1

(∫ t1

0
p(s)ds

)
:=M0. (2.108)

Now y|[t1,t2] is a solution to

y′(t) ∈ F
(
t, y(t)

)
, for a.e. t ∈ [t1, t2

]
,

Δy|t=t1 = I1
(
y
(
t1
))
.

(2.109)

Note that

∣
∣y
(
t+1
)∣∣ ≤ sup

y∈[−M0,M0]

∣
∣Ik−1(y)

∣
∣ +M0 := N1. (2.110)

Then

∣∣y(t)
∣∣′ ≤ p(t)ψ

(∣∣y(t)
∣∣), for a.e. t ∈ [t1, t2

]
. (2.111)

Let t∗ ∈ [t1, t2] such that

sup
{∣∣y(t)

∣
∣ : t ∈ [t1, t2

]} = ∣∣y(t∗)
∣
∣. (2.112)

Then

∣
∣y(t)

∣
∣′

ψ
(∣∣y(t)

∣
∣) ≤ p(t). (2.113)

From this inequality, it follows that

∫ t∗

t1

∣
∣y(s)

∣
∣′

ψ
(∣∣y(s)

∣
∣)ds ≤

∫ t∗

t1
p(s)ds. (2.114)
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Proceeding as above, we obtain

Γ2
(∣∣y(t∗)

∣∣) =
∫ |y(t∗)|

N1

du

ψ(u)
≤
∫ t∗

t1
p(s)ds ≤

∫ t2

t1
p(s)ds. (2.115)

This yields

∣∣y(t∗)
∣∣ = sup

{∣∣y(t)
∣∣ : t ∈ [t1, t2

]} ≤ Γ−1
2

(∫ t2

t1
p(s)ds

)
:=M1. (2.116)

We continue this process and taking into account that y|[tm,T] is a solution to the
problem

y′(t) ∈ F
(
t, y(t)

)
, for a.e. t ∈ [tm,T

]
,

Δy|t=tm = Im
(
y
(
tm
))
.

(2.117)

We obtain that there exists a constant Mm such that

sup
{∣∣y(t)

∣∣ : t ∈ [tm,T
]} ≤ Γ−1

m+1

(∫ T

tm
p(s)ds

)
:=Mm. (2.118)

Consequently, for each possible solution y to (2.95), we have

‖y‖PC ≤ max
{∣∣y0

∣
∣, Mk−1 : k = 1, . . . ,m + 1

}
:= b̂. (2.119)

�

Theorem 2.16. Suppose (2.15.1) and the following hypotheses are satisfied:
(2.16.1) F : J ×Rn → P (Rn) is a nonempty compact-valued multivalued map

such that
(a) (t, y) �→ F(t, y) is L⊗B measurable,
(b) y �→ F(t, y) is lower semicontinuous for a.e. t ∈ J ;

(2.16.2) for each r > 0, there exists a function hr ∈ L1(J , R+) such that
∥
∥F(t, y)

∥
∥

:= sup
{|v| : v ∈ F(t, y)

} ≤ hr(t), for a.e. t ∈ J and for y∈R
n with |y|≤ r.

(2.120)

Then the impulsive IVP (2.95) has at least one solution.

Proof. Hypotheses (2.16.1) and (2.16.2) imply by Lemma 1.29 that F is of lower
semicontinuous type. Then from Theorem 1.5 there exists a continuous function
f : PC(J , Rn) → L1(J , Rn) such that f (y) ∈ F (y) for all y ∈ PC(J , Rn).

Consider the following problem:

(
y′(t)

) = f
(
y(t)
)
, t ∈ J , t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y0.

(2.121)
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Remark 2.17. If y ∈ PC(J , Rn) is a solution of the problem (2.121), then y is a
solution to the problem (2.95).

Transform the problem (2.121) into a fixed point problem. Consider the op-
erator N : PC(J , Rn) → PC(J , Rn) defined by

N(y)(t) := y0 +
∫ t

0
f
(
y(s)
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
. (2.122)

We will show that N is a compact operator.
Step 1. N is continuous.

Let {yn} be a sequence such that yn → y in PC(J , Rn). Then

∣∣N
(
yn(t)

)−N(y(t)
)∣∣ ≤

∫ t

0

∣∣ f
(
yn(s)

)− f
(
y(s)
)∣∣ds

+
∑

0<tk<t

∣
∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣

≤
∫ b

0

∣
∣ f
(
yn(s)

)− f
(
y(s)
)∣∣ds

+
∑

0<tk<t

∣∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣.

(2.123)

Since the functions f and Ik, k = 1, . . . ,m are continuous, then

∥∥N
(
yn
)−N(y)

∥∥
PC ≤

∥∥ f
(
yn
)− f (y)

∥∥
L1 +

m∑

k=1

∣∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣ �→ 0,

(2.124)

as n→∞.
Step 2. N maps bounded sets into bounded sets in PC(J , Rn).

It is enough to show that there exists a positive constant � such that for each
y ∈ Bq = {y ∈ PC(J , Rn) : ‖y‖PC ≤ q} we have ‖N(y)‖PC ≤ �.

Indeed, since Ik (k = 1, . . . ,m) are continuous and from (2.16.2), we have

∣
∣N(y)(t)

∣
∣ ≤ ∣∣y0

∣
∣ +
∫ t

0

∣
∣ f
(
y(s)
)∣∣ds +

∑

0<tk<t

∣
∣Ik
(
y
(
t−k
))∣∣

≤ ∣∣y0
∣
∣ +
∥
∥hq
∥
∥
L1 +

m∑

k=1

∣
∣Ik
(
y
(
t−k
))∣∣ := �.

(2.125)

Step 3. N maps bounded sets into equicontinuous sets of PC(J , Rn).
Let r1, r2 ∈ J ′, and let Bq = {y ∈ PC(J , Rn) : ‖y‖PC ≤ q} be a bounded set of

PC(J , Rn). Then

∣
∣N(y)

(
r2
)−N(y)

(
r1
)∣∣ ≤

∫ r2

r1

hq(s)ds +
∑

0<tk<r2−r1

∣
∣Ik
(
y
(
t−k
))∣∣. (2.126)
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As r2 → r1, the right-hand side of the above inequality tends to zero. This proves
the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It remains to examine the
equicontinuity at t = ti. The proof is similar to that given in Theorem 2.2. Then
N(Bq) is equicontinuous.

Set

U = {y ∈ PC
(
J , Rn

)
: ‖y‖PC < b̂ + 1

}
, (2.127)

where b̂ is the constant of Theorem 2.15. As a consequence of Steps 1 to 3, to-
gether with the Arzelá-Ascoli theorem, we can conclude that N : U → PC(J , Rn) is
compact.

From the choice ofU there is no y ∈ ∂U such that y = λN y for any λ ∈ (0, 1).
As a consequence of the nonlinear alternative of the Leray-Schauder type [157] we
deduce that N has a fixed point y ∈ U which is a solution of the problem (2.121)
and hence a solution to the problem (2.95). �

We present now a result for the problem (2.95) in the spirit of Schaefer’s the-
orem.

Theorem 2.18. Suppose that hypotheses (2.2.1), (2.16.1), (2.16.2), and the following
are satisfied:

(2.18.1) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1(J , R+) such that

∥∥F(t, y)
∥∥ ≤ p(t)ψ

(|y|) (2.128)

for a.e. t ∈ J and each y ∈ Rn with

∫ b

0
p(s)ds <

∫∞

c

du

ψ(u)
, c = ∣∣y0

∣∣ +
m∑

k=1

ck. (2.129)

Then the impulsive IVP (2.95) has at least one solution.

Proof. In Theorem 2.16, for the problem (2.121), we proved that the operator N
is completely continuous. In order to apply Schaefer’s theorem it remains to show
that the set

E(N) := {y ∈ PC
(
J , Rn

)
: λy = N(y), for some λ > 1

}
(2.130)

is bounded. Let y ∈ E(N). Then λy = N(y) for some λ > 1. Thus

y(t) = λ−1y0 + λ−1
∫ t

0
f
(
y(s)
)
ds + λ−1

∑

0<tk<t

Ik
(
y
(
t−k
))
. (2.131)
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This implies that for each t ∈ J we have

∣
∣y(t)

∣
∣ ≤ ∣∣y0

∣
∣ +
∫ t

0
p(s)ψ

(∣∣y(s)
∣
∣)ds +

m∑

k=1

∣
∣Ik
(
y
(
t−k
))∣∣

≤ ∣∣y0
∣
∣ +
∫ t

0
p(s)ψ

(∣∣y(s)
∣
∣)ds +

m∑

k=1

ck.

(2.132)

Let v(t) represent the right-hand side of the above inequality. Then

v(0) = ∣∣y0
∣
∣ +

m∑

k=1

ck, v′(t) = p(t)ψ
(∣∣y(t)

∣
∣), for a.e. t ∈ J. (2.133)

Since ψ is nondecreasing, we have

v′(t) ≤ p(t)ψ
(
v(t)
)
, for a.e. t ∈ J. (2.134)

It follows that
∫ t

0

v′(s)
ψ
(
v(s)
)ds ≤

∫ t

0
p(s)ds. (2.135)

We then have
∫ v(t)

v(0)

du

ψ(u)
≤
∫ t

0
p(s)ds ≤

∫ b

0
p(s)ds <

∫∞

v(0)

du

ψ(u)
. (2.136)

This inequality implies that there exists a constant d depending only on the func-
tions p and ψ such that

∣
∣y(t)

∣
∣ ≤ d, for each t ∈ J. (2.137)

Hence

‖y‖PC := sup
{∣∣y(t)

∣
∣ : 0 ≤ t ≤ T

} ≤ d. (2.138)

This shows that E(N) is bounded. As a consequence of Schaefer’s theorem (see
[220]) we deduce thatN has a fixed point y which is a solution to problem (2.121).
Then, from Remark 2.17, y is a solution to the problem (2.95). �

Remark 2.19. We can easily show that the above reasoning with appropriate hy-
potheses can be applied to obtain existence results for the following second-order
impulsive differential inclusion:

y′′(t) ∈ F
(
t, y(t)

)
, a.e. t ∈ J , t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y0, y′(0) = y1,

(2.139)
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where F, Ik (k = 1, . . . ,m), y0 are as in the problem (2.95) and Ik ∈ C(Rn, Rn)
(k = 1, . . . ,m), y1 ∈ Rn. The details are left to the reader.

In the next discussion, we extend the above results to the semilinear case. That
is, in a fashion similar to the development of the theory for semilinear equations,
we deal first with the existence of mild solutions for the impulsive semilinear evo-
lution inclusion:

y′(t)− Ay(t) ∈ F
(
t, y(t)

)
, t ∈ J , t �= tk, k = 1, . . . ,m,

y
(
t+k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = a,

(2.140)

where F : J×E → P (E) is a closed, bounded and convex-valued multivalued map,
a ∈ E, A is the infinitesimal generator of a strongly continuous semigroup T(t),
t ≥ 0, Ik ∈ C(E,E) (k = 1, 2, . . . ,m), and y(t−k ) and y(t+k ) represent the left and
right limits of y(t) at t = tk, respectively.

Again, let us start by defining what we mean by a solution of problem (2.140).

Definition 2.20. A function y ∈ PC(J ,E) ∩ AC((tk, tk+1),E), 0 ≤ k ≤ m, is said
to be a mild solution of (2.140) if there exists a function v ∈ L1(J ,E) such that
v(t) ∈ F(t, y(t)) a.e. on Jk , and

y(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T(t)a +
∫ t

0
T(t − s)v(s)ds, if t ∈ J0,

T
(
t − tk

)
Ik
(
y
(
t−k
))

+
∫ t

tk
T(t − s)v(s)ds, if t ∈ Jk.

(2.141)

For the multivalued map F and for each y ∈ C(Jk,E) we define S1
F,y by

S1
F,y =

{
v ∈ L1(Jk,E

)
: v(t) ∈ F

(
t, y(t)

)
, for a.e. t ∈ Jk

}
. (2.142)

We are now in a position to state and prove our existence result for the IVP (2.140).

Theorem 2.21. Assume that (2.2.2) holds. In addition suppose the following hypothe-
ses hold.

(2.21.1) F : J × E → Pb,cp,cv(E) is an L1-Carathéodory multivalued map.
(2.21.2) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)

with
∫∞

0 (du/ψ(u)) = ∞ and p ∈ L1(J , R+) such that

∥
∥F(t, y)

∥
∥ := sup

{|v| : v ∈ F(t, y)
} ≤ p(t)ψ

(|y|) (2.143)

for a.e. t ∈ J and for all y ∈ E.
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(2.21.3) For each bounded set B ⊆ C(Jk,E) and for each t ∈ Jk, the set

{

T
(
t − tk

)
Ik
(
y
(
t−k
))

+
∫ tk

0
T(t − s)v(s)ds : v ∈ S1

F,B

}

(2.144)

is relatively compact in E, where S1
F,B = ∪{S1

F,y : y ∈ B} and k =
0, . . . ,m.

Then problem (2.140) has at least one mild solution y ∈ PC(J ,E).

Remark 2.22. (i) If dimE < ∞, then for each y ∈ C(Jk,E), S1
F,y �= ∅ (see Lasota

and Opial [186]).
(ii) If dimE = ∞ and y ∈ C(Jk,E), the set S1

F,y is nonempty if and only if the
function Y : J → R defined by

Y(t) := inf
{|v| : v ∈ F(t, y)

}
(2.145)

belongs to L1(J , R) (see Hu and Papageorgiou [170]).

Proof of Theorem 2.21. The proof is given in several steps.
Step 1. Consider the problem (2.140) on J0 := [0, t1],

y′ − Ay ∈ F(t, y), a.e. t ∈ J0,

y(0) = a.
(2.146)

We transform this problem into a fixed point problem. A solution to (2.146) is a
fixed point of the operator G : C(J0,E) → P (C(J0,E)) defined by

G(y) :=
{
h ∈ C

(
J0,E
)

: h(t) = T(t)a +
∫ t

0
T(t − s)v(s)ds : v ∈ S1

F,y

}
. (2.147)

We will show that G satisfies the assumptions of Theorem 1.7.
Claim 1. G(y) is convex for each y ∈ C(J0,E).

Indeed, if h, h belong to G(y), then there exist v ∈ S1
F,y and v ∈ S1

F,y such that

h(t) = T(t)a +
∫ t

0
T(t − s)v(s)ds, t ∈ J0,

h(t) = T(t)a +
∫ t

0
T(t − s)v(s)ds, t ∈ J0.

(2.148)

Let 0 ≤ l ≤ 1. Then for each t ∈ J0 we have

[
lh + (1− l)h](t) = T(t)a +

∫ t

0
T(t − s)[lv(s) + (1− l)v(s)

]
ds. (2.149)

Since S1
F,y is convex (because F has convex values), then

lh + (1− l)h ∈ G(y). (2.150)



Impulsive ordinary differential inclusions 39

Claim 2. G sends bounded sets into bounded sets in C(J0,E).
Let Br := {y ∈ C0(J0,E) : ‖y‖∞ := sup{|y(t)| : t ∈ J0} ≤ r} be a bounded set

in C0(J0,E) and y ∈ Br . Then for each h ∈ G(y) there exists v ∈ S1
F,y such that

h(t) = T(t)a +
∫ t

0
T(t − s)v(s)ds, t ∈ J0. (2.151)

Thus for each t ∈ J0 we get

∣
∣h(t)

∣
∣ ≤M|a| +M

∫ t

0

∣
∣v(s)

∣
∣ds

≤M|a| +M
∥
∥φr
∥
∥
L1 .

(2.152)

Claim 3. G sends bounded sets in C(J0,E) into equicontinuous sets.
Let u1,u2 ∈ J0, u1 < u2, Br := {y ∈ C(J0,E) : ‖y‖∞ ≤ r} be a bounded set in

C0(J0,E) as in Claim 2 and y ∈ Br . For each h ∈ G(y) we have
∣
∣h
(
u2
)− h(u1

)∣∣ ≤ ∣∣T(u2
)
a− T(u1

)
a
∣
∣

+
∣
∣
∣∣

∫ u2

0

[
T
(
u2 − s

)− T(u1 − s
)]
v(s)ds

∣
∣
∣∣

+
∣
∣∣
∣

∫ u2

u1

T
(
u1 − s

)
v(s)ds

∣
∣∣
∣

≤ ∣∣T(u2
)
a− T(u1

)
a
∣∣

+
∣∣
∣
∣

∫ u2

0

[
T
(
u2 − s

)− T(u1 − s
)]
v(s)ds

∣∣
∣
∣

+M
∫ u2

u1

∣
∣v(s)

∣
∣ds.

(2.153)

As a consequence of Claims 2, 3, and (2.21.3), together with the Arzelá-Ascoli
theorem, we can conclude that G : C(J0,E) → P (C(J0,E)) is a compact multival-
ued map, and therefore, a condensing map.
Claim 4. G has a closed graph.

Let yn → y∗, hn ∈ G(yn), and hn → h∗. We will prove that h∗ ∈ G(y∗).
hn ∈ G(yn) means that there exists vn ∈ SF,yn such that

hn(t) = T(t)a +
∫ t

0
T(t − s)vn(s)ds, t ∈ J0. (2.154)

We must prove that there exists v∗ ∈ S1
F,y∗ such that

h∗(t) = T(t)a +
∫ t

0
T(t − s)v∗(s)ds, t ∈ J0. (2.155)

Consider the linear continuous operator Γ : L1(J0,E) → C(J0,E) defined by

(Γv)(t) =
∫ t

0
T(t − s)v(s)ds. (2.156)
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We have

∥
∥(hn − T(t)a

)− (h∗ − T(t)a
)∥∥∞ �→ 0, as n �→∞. (2.157)

From Lemma 1.28, it follows that Γ ◦ S1
F is a closed graph operator.

Also from the definition of Γ we have that

hn(t)− T(t)a ∈ Γ
(
S1
F,yn

)
. (2.158)

Since yn → y∗, it follows from Lemma 1.28 that

h∗(t) = T(t)a +
∫ t

0
T(t − s)v∗(s)ds, t ∈ J0, (2.159)

for some v∗ ∈ S1
F,y∗ .

Claim 5. Now we show that the set

M := {y ∈ C
(
J0,E
)

: λy ∈ G(y) for some λ > 1
}

(2.160)

is bounded.
Let y ∈ M. Then λy ∈ G(y) for some λ > 1. Thus there exists v ∈ S1

F,y such
that

y(t) = λ−1T(t)a + λ−1
∫ t

0
T(t − s)v(s)ds, t ∈ J0. (2.161)

Thus for each t ∈ J0 we have

∣∣y(t)
∣∣ ≤M|a| +M

∫ t

0

∣∣v(s)
∣∣ds

≤M|a| +M
∫ t

0
p(s)ψ

(∣∣y(s)
∣
∣)ds.

(2.162)

As a consequence of Lemma 1.30, we obtain

‖y‖∞ ≤
∥∥z0
∥∥∞, (2.163)

where z0 is the unique solution on J0 of the integral equation

z(t)−M|a| =M
∫ t

0
p(s)ψ

(
z(s)
)
ds. (2.164)

This shows that M is bounded. Hence Theorem 1.7 applies andG has a fixed point
which is a mild solution to problem (2.146). Denote this solution by y0.
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Step 2. Consider now the following problem on J1 := [t1, t2]:

y′ − Ay ∈ F(t, y), a.e. t ∈ J1,

y
(
t+1
) = I1

(
y
(
t−1
))
.

(2.165)

A solution to (2.165) is a fixed point of the operator G : PC(J1,E) → P (C(J1,E))
defined by

G(y) :=
{

h ∈ PC
(
J1,E
)

: h(t) = T
(
t − t1

)
I1
(
y
(
t−1
))

+
∫ t

t1
T(t − s)v(s)ds : v ∈ S1

F,y

}

.

(2.166)

As in Step 1, we can easily show that G has convex values, is condensing and upper
semicontinuous. It suffices to show that the set

M := {y ∈ PC
(
J1,E
)

: λy ∈ G(y) for some λ > 1
}

(2.167)

is bounded.
Let y ∈ M. Then λy ∈ G(y) for some λ > 1. Thus there exists v ∈ S1

F,y such
that

y(t) = λ−1T
(
t − t1

)
I1
(
y
(
t−1
))

+ λ−1
∫ t

t1
T(t − s)v(s)ds, t ∈ J1. (2.168)

Thus for each t ∈ J1 we have

∣∣y(t)
∣∣ ≤M sup

t∈J0

∣∣I1
(
y0(t)

)∣∣ +M
∫ t

t1

∣∣v(s)
∣∣ds

≤M sup
t∈J0

∣∣I1
(
y0(t)

)∣∣ +M
∫ t

t1
p(s)ψ

(∣∣y(s)
∣∣)ds.

(2.169)

As a consequence of Lemma 1.30, we obtain

‖y‖∞ ≤
∥
∥z1
∥
∥∞, (2.170)

where z1 is the unique solution on J1 of the integral equation

z(t)−M sup
t∈J0

∣∣I1
(
y0(t)

)∣∣ =M
∫ t

t1
p(s)ψ

(
z(s)
)
ds. (2.171)

This shows that M is bounded. Hence Theorem 1.7 applies andG has a fixed point
which is a mild solution to problem (2.165). Denote this solution by y1.
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Step 3. Continue this process and construct solutions yk ∈ PC(Jk,E), k = 2, . . . ,m,
to

y′(t)− Ay(t) ∈ F
(
t, y(t)

)
, a.e. t ∈ Jk ,

y
(
t+k
) = Ik

(
y
(
t−k
))
.

(2.172)

Then

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0(t) if t ∈ [0, t1
]
,

y1(t) if t ∈ (t1, t2
]
,

...

ym−1(t) if t ∈ (tm−1, tm
]
,

ym(t) if t ∈ (tm, b
]

(2.173)

is a mild solution of (2.140). �
We investigate now the existence of mild solutions for the impulsive semilin-

ear evolution inclusion of the form

y′(t)− A(t)y(t) ∈ F
(
t, y(t)

)
, t ∈ J , t �= tk, k = 1, . . . ,m,

y
(
t+k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = a,

(2.174)

where F : J × E → P (E) is a closed, bounded and convex-valued multivalued
map, a ∈ E, A(t), t ∈ J a linear closed operator from a dense subspace D(A(t))
of E into E, E a real “ordered” Banach space with the norm | · |, Ik ∈ C(E,E)
(k = 1, 2, . . . ,m), and y(t−k ) and y(t+k ) represent the left and right limits of y(t) at
t = tk, respectively.

The notions of lower-mild and upper-mild solutions for differential equations
in ordered Banach spaces can be found in the book of Heikkilä and Lakshmikan-
tham [163].

In our results we do not assume any type of monotonicity condition on Ik,
k = 1, . . . ,m, which is usually the situation in the literature; see, for instance, [176,
190].

So again, we explain what we mean by a mild solution of problem (2.174).

Definition 2.23. A function y ∈ PC(J ,E) is said to be a mild solution of (2.174)
(see [210]) if there exists a function v ∈ L1(J ,E) such that v(t) ∈ F(t, y(t)) a.e. on
Jk, and

y(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T(t, 0)a +
∫ t

0
T(t, s)v(s)ds, t ∈ J0,

T
(
t, tk
)
Ik
(
y
(
t−k
))

+
∫ t

tk
T(t, s)v(s)ds, t ∈ Jk.

(2.175)
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For the development, we need the notions of lower-mild and upper-mild so-
lutions for the problem (2.174).

Definition 2.24. A function y ∈ PC(J ,E) is said to be a lower-mild solution of
(2.174) if there exists a function v1 ∈ L1(J ,E) such that v1(t) ∈ F(t, y(t)) a.e. on
Jk, and

y(t) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T(t, 0)a +
∫ t

0
T(t, s)v1(s)ds, t ∈ J0,

T
(
t, tk
)
Ik
(
y
(
t−k
))

+
∫ t

tk
T(t, s)v1(s)ds, t ∈ Jk.

(2.176)

Similarly a function y ∈ PC(J ,E) is said to be an upper-mild solution of (2.174)
if there exists a function v2 ∈ L1(J ,E) such that v2(t) ∈ F(t, y(t)) a.e. on Jk, and

y(t) ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T(t, 0)a +
∫ t

0
T(t, s)v2(s)ds, t ∈ J0,

T
(
t, tk
)
Ik
(
y
(
t−k
))

+
∫ t

tk
T(t, s)v2(s)ds, t ∈ Jk.

(2.177)

For the multivalued map F and for each y ∈ C(Jk,E) we define S1
F,y by

S1
F,y =

{
v ∈ L1(Jk,E

)
: v(t) ∈ F

(
t, y(t)

)
, for a.e. t ∈ Jk

}
. (2.178)

We are now in a position to state and prove our first existence result for prob-
lem (2.174).

Theorem 2.25. Assume that F : J × E → Pb,cp,cv(E) and (2.21.1) holds. In addition
suppose the following hypotheses hold.

(2.25.1) A(t), t ∈ J , is continuous such that

A(t)y = lim
h→0+

T(t + h, t)y − y

h
, y ∈ D

(
A(t)

)
, (2.179)

where T(t, s) ∈ B(E) for each (t, s) ∈ γ := {(t, s); 0 ≤ s ≤ t ≤ b},
satisfying

(i) T(t, t) = I (I is the identity operator in E),
(ii) T(t, s)T(s, r) = T(t, r) for 0 ≤ r ≤ s ≤ t ≤ b,

(iii) the mapping (t, s) �→ T(t, s)y is strongly continuous in γ for each
y ∈ E,

(iv) |T(t, s)| ≤M for (t, s) ∈ γ.
(2.25.2) There exist y, y, respectively, lower-mild and upper-mild solutions for

(2.174) such that y ≤ y.
(2.25.3) y(t+k ) ≤ min[y(t−k ),y(t−k )] Ik(y) ≤ max[y(t−k ),y(t−k )] Ik(y) ≤ y(t+k ), k =

1, . . . ,m.
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(2.25.4) T(t, s) is order-preserving for all (t, s) ∈ γ.
(2.25.5) For each bounded set B ⊆ C(Jk,E) and for each t ∈ Jk, the set

{∫ tk

0
T(t, s)v(s)ds : v ∈ S1

F,B

}

(2.180)

is relatively compact in E, where S1
F,B = ∪{S1

F,y : y ∈ B} and k =
0, . . . ,m.

Then problem (2.174) has at least one mild solution y ∈ PC(J ,E) with

y(t) ≤ y(t) ≤ y(t), ∀t ∈ J. (2.181)

Remark 2.26. If T(t, s), (t, s) ∈ γ, is completely continuous, then (2.25.5) is auto-
matically satisfied.

Proof. The proof is given in several steps.
Step 1. Consider the problem (2.174) on J0 := [0, t1],

y′(t)− A(t)y(t) ∈ F
(
t, y(t)

)
, a.e. t ∈ J0,

y(0) = a.
(2.182)

We transform this problem into a fixed point problem. Let τ : C(J0,E) → C(J0,E)
be the truncation operator defined by

(τ y)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

y(t) if y < y(t),

y(t) if y(t) ≤ y ≤ y(t),

y(t) if y(t) < y.

(2.183)

Consider the modified problem

y′(t)− A(t)y(t) ∈ F
(
t, (τ y)(t)

)
, a.e. t ∈ J0,

y(0) = a.
(2.184)

Set

C0
(
J0,E
)

:= {y ∈ C
(
J0,E
)

: y(0) = a
}
. (2.185)

A solution to (2.184) is a fixed point of the operator G : C0(J0,E) → P (C0(J0,E))
defined by

G(y) :=
{

h ∈ C0
(
J0,E
)

: h(t) = T(t, 0)a +
∫ t

0
T(t, s)v(s)ds : v ∈ S̃1

F,τ y

}

,

(2.186)
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where

S̃1
F,τ y =

{
v ∈ S1

F,τ y : v(t) ≥ v1(t) a.e. on A1, v(t) ≤ v2(t) a.e. on A2
}

,

S1
F,τ y =

{
v ∈ L1(J0,E

)
: v(t) ∈ F

(
t, (τ y)(t)

)
for a.e. t ∈ J0

}
,

A1 =
{
t ∈ J : y(t) < y(t) ≤ y(t)

}
, A2 =

{
t ∈ J : y(t) ≤ y(t) < y(t)

}
.

(2.187)

Remark 2.27. For each y ∈ C(J ,E), the set S̃1
F,τ y is nonempty. Indeed, by (2.21.1),

there exists v ∈ S1
F,y . Set

w = v1χA1 + v2χA2 + vχA3 , (2.188)

where

A3 =
{
t ∈ J : y(t) ≤ y(t) ≤ y(t)

}
. (2.189)

Then by decomposability w ∈ S̃1
F,τ y .

We will show that G satisfies the assumptions of Theorem 1.7.
Claim 1. G(y) is convex for each y ∈ C0(J0,E).

This is obvious since S̃1
F,τ y is convex (because F has convex values).

Claim 2. G sends bounded sets into relatively compact sets in C0(J0,E).
This is a consequence of the boundedness of T(t, s), (t, s) ∈ γ, and the L1-Car-

athédory character of F. As a consequence of Claim 2, together with the Arzelá-
Ascoli theorem, we can conclude that G : C0(J0,E) → P (C0(J0,E)) is a compact
multivalued map, and therefore a condensing map.
Claim 3. G has a closed graph.

Let yn → y∗, hn ∈ G(yn), and hn → h∗. We will prove that h∗ ∈ G(y∗).
hn ∈ G(yn) means that there exists vn ∈ S̃F,τ yn such that

hn(t) = T(t, 0)a +
∫ t

0
T(t, s)vn(s)ds, t ∈ J0. (2.190)

We must prove that there exists v∗ ∈ S̃1
F,τ y∗ such that

h∗(t) = T(t, 0)a +
∫ t

0
T(t, s)v∗(s)ds, t ∈ J0. (2.191)

Consider the linear continuous operator Γ : L1(J0,E) → C(J0,E) defined by

(Γv)(t) =
∫ t

0
T(t, s)v(s)ds. (2.192)

We have

∥∥(hn − T(t, 0)a
)− (h∗ − T(t, 0)a

)∥∥∞ �→ 0, as n �→∞. (2.193)
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From Lemma 1.28, it follows that Γ ◦ S̃1
F is a closed graph operator.

Also from the definition of Γ we have that

hn(t)− T(t, 0)a ∈ Γ
(
S̃1
F,τ yn

)
. (2.194)

Since yn → y∗, it follows from Lemma 1.28 that

h∗(t) = T(t, 0)a +
∫ t

0
T(t, s)v∗(s)ds, t ∈ J0, (2.195)

for some v∗ ∈ S̃1
F,τ y∗ .

Claim 4. Now we show that the set

M := {y ∈ C0
(
J0,E
)

: λy ∈ G(y) for some λ > 1
}

(2.196)

is bounded.
Let y ∈ M. Then λy ∈ G(y) for some λ > 1. Thus there exists v ∈ S̃1

F,τ y such
that

y(t) = λ−1T(t, 0)a + λ−1
∫ t

0
T(t, s)v(s)ds, t ∈ J0. (2.197)

Thus

∣
∣y(t)

∣
∣ ≤M|a| +M

∫ t

0

∣
∣v(s)

∣
∣ds, t ∈ J0. (2.198)

From the definition of τ there exists ϕ ∈ L1(J , R+) such that

∥
∥F
(
t, (τ y)(t)

)∥∥ = sup
{|v| : v ∈ F

(
t, (τ y)(t)

)} ≤ ϕ(t), for each y ∈ C(J ,E).
(2.199)

Thus we obtain

‖y‖∞ ≤M|a| +M‖ϕ‖L1 . (2.200)

This shows that M is bounded. Hence Theorem 1.7 applies and G has a fixed
point which is a mild solution to problem (2.174).
Claim 5. We will show that the solution y of (2.182) satisfies

y(t) ≤ y(t) ≤ y(t), ∀t ∈ J0. (2.201)

Let y be a solution to (2.182). We prove that

y(t) ≤ y(t), ∀t ∈ J0. (2.202)
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Suppose not. Then there exist e1, e2 ∈ J0, e1 < e2 such that y(e1) = y(e1) and

y(t) > y(t), ∀t ∈ (e1, e2
)
. (2.203)

In view of the definition of τ, one has

y(t) ∈ T
(
t, e1
)
y
(
e1
)

+
∫ t

e1

T(t, s)F
(
s, y(s)

)
ds, a.e. on

(
e1, e2

)
. (2.204)

Thus there exists v(t) ∈ F(t, y(t)) a.e. on (e1, e2), with v(t) ≥ v1(t) a.e. on (e1, e2),
such that

y(t) = T
(
t, e1
)
y
(
e1
)

+
∫ t

e1

T(t, s)v(s)ds, t ∈ (e1, e2
)
. (2.205)

Since y is a lower-mild solution to (2.174), then

y(t)− T(t, e1
)
y
(
e1
) ≤
∫ t

e1

T(t, s)v1(s)ds, t ∈ (e1, e2
)
. (2.206)

Since y(e1) = y(e1) and v(t) ≥ v1(t), it follows that

y(t) ≤ y(t), ∀t ∈ (e1, e2
)
, (2.207)

which is a contradiction since y(t) < y(t) for all t ∈ (e1, e2). Consequently

y(t) ≤ y(t), ∀t ∈ J0. (2.208)

Analogously, we can prove that

y(t) ≤ y(t), ∀t ∈ J0. (2.209)

This shows that the problem (2.182) has a mild solution in the interval [y, y].
Since τ(y) = y for all y ∈ [y, y], then y is a mild solution to (2.174). Denote this
solution by y0.
Step 2. Consider now the following problem on J1 := [t1, t2]:

y′(t)− A(t)y(t) ∈ F
(
t, y(t)

)
, a.e. t ∈ J1,

y
(
t+1
) = I1

(
y0
(
t−1
))

,
(2.210)
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and the modified problem

y′(t) ∈ F
(
t, (τ y)(t)

)
, a.e. t ∈ J1,

y
(
t+1
) = I1

(
y0
(
t−1
))
.

(2.211)

Since y0(t−1 ) ∈ [y(t−1 ), y(t−1 )], then (2.25.3) implies that

y
(
t+1
) ≤ I1

(
y0
(
t−1
)) ≤ y

(
t+1
)
; (2.212)

that is,

y
(
t+1
) ≤ y

(
t+1
) ≤ y

(
t+1
)
. (2.213)

Using the same reasoning as that used for problem (2.182), we can conclude the
existence of at least one mild solution y to (2.211).

We now show that this solution satisfies

y(t) ≤ y(t) ≤ y(t), ∀t ∈ J1. (2.214)

We first show that

y(t) ≤ y(t), on J1. (2.215)

Assume this is false. Then since y(t+1 ) ≥ y(t+1 ), there exist e3, e4 ∈ J1 with
e3 < e4 such that y(e3) = y(e3) and y(t) < y(t) on (e3, e4).

Consequently,

y(t)− T(e3, t
)
y
(
e3
) =
∫ t

e3

T(t, s)v(s)ds, t ∈ (e3, e4
)
, (2.216)

where v(t) ∈ F(t, y(t)) a.e. on J1 with v(t) ≥ v1(t) a.e. on (e3, e4).
Since y is a lower-mild solution to (2.174), then

y(t)− T(e3, t
)
y
(
e3
) ≤
∫ t

e3

v1(s)ds, t ∈ (e3, e4
)
. (2.217)

It follows that

y(t) ≤ y(t), on
(
e3, e4

)
, (2.218)

which is a contradiction. Similarly we can show that y(t) ≤ y(t) on J1. Hence y is
a solution of (2.174) on J1. Denote this by y1.
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Step 3. Continue this process and construct solutions yk ∈ C(Jk,E), k = 2, . . . ,m,
to

y′(t)− A(t)y(t) ∈ F
(
t, (τ y)(t)

)
, a.e. t ∈ Jk,

y
(
t+k
) = Ik

(
y
(
t−k
))

,
(2.219)

with y(t) ≤ yk(t) ≤ y(t), t ∈ Jk := [tk, tk+1]. Then

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0(t), t ∈ [0, t1
]
,

y1(t), t ∈ (t1, t2
]
,

...

ym−1(t), t ∈ (tm−1, tm
]
,

ym(t), t ∈ (tm, b
]
,

(2.220)

is a mild solution of (2.174). �
Using the same reasoning as that used in the proof of Theorem 2.25, we can

obtain the following result.

Theorem 2.28. Assume that F : J × E → Pb,cp,cv(E), and in addition to (2.21.1),
(2.25.1), and (2.25.5), suppose that the following hypotheses hold.

(2.28.1) There exist functions {rk}k=mk=0 and {sk}k=mk=0 with rk, sk ∈ C(Jk,E),
s0(0) ≤ a ≤ r0(0), and sk(t) ≤ rk(t) for t ∈ Jk, k = 0, . . . ,m, and

sk+1
(
t+k+1

) ≤ min
[sk(t−k+1),rk(t−k+1)]

Ik+1(y) ≤ max
[sk(t−k+1),rk(t−k+1)]

Ik+1(y)

≤ rk+1
(
t+k+1

)
, k = 0, . . . ,m− 1.

(2.221)

(2.28.2) There exist v1,k, v2,k ∈ L1(Jk,E), with v1,k(t) ∈ F(t, sk(t)), v2,k(t) ∈
F(t, rk(t)) a.e. on Jk such that for each k = 0, . . . ,m,

∫ t

zk
T(t, s)v1,k(s)ds ≥ sk(t)− sk

(
zk
)
,

∫ t

zk
T(t, s)v2,k(s)ds ≥ rk(t)− rk

(
zk
)
, with t, zk ∈ Jk.

(2.222)

Then the problem (2.174) has at least one mild solution.

2.4. Ordinary damped differential inclusions

Again, we let J = [0, b], and 0 = t0 < t1 < · · · < tm < tm+1 = b are fixed points of
impulse. In this section, we will be concerned with the existence of mild solutions
for first- and second-order impulsive semilinear damped differential inclusions in
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a real Banach space. First, we consider first-order impulsive semilinear differential
inclusions of the form

y′(t)− Ay(t) ∈ By + F
(
t, y(t)

)
, a.e. t ∈ J , t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y0,

(2.223)

where F : J × E → P (E) is a multivalued map (P (E) is the family of all nonempty
subsets of E), A is the infinitesimal generator of a semigroup T(t), t ≥ 0, B is
a bounded linear operator from E into E, y0 ∈ E, Ik ∈ C(E,E) (k = 1, . . . ,m),
Δy|t=tk = y(t+k )− y(t−k ), y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0+ y(tk − h),
and E is a real separable Banach space with norm | · |.

Later, we study second-order impulsive semilinear evolution inclusions of the
form

y′′(t)− Ay ∈ By′(t) + F
(
t, y(t)

)
, a.e. t ∈ J , t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y0, y′(0) = y1,

(2.224)

where F, Ik, B, and y0 are as in problem (2.223), A is the infinitesimal generator of
a family of cosine operators {C(t) : t ≥ 0}, Ik ∈ C(E,E), and y1 ∈ E.

We study the existence of solutions for problem (2.223) when the right-hand
side has convex values. We assume that F : J × E → P(E) is a compact and convex
valued multivalued map.

Let PC(J ,E) be as given in Section 2.2, and let us start by defining what we
mean by a mild solution of problem (2.223).

Definition 2.29. A function y ∈ PC(J ,E) is said to be a mild solution of (2.223) if
there exists a function v ∈ L1(J ,E) such that v(t) ∈ F(t, y(t)) a.e. on J and

y(t) = T(t)y0 +
∫ t

0
T(t − s)B(y(s)

)
ds +

∫ t

0
T(t − s)v(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(2.225)

Theorem 2.30. Assume that hypotheses (2.2.1), (2.21.1) hold. In addition we suppose
that the following conditions are satisfied.

(2.30.1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continu-
ous semigroup T(t), t ≥ 0, which is compact for t > 0, and there exists
a constant M such that ‖T(t)‖B(E) ≤M for each t ≥ 0.

(2.30.2) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1(J , R+) such that

∥∥F(t, y)
∥∥ ≤ p(t)ψ

(|y|), for a.e. t ∈ J and each y ∈ E, (2.226)
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with

∫ b

0
m(s)ds <

∫∞

c

du

u + ψ(u)
, (2.227)

where

m(t) = max
{
M‖B‖B(E),Mp(t)

}
, c =M

[
∣
∣y0
∣
∣ +

m∑

k=1

ck

]

. (2.228)

Then the IVP (2.223) has at least one mild solution.

Proof. Transform the problem (2.223) into a fixed point problem. Consider the
multivalued operator N : PC(J ,E) → P (PC(J ,E)) defined by

N(y) =
{

h ∈ PC(J ,E) : h(t) = T(t)y0 +
∫ t

0
T(t − s)B(y(s)

)
ds

+
∫ t

0
T(t − s)g(s)ds +

∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

, g ∈ SF(y)

}

.

(2.229)

We will show that N satisfies the assumptions of Theorem 1.9. The proof will
be given in several steps. Let

K := {y ∈ PC(J ,E) : ‖y‖PC ≤ a(t), t ∈ J
}

, (2.230)

where

a(t) = I−1
(∫ t

0
m(s)ds

)
,

I(z) =
∫ z

c

du

u + ψ(u)
.

(2.231)

It is clear that K is a closed bounded convex set. Let k∗ = sup{‖y‖PC : y ∈ K}.
Step 1. N(K) ⊂ K .

Indeed, let y ∈ K and fix t ∈ J . We must show that N(y) ∈ K . There exists
g ∈ SF(y) such that, for each t ∈ J ,

h(t) = T(t)y0 +
∫ t

0
T(t − s)B(y(s)

)
ds +

∫ t

0
T(t − s)g(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(2.232)
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Thus

∣∣h(t)
∣∣ ≤M

∣∣y0
∣∣ +M

m∑

k=1

ck +
∫ t

0
m(s)

(∣∣y(s)
∣∣ + ψ

(∣∣y(s)
∣∣))ds

≤M
∣
∣y0
∣
∣ +M

m∑

k=1

ck +
∫ t

0
m(s)

(
a(s) + ψ

(
a(s)
))
ds

=M
∣∣y0
∣∣ +M

m∑

k=1

ck +
∫ t

0
a′(s)ds

= a(t)

(2.233)

since

∫ a(s)

c

du

u + ψ(u)
=
∫ s

0
m(τ)dτ. (2.234)

Thus, N(y) ∈ K . So, N : K → K .
Step 2. N(K) is relatively compact.

Since K is bounded and N(K) ⊂ K , it is clear that N(K) is bounded. N(K) is
equicontinuous. Indeed, let τ1, τ2 ∈ J ′, τ1 < τ2, and ε > 0 with 0 < ε ≤ τ1 < τ2. Let
y ∈ K and h ∈ N(y). Then there exists g ∈ SF(y) such that for each t ∈ J we have

∣∣h
(
τ2
)− h(τ1

)∣∣ ≤ ∣∣T(τ2
)
y0 − T

(
τ1
)
y0
∣∣

+
∫ τ1−ε

0

∥∥T
(
τ2 − s

)− T(τ1 − s
)∥∥

B(E)

∣∣By(s)
∣∣ds

+
∫ τ1−ε

τ1

∥
∥T
(
τ2 − s

)− T(τ1 − s
)∥∥

B(E)

∣
∣By(s)

∣
∣ds

+
∫ τ2

τ1

∥∥T
(
τ2 − s

)∥∥
B(E)

∣∣By(s)
∣∣ds

+
∫ τ1−ε

0

∥
∥T
(
τ2 − s

)− T(τ1 − s
)∥∥

B(E)

∣
∣g(s)

∣
∣ds

+
∫ τ1−ε

τ1

∥
∥T
(
τ2 − s

)− T(τ1 − s
)∥∥

B(E)

∣
∣g(s)

∣
∣ds

+
∫ τ2

τ1

∥
∥T
(
τ2 − s

)∥∥
B(E)

∣
∣g(s)

∣
∣ds +Mck

(
τ2 − τ1

)

+
∑

0<tk<τ1

ck
∥
∥T
(
τ1 − tk

)− T(τ2 − tk
)∥∥

B(E).

(2.235)

The right-hand side tends to zero as τ2 − τ1 → 0, and for ε sufficiently small, since
T(t) is a strongly continuous operator and the compactness of T(t), for t > 0,
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implies the continuity in the uniform operator topology. This proves the equicon-
tinuity for the case where t �= ti, i = 1, . . . ,m. It remains to examine the equiconti-
nuity at t = ti. The proof is similar to that given in Theorem 2.2. As a consequence
of the Arzelá-Ascoli theorem it suffices to show that the multivalued N maps K
into a precompact set in E. Let 0 < t ≤ b be fixed and let ε be a real number
satisfying 0 < ε < t. For y ∈ K , we define

hε(t) = T(t)y0 + T(ε)
∫ t−ε

0
T(t − s− ε)

(
By(s)

)
ds

+ T(ε)
∫ t−ε

0
T(t − s− ε)g(s)ds

+ T(ε)
∑

0<tk<t−ε
T
(
t − tk − ε

)
Ik
(
y
(
t−k
))

,

(2.236)

where g ∈ SF(y). Since T(t) is a compact operator, the set Hε(t) = {hε(t) : hε ∈
N(y)} is precompact in E for every ε, 0 < ε < t. Moreover, for every h ∈ N(y), we
have

∣
∣hε(t)− h(t)

∣
∣ ≤ ‖B‖B(E)k

∗
∫ t

t−ε

∥
∥T(t − s)∥∥B(E)ds

+
∫ t

t−ε

∥∥T(t − s)∥∥B(E)

∣∣a(s)
∣∣ds

+
∑

t−ε≤tk<t
ck
∥∥T
(
t − tk

)∥∥
B(E).

(2.237)

Therefore there are precompact sets arbitrarily close to the set {h(t) : h ∈ N(y)}.
Hence the set {h(t) : h ∈ N(y)} is precompact in E.
Step 3. N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists gn ∈ SF(yn) such that, for each t ∈ J ,

hn(t) = T(t)y0 +
∫ t
T(t − s)Byn(s)ds +

∫ t

0
T(t − s)gn(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
yn
(
t−k
))
.

(2.238)

We must prove that there exists g∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) = T(t)y0 +
∫ t

0
T(t − s)By∗(s)ds +

∫ t

0
T(t − s)g∗(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y∗
(
t−k
))
.

(2.239)



54 Impulsive ordinary differential equations & inclusions

Clearly since Ik, k = 1, . . . ,m, and B are continuous, we have that

∥∥
∥
∥
∥

(

hn − T(t)y0 −
∑

0<tk<t

T
(
t − tk

)
Ik
(
yn
(
t−k
))−

∫ t

0
T(t − s)Byn(s)ds

)

−
(

h∗ − T(t)y0 −
∑

0<tk<t

T
(
t − tk

)
Ik
(
y∗
(
t−k
))

−
∫ t

0
T(t − s)By∗(s)ds

)∥∥∥
∥
∥
∞
�→ 0 as n �→∞.

(2.240)

Consider the linear continuous operator

Γ : L1(J ,E) �→ C(J ,E),

g � �→ Γ(g)(t) =
∫ t

0
T(t − s)g(s)ds.

(2.241)

From Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator. Moreover,
we have that

hn(t)− T(t)y0 −
∑

0<tk<t

T
(
t − tk

)
Ik
(
yn
(
t−k
))−

∫ t

0
T(t − s)Byn(s)ds ∈ Γ

(
SF(yn)

)
.

(2.242)

Since yn → y∗, it follows from Lemma 1.28 that

h∗(t)− T(t)y0 −
∑

0<tk<t

T
(
t − tk

)
Ik
(
y∗
(
t−k
))−

∫ t

0
T(t − s)By∗(s)ds

=
∫ t

0
T(t − s)g∗(s)ds

(2.243)

for some g∗ ∈ SF(y∗).
As a consequence of Theorem 1.9, we deduce that N has a fixed point which

is a mild solution of (2.223). �
We present now a result for the problem (2.223) by using Covitz and Nadler’s

fixed point theorem.

Theorem 2.31. Suppose that the following hypotheses hold.
(2.31.1) F : J × E → Pcp,cv(E); (t, ·) �→ F(t, y) is measurable for each y ∈ E.
(2.31.2) There exists constants c′k such that

∣∣Ik(y)− Ik(y)
∣∣ ≤ c′k|y − y|, for each k = 1, . . . ,m, ∀y, y ∈ E. (2.244)
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(2.31.3) There exists a function l ∈ L1(J , R+) such that

Hd
(
F(t, y),F(t, y)

) ≤ l(t)|y − y|, for a.e. t ∈ J , ∀y, y ∈ E,

d
(
0,F(t, 0)

) ≤ l(t), for a.e. t ∈ J.
(2.245)

If

2
τ

+M
m∑

k=1

ck < 1, (2.246)

where τ ∈ R+, then the IVP (2.223) has at least one mild solution.

Remark 2.32. For each y ∈ PC(J ,E), the set SF(y) is nonempty since by (2.31.1) F
has a measurable selection (see [119, Theorem III.6]).

Proof of Theorem 2.31. Transform the problem (2.223) into a fixed point prob-
lem. Let the multivalued operator N : PC(J ,E) → P (PC(J ,E)) be defined as in
Theorem 2.30. We will show that N satisfies the assumptions of Theorem 1.11.
The proof will be given in two steps.
Step 1. N(y) ∈ Pcl(PC(J ,E)) for each y ∈ PC(J ,E).

Indeed, let (yn)n≥0 ∈ N(y) such that yn → ỹ in PC(J ,E). Then ỹ ∈ PC(J ,E)
and there exists gn ∈ SF(y) such that, for each t ∈ J ,

yn(t) = T(t)y0 +
∫ t

0
T(t − s)By(s)ds +

∫ t

0
T(t − s)gn(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(2.247)

Using the fact that F has compact values and from (2.31.3), we may pass to a
subsequence if necessary to get that gn converges to g in L1(J ,E) and hence g ∈
SF(y). Then, for each t ∈ J ,

yn(t) �→ ỹ(t) = T(t)y0 +
∫ t

0
T(t − s)By(s)ds

+
∫ t

0
T(t − s)g(s)ds +

∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(2.248)

So ỹ ∈ N(y).
Step 2. There exists γ < 1 such that

Hd
(
N(y),N(y)

) ≤ γ‖y − y‖PC, for each y, y ∈ PC(J ,E). (2.249)
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Let y, y ∈ PC(J ,E) and h ∈ N(y). Then there exists g(t) ∈ F(t, y(t)) such that,
for each t ∈ J ,

h(t) = T(t)y0 +
∫ t

0
T(t − s)By(s)ds +

∫ t

0
T(t − s)g(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(2.250)

From (2.31.3) it follows that

Hd
(
F
(
t, y(t)

)
,F
(
t, y(t)

)) ≤ l(t)
∣
∣y(t)− y(t)

∣
∣. (2.251)

Hence there is w ∈ F(t, y(t)) such that

∣
∣g(t)−w∣∣ ≤ l(t)

∣
∣y(t)− y(t)

∣
∣, t ∈ J. (2.252)

Consider U : J → P(E) given by

U(t) = {w ∈ E :
∣∣g(t)−w∣∣ ≤ l(t)

∣∣y(t)− y(t)
∣∣}. (2.253)

Since the multivalued operator V(t) = U(t) ∩ F(t, y(t)) is measurable (see [119,
Proposition III.4]), there exists a function g(t), which is a measurable selection for
V . So, g(t) ∈ F(t, y(t)) and

∣
∣g(t)− g(t)

∣
∣ ≤ l(t)

∣
∣y(t)− y(t)

∣
∣, for each t ∈ J. (2.254)

Let us define, for each t ∈ J ,

h(t) = T(t)y0 +
∫ t

0
T(t − s)By(s)ds +

∫ t

0
T(t − s)g(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(2.255)

We define on PC(J ,E) an equivalent norm to ‖ · ‖PC by

‖y‖1 = sup
t∈J

{
e−τL(t)

∣
∣y(t)

∣
∣}, ∀y ∈ PC(J ,E), (2.256)

where L(t) = ∫ t0 M̂(s)ds, τ ∈ R+, and M̂(t) = max{M‖B‖B(E),Ml(t)}.
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Then

∣
∣h(t)− h(t)

∣
∣ ≤
∫ t

0
M̂(s)

∣
∣y(s)− y(s)

∣
∣ds +

∫ t

0
M̂(s)

∣
∣y(s)− y(s)

∣
∣ds

+M
m∑

k=1

c′k
∣
∣y(s)− y(s)

∣
∣

≤ 2
∫ t

0
M̂(s)e−τL(s)eτL(s)

∣
∣y(s)− y(s)

∣
∣ds

+M
m∑

k=1

c′ke
−τL(s)eτL(s)

∣
∣y(s)− y(s)

∣
∣

≤ 2
∫ t

0

(
eτL(s))′ds‖y − y‖1 +M

m∑

k=1

c′ke
τL(s)‖y − y‖1

≤ 2
τ
‖y − y‖1e

τL(t) +M
m∑

k=1

c′k‖y − y‖1e
τL(t).

(2.257)

Then

‖h− h‖1 ≤
(

2
τ

+M
m∑

k=1

c′k

)

‖y − y‖1. (2.258)

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

Hd
(
N(y),N(y)

) ≤
(

2
τ

+M
m∑

k=1

c′k

)

‖y − y‖1. (2.259)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point y, which is
a mild solution to (2.223). �

Now we study the problem (2.224) when the right-hand side has convex val-
ues. We give first the definition of mild solution of the problem (2.224).

Definition 2.33. A function y ∈ PC1(J ,E) is said to be a mild solution of (2.224)
if there exists v ∈ L1(J , Rn) such that v(t) ∈ F(t, y(t)) a.e. on J , y(0) = y0, y′(0) =
y1, and

y(t) = (C(t)− S(t)B
)
y0 + S(t)y1 +

∫ t

0
C(t − s)By(s)ds +

∫ t

0
S(t − s)v(s)ds

+
∑

0<tk<t

[
C
(
t − tk

)
Ik
(
y
(
t−k
))

+ S
(
t − tk

)
Ik
(
y
(
t−k
))]

.

(2.260)
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Theorem 2.34. Assume (2.2.1), (2.21.1), and the following conditions are satisfied:
(2.34.1) there exist constants dk such that |Ik(y)| ≤ dk for each y ∈ E, k =

1, . . . ,m;
(2.34.2) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continu-

ous cosine family {C(t) : t ∈ J} which is compact for t > 0, and there
exists a constant M1 > 0 such that ‖C(t)‖B(E) < M1 for all t ∈ R;

(2.34.3) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1(J , R+) such that

∥
∥F(t, y)

∥
∥ ≤ p(t)ψ

(|y|), for a.e. t ∈ J and each y ∈ E (2.261)

with

∫ b

0
m̂(s)ds <

∫∞

c̃

dτ

τ + ψ(τ)
, (2.262)

where

c̃ =M1
(
1 + b‖B‖B(E)

)∣∣y0
∣∣ + bM1

∣∣y1
∣∣ +M1

m∑

k=1

[
ck + bdk

]
,

m̂(t) = max
(
M1‖B‖, bM1p(t)

)
.

(2.263)

Then the IVP (2.224) has at least one mild solution.

Proof. Transform the problem (2.224) into a fixed point problem. Consider the
multivalued operator N : PC1(J ,E) → P (PC1(J ,E)) defined by

N(y) =
{

h ∈ PC1(J ,E) : h(t) = (C(t)− S(t)B
)
y0 + S(t)y1

+
∫ t

0
C(t − s)By(s)ds +

∫ t

0
S(t − s)v(s)ds

+
∑

0<tk<t

[
C
(
t − tk

)
Ik
(
y
(
t−k
))

+ S
(
t − tk

)
Ik
(
y
(
t−k
))]

, v ∈ SF(y)

}

.

(2.264)

As in Theorem 2.30, we will show thatN satisfies the assumptions of Theorem 1.9.
Let

K1 := {y ∈ PC1(J ,E) : ‖y‖PC ≤ b(t), t ∈ J
}

, (2.265)
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where

b(t) = I−1
(∫ t

0
m̂(s)ds

)
, I(z) =

∫ z

c̃

du

u + ψ(u)
. (2.266)

It is clear that K is a closed bounded convex set.
Step 1. N(K1) ⊂ K1.

Indeed, let y ∈ K1 and fix t ∈ J . We must show thatN(y) ⊂ K1. Let h ∈ N(y).
Thus there exists v ∈ SF(y) such that, for each t ∈ J ,

h(t) = (C(t)− S(t)B
)
y0 + S(t)y1 +

∫ t

0
C(t − s)By(s)ds +

∫ t

0
S(t − s)v(s)ds

+
∑

0<tk<t

[
C
(
t − tk

)
Ik
(
y
(
t−k
))

+ S
(
t − tk

)
Ik
(
y
(
t−k
))]

.

(2.267)

This implies that for each t ∈ J we have

∣
∣h(t)

∣
∣ ≤M1

(
1 + b‖B‖B(E)

)∣∣y0
∣
∣ + bM1

∣
∣y1
∣
∣ +M1

∫ t

0

∣
∣By(s)

∣
∣ds

+
∫ t

0
M1bp(s)ψ

(∣∣y(s)
∣∣)ds +M1

m∑

k=1

[
ck + bdk

]

≤M1
(
1 + b‖B‖B(E)

)∣∣y0
∣
∣ + bM1

∣
∣y1
∣
∣ +M1‖B‖B(E)

∫ t

0

∣
∣y(s)

∣
∣ds

+M1b
∫ t

0
p(s)ψ

(∣∣y(s)
∣
∣)ds +M1

m∑

k=1

[
ck + bdk

]

≤M1
(
1 + b‖B‖B(E)

)∣∣y0
∣∣ + bM1

∣∣y1
∣∣ +
∫ t

0
m̂(s)

(
b(s) + ψ

(
b(s)
))
ds

+M1

m∑

k=1

[
ck + bdk

]

=M1
(
1 + b‖B‖B(E)

)∣∣y0
∣
∣ + bM1

∣
∣y1
∣
∣ +M1

m∑

k=1

[
ck + bdk

]
+
∫ t

0
b′(s)ds

= b(t)
(2.268)

since

∫ b(s)

c̃

du

u + ψ(u)
=
∫ s

0
m̂(τ)dτ. (2.269)

Thus, N(y) ⊂ K1. So, N : K1 → K1.
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As in Theorem 2.30, we can show that N(K1) is relatively compact and hence
by Theorem 1.9 the operatorN has at least one fixed point which is a mild solution
to problem (2.224). �

Theorem 2.35. Suppose that hypotheses (2.31.1)–(2.31.3) and (2.34.2) hold. In ad-

dition, suppose there exist constants d
′
k such that

∣
∣Ik(y)− Ik(y)

∣
∣ ≤ d′k|y − y|, for each k = 1, . . . ,m, (2.270)

and for all y, y ∈ E. If

‖B‖B(E) +
2
τ

+M1

m∑

k=1

[
c′k + bd′k

]
< 1, (2.271)

then the IVP (2.224) has at least one mild solution.

Proof. Transform the problem (2.224) into a fixed point problem. Consider the
multivalued map N : PC1(J ,E) → P (PC1(J ,E)) where N is defined as in Theorem
2.34. As in the proof of Theorem 2.31, we can show that N has closed values. Here
we repeat the proof that N is a contraction; that is, there exists γ < 1 such that

Hd
(
N(y),N(y)

) ≤ γ‖y − y‖PC1 , for each y, y ∈ PC1(J ,E). (2.272)

Let y, y ∈ PC1(J ,E) and h ∈ N(y). Then there exists g(t) ∈ F(t, y(t)) such that,
for each t ∈ J ,

h(t) = (C(t)− S(t)B
)
y0 + S(t)y1 +

∫ t

0
C(t − s)By(s)ds +

∫ t

0
S(t − s)g(s)ds

+
∑

0<tk<t

[
C
(
t − tk

)
Ik
(
y
(
t−k
))

+ S
(
t − tk

)
Ik
(
y
(
t−k
))]

.

(2.273)

From (2.31.3) it follows that

Hd
(
F
(
t, y(t)

)
,F
(
t, y(t)

)) ≤ l(t)
∣
∣y(t)− y(t)

∣
∣. (2.274)

Hence there is w ∈ F(t, y(t)) such that

∣∣g(t)−w∣∣ ≤ l(t)
∣∣y(t)− y(t)

∣∣, t ∈ J. (2.275)

Consider U : J → P(E), given by

U(t) = {w ∈ E :
∣∣g(t)−w∣∣ ≤ l(t)

∣∣y(t)− y(t)
∣∣}. (2.276)
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Since the multivalued operator V(t) = U(t) ∩ F(t, y(t)) is measurable (see [119,
Proposition III.4]), there exists a function g(t), which is a measurable selection for
V . So, g(t) ∈ F(t, y(t)) and

∣∣g(t)− g(t)
∣∣ ≤ l(t)

∣∣y(t)− y(t)
∣∣, for each t ∈ J. (2.277)

Let us define, for each t ∈ J ,

h(t) = (C(t)− S(t)B
)
y0 + S(t)y1 +

∫ t

0
C(t − s)By(s)ds +

∫ t

0
S(t − s)g(s)ds

+
∑

0<tk<t

[
C
(
t − tk

)
Ik
(
y
(
t−k
))

+ S
(
t − tk

)
Ik
(
y
(
t−k
))]

.

(2.278)

We define on PC1(J ,E) an equivalent norm by

‖y‖2 = sup
t∈J

e−τL̃(t)
∣
∣y(t)

∣
∣, ∀y ∈ PC1(J ,E), (2.279)

where L̃(t) = ∫ t0 M̃(s)ds, τ ∈ R+, and M̃(t) = max{bM1‖B‖B(E)‖B‖B(E),M1bl(t)}.
Then we have

∣
∣h(t)− h(t)

∣
∣ ≤
∫ t

0
M1
∣
∣By(s)− By(s)

∣
∣ds +

∫ t

0
M1b

∣
∣g(s)− g(s)

∣
∣ds

+M1

m∑

k=1

∣
∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

+M1b
m∑

k=1

∣
∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

≤
∫ t

0
M1‖B‖B(E)

∣
∣y(s)− y(s)

∣
∣ds +

∫ t

0
M1bl(s)

∣
∣y(s)− y(s)

∣
∣ds

+M1

m∑

k=1

c′k
∣
∣y
(
tk
)− y

(
tk
)∣∣ +M1b

m∑

k=1

d′k
∣
∣y
(
tk
)− y

(
tk
)∣∣

≤ 2
∫ t

0
M̃(s)eτL̃(t)e−τL̃(t)

∣∣y(s)− y(s)
∣∣ds

+M1e
τL̃(t)

m∑

k=1

[
c′k + bd′k

]‖y − y‖2

≤ 2
τ
eτL̃(t)‖y − y‖2 +M1e

τL̃(t)
m∑

k=1

[
c′k + bd′k

]‖y − y‖2.

(2.280)



62 Impulsive ordinary differential equations & inclusions

Similarly we have

∣
∣h′(t)− h′(t)∣∣ ≤

(

‖B‖B(E) +
2
τ

+M1

m∑

k=1

[
c′k + bd′k

]
)

‖y − y‖2. (2.281)

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

Hd
(
N(y),N(y)

) ≤
(

‖B‖B(E) +
2
τ

+M1

m∑

k=1

[
c′k + bd′k

]
)

‖y − y‖2. (2.282)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point y, which is
a mild solution to (2.224). �

2.5. Notes and remarks

Chapter 2 is devoted to the existence of solutions of ordinary differential inclu-
sions and mild solutions for first- and second-order impulsive semilinear evolu-
tion equations and inclusions. In recent years a mixture of classical fixed points
theorems, semigroup theory, evolution families, and cosine families has been em-
ployed to study these problems. Section 2.2 is based on the work of Benchohra
et al. [87]. Section 2.3 uses the method of upper- and lower-solutions combined
with a fixed point theorem for condensing maps to investigate some of these prob-
lems; see Benchohra and Ntouyas [47, 67, 80, 86]. The techniques in this sec-
tion have been adapted from [140] where the nonimpulsive case was discussed.
In Section 2.4, some results of Section 2.2 are extended to first- and second-order
semilinear damped differential inclusions, and are based on the results that were
obtained by Benchohra et al. [69]. The second part of Section 2.4 relies on a Covitz
and Nadler fixed point theorem for contraction multivalued operators.



3
Impulsive functional differential
equations & inclusions

3.1. Introduction

While the previous chapter was devoted to ordinary differential equations and in-
clusions involving impulses, our attention in this chapter is turned to functional
differential equations and inclusions each undergoing impulse effects. These equa-
tions and inclusions have played an important role in areas involving hereditary
phenomena for which a delay argument arises in the modelling equation or in-
clusion. There are also a number of applications in which the delayed argument
occurs in the derivative of the state variable, which are sometimes modelled by
neutral differential equations or neutral differential inclusions.

This chapter presents a theory for the existence of solutions of impulsive func-
tional differential equations and inclusions, including scenarios of neutral equa-
tions, as well as semilinear models. The methods used throughout the chapter
range over applications of the Leray-Schauder nonlinear alternative, Schaefer’s
fixed point theorem, a Martelli fixed point theorem for multivalued condensing
maps, and a Covitz-Nadler fixed point theorem for multivalued maps.

3.2. Impulsive functional differential equations

In this section, we will establish existence theory for first- and second-order im-
pulsive functional differential equations. The section will be divided into parts. In
the first part, by a nonlinear alternative of Leray-Schauder type, we will present an
existence result for the first-order initial value problem

y′(t) = f
(
t, yt
)
, a.e. t ∈ J := [0,T], t �= tk, k = 1, . . . ,m, (3.1)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (3.2)

y(t) = φ(t), t ∈ [−r, 0], (3.3)

where f : J ×D → E is a given function, D = {ψ : [−r, 0] → E | ψ is continuous
everywhere except for a finite number of points s at which ψ(s) and the right limit
ψ(s+) exist and ψ(s−) = ψ(s)}, φ ∈ D , (0 < r < ∞), 0 = t0 < t1 < · · · < tm <
tm+1 = T , Ik ∈ C(E,E) (k = 1, 2, . . . ,m), and E a real separable Banach space with
norm | · |. Also, throughout, J ′ = J \ {t1, . . . , tm}.
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For any continuous function y defined on the interval [−r,T] \ {t1, . . . , tm}
and any t ∈ J , we denote by yt the element of D defined by

yt(θ) = y(t + θ), θ ∈ [−r, 0]. (3.4)

Here yt(·) represents the history of the state from time t− r up to the present time
t. For ψ ∈D , the norm of ψ is defined by

‖ψ‖D = sup
{∣∣ψ(θ)

∣
∣, θ ∈ [−r, 0]

}
. (3.5)

Later, we study the existence of solutions of second-order impulsive differen-
tial equations of the form

y′′(t) = f
(
t, yt
)
, t ∈ J := [0,T], t �= tk, k = 1, . . . ,m, (3.6)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (3.7)

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (3.8)

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η, (3.9)

where f , Ik, and φ are as in problem (3.1)–(3.3), Ik ∈ C(E,E) (k = 1, 2, . . . ,m),
and η ∈ E.

In order to define the solutions of the above problems, we will consider the
spaces PC([−r,T],E) = {y : [−r,T] → E : y(t) is continuous everywhere except
for some tk at which y(t−k ) and y(t+k ), k = 1, . . . ,m, exist and y(t−k ) = y(tk)} and
PC1([0,T],E) = {y : [0,T] → E : y(t) is continuously differentiable everywhere
except for some tk at which y′(t−k ) and y′(t+k ), k = 1, . . . ,m, exist and y′(t−k ) =
y′(tk)}.

Let

Z = PC
(
[−r,T],E

)∩ PC1 ([0,T],E
)
. (3.10)

Obviously, for any t ∈ [0,T] and y ∈ Z, we have yt ∈D , and PC([−r,T],E) and
Z are Banach spaces with the norms

‖y‖ = sup
{∣∣y(t)

∣
∣ : t ∈ [−r,T]

}
,

‖y‖Z = ‖y‖ + ‖y′‖,
(3.11)

where

‖y′‖ = sup
{∣∣y′(t)

∣
∣ : t ∈ [0,T]

}
. (3.12)

Let us start by defining what we mean by a solution of problem (3.1)–(3.3).
In the following, we set for convenience

Ω = PC
(
[−r,T],E

)
. (3.13)
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Definition 3.1. A function y ∈ Ω ∩ AC((tk, tk+1),E), k = 1, . . . ,m, is said to be a
solution of (3.1)–(3.3) if y satisfies the equation y′(t) = f (t, yt) a.e. on J ′ and the
conditions Δy|t=tk = Ik(y(t−k )), k = 1, . . . ,m, y(t) = φ(t), t ∈ [−r, 0].

The first result of this section concerns a priori estimates on possible solutions
of problem (3.1)–(3.3).

Theorem 3.2. Suppose the following are satisfied.
(3.2.1) f : J ×D → E is an L1 Carathéodory function.
(3.2.2) There exists a continuous nondecreasing function ψ : [0,∞) → (0,∞)

and p ∈ L1(J , R+) such that

∣
∣ f (t,u)

∣
∣ ≤ p(t)ψ

(‖u‖D
)

for a.e. t ∈ J and each u ∈D (3.14)

with

∫ tk

tk−1

p(s)ds <
∫∞

Nk−1

du

ψ(u)
, k = 1, . . . ,m + 1, (3.15)

where N0 = ‖φ‖D , and for k = 2, . . . ,m + 1,

Nk−1 = sup
y∈[−Mk−2,Mk−2]

∣
∣Ik−1(y)

∣
∣ +Mk−2,

Mk−2 = Γ−1
k−1

(∫ tk−1

tk−2

p(s)ds
) (3.16)

with

Γl(z) =
∫ z

Nl−1

du

ψ(u)
, z ≥ Nl−1, l ∈ {1, . . . ,m + 1}. (3.17)

Then if y ∈ Ω is a solution of (3.1)–(3.3),

sup
{∣∣y(t)

∣
∣ : t ∈ [tk−1, tk

]} ≤Mk−1, k = 1, . . . ,m + 1. (3.18)

Consequently, for each possible solution y to (3.1)–(3.3),

‖y‖ ≤ max
{‖φ‖D ,Mk−1 : k = 1, . . . ,m + 1

}
:= b∗. (3.19)

Proof. Suppose there exists a solution y to (3.1)–(3.3). Then y|[−r,t1] is a solution
to

y′(t) = f
(
t, yt
)
, for a.e. t ∈ (0, t1

)
,

y(t) = φ(t), t ∈ [−r, 0].
(3.20)
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Then, for each t ∈ [0, t1],

y(t)− φ(0) =
∫ t

0
f
(
s, ys
)
ds. (3.21)

By (3.2.2), we get

∣
∣y(t)

∣
∣ ≤ ‖φ‖D +

∫ t

0
p(s)ψ

(∥∥ys
∥
∥

D

)
ds, t ∈ [0, t1]. (3.22)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣∣ : −r ≤ s ≤ t
}

, 0 ≤ t ≤ t1. (3.23)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0, t1], then by the previous
inequality we have, for t ∈ [0, t1],

μ(t) ≤ ‖φ‖D +
∫ t

0
p(s)ψ

(
μ(s)
)
ds. (3.24)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(t). Then we have

c = v(0) = ‖φ‖D , μ(t) ≤ v(t), t ∈ [0, t1
]
,

v′(t) = p(t)ψ
(
μ(t)
)
, t ∈ [0, t1

]
.

(3.25)

Using the nondecreasing character of ψ, we get

v′(t) ≤ p(t)ψ
(
v(t)
)
, t ∈ [0, t1

]
. (3.26)

This implies, for each t ∈ [0, t1], that

∫ v(t)

v(0)

du

ψ(u)
≤
∫ t1

0
p(s)ds. (3.27)

In view of (3.2.2), we obtain

∣
∣v
(
t∗
)∣∣ ≤ Γ−1

1

(∫ t1

0
p(s)ds

)
:=M0. (3.28)
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Since for every t ∈ [0, t1], ‖yt‖D ≤ μ(t), we have

sup
t∈[0,t1]

∣∣y(t)
∣∣ ≤M0. (3.29)

Now y|[t1,t2] is a solution to

y′(t) = f
(
t, yt
)
, for a.e. t ∈ (t1, t2

)
,

y
(
t+1
) = I1

(
y
(
t1
))

+ y
(
t1
)
.

(3.30)

Note that

∣
∣y
(
t+1
)∣∣ ≤ sup

r∈[−M0,+M0]

∣
∣I1(r)

∣
∣ + sup

t∈[0,t1]

∣
∣y(t)

∣
∣

≤ sup
r∈[−M0,+M0]

∣
∣I1(r)

∣
∣ +M0 := N1.

(3.31)

Then, for each t ∈ [t1, t2],

y(t)− y
(
t+1
) =
∫ t

t1
f
(
s, ys
)
ds. (3.32)

By (3.2.2), we get

∣
∣y(t)

∣
∣ ≤ N1 +

∫ t

0
p(s)ψ

(∥∥ys
∥
∥

D

)
ds, t ∈ [t1, t2

]
. (3.33)

We consider the function μ1 defined by

μ1(t) = sup
{∣∣y(s)

∣
∣ : t1 ≤ s ≤ t

}
, t1 ≤ t ≤ t2. (3.34)

Let t∗ ∈ [t1, t2] be such that μ1(t) = |y(t∗)|. By the previous inequality, we have,
for t ∈ [t1, t2],

μ1(t) ≤ N1 +
∫ t

t1
p(s)ψ

(
μ1(s)

)
ds. (3.35)

Let us take the right-hand side of the above inequality as v1(t). Then we have

c = v1(0) = N1, μ1(t) ≤ v1(t), t ∈ [t1, t2
]
,

v′1(t) = p(t)ψ
(
μ1(t)

)
, t ∈ [t1, t2

]
.

(3.36)

Using the nondecreasing character of ψ, we get

v′1(t) ≤ p(t)ψ
(
v1(t)

)
, t ∈ [t1, t2

]
. (3.37)
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This implies, for each t ∈ [t1, t2], that

∫ v1(t)

v1(0)

du

ψ(u)
≤
∫ t2

t1
p(s)ds. (3.38)

In view of (3.2.2), we obtain

∣
∣v1
(
t∗
)∣∣ ≤ Γ−1

1

(∫ t2

t1
p(s)ds

)
:=M1. (3.39)

Since for every t ∈ [t1, t2], ‖yt‖D ≤ μ1(t), we have

sup
t∈[t1,t2]

∣
∣y(t)

∣
∣ ≤M1. (3.40)

We continue this process taking into account that y|[tm,T] is a solution to the
problem

y′(t) = f
(
t, yt
)
, for a.e. t ∈ (tm,T

)
,

y
(
t+m
) = Im

(
y
(
tm
))

+ y
(
tm
)
.

(3.41)

We obtain that there exists a constant Mm such that

sup
t∈[tm,T]

∣∣y(t)
∣∣ ≤ Γ−1

m+1

(∫ T

tm
p(s)ds

)
:=Mm. (3.42)

But y was an arbitrary solution. Consequently, for each possible solution y to
(1)–(3), we have

‖y‖ ≤ max
{‖φ‖D ,Mk−1 : k = 1, . . . ,m + 1

}
:= b∗. (3.43)

�
Now we are in position to state and prove our main result.

Theorem 3.3. Let (3.2.1), (3.2.2), and the following hold.
(3.3.1) For each bounded B ⊆ Ω and t ∈ J , the set

{

φ(0) +
∫ t

0
f
(
s, ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

: y ∈ B

}

(3.44)

is relatively compact in E.
Then the IVP (3.1)–(3.3) has at least one solution.
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Proof. Transform the problem into a fixed point problem. Consider the map N :
Ω→ Ω defined by

N(y)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(t), t ∈ [−r, 0],

φ(0) +
∫ t

0
f
(
s, ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ [0,T].
(3.45)

Clearly the fixed points of N are solutions to (3.1)–(3.3).
In order to apply the nonlinear alternative of Leray-Schauder type, we first

show that N is completely continuous. The proof will be given in several steps.
Step 1. N maps bounded sets into bounded sets in Ω.

Indeed, it is enough to show that there exists a positive constant � such that,
for each y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, one has ‖N(y)‖ ≤ �.

Let y ∈ Bq, then, for each t ∈ [0,T], we have

N(y)(t) = φ(0) +
∫ t

0
f
(
s, ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
. (3.46)

By (3.2.1), we have, for each t ∈ J ,

∣
∣N(y)(t)

∣
∣ ≤ ‖φ‖D +

∫ t

0

∣
∣ f
(
s, ys
)∣∣ds +

∑

0<tk<t

∣
∣Ik
(
y
(
t−k
))∣∣

≤ ‖φ‖D +
∫ t

0
ϕq(s)ds +

m∑

k=1

sup
{∣∣Ik(y)

∣∣ : ‖y‖ ≤ q
}
.

(3.47)

Thus

∥∥N(y)
∥∥ ≤ ‖φ‖D +

∫ T

0
ϕq(s)ds +

m∑

k=1

sup
{∣∣Ik(y)

∣∣ : ‖y‖ ≤ q
}

:= �. (3.48)

Step 2. N maps bounded sets into equicontinuous sets of Ω.
Let r1, r2 ∈ J ′, r1 < r2, and let Bq = {y ∈ Ω : ‖y‖ ≤ q} be a bounded set of Ω.

Let y ∈ Bq. Then

∣∣N(y)
(
r2
)−N(y)

(
r1
)∣∣ ≤

∫ r2

r1

ϕq(s)ds +
∑

0<tk<r2−r1

∣∣Ik
(
y
(
t−k
))∣∣. (3.49)

As r2 → r1, the right-hand side of the above inequality tends to zero. This
proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It remains
to examine the equicontinuity at t = ti. The proof is similar to that given in
Theorem 2.2.

The equicontinuity for the cases r1 < r2 ≤ 0 and r1 ≤ 0 ≤ r2 is obvious.
Step 3. N : Ω→ Ω is continuous.

Let {yn} be a sequence such that yn → y in Ω. Then there is an integer q such
that ‖yn‖ ≤ q for all n ∈ N and ‖y‖ ≤ q, so yn ∈ Bq and y ∈ Bq.
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We have then, by the dominated convergence theorem,

∥
∥N
(
yn
)−N(y)

∥
∥ ≤ sup

t∈J

[∫ t

0

∣
∣ f
(
s, yns

)− f
(
s, ys
)∣∣ds

+
∑

0<tk<t

∣∣Ik
(
yn
(
tk
))− Ik

(
y
(
t−k
))∣∣
]
�→ 0.

(3.50)

Thus N is continuous. Set

U = {y ∈ Ω : ‖y‖ < b∗ + 1
}

, (3.51)

where b∗ is defined in the proof of Theorem 3.2.
As a consequence of Steps 2, 3, and (3.3.3) together with the Ascoli-Arzelá

theorem, we can conclude that the map N : U → Ω is compact.
By the choice ofU there is no y ∈ ∂U such that y = λN y for any λ ∈ (0, 1). As

a consequence of Theorem 1.8, we deduce that N has a fixed point y ∈ U which is
a solution of (3.1)–(3.3). �

In this part we present a result for problem (3.6)–(3.9) in the spirit of Schae-
fer’s fixed point theorem. We begin by giving the definition of the solution of this
problem.

Definition 3.4. A function y ∈ Ω ∩ AC1((tk, tk+1),E), k = 0, . . . ,m, is said to be
a solution of (3.6)–(3.9) if y satisfies the equation y′′(t) = f (t, yt) a.e. on J ′ and
the conditions Δy|t=tk = Ik(y(t−k )) and Δy′|t=tk = Īk(y(t−k )), k = 1, . . . ,m and
y′(0) = η.

Theorem 3.5. Assume (3.2.1) and the following conditions are satisfied.
(3.5.1) There exist constants ck such that |Ik(y)| ≤ ck, k = 1, 2, . . . ,m, for each

y ∈ E.
(3.5.2) There exist constants dk such that |Ik(y)| ≤ dk, k = 1, 2, . . . ,m, for each

y ∈ E.
(3.5.3) | f (t,u)| ≤ p(t)ψ(‖u‖D) for almost all t ∈ J and all u ∈ D , where

p ∈ L1(J , R+) and ψ : R+ → (0,∞) is continuous and increasing with

∫ T

0
(T − s)p(s)ds <

∫∞

c

dτ

ψ(τ)
, (3.52)

and where c = ‖φ‖D + T|η| +
∑m

k=1[ck + (T − tk)dk].
(3.5.4) For each bounded B ⊆ Ω and for each t ∈ J , the set

{

φ(0) + tη +
∫ t

0
(t − s) f (s, ys

)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

+
(
t − tk

)
Īk
(
y
(
t−k
))

: y ∈ B

}

(3.53)

is relatively compact in E.
Then the IVP (3.6)–(3.9) has at least one solution.
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Proof. Transform the problem into a fixed point problem. Consider the operator
G : Ω→ Ω defined by

G(y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) + tη +
∫ t

0
(t − s) f (s, ys

)
ds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
(
y
(
t−k
))]

if t ∈ [0,T].

(3.54)

Step 1. G maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant � such that,

for each y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, one has ‖G(y)‖ ≤ �.
Let y ∈ Bq, then, for each t ∈ J , we have

G(y)(t) = φ(0) + ty0 +
∫ t

0
(t − s) f (s, ys

)
ds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Īk
(
y
(
t−k
))]

.
(3.55)

By (3.2.1), we have, for each t ∈ J ,

∣∣G(y)(t)
∣∣ ≤ ‖φ‖D + t

∣∣y0
∣∣ +
∫ t

0
(t − s)∣∣ f (s, ys

)∣∣ds

+
∑

0<tk<t

∣∣Ik
(
y
(
t−k
))∣∣ +

∣∣(t − tk
)∣∣∣∣Īk

(
y
(
t−k
))∣∣

≤ ‖φ‖D + t
∣
∣y0
∣
∣ +
∫ t

0
(t − s)ϕq(s)ds

+
m∑

k=1

[
sup
{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}

+
(
T − tk

)
sup
{∣∣Īk
(|y|)∣∣ : ‖y‖ ≤ q

}]
.

(3.56)

Then, for each h ∈ G(Bq), we have

‖h‖ ≤ ‖φ‖D + T
∣
∣y0
∣
∣ +
∫ T

0
(T − s)ϕq(s)ds

+
m∑

k=1

[
sup
{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}

+
(
T − tk

)
sup
{∣∣Īk
(|y|)∣∣ : ‖y‖ ≤ q

}]
:= �.

(3.57)
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Step 2. G maps bounded sets into equicontinuous sets of Ω.
Let τ1, τ2 ∈ J ′, τ1 < τ2, and let Bq = {y ∈ Ω : ‖y‖ ≤ q} be a bounded set of

Ω. Let y ∈ Bq. Then

∣
∣G(y)

(
τ2
)−G(y)

(
τ1
)∣∣ ≤ (τ2 − τ1

)∣∣y0
∣
∣ +
∫ τ2

τ1

ϕq(s)ds

+
∫ τ2

0

(
τ2 − τ1

)
ϕq(s)ds +

∫ τ2

τ1

∣
∣τ1 − s

∣
∣ϕq(s)ds

+
∑

0<tk<τ2−τ1

∣
∣Ik
(
y
(
t−k
))∣∣

+
∑

0<tk<τ2−τ1

∣∣τ1 − tk
∣∣∣∣Īk

(
y
(
t−k
))∣∣

+
∑

0<tk<τ2

(
τ2 − τ1

)∣∣Īk
(
y
(
t−k
))∣∣.

(3.58)

As τ2 → τ1, the right-hand side of the above inequality tends to zero. This
proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It remains
to examine the equicontinuity at t = ti. The proof is similar to that given in
Theorem 2.2.

The equicontinuity for the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ τ2 is obvious.
Step 3. G : Ω→ Ω is continuous.

Let {yn} be a sequence such that yn → y in Ω. Then there is an integer q such
that ‖yn‖ ≤ q for all n ∈ N and ‖y‖ ≤ q, so yn ∈ Bq and y ∈ Bq.

We have then by the dominated convergence theorem

∥∥G
(
yn
)−G(y)

∥∥

≤ sup
t∈J

[∫ t

0
(t − s)∣∣ f (s, yns

)− f
(
s, ys
)∣∣ds

+
∑

0<tk<t

[∣∣Ik
(
yn
(
tk
))− Ik

(
y
(
t−k
))∣∣

+
∣
∣t − tk

∣
∣
∣
∣Īk
(
yn
(
tk
))− Īk

(
y
(
t−k
))∣∣]

]

�→ 0.

(3.59)

Thus G is continuous.
As a consequence of Steps 1, 2, 3, and (3.5.3) together with the Ascoli-Arzelá

theorem, we can conclude that G : Ω→ Ω is completely continuous.
Step 4. Now it remains to show that the set

E(G) := {y ∈ Ω : y = λG(y) for some 0 < λ < 1
}

(3.60)

is bounded.



Impulsive functional differential equations 73

Let y ∈ E(G). Then y = λG(y) for some 0 < λ < 1. Thus, for each t ∈ J ,

y(t) = λφ(0) + λty0 + λ
∫ t

0
(t − s) f (s, ys

)
ds

+ λ
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Īk
(
y
(
t−k
))]

.
(3.61)

This implies that, for each t ∈ J , we have

∣∣y(t)
∣∣ ≤ ‖φ‖D + T|η| +

∫ t

0
(T − s)p(s)ψ

(∥∥ys
∥∥

D

)
ds +

m∑

k=1

[
ck +

(
T − tk

)
dk
]
.

(3.62)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣
∣ : −r ≤ s ≤ t

}
, 0 ≤ t ≤ T. (3.63)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous in-
equality, we have, for t ∈ [0,T],

μ(t) ≤ ‖φ‖D + T|η| +
∫ t

0
(T − s)p(s)ψ

(
μ(s)
)
ds +

m∑

k=1

[
ck +

(
T − tk

)
dk
]
. (3.64)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(t), then we have

c = v(0) = ‖φ‖D + T|η| +
m∑

k=1

[
ck +

(
T − tk

)
dk
]
, μ(t) ≤ v(t), t ∈ [0,T],

v′(t) = (T − t)p(t)ψ
(
μ(t)
)
, t ∈ [0,T].

(3.65)

Using the nondecreasing character of ψ, we get

v′(t) ≤ (T − t)p(t)ψ
(
v(t)
)
, t ∈ [0,T]. (3.66)

This implies, for each t ∈ J , that

∫ v(t)

v(0)

du

ψ(u)
≤
∫ T

0
(T − s)p(s)ds <

∫∞

v(0)

du

ψ(u)
. (3.67)

This inequality implies that there exists a constant b = b(T , p,ψ) such that v(t) ≤
b, t ∈ J , and hence μ(t) ≤ b, t ∈ J . Since for every t ∈ [0,T], ‖yt‖D ≤ μ(t), we
have

‖y‖ := sup
{∣∣y(t)

∣∣ : −r ≤ t ≤ T
} ≤ b, (3.68)
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where b depends only on T and on the functions p and ψ. This shows that E(G) is
bounded.

Set X := Ω. As a consequence of Theorem 1.6, we deduce that G has a fixed
point which is a solution of (3.6)–(3.9). �

3.3. Impulsive neutral differential equations

This section is concerned with the existence of solutions for initial value problems
for first- and second-order neutral functional differential equations with impulsive
effects. In the first part, we consider the first-order initial value problem (IVP for
short)

d

dt

[
y(t)− g(t, yt

)] = f
(
t, yt
)
, a.e. t ∈ [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],

(3.69)

where f , Ik, φ are in problem (3.1)–(3.3) and g : J ×D → E is a given function.
In the second part, we consider the second-order IVP

d

dt

[
y′(t)− g(t, yt

)] = f
(
t, yt
)
, a.e. t ∈ [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Ik
(
y(t)
)
, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η,

(3.70)

where f , Ik, and φ are as in problem (3.1)–(3.3), Ik, η are as in problem (3.6)–(3.9)
and g as in (3.69).

Let us start by defining what we mean by a solution of problem (3.69).

Definition 3.6. A function y ∈ Ω ∩ AC((tk, tk+1),E), k = 1, . . . ,m, is said to be a
solution of (3.69) if y satisfies the equation (d/dt)[y(t)−g(t, yt)] = f (t, yt) a.e. on
J , t �= tk, k = 1, . . . ,m, and the conditions Δy|t=tk = Ik(y(t)), t = tk, k = 1, . . . ,m,
and y(t) = φ(t) on [−r, 0].

We are now in a position to state and prove our existence result for problem
(3.69).

Theorem 3.7. Assume (3.2.1), (3.5.1), and the following conditions are satisfied.
(3.7.1) (i) The function g is completely continuous.

(ii) For any bounded set B in C([−r,T],E), the set {t → g(t, yt) : y ∈
B} is equicontinuous in Ω.

(iii) There exist constants 0 ≤ c∗1 < 1 and c∗2 ≥ 0 such that

∣∣g(t,u)
∣∣ ≤ c∗1 ‖u‖ + c∗2 , t ∈ J , u ∈D . (3.71)
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(3.7.2) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞),
and p ∈ L1([0,T], R+) such that

∣
∣ f (t,u)

∣
∣ ≤ p(t)ψ

(‖u‖D
)

for a.e. t ∈ [0,T], and each u ∈D ,

1
1− c∗1

∫ T

0
p(s)ds <

∫∞

c

dτ

ψ(τ)
,

(3.72)

where

c = 1
1− c∗1

[
(
1 + c∗1

)‖φ‖ + 2c∗2 +
m∑

k=1

ck

]

. (3.73)

Then the IVP (3.69) has at least one solution.

Proof. Consider the operator N : Ω→ Ω defined by

N(y)(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

φ(0)− g(0,φ(0)
)

+ g
(
t, yt
)

+
∫ t

0
f
(
s, ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ [0,T].
(3.74)

We will show that N satisfies the assumptions of Schaefer’s fixed point theorem.
Using (3.7.1), it suffices to show that the operator N1 : Ω→ Ω defined by

N1(y)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(t), t ∈ [−r, 0],

φ(0) +
∫ t

0
f
(
s, ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ [0,T],
(3.75)

is completely continuous. As in Theorem 3.3, we can prove that N1 is a completely
continuous operator. We omit the details. Here we repeat only the proof that the
set

E(N) := {y ∈ Ω : y = λN(y) for some 0 < λ < 1
}

(3.76)

is bounded. Let y ∈ E(N). Then y = λN(y) for some 0 < λ < 1. Thus, for each
t ∈ J ,

y(t) = λ

[

φ(0)− g(0,φ(0)
)

+ g
(
t, yt
)

+
∫ t

0
f
(
s, ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
]

.

(3.77)
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This implies by our assumptions that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤ ‖φ‖D + c∗1 ‖φ‖D + 2c∗2 + c∗1

∥
∥yt
∥
∥

D +
∫ t

0
p(s)ψ

(∥∥ys
∥
∥

D

)
ds +

m∑

k=1

ck.

(3.78)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣
∣ : −r ≤ s ≤ t

}
, 0 ≤ t ≤ T. (3.79)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous
inequality, we have, for t ∈ [0,T],

μ(t) ≤ ‖φ‖D + c∗1 ‖φ‖D + 2c∗2 + c∗1
∥
∥yt
∥
∥

D +
∫ t

0
p(s)ψ

(∥∥ys
∥
∥

D

)
ds

+
∑

0<tk<t

∣
∣Ik
(
y
(
t−k
))∣∣

≤ ‖φ‖D + c∗1 ‖φ‖D + 2c∗2 + c∗1 μ(t) +
∫ t

0
p(s)ψ

(
μ(s)
)
ds +

m∑

k=1

ck.

(3.80)

Thus

μ(t) ≤ 1
1− c∗1

{
(
1 + c∗1

)‖φ‖D + 2c∗2 +
∫ t

0
p(s)ψ

(
μ(s)
)
ds +

m∑

k=1

ck

}

, t ∈ J.

(3.81)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(t). Then we have

c = v(0) = 1
1− c∗1

{
(
1 + c∗1

)‖φ‖D + 2c∗2 +
m∑

k=1

ck

}

, μ(t) ≤ v(t), t ∈ J ,

v′(t) = 1
1− c∗1

p(t)ψ
(
μ(t)
)
, t ∈ J.

(3.82)

Using the nondecreasing character of ψ, we get

v′(t) ≤ 1
1− c∗1

p(t)ψ
(
v(t)
)
, t ∈ J. (3.83)

This implies, for each t ∈ J , that

∫ v(t)

v(0)

du

ψ(u)
≤ 1

1− c∗1

∫ T

0
p(s)ds <

∫∞

v(0)

du

ψ(u)
. (3.84)
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This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ J , and
hence μ(t) ≤ b, t ∈ J . Since for every t ∈ [0,T], ‖yt‖D ≤ μ(t), we have

‖y‖ ≤ b′ = max
{‖φ‖D , b

}
, (3.85)

where b′ depends only on T and on the functions p and ψ. Thus E(N) is bounded.
Set X := Ω. As a consequence of Schaefer’s fixed point theorem (Theorem

1.6), we deduce that N has a fixed point which is a solution of (3.69). �
In this next part we study problem (3.70). We give first the definition of solu-

tion of problem (3.70).

Definition 3.8. A function y ∈ Ω ∩ AC1((tk, tk+1),E), k = 0, . . . ,m, is said to be
a solution of (3.70) if y satisfies the equation (d/dt)[y′(t) − g(t, yt)] = f (t, yt)
a.e. on J , t �= tk, k = 1, . . . ,m, and the conditions Δy|t=tk = Ik(y(t−k )), t = tk,
k = 1, . . . ,m, Δy′|t=tk = Ik(y(t−k )), k = 1, . . . ,m, y(t) = φ(t), on [−r, 0] and
y′(0) = η.

Theorem 3.9. Assume (3.2.1), (3.7.1), (3.5.1), and (3.5.2) hold. In addition assume
the following conditions are satisfied.

(3.9.1) There exists a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1([0,T], R+) such that

∣
∣ f (t,u)

∣
∣ ≤ p(t)ψ

(‖u‖D
)

for a.e. t ∈ [0,T] and each u ∈D , (3.86)

where p ∈ L1(J , R+) and

∫ T

0
M(s)ds <

∫∞

c̃

ds

s + ψ(s)
, (3.87)

where

c̃ = ‖φ‖D +
[|η| + c∗1 ‖φ‖D + 2c∗2

]
T +

m∑

k=1

[
ck +

(
T − tk

)
dk
]

(3.88)

and M(t) = max{1, c1, p(t)}.
(3.9.2) For each bounded B ⊆ Ω and t ∈ J , the set

{
φ(0) + tη +

∫ t

0

∫ s

0
f
(
u, yu

)
duds +

∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
(
y
(
t−k
))]

: y∈B
}

(3.89)

is relatively compact in E.
Then the IVP (3.70) has at least one solution.
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Proof. Transform the problem into a fixed point problem. Consider the operator
N2 : Ω→ Ω defined by

N2(y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) +
[
η − g(0,φ(0)

)]
t +
∫ t

0
g
(
s, ys
)
ds

+
∫ t

0

∫ s

0
f
(
u, yu

)
duds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
]

if t ∈ [0,T].

(3.90)

As in Theorem 3.3, we can show that N2 is completely continuous.
Now we prove only that the set

E(N2) := {y ∈ Ω : y = λN2(y) for some 0 < λ < 1
}

(3.91)

is bounded.
Let y ∈ E(N2). Then y = λN2(y) for some 0 < λ < 1. Thus

y(t) = λφ(0) + λ
[
η − g(0,φ(0)

)]
t + λ

∫ t

0
g
(
s, ys
)
ds + λ

∫ t

0

∫ s

0
f
(
u, yu

)
duds

+ λ
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
(
y
(
t−k
))]

.

(3.92)

This implies that, for each t ∈ [0,T], we have

∣
∣y(t)

∣
∣ ≤ ‖φ‖D +

[|η| + c∗1 ‖φ‖D + 2c∗2
]
T + c∗1

∫ t

0

∥
∥ys
∥
∥

Dds

+
∫ t

0

∫ s

0
p(u)ψ

(∥∥yu
∥
∥

D

)
duds +

m∑

k=1

[
ck +

(
T − tk

)
dk
]

≤ ‖φ‖D +
[|η| + c∗1 ‖φ‖D + 2c∗2

]
T +
∫ t

0
M(s)

∥∥ys
∥∥

Dds

+
∫ t

0
M(s)

∫ s

0
ψ
(∥∥yu

∥
∥

D

)
duds +

m∑

k=1

[
ck +

(
T − tk

)
dk
]
.

(3.93)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣∣ : −r ≤ s ≤ t
}

, 0 ≤ t ≤ T. (3.94)
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Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous
inequality, we have, for t ∈ [0,T],

μ(t) ≤ ‖φ‖D +
[|η| + c∗1 ‖φ‖D + 2c∗2

]
T +
∫ t

0
M(s)μ(s)ds

+
∫ t

0
M(s)

∫ s

0
ψ
(
μ(u)

)
duds +

m∑

k=1

[
ck +

(
T − tk

)
dk
]
.

(3.95)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(t). Then we have

c̃ = v(0) = ‖φ‖D +
[|η| + c∗1 ‖φ‖D + 2c∗2

]
T +

m∑

k=1

[
ck +

(
T − tk

)
dk
]
,

μ(t) ≤ v(t), t ∈ J ,

v′(t) =M(t)μ(t) +M(t)
∫ t

0
ψ
(
μ(s)
)
ds ≤M(t)

[
v(t) +

∫ t

0
ψ
(
v(s)
)
ds
]

, t ∈ J.

(3.96)

Put

u(t) = v(t) +
∫ t

0
ψ
(
v(s)
)
ds, t ∈ J. (3.97)

Then

u(0) = v(0) = c̃, v(t) ≤ u(t), t ∈ J ,

u′(t) = v′(t) + ψ
(
v(t)
) ≤M(t)

[
u(t) + ψ

(
u(t)
)]

, t ∈ J.
(3.98)

This implies, for each t ∈ J , that

∫ u(t)

u(0)

du

u + ψ(u)
≤
∫ T

0
M(s)ds <

∫∞

u(0)

du

u + ψ(u)
. (3.99)

This inequality implies that there exists a constant b∗ such that u(t) ≤ b∗,
t ∈ J , and hence μ(t) ≤ b∗, t ∈ J . Since for every t ∈ [0,T], ‖yt‖D ≤ μ(t), we
have

‖y‖ ≤ b′′ = max
{‖φ‖D , b∗

}
, (3.100)

where b′′ depends only on T and on the functions p and ψ. This shows that E(N2)
is bounded.

Hence, by Theorem 1.6, we have the result. �
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3.4. Impulsive functional differential inclusions

In this section, we will present existence results for impulsive functional differen-
tial inclusions. These results constitute, in some sense, extensions of Section 3.2 to
differential inclusions. Initially, we will consider first-order impulsive functional
differential inclusions,

y′(t) ∈ F
(
t, yt
)
, a.e. t ∈ J := [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0]

(3.101)

with D as in problem (3.1)–(3.3), F : J×D → P (E) is a multivalued map, φ ∈D ,
and P (E) is the family of all subsets of E.

Later we study second-order initial value problems for impulsive functional
differential inclusions,

y′′(t) ∈ F
(
t, yt
)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Īk
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η,

(3.102)

where F, Ik, and φ are as in problem (3.101), Ik ∈ C(E,E) and η ∈ E.
In our consideration of problem (3.101), a fixed point theorem for condens-

ing maps is used to investigate the existence of solutions for first-order impulsive
functional differential inclusions. So, let us start by defining what we mean by a
solution of problem (3.101).

Definition 3.10. A function y ∈ Ω ∩ AC((tk, tk+1),E) is said to be a solution of
(3.101) if y satisfies the differential inclusion y′(t) ∈ F(t, yt) a.e. on J ′, the condi-
tions Δy|t=tk = Ik(y(t−k )), k = 1, . . . ,m, and y(t) = φ(t), t ∈ [−r, 0].

Theorem 3.11. Assume that (3.5.1) holds. Moreover assume the following are satis-
fied.

(3.11.1) F : J ×D → Pb,cp,cv(E); (t,u) �→ F(t,u) is measurable with respect to
t, for each u ∈ D , u.s.c. with respect to u, for each t ∈ J , and for each
fixed u ∈D , the set

SF,u =
{
g ∈ L1(J ,E) : g(t) ∈ F(t,u) for a.e. t ∈ J

}
(3.103)

is nonempty.
(3.11.2) ‖F(t,u)‖ := sup{|v| : v ∈ F(t,u)} ≤ p(t)ψ(‖u‖D) for almost all

t ∈ J and all u ∈ D , where p ∈ L1(J , R+) and ψ : R+ → (0,∞) is
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continuous and increasing with

∫ T

0
p(s)ds <

∫∞

c

dτ

ψ(τ)
, (3.104)

where c = ‖φ‖D +
∑m

k=1 ck.
(3.11.3) For each bounded B ⊆ Ω and t ∈ J , the set

{

φ(0) +
∫ t

0
g(s)ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

: g ∈ SF,B

}

(3.105)

is relatively compact in E where SF,B = ∪{SF,y : y ∈ B}.
Then the IVP (3.101) has at least one solution on [−r,T].

Proof. Consider the multivalued map N : Ω→ P (Ω), defined by

N(y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0]

φ(0) +
∫ t

0
g(s)ds

+
∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ [0,T]

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (3.106)

where g ∈ SF,y . We will show that N is a completely continuous multivalued map,
u.s.c. with convex closed values. The proof will be given in several steps.
Step 1. N(y) is convex, for each y ∈ Ω.

Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ SF,y such that, for
each t ∈ J , we have

h1(t) = φ(0) +
∫ t

0
g1(s)ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

,

h2(t) = φ(0) +
∫ t

0
g2(s)ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
.

(3.107)

Let 0 ≤ l ≤ 1. Then, for each t ∈ J , we have

(
lh1 + (1− l)h2

)
(t) = φ(0) +

∫ t

0

[
lg1(s) + (1− l)g2(s)

]
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
.

(3.108)

Since SF,y is convex (because F has convex values), then

lh1 + (1− l)h2 ∈ N(y). (3.109)
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Step 2. N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant � such that,

for each h ∈ N(y), y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, one has ‖h‖ ≤ �. If h ∈ N(y),
then there exists g ∈ SF,y such that, for each t ∈ J , we have

h(t) = φ(0) +
∫ t

0
g(s)ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
. (3.110)

By (3.11.2), we have, for each t ∈ J ,

∣
∣h(t)

∣
∣ ≤ ‖φ‖D +

∫ t

0

∣
∣g(s)

∣
∣ds +

∑

0<tk<t

∣
∣Ik
(
y
(
t−k
))∣∣

≤ ‖φ‖D + sup
y∈[0,q]

ψ(y)
(∫ t

0
p(s)ds

)
+

m∑

k=1

sup
{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}
.

(3.111)

Then, for each h ∈ N(Bq), we have

‖h‖ ≤ ‖φ‖D + sup
y∈[0,q]

ψ(y) sup
t∈J

(∫ t

0
p(s)ds

)
+

m∑

k=1

sup
{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}
:= �.

(3.112)

Step 3. N maps bounded sets into equicontinuous sets of Ω.
Let τ1, τ2 ∈ J ′, τ1 < τ2, and let Bq = {y ∈ Ω : ‖y‖ ≤ q} be a bounded set of

Ω. For each y ∈ Br and h ∈ N(y), there exists g ∈ SF,y such that

h(t) = φ(0) +
∫ t

0
g(s)ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ J. (3.113)

Thus

∣∣h
(
τ2
)− h(τ1

)∣∣ ≤
∫ τ2

τ1

∣∣g(s)
∣∣ds +

∑

0<tk<τ2−τ1

∣∣Ik
(
y
(
t−k
))∣∣. (3.114)

As τ2 → τ1, the right-hand side of the above inequality tends to zero. This
proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It remains
to examine the equicontinuity at t = ti. The proof is similar to that given in
Theorem 2.2. The equicontinuity for the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ τ2

are obvious.
As a consequence of Steps 2, 3, (3.11.4) together with the Ascoli-Arzelá the-

orem we can conclude that N : Ω → P (Ω) is a compact multivalued map, and
therefore, a condensing map.
Step 4. N has a closed graph.
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Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists gn ∈ SF,yn such that

hn(t) = φ(0) +
∫ t

0
gn(s)ds +

∑

0<tk<t

Ik
(
yn
(
t−k
))

, t ∈ J. (3.115)

We must prove that there exists g∗ ∈ SF,y∗ such that

h∗(t) = φ(0) +
∫ t

0
g∗(s)ds +

∑

0<tk<t

Ik
(
y∗
(
t−k
))

, t ∈ J. (3.116)

Clearly since Ik, k = 1, . . . ,m, are continuous, we have

∥∥
∥
∥
∥

(

hn − φ(0)−
∑

0<tk<t

Ik
(
yn
(
t−k
))
)

−
(

h∗ − φ(0)−
∑

0<tk<t

Ik
(
y∗
(
t−k
))
)∥∥
∥
∥
∥ �→ 0,

(3.117)

as n→∞.
Consider the linear continuous operator

Γ : L1(J ,E) �→ C(J ,E),

g � �→ Γ(g)(t) =
∫ t

0
g(s)ds.

(3.118)

From Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator. Moreover, we
have

(

hn(t)− φ(0)−
∑

0<tk<t

Ik
(
yn
(
t−k
))
)

∈ Γ
(
SF,yn

)
. (3.119)

Since yn → y∗, it follows from Lemma 1.28 that

(

h∗(t)− φ(0)−
∑

0<tk<t

Ik
(
y∗
(
t−k
))
)

=
∫ t

0
g∗(s)ds (3.120)

for some g∗ ∈ SF,y∗ .
Step 5. The set

M := {y ∈ Ω : λy ∈ N(y) for some λ > 1
}

(3.121)

is bounded.
Let y ∈ M. Then λy ∈ N(y) for some λ > 1. Thus there exists g ∈ SF,y such

that

y(t) = λ−1φ(0) + λ−1
∫ t

0
g(s)ds + λ−1

∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ J. (3.122)
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This implies by our assumptions that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤ ‖φ‖D +

∫ t

0
p(s)ψ

(∥∥ys
∥
∥

D

)
ds +

m∑

k=1

ck. (3.123)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣
∣ : −r ≤ s ≤ t

}
, 0 ≤ t ≤ T. (3.124)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous in-
equality, we have, for t ∈ [0,T],

μ(t) ≤ ‖φ‖D +
∫ t

0
p(s)ψ

(
μ(s)
)
ds +

m∑

k=1

ck. (3.125)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and the previous inequality holds. Let us take
the right-hand side of the above inequality as v(t), then we have

c = v(0) = ‖φ‖D +
m∑

k=1

ck, μ(t) ≤ v(t), t ∈ J ,

v′(t) = p(t)ψ
(
μ(t)
)
, t ∈ J.

(3.126)

Using the nondecreasing character of ψ, we get

v′(t) ≤ p(t)ψ
(
v(t)
)
, t ∈ J. (3.127)

This implies, for each t ∈ J , that

∫ v(t)

v(0)

du

ψ(u)
≤
∫ T

0
p(s)ds <

∫∞

v(0)

du

ψ(u)
. (3.128)

This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ J , and
hence μ(t) ≤ b, t ∈ J . Since for every t ∈ [0,T], ‖yt‖D ≤ μ(t), we have

‖y‖ = sup
{∣∣y(t)

∣
∣ : −r ≤ t ≤ T

} ≤ b, (3.129)

where b depends only T and on the functions p and ψ. This shows that M is
bounded.

Set X := Ω. As a consequence of Theorem 1.7, we deduce that N has a fixed
point which is a solution of (3.101). �

For the next part, we study the case where F is not necessarily convex-valued.
Our approach here is based on Schaefer’s fixed point theorem combined with a
selection theorem due to Bressan and Colombo [105] for lower semicontinuous
multivalued operators.
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Theorem 3.12. Suppose that (3.3.1), (3.5.1), (3.11.2), and the following conditions
are satisfied.

(3.12.1) F : [0,T] ×D → P (E) is a nonempty, compact-valued, multivalued
map such that
(a) (t,u) �→ F(t,u) is L⊗B measurable;
(b) u �→ F(t,u) is lower semicontinuous for a.e. t ∈ [0,T].

(3.12.2) For each ρ > 0, there exists a function hρ ∈ L1([0,T], R+) such that for
u ∈D with ‖u‖D ≤ ρ,

∥∥F(t,u)
∥∥ = sup

{|v| : v ∈ F(t,u)
} ≤ hρ(t) for a.e. t ∈ [0,T]. (3.130)

Then the impulsive initial value problem (3.101) has at least one solution.

Proof. Assumptions (3.12.1) and (3.12.2) imply that F is of lower semicontinu-
ous type. Then, from Theorem 1.5, there exists a continuous function f : Ω →
L1([0,T], Rn) such that f (y) ∈ F (y) for all y ∈ Ω.

Consider the problem

y′(t) = f
(
yt
)
, t ∈ [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0].

(3.131)

It is obvious that if y ∈ Ω is a solution of problem (3.131), then y is a solution to
problem (3.101).

Transform problem (3.131) into a fixed point problem. Consider the operator
N : Ω→ Ω defined by

N(y)(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) +
∫ t

0
f
(
ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

if t ∈ [0,T].
(3.132)

As in Theorem 3.3, we can show that N is completely continuous, and the set

E(N) := {y ∈ Ω : y = λN(y) for some 0 < λ < 1
}

(3.133)

is bounded. Set X := Ω. As a consequence of Schaefer’s fixed point theorem, we
deduce thatN has a fixed point y which is a solution to problem (3.131) and hence
a solution to problem (3.101). �

Now by using a fixed point theorem for contraction multivalued operators
given by Covitz and Nadler [123] we present a result for problem (3.101).

Theorem 3.13. Assume the following are satisfied.
(3.13.1) F : [0,T] ×D → Pcp,cv(E) has the property that F(·,u) : [0,T] →

Pcp(E) is measurable, for each u ∈D .
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(3.13.2) Hd(F(t,u),F(t,u)) ≤ l(t)‖u−u‖D , for each t ∈ [0,T] and u,u ∈D ,
where l ∈ L1([0,T], R); and

d
(
0,F(t, 0)

) ≤ l(t) for a.e. t ∈ J. (3.134)

(3.13.3) |Ik(y)− Ik(y)| ≤ ck|y − y|, for each y, y ∈ E, k = 1, . . . ,m, where ck
are nonnegative constants.

If

max
{∫ T

0
l(s)ds + ck : k = 1, . . . ,m

}
< 1, (3.135)

then the IVP (3.101) has at least one solution on [−r,T].

Proof. Transform problem (3.101) into a fixed point problem. Consider first prob-
lem (3.101) on the interval [−r, t1], that is, the problem

y′(t) ∈ F
(
t, yt
)
, a.e. t ∈ (0, t1

)
,

y(t) = φ(t), t ∈ [−r, 0].
(3.136)

It is clear that the solutions of problem (3.136) are fixed points of the multivalued
operator N : PC([−r, t1]) → P (PC[−r, t1]) defined by

N(y) :=
⎧
⎪⎨

⎪⎩
h ∈ PC

([− r, t1
])

: h(t) =
⎧
⎪⎨

⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) +
∫ t

0
g(s)ds if t ∈ [0, t1],

⎫
⎪⎬

⎪⎭
,

(3.137)

where

g ∈ SF,y =
{
g ∈ L1([0, t1

]
,E
)

: g(t) ∈ F
(
t, yt
)

for a.e. t ∈ [0, t1
]}
. (3.138)

We will show thatN satisfies the assumptions of Theorem 1.11. The proof will
be given in two steps.
Step 1. N(y) ∈ Pcl(PC([−r, t1])), for each y ∈ PC([−r, t1]).

Indeed, let (yn)n≥0 ∈ N(y) such that yn → ỹ in PC([−r, t1]). Then ỹ ∈
PC([−r, t1]) and, for each t ∈ [0, t1],

yn(t) ∈ φ(0) +
∫ t

0
F
(
s, ys
)
ds. (3.139)

Using the fact that F has compact values and from (3.13.2), we may pass to a
subsequence if necessary to get that gn converges to g in L1(J ,E), and hence g ∈
SF(y). Then, for each t ∈ J ,

yn(t) �→ ỹ(t) ∈ φ(0) +
∫ t

0
F
(
s, ys
)
ds. (3.140)

So ỹ ∈ N(y).
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Step 2. There exists γ < 1 such that H(N(y),N(y)) ≤ γ‖y − y‖[−r,t1], for each
y, y ∈ PC([−r, t1]).

Let y, y ∈ PC([−r, t1]) and h1 ∈ N(y). Then there exists g1(t) ∈ F(t, yt) such
that, for each t ∈ [0, t1],

h1(t) = φ(0) +
∫ t

0
g1(s)ds. (3.141)

From (3.13.2), it follows that

H
(
F
(
t, yt
)
,F
(
t, yt
)) ≤ l(t)

∥
∥yt − yt

∥
∥

D . (3.142)

Hence there is w ∈ F(t, yt) such that

∣∣g1(t)−w∣∣ ≤ l(t)
∥∥yt − yt

∥∥
D , t ∈ [0, t1]. (3.143)

Consider U : [0, t1] → P (E), given by

U(t) = {w ∈ E :
∣
∣g1(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D

}
. (3.144)

Since the multivalued operator V(t) = U(t) ∩ F(t, yt) is measurable (see [119,
Proposition III.4]), there exists a function g2(t), which is a measurable selection
for V . So, g2(t) ∈ F(t, yt) and

∣
∣g1(t)− g2(t)

∣
∣ ≤ l(t)‖y − y‖D , for each t ∈ [0, t1

]
. (3.145)

Let us define, for each t ∈ [0, t1],

h2(t) = φ(0) +
∫ t

0
g2(s)ds. (3.146)

Then we have

∣
∣h1(t)− h2(t)

∣
∣ ≤

∫ t

0

∣
∣g1(s)− g2(s)

∣
∣ds ≤

∫ t

0
l(s)
∥
∥y1s − y2s

∥
∥

Dds

=
∫ t

0
l(s)
(

sup
−r≤θ≤0

∣∣y1s(θ)− y2s(θ)
∣∣
)
ds

=
∫ t

0
l(s)
(

sup
−r≤θ≤0

∣∣y1(s + θ)− y2(s + θ)
∣∣
)
ds

=
∫ t

0
l(s)
(

sup
s−r≤z≤s

∣
∣y1(z)− y2(z)

∣
∣
)
ds

≤
∫ t

0
l(s)
(

sup
−r≤z≤t1

∣∣y1(z)− y2(z)
∣∣
)
ds

≤
(∫ T

0
l(s)ds

)∥∥y1 − y2
∥∥

[−r,t1].

(3.147)
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Then

∥
∥h1 − h2

∥
∥

[−r,t1] ≤
(∫ T

0
l(s)ds

)∥
∥y1 − y2

∥
∥

[−r,t1]. (3.148)

By the analogous relation, obtained by interchanging the roles of y1 and y2, it
follows that

Hd
(
N
(
y1
)
,N
(
y2
)) ≤

(∫ T

0
l(s)ds

)∥
∥y1 − y2

∥
∥

[−r,t1]. (3.149)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point y1, which is
a solution to (3.136).

Now let y2 := y|[t1,t2] be a solution to the problem

y′(t) ∈ F
(
t, yt
)
, a.e. t ∈ (t1, t2

)
,

Δy|t=t1 = I1
(
y
(
t−1
))
.

(3.150)

Then y2 is a fixed point of the multivalued operator N : PC([t1, t2]) → P (PC([t1,
t2])) defined by

N(y) :=
{
h ∈ PC

([
t1, t2

])
: h(t) =

∫ t

0
g(s)ds + I1

(
y
(
t1
))

, t ∈ ([t1, t2
])}

,

(3.151)

where

g ∈ SF,y =
{
g ∈ L1([t1, t2

]
,E
)

: g(t) ∈ F
(
t, yt
)

for a.e. t ∈ [t1, t2
]}
. (3.152)

We will show that N satisfies the assumptions of Theorem 1.11. Clearly, N(y) ∈
Pcl(PC([t1, t2])), for each y ∈ PC([t1, t2]). It remains to show

H
(
N(y),N(y)

) ≤ γ‖y − y‖[t1,t2], for each y, y ∈ PC
([
t1, t2

])
(where γ < 1).

(3.153)

To that end, let y, y ∈ PC([t1, t2]) and h1 ∈ N(y). Then there exists g1(t) ∈
F(t, yt) such that, for each t ∈ [t1, t2],

h1(t) =
∫ t

0
g1(s)ds + I1

(
y
(
t1
))
. (3.154)
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From (3.13.2), it follows that

H
(
F
(
t, yt
)
,F
(
t, yt
)) ≤ l(t)

∥
∥yt − yt

∥
∥

D . (3.155)

Hence there is a w ∈ F(t, yt) such that

∣∣g1(t)−w∣∣ ≤ l(t)
∥∥yt − yt

∥∥
D , t ∈ [t1, t2

]
. (3.156)

Consider U : [t1, t2] → P (E), given by

U(t) = {w ∈ E :
∣
∣g1(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D

}
. (3.157)

Since the multivalued operator V(t) = U(t) ∩ F(t, yt) is measurable (see [119,
Proposition III.4]), there exists g2(t), which is a measurable selection for V . So,
g2(t) ∈ F(t, yt) and

∣
∣g1(t)− g2(t)

∣
∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D , for each t ∈ [t1, t2
]
. (3.158)

Let us define, for each t ∈ [t1, t2],

h2(t) =
∫ t

0
g2(s)ds + I1

(
y
(
t1
))
. (3.159)

Then we have

∣
∣h1(t)− h2(t)

∣
∣ ≤
∫ t

0

∣
∣g1(s)− g2(s)

∣
∣ds +

∣
∣I1
(
y
(
t1
))− I1

(
y
(
t1
))∣∣

≤
∫ t

0
l(s)
∥
∥y1s − y2s

∥
∥

Dds + c1
∣
∣y
(
t1
)− y

(
t1
)∣∣

≤
∫ t

0
l(s)
(

sup
−r≤θ≤0

∣
∣y1s(θ)− y2s(θ)

∣
∣
)
ds + c1

∣
∣y
(
t1
)− y

(
t1
)∣∣

≤
(∫ T

0
l(s)ds + c1

)
‖y − y‖[t1,t2].

(3.160)

By an analogous relation, obtained by interchanging the roles of y and y, it
follows that

H
(
N(y),N(y)

) ≤
(∫ T

0
l(s)ds + c1

)
‖y − y‖[t1,t2]. (3.161)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point y2, which is
solution to (3.150).
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We continue this process taking into account that ym := y|[tm,T] is a solution
to the problem

y′(t) ∈ F
(
t, yt
)
, a.e. t ∈ (tm,T

]
,

Δy|t=tm = Im
(
y
(
t−m
))
.

(3.162)

The solution y of problem (3.101) is then defined by

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1(t) if t ∈ [− r, t1
]
,

y2(t) if t ∈ (t1, t2
]
,

...

ym(t) if t ∈ (tm,T
]
.

(3.163)

�
In this last part of Section 3.4, we establish existence results for problem

(3.102).

Definition 3.14. A function y ∈ Ω∩AC1((tk, tk+1),E), k = 1, . . . ,m, is said to be a
solution of (3.102) if y satisfies the differential inclusion y′′(t) ∈ F(t, yt) a.e. on J ′

and the conditions Δy|t=tk = Ik(y(t−k )), Δy′|t=tk = Īk(y(t−k )), k = 1, . . . ,m.

Theorem 3.15. Let (3.5.1), (3.5.2), and (3.11.1) hold. Suppose also the following are
satisfied.

(3.15.1) ‖F(t,u)‖ := sup{|v| : v ∈ F(t,u)} ≤ p(t)ψ(‖u‖D) for almost all
t ∈ J and all u ∈ D , where p ∈ L1(J , R+) and ψ : R+ → (0,∞) is
continuous and increasing with

∫ T

0
(T − s)p(s)ds <

∫∞

c

dτ

ψ(τ)
, (3.164)

where c = ‖φ‖D + T|η| +
∑m

k=1[ck + (T − tk)dk].
(3.15.2) For each bounded B ⊆ Ω and for each t ∈ J , the set

{

φ(0) + tη +
∫ t

0
(t − s)g(s)ds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Īk
(
y
(
t−k
))]

: g ∈ SF,B

} (3.165)

is relatively compact in E, where SF,B = ∪{SF,y : y ∈ B}.
Then the impulsive initial value problem (3.102) has at least one solution on
[−r,T].
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Proof. Transform the problem into a fixed point problem. Consider the multival-
ued map G : Ω→ P (Ω) defined by

G(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

φ(0) + tη +
∫ t

0
(t − s)g(s)ds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Īk
(
y
(
t−k
))]

, t ∈ [0,T],

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.166)

where g ∈ SF,y .
We will show that G satisfies the assumptions of Theorem 1.7. As in Theorem

3.11, we can show that G is completely continuous. We will show now that the set

M := {y ∈ Ω : λy ∈ G(y) for some λ > 1
}

(3.167)

is bounded.
Let y ∈ M. Then λy ∈ G(y) for some λ > 1. Thus there exists g ∈ SF,y such

that

y(t) = λ−1φ(0) + λ−1tη + λ−1
∫ t

0
(t − s)g(s)ds

+ λ−1
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Īk
(
y
(
t−k
))]

, t ∈ J.
(3.168)

This implies that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤ ‖φ‖D + T|η| +

∫ t

0
(T − s)p(s)ψ

(∥∥ys
∥
∥

D

)
ds +

m∑

k=1

[
ck +

(
T − tk

)
dk
]
.

(3.169)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣∣ : −r ≤ s ≤ t
}

, 0 ≤ t ≤ T. (3.170)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous in-
equality, we have for t ∈ [0,T],

μ(t) ≤ ‖φ‖D + T|η| +
∫ t

0
(T − s)p(s)ψ

(
μ(s)
)
ds +

k∑

k=1

[
ck +

(
T − tk

)
dk
]
.

(3.171)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and the previous inequality holds.
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Let us take the right-hand side of the above inequality as v(t). Then, we have

c = v(0) = ‖φ‖D + T|η| +
m∑

k=1

[
ck +

(
T − tk

)
dk
]
, μ(t) ≤ v(t), t ∈ [0,T],

v′(t) = (T − t)p(t)ψ
(
μ(t)
)
, t ∈ [0,T],

v′(t) = (T − t)p(t)ψ
(
μ(t)
)
, t ∈ J.

(3.172)

Using the nondecreasing character of ψ, we get

v′(t) ≤ (T − t)p(t)ψ
(
v(t)
)
, t ∈ [0,T]. (3.173)

This implies, for each t ∈ J , that

∫ v(t)

v(0)

du

ψ(u)
≤
∫ T

0
(T − s)p(s)ds <

∫∞

v(0)

du

ψ(u)
. (3.174)

This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ J , and
hence μ(t) ≤ b, t ∈ J . Since for every t ∈ [0,T], ‖yt‖D ≤ μ(t), we have

‖y‖Ω ≤ b, (3.175)

where b depends only on T and on the functions p and ψ. This shows that M is
bounded.

Set X := Ω. As a consequence of Theorem 1.7, we deduce that G has a fixed
point y which is a solution of problem (3.102). �

Theorem 3.16. Assume hypotheses (3.5.1), (3.5.2), (3.12.1), (3.12.2), and (3.15.1)
are satisfied. Then the IVP (3.102) has at least one solution.

Proof. First, (3.12.1) and (3.12.2) imply that F is of lower semicontinuous type.
Then from Theorem 1.5 there exists a continuous function f : Ω → L1([0,T],
Rn) such that f (y) ∈ F (y) for all y ∈ Ω.

Consider the problem

y′′(t) = f
(
yt
)
, t ∈ [0,T], t �= tk, k = 1, . . . ,m, (3.176)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (3.177)

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (3.178)

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η. (3.179)
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Transform problem (3.177)–(3.179) into a fixed point problem. Consider the
operator N : Ω→ Ω defined by

N(y)(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) + tη +
∫ t

0
(t − s) f (ys

)
ds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
(
y
(
t−k
))]

if t ∈ [0,T].

(3.180)

As in Theorem 3.5, we can show that N is completely continuous and that the set

E(N) := {y ∈ Ω : y = λN(y) for some 0 < λ < 1
}

(3.181)

is bounded.
Set X := Ω. As a consequence of Schaefer’s fixed point theorem, we deduce

that N has a fixed point y which is a solution to problem (3.176)–(3.179) and
hence a solution to problem (3.102). �

Theorem 3.17. Assume that (3.13.1)–(3.13.3) and the following condition hold.
(3.17.1) |Ik(y)− Ik(y)| ≤ d′k|y− y|, for each y, y ∈ E, k = 1, . . . ,m, where d′k

are nonnegative constants.
If

T
∫ T

0
l(s)ds +

m∑

k=1

ck +
m∑

k=1

(
T − tk

)
d′k < 1, (3.182)

then the IVP (3.102) has at least one solution on [−r,T].

Proof. Transform problem (3.102) into a fixed point problem. Consider the oper-
ator N : Ω→ P (Ω) defined by

N(y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

φ(0) + tη +
∫ t

0
(t − s)g(s)ds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Īk
(
y
(
t−k
))]

, t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.183)

where g ∈ SF,y .
We can easily show that N(y) ∈ Pcl(Ω), for each y ∈ Ω.
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There remains to show that N is a contraction multivalued operator. Indeed,
let y, y ∈ Ω, and h1 ∈ N(y). Then there exists g1(t) ∈ F(t, yt) such that, for t ∈ J ,

h1(t) = φ(0) + tη +
∫ t

0
(t − s)g1(s)ds +

∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Īk
(
y
(
t−k
))]

.

(3.184)

From (3.13.2), it follows that

H
(
F
(
t, yt
)
,F
(
t, yt
)) ≤ l(t)

∥
∥yt − yt

∥
∥

D . (3.185)

Hence there is w ∈ F(t, yt) such that

∣∣g1(t)−w∣∣ ≤ l(t)
∥∥yt − yt

∥∥
D , t ∈ J. (3.186)

Consider U : J → P (E), given by

U(t) = {w ∈ E :
∣∣g1(t)−w∣∣ ≤ l(t)

∥∥yt − yt
∥∥

D

}
. (3.187)

Since the multivalued operator V(t) = U(t) ∩ F(t, yt) is measurable (see [119,
Proposition III.4]), there exists g2(t), a measurable selection for V . So, g2(t) ∈
F(t, yt) and

∣∣g1(t)− g2(t)
∣∣ ≤ l(t)‖y − y‖D , for each t ∈ J. (3.188)

Let us define, for each t ∈ J ,

h2(t) = φ(0) + tη +
∫ t

0
(t − s)g2(s)ds +

∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Īk
(
y
(
t−k
))]

.

(3.189)

Then, we have

∣
∣h1(t)− h2(t)

∣
∣ ≤
∫ t

0
(t − s)∣∣g1(s)− g2(s)

∣
∣ds +

∑

0<tk<t

∣
∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

+
∑

0<tk<t

(
T − tk

)∣∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

≤
(
T
∫ T

0
l(s)ds

)
‖y − y‖ +

m∑

k=1

ck‖y − y‖ +
m∑

k=1

(
T − tk

)
d′k‖y − y‖.

(3.190)

Then

∥
∥h1 − h2

∥
∥
Ω ≤

[

T
∫ T

0
l(s)ds +

m∑

k=1

(
ck +

(
T − tk

)
d′k
)
]

‖y − y‖. (3.191)
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Again, by an analogous relation, obtained by interchanging the roles of y and y, it
follows that

H
(
N1(y),N1(y)

) ≤
[

T
∫ T

0
l(s)ds +

m∑

k=1

(
ck +

(
T − tk

)
d′k
)
]

‖y − y‖. (3.192)

So, N is a contraction, and thus, by Theorem 1.11, N has a fixed point y, which is
a solution to (3.102). �

3.5. Impulsive neutral functional DIs

In this section, we are concerned with the existence of solutions for first- and
second-order initial value problems for neutral functional differential inclusions
with impulsive effects,

d

dt

[
y(t)− g(t, yt

)] ∈ F
(
t, yt
)
, t ∈ J := [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],

(3.193)

where F, Ik, φ are as in problem (3.101) and g : J ×D → E and

d

dt

[
y′(t)− g(t, yt

)]∈F(t, yt
)
, t∈ J := [0,T], t �= tk, k = 1, . . . ,m, (3.194)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (3.195)

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (3.196)

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η, (3.197)

where F, Ik, φ are as in problem (3.101), g as in problem (3.193), and Ik, η as in
(3.102).

Definition 3.18. A function y ∈ Ω∩ AC((tk, tk+1),E), k = 0, . . . ,m, is said to be a
solution of (3.193) if y(t)− g(t, yt) is absolutely continuous on J ′ and (3.193) are
satisfied.

Theorem 3.19. Assume that (3.2.1), (3.5.1), (3.7.1), and the following conditions
hold.

(3.19.1) ‖F(t,u)‖ = sup{|v| : v ∈ F(t,u)} ≤ p(t)ψ(‖u‖D) for almost all
t ∈ J and all u ∈ D , where p ∈ L1(J , R+) and ψ : R+ → (0,∞) is
continuous and increasing with

1
1− c∗1

∫ T

0
p(s)ds <

∫∞

c

dτ

ψ(τ)
, (3.198)

where c = (1/(1− c∗1 )){(1 + c∗1 )‖φ‖D + 2c∗2 +
∑m

k=1 ck}.
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(3.19.2) For each bounded B ⊆ Ω and t ∈ J , the set

{

φ(0) +
∫ t

0
v(s)ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

: v ∈ SF,B

}

(3.199)

is relatively compact in E, where SF,B = ∪{SF,y : y ∈ B}.
Then the IVP (3.193) has at least one solution on [−r,T].

Proof. Consider the operator N : Ω→ P (Ω) defined by

N(y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

φ(0)− g(0,φ(0)
)

+ g
(
t, yt
)

+
∫ t

0
v(s)ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ [0,T],

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(3.200)

where v ∈ SF,y .
We will show that N satisfies the assumptions of Theorem 1.7. Using (3.7.1),

it suffices to show that the operator N1 : Ω→ P (Ω) defined by

N1(y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

φ(0) +
∫ t

0
v(s)ds

+
∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ [0,T],

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (3.201)

where v ∈ SF,y , is u.s.c. and condensing with bounded, closed, and convex values.
The proof will be given in several steps.
Step 1. N1(y) is convex, for each y ∈ Ω.

This is obvious since SF,y is convex (because F has convex values).
Step 2. N1 maps bounded sets into relatively compact sets in Ω.

This is a consequence of the L1-Carathéodory character of F.As a consequence
of Steps 1 and 2 and (3.19.2) together with the Arzelá-Ascoli theorem, we can
conclude that N : Ω → P (Ω) is a completely continuous multivalued map and
therefore a condensing map.
Step 3. N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists vn ∈ SF,yn such that, for each t ∈ J ,

hn(t) = φ(0)− g(0,φ(0)
)

+ g
(
t, ynt

)
+
∫ t

0
vn(s)ds +

∑

0<tk<t

Ik
(
yn
(
t−k
))
. (3.202)



Impulsive neutral functional DIs 97

We must prove that there exists v∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) = φ(0)− g(0,φ(0)
)

+ g
(
t, y∗t

)
+
∫ t

0
v∗(s)ds +

∑

0<tk<t

Ik
(
y∗
(
t−k
))
. (3.203)

Since the functions g(t, ·), t ∈ J , Ik, k = 1, . . . ,m, are continuous, we have

∥
∥∥
∥
∥

(

hn − φ(0) + g
(
0,φ(0)

)− g(t, ynt
)−

∑

0<tk<t

Ik
(
yn
(
t−k
))
)

−
(

h∗ − φ(0) + g
(
0,φ(0)

)− g(t, y∗t
)−

∑

0<tk<t

Ik
(
y∗
(
t−k
))
)∥∥∥
∥
∥
Ω

�→ 0,

(3.204)

as n→∞.
Consider the linear continuous operator

Γ : L1(J ,E) �→ C(J ,E),

v � �→ Γ(v)(t) =
∫ t

0
v(s)ds.

(3.205)

By Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator.
Moreover, we have

(

hn(t)− φ(0) + g
(
0,φ(0)

)− g(t, ynt
)−

∑

0<tk<t

Ik
(
yn
(
t−k
))
)

∈ Γ
(
SF,yn

)
. (3.206)

Since yn → y∗, it follows from Lemma 1.28 that

(

h∗(t)− φ(0) + g
(
0,φ(0)

)− g(t, y∗t
)−

∑

0<tk<t

Ik
(
y∗
(
t−k
))
)

=
∫ t

0
v∗(s)ds

(3.207)

for some g∗ ∈ SF,y∗ .
Step 4. Now it remains to show that the set

M := {y ∈ Ω : λy ∈ N(y) for some λ > 1
}

(3.208)

is bounded.
Let y ∈M. Then y ∈ λN(y) for some 0 < λ < 1. Thus, for each t ∈ J ,

y(t) = λ−1φ(0)− λ−1g
(
0,φ(0)

)
+ λ−1g

(
t, yt
)

+ λ−1
∫ t

0
v(s)ds + λ−1

∑

0<tk<t

Ik
(
y
(
t−k
))
.

(3.209)
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This implies by our assumptions that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤ ‖φ‖D + c∗1 ‖φ‖D + 2c∗2 + c∗1

∥
∥yt
∥
∥

D +
∫ t

0
p(s)ψ

(∥∥ys
∥
∥

D

)
ds +

m∑

k=1

ck.

(3.210)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣∣ : −r ≤ s ≤ t
}

, 0 ≤ t ≤ T. (3.211)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous
inequality, we have, for t ∈ [0,T],

μ(t) ≤ ‖φ‖D + c∗1 ‖φ‖D + 2c∗2 + c∗1
∥
∥yt
∥
∥

D +
∫ t

0
p(s)ψ

(∥∥ys
∥
∥

D

)
ds

+
∑

0<tk<t

∣
∣Ik
(
y
(
t−k
))∣∣

≤ ‖φ‖D + c∗1 ‖φ‖D + 2c∗2 + c∗1 μ(t) +
∫ t

0
p(s)ψ

(
μ(s)
)
ds +

m∑

k=1

ck.

(3.212)

Thus

μ(t) ≤ 1
1− c∗1

{
(
1 + c∗1

)‖φ‖D + 2c∗2 +
∫ t

0
p(s)ψ

(
μ(s)
)
ds +

m∑

k=1

ck

}

. (3.213)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(t). Then, we have

c = v(0) = 1
1− c∗1

{
(
1 + c∗1

)‖φ‖D + 2c∗2 +
m∑

k=1

ck

}

, μ(t) ≤ v(t), t ∈ J ,

v′(t) = 1
1− c∗1

p(t)ψ
(
μ(t)
)
, t ∈ J.

(3.214)

Using the nondecreasing character of ψ, we get

v′(t) ≤ 1
1− c∗1

p(t)ψ
(
v(t)
)
, t ∈ J. (3.215)

This implies, for each t ∈ J , that

∫ v(t)

v(0)

du

ψ(u)
≤ 1

1− c∗1

∫ T

0
p(s)ds <

∫∞

v(0)

du

ψ(u)
. (3.216)
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This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ J ,
and hence μ(t) ≤ b, t ∈ J . Since for every t ∈ [0,T], ‖yt‖D ≤ μ(t), we have

‖y‖Ω ≤ b′ = max
{‖φ‖D , b

}
, (3.217)

where b′ depends only T and on the functions p and ψ. This shows that M is
bounded.

Set X := Ω. As a consequence of Theorem 1.7, we deduce that N has a fixed
point which is a solution of (3.193). �

Theorem 3.20. Assume that hypotheses (3.5.1), (3.7.1), (3.12.1), (3.12.2), and
(3.19.1) hold. Then problem (3.193) has at least one solution.

Proof. (3.12.1) and (3.12.2) imply by Lemma 1.29 that F is of lower semicontin-
uous type. Then from Theorem 1.5, there exists a continuous function f : Ω →
L1([0,T],E) such that f (y) ∈ F (y) for all y ∈ Ω. Consider the problem

d

dt

[
y(t)− g(t, yt

)] = f
(
yt
)
, t ∈ J , t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0].

(3.218)

Transform the problem into a fixed point problem. Consider the operator N1 :
Ω→ Ω defined by

N1(y)(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0)− g(0,φ(0)
)

+ g
(
t, yt
)

+
∫ t

0
f
(
ys
)
ds

+
∑

0<tk<t

Ik
(
y
(
t−k
))

if t ∈ [0,T].

(3.219)

We will show that N1 is a completely continuous multivalued operator. Using
(3.7.1), it suffices to show that the operator Ñ1 : Ω→ Ω defined by

Ñ1(y)(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) +
∫ t

0
f
(
ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

if t ∈ [0,T],
(3.220)
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is completely continuous. This was proved in Theorem 3.12. Also, as in Theorem
3.19, we can prove that the set

E
(
Ñ1
)

:= {y ∈ Ω : y = λÑ1(y) for some 0 < λ < 1
}

(3.221)

is bounded.
Set X := Ω. As a consequence of Schaefer’s fixed point theorem, we deduce

that N has a fixed point y which is a solution to problem (3.218) and hence a
solution to problem (3.193). �

Theorem 3.21. Assume (3.13.1)–(3.13.3) and the following condition holds.
(3.21.1) |g(t,u) − g(t,u)| ≤ p‖u − u‖D , for each u,u ∈ D , where p is a

nonnegative constant.
If

∫ T

0
l(s)ds + p +

m∑

k=1

ck < 1, (3.222)

then the IVP (3.193) has at least one solution on [−r,T].

Proof. Transform problem (3.193) into a fixed point problem. It is clear that the
solutions of problem (3.193) are fixed points of the multivalued operator N : Ω→
P (Ω) defined by

N(y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0)− g(0,φ(0)
)

+ g
(
t, yt
)

+
∫ t

0
v(s)ds +

∑

0<tk<t

Ik
(
y
(
t−k
))

if t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.223)

where v ∈ SF,y .
We will show that N satisfies the assumptions of Theorem 1.11.
The proof will be given in two steps.

Step 1. N(y) ∈ Pcl(Ω), for each y ∈ Ω.
Indeed, let (yn)n≥0 ∈ N(y) such that yn → ỹ in Ω. Then ỹ ∈ Ω and, for each

t ∈ J ,

yn(t) ∈ φ(0)− g(0,φ(0)
)

+ g
(
t, yt
)

+
∫ t

0
F
(
s, ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
. (3.224)

Using the fact that F has compact values and from (3.13.2), we may pass
to a subsequence if necessary to get that gn converges to g in L1(J ,E) and hence
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g ∈ SF(y). Then, for each t ∈ J ,

yn(t) �→ ỹ(t) ∈ φ(0)− g(0,φ(0)
)

+ g
(
t, yt
)

+
∫ t

0
F
(
s, ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
.

(3.225)

So ỹ ∈ N(y).
Step 2. H(N(y),N(y)) ≤ γ‖y − y‖Ω, for each y, y ∈ Ω (where γ < 1).

Let y, y ∈ Ω, and h1 ∈ N(y). Then there exists v1(t) ∈ F(t, yt) such that, for
each t ∈ J ,

h1(t) = φ(0)− g(0,φ(0)
)

+ g
(
t, yt
)

+
∫ t

0
v1(s)ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
. (3.226)

From (3.13.2), it follows that

H
(
F
(
t, yt
)
,F
(
t, yt
)) ≤ l(t)

∥∥yt − yt
∥∥

D , t ∈ J. (3.227)

Hence there is w ∈ F(t, yt) such that

∣∣v1(t)−w∣∣ ≤ l(t)
∥∥yt − yt

∥∥
D , t ∈ J. (3.228)

Consider U : J → P (E), given by

U(t) = {w ∈ E :
∣∣v1(t)−w∣∣ ≤ l(t)

∥∥yt − yt
∥∥

D

}
. (3.229)

Since the multivalued operator V(t) = U(t) ∩ F(t, yt) is measurable (see [119,
Proposition III.4]), there exists v2(t), which is a measurable selection for V . So,
v2(t) ∈ F(t, yt) and

∣
∣v1(t)− v2(t)

∣
∣ ≤ l(t)‖y − y‖D , for each t ∈ J. (3.230)

Let us define, for each t ∈ J ,

h2(t) = φ(0)− g(0,φ(0)
)

+ g
(
t, yt
)

+
∫ t

0
v2(s)ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
. (3.231)
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Then we have

∣∣h1(t)− h2(t)
∣∣ ≤
∫ t

0

∣∣v1(s)− v2(s)
∣∣ds +

∣∣g
(
t, yt
)− g(t, yt

)∣∣

+
∑

0<tk<t

∣
∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

≤
∫ t

0
l(s)
∥∥ys − ys

∥∥
Dds + p

∥∥yt − yt
∥∥

D +
m∑

k=1

ck‖y − y‖

≤
(∫ T

0
l(s)ds + p +

m∑

k=1

ck

)

‖y − y‖.

(3.232)

Then

∥
∥h1 − h2

∥
∥ ≤

(∫ T

0
l(s)ds + p +

m∑

k=1

ck

)

‖y − y‖. (3.233)

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

H
(
N(y),N(y)

) ≤
(∫ T

0
l(s)ds + p +

m∑

k=1

ck

)

‖y − y‖. (3.234)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point y, which is
a solution to (3.193). �

In this last part, we present results concerning problem (3.194)–(3.197).

Definition 3.22. A function y ∈ Ω∩AC1((tk, tk+1),E), k = 0, . . . ,m, is said to be a
solution of (3.194)–(3.197) if y and y′(t) − g(t, yt) are absolutely continuous on
J ′ and (3.194) to (3.197) are satisfied.

Theorem 3.23. Assume (3.2.1), (3.5.1), (3.5.2), (3.7.1) (with c1 ≥ 0 in (iii)), and
the following conditions hold.

(3.23.1) ‖F(t,u)‖ ≤ p(t)ψ(‖u‖D) for almost all t ∈ J and all u ∈ D , where
p ∈ L1(J , R+) and ψ : R+ → (0,∞) is continuous and increasing with

∫ T

0
M(s)ds <

∫∞

c

ds

s + ψ(s)
, (3.235)

where c = ‖φ‖D + [‖η‖ + c∗1 ‖φ‖D + 2c∗2 ]T +
∑m

k=1[ck + (T − tk)dk],
and M(t) = max{1, c∗1 , p(t)}.
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(3.23.2) For each bounded B ⊆ Ω and t ∈ J , the set

{

φ(0) + tη +
∫ t

0

∫ s

0
v(u)duds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
(
y
(
t−k
))]

: v ∈ SF,B

} (3.236)

is relatively compact in E, where SF,B = ∪{SF,y : y ∈ B}.
Then the IVP (3.194)–(3.197) has at least one solution on [−r,T].

Proof. Transform the problem into a fixed point problem. Consider the operator
N∗ : Ω→ Ω defined by

N∗(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

φ(0) +
[
η − g(0,φ(0)

)]
t

+
∫ t

0
g
(
s, ys
)
ds +

∫ t

0

∫ u

0
v(u)duds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
(
y
(
t−k
))]

, t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.237)

where v ∈ SF,y . As in Theorem 3.11, we can prove that N∗ is a bounded-, closed-,
and convex-valued multivalued map and is u.s.c. and that the set

E
(
N∗) := {y ∈ Ω : y ∈ λN∗(y) for some 0 < λ < 1

}
(3.238)

is bounded. We omit the details.
Set X := Ω. As a consequence of Theorem 1.7, we deduce that N∗ has a fixed

point y which is a solution to problem (3.194)–(3.197). �

Theorem 3.24. Assume that (3.5.1), (3.5.2), [(3.7.1)(i), (iii)], (3.12.1), (3.12.2), and
(3.23.1) are satisfied. Then the IVP (3.194)–(3.197) has a least one solution.

Proof. Conditions (3.12.1) and (3.12.2) imply by Lemma 1.29 that F is of lower
semicontinuous type. Then from Theorem 1.5, there exists a continuous function
f : Ω→ L1([0,T],E) such that f (y) ∈ F (y) for all y ∈ Ω. Consider the problem

d

dt

[
y′(t)− g(t, yt

)] = f
(
yt
)
, t ∈ [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η.

(3.239)
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Transform problem (3.239) into a fixed point problem. Consider the operatorN2 :
Ω→ Ω defined by

N2(y)(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) +
[
η − g(0,φ(0)

)]
t +
∫ t

0
g
(
s, ys
)
ds

+
∫ t

0
(t − s) f (ys

)
ds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
]

if t ∈ [0,T].

(3.240)

As in Theorem 3.7, we can show that N2 is completely continuous.
Now we prove only that the set

E
(
N2
)

:= {y ∈ Ω : y = λN2(y) for some 0 < λ < 1
}

(3.241)

is bounded.
Let y ∈ E(N2). Then y = λN2(y) for some 0 < λ < 1. Thus

y(t) = λφ(0) + λ
[
η − g(0,φ(0)

)]
t

+ λ
∫ t

0
g
(
s, ys
)
ds + λ

∫ t

0
(t − s) f (ys

)
ds

+ λ
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
]
.

(3.242)

This implies that, for each t ∈ [0,T], we have

∣
∣y(t)

∣
∣ ≤ ‖φ‖D + T

(|η| + c∗1 ‖φ‖D + 2c∗2
)

+
∫ t

0
c∗1
∥
∥ys
∥
∥

Dds

+
∫ t

0
(T − s)p(s)ψ

(∥∥ys
∥∥

D

)
ds +

m∑

k=1

[
ck +

(
T − tk

)
dk
]
.

(3.243)

We consider the function μ defined by

μ(t) := sup
{∣∣y(s)

∣
∣ : −r ≤ s ≤ t

}
, 0 ≤ t ≤ T. (3.244)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ J , by inequality (3.243), we
have, for t ∈ [0,T],

μ(t) ≤ ‖φ‖D + T
(|η| + c∗1 ‖φ‖D + 2c∗2

)
+
∫ t

0
M(s)μ(s)ds

+
∫ t

0
M(s)ψ

(
μ(s)
)
ds +

m∑

k=1

[
ck +

(
T − tk

)
dk
]
.

(3.245)



Impulsive neutral functional DIs 105

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and inequality (3.245) holds. Let us take the
right-hand side of inequality (3.245) as v(t). Then, we have

v(0) = ‖φ‖D + T
(|η| + c∗1 ‖φ‖D + 2c∗2

)
+

m∑

k=1

(
ck + (T − s)dk

)
,

v′(t) =M(t)μ(t) +M(t)ψ
(
μ(t)
)
, t ∈ [0,T].

(3.246)

Using the nondecreasing character of ψ, we get

v′(t) ≤M(t)
[
μ(t) + ψ

(
v(t)
)]

, t ∈ [0,T]. (3.247)

This inequality implies, for each t ∈ [0,T], that

∫ v(t)

v(0)

dτ

τ + ψ(τ)
≤
∫ T

0
M(s)ds <

∫∞

v(0)

dτ

τ + ψ(τ)
. (3.248)

This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ [0,T],
and hence μ(t) ≤ b, t ∈ [0,T]. Since for every t ∈ [0,T], ‖yt‖D ≤ μ(t), we have

‖y‖ ≤ max
{‖φ‖D , b

}
, (3.249)

where b depends only on T and on the functions p and ψ. This shows that E(N2)
is bounded.

Set X := Ω. As a consequence of Schaefer’s theorem, we deduce that N2 has
a fixed point y which is a solution to problem (3.239). Then y is a solution to
problem (3.194)–(3.197). �

Theorem 3.25. Assume (3.13.1)–(3.13.3), (3.17.1), and (3.21.1) hold. If

T
∫ T

0
l(s)ds + pT +

m∑

k=1

(
ck +

(
T − tk

)
dk
)
< 1, (3.250)

then the IVP (3.194)–(3.197) has at least one solution on [−r,T].

Proof. We transform problem (3.194)–(3.197) into a fixed point problem. Con-
sider the operator N : Ω→ Ω defined by

N(y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

φ(0)+
[
η−g(0,φ(0)

)]
t

+
∫ t

0
g
(
s, ys
)
ds+
∫ t

0

∫ s

0
v(μ)dμds

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t−tk

)
Ik
(
y
(
tk
))]

, t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.251)
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where v ∈ SF,y . It is clear that the fixed points of N are solutions to problem
(3.194)–(3.197). As in Theorem 3.21, we can easily prove that N has closed values.

We prove now that H(N(y),N(y)) ≤ γ‖y − y‖, for each y, y ∈ Ω (where
γ < 1).

Let y, y ∈ Ω and h1 ∈ N(y). Then there exists v1(t) ∈ F(t, yt) such that, for
each t ∈ J ,

h1(t) = φ(0)− [η − g(0,φ(0)
)]
t +
∫ t

0
g
(
s, ys
)
ds +

∫ t

0

∫ s

0
v1(μ)dμds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))− (t − tk

)
Ik
(
y
(
t−k
))]

.
(3.252)

From (3.13.2), it follows that

H
(
F
(
t, yt
)
,F
(
t, yt
)) ≤ l(t)

∥
∥yt − yt

∥
∥

D , t ∈ J. (3.253)

Hence there is w ∈ F(t, yt) such that

∣
∣v1(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D , t ∈ J. (3.254)

Consider U : J → P (E), given by

U(t) = {w ∈ E :
∣
∣v1(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D

}
. (3.255)

Since the multivalued operator V(t) = U(t) ∩ F(t, yt) is measurable (see [119,
Proposition III.4]), there exists v2(t) a measurable selection for V . So, v2(t) ∈
F(t, yt) and

∣∣v1(t)− v2(t)
∣∣ ≤ l(t)‖y − y‖D , for each t ∈ J. (3.256)

Let us define, for each t ∈ J ,

h2(t) = φ(0)− [η − g(0,φ(0)
)]
t +
∫ t

0
g
(
s, ys
)
ds +

∫ t

0

∫ s

0
v2(μ)dμds

+
∑

0<tk<t

[Ik
(
y
(
t−k
))− (t − tk

)
Ik
(
y
(
t−k
))]

.
(3.257)
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Then we have

∣
∣h1(t)− h2(t)

∣
∣ ≤
∫ t

0

∣
∣g
(
s, ys
)− g(s, ys

)∣∣ds +
∫ t

0

∫ s

0

∣
∣v1(μ)− v2(μ)

∣
∣dμds

+
∑

0<tk<t

∣∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

+
∑

0<tk<t

(
T − tk

)∣∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

≤ p
∫ t

0

∥∥ys − ys
∥∥

Dds + T
∫ t

0
l(s)
∥∥ys − ys

∥∥
Dds

+
m∑

k=1

ck‖y − y‖ +
m∑

k=1

(
T − tk

)
dk‖y − y‖

≤
[

T
∫ T

0
l(s)ds + p +

m∑

k=1

(
ck +

(
T − tk

)
dk
)
]

‖y − y‖.
(3.258)

Then

∥
∥h1 − h2

∥
∥
Ω ≤

[

T
∫ T

0
l(s)ds + p +

m∑

k=1

(
ck +

(
T − tk

)
dk
)
]

‖y − y‖. (3.259)

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

H
(
N(y),N(y)

) ≤
[

T
∫ T

0
l(s)ds + p +

m∑

k=1

(
ck +

(
T − tk

)
dk
)
]

‖y − y‖. (3.260)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point y, which is
a solution to (3.194)–(3.197). �

3.6. Impulsive semilinear functional DIs

This section is concerned with the existence of mild solutions for first-order im-
pulsive semilinear functional differential inclusions of the form

y′(t)− Ay ∈ F
(
t, yt
)
, t ∈ J = [0, b], t �= tk, k = 1, . . . ,m,

y
(
t+k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],

(3.261)

whereA is the infinitesimal generator of a strongly continuous semigroup of boun-
ded linear operators T(t) in E, F : J × D → P (E) is a bounded-, closed-, and
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convex-valued multivalued map, φ ∈ D , (0 < r < ∞), 0 = t0 < t1 < · · · <
tm < tm+1 = b, Ik ∈ C(E,E) (k = 1, 2, . . . ,m), are bounded functions, Δy|t=tk =
y(t+k )− y(t−k ), y(t−k ), and y(t+k ) represent the left and right limits of y(t) at t = tk,
respectively, and E a real separable Banach space with norm | · |.

Definition 3.26. A function y ∈ Ω is said to be a mild solution of (3.261) if there
exists a function v ∈ L1(J ,E) such that v(t) ∈ F(t, y(t)) a.e. on J and

y(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

T(t)φ(0) +
∫ t

0
T(t − s)v(s)ds, t ∈ [0, t1

]
,

T
(
t − tk

)
Ik
(
y
(
t−k
))

+
∫ t

tk
T(t − s)v(s)ds, t ∈ Jk, k = 1, . . . ,m.

(3.262)

We are now in a position to state and prove our existence result for the IVP
(3.261).

Theorem 3.27. Suppose (3.11.1) holds and in addition assume that the following
conditions are satisfied.

(3.27.1) A is the infinitesimal generator of a linear bounded semigroup T(t),
t ≥ 0, which is compact for t > 0, and there exists M > 1 such that
‖T(t)‖B(E) ≤M.

(3.27.2) There exists a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1(J , R+) such that

∥
∥F(t,u)

∥
∥ := sup

{|v| : v ∈ F(t,u)
} ≤ p(t)ψ

(‖u‖D
)

(3.263)

for a.e. t ∈ J and each u ∈D with

∫ tk

tk−1

p(s)ds <
∫∞

Nk−1

dτ

ψ(τ)
, k = 1, . . . ,m + 1, (3.264)

where N0 =M‖φ‖D , and for k = 2, . . . ,m + 1,

Nk−1 = sup
y∈[−Mk−2,Mk−2]

M
∣
∣Ik−1(y)

∣
∣,

Mk−2 = Γ−1
k−1

(
M
∫ tk−1

tk−2

p(s)ds
)

,
(3.265)

with

Γl(z) =
∫ z

Nl−1

dτ

ψ(τ)
, z ≥ Nl−1, l ∈ {1, . . . ,m + 1

}
. (3.266)

Then problem (3.261) has at least one mild solution y ∈ Ω.



Impulsive semilinear functional DIs 109

Proof. The proof is given in several steps.
Step 1. Consider problem (3.261) on [−r, t1],

y′ − Ay ∈ F
(
t, yt
)
, t ∈ J0 =

[
0, t1
]
,

y(t) = φ(t), t ∈ [−r, 0].
(3.267)

We will show that the possible mild solutions of (3.267) are a priori bounded, that
is, there exists a constant b0 such that, if y ∈ Ω is a mild solution of (3.267), then

sup
{∣∣y(t)

∣∣ : t ∈ [−r, 0]∪ (0, t1
]} ≤ b0. (3.268)

So assume that there exists a mild solution y to (3.267). Then, for each t ∈ [0, t1],

y(t)− T(t)φ(0) ∈
∫ t

0
T(t − s)F(s, ys

)
ds. (3.269)

By (3.27.2), we get

∣
∣y(t)

∣
∣ ≤M‖φ‖D +M

∫ t

0
p(s)ψ

(∥∥ys
∥
∥

D

)
ds, t ∈ [0, t1

]
. (3.270)

We consider the function μ0 defined by

μ0(t) = sup
{∣∣y(s)

∣
∣ : −r ≤ s ≤ t

}
, 0 ≤ t ≤ t1. (3.271)

Let t∗ ∈ [−r, t] be such that μ0(t) = |y(t∗)|. If t∗ ∈ [0, t1], by the previous
inequality, we have, for t ∈ [0, t1],

μ0(t) ≤M‖φ‖D +M
∫ t

0
p(s)ψ

(
μ0(s)

)
ds. (3.272)

If t∗ ∈ [−r, 0], then μ0(t) = ‖φ‖D and the previous inequality holds since M ≥ 1.
Let us take the right-hand side of the above inequality as v0(t). Then we have

v0(0) =M‖φ‖D = N0, μ0(t) ≤ v0(t), t ∈ [0, t1],

v′0(t) =Mp(t)ψ
(
μ0(t)

)
, t ∈ [0, t1

]
.

(3.273)

Using the nondecreasing character of ψ, we get

v′0(t) ≤Mp(t)ψ
(
v0(t)

)
, t ∈ [0, t1

]
. (3.274)

This implies, for each t ∈ [0, t1], that

∫ v0(t)

N0

dτ

ψ(τ)
≤M

∫ t1

0
p(s)ds. (3.275)
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In view of (3.27.2), we obtain

∣
∣v0
(
t∗
)∣∣ ≤ Γ−1

1

(
M
∫ t1

0
p(s)ds

)
:=M0. (3.276)

Since for every t ∈ [0, t1], ‖yt‖ ≤ μ0(t), we have

sup
t∈[−r,t1]

∣∣y(t)
∣∣ ≤ max

(‖φ‖D ,M0
) = b0. (3.277)

We transform this problem into a fixed point problem. A mild solution to (3.267)
is a fixed point of the operator G : PC([−r, t1],E) → P (PC([−r, t1],E)) defined
by

G(y) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h ∈ PC
([− r, t1

]
,E
)

: h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0]

T(t)φ(0)

+
∫ t

0
T(t − s)v(s)ds if t ∈ [0, t1

]
,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

(3.278)

where v ∈ S1
F,y . We will show that G satisfies the assumptions of Theorem 1.11.

Claim 1. G(y) is convex, for each y ∈ PC([−r, t1],E).
Indeed, if h, h belong to G(y), then there exist v ∈ S1

F,y and v ∈ S1
F,y such that

h(t) = T(t)φ(0) +
∫ t

0
T(t − s)v(s)ds, t ∈ J0,

h(t) = T(t)φ(0) +
∫ t

0
T(t − s)v(s)ds, t ∈ J0.

(3.279)

Let 0 ≤ l ≤ 1. Then, for each t ∈ [0, t1], we have

[
lh + (1− l)h](t) = T(t)φ(0) +

∫ t

0
T(t − s)[lv(s) + (1− l)v(s)

]
ds. (3.280)

Since S1
F,y is convex (because F has convex values), then

lh + (1− l)h ∈ G(y). (3.281)

Claim 2. G sends bounded sets into bounded sets in PC([−r, t1],E).
Let Bq := {y ∈ PC([−r, t1],E) : ‖y‖ = supt∈[−r,t1] |y(t)| ≤ q} be a bounded

set in PC([−r, t1],E) and y ∈ Bq. Then, for each h ∈ G(y), there exists v ∈ S1
F,y

such that

h(t) = T(t)φ(0) +
∫ t

0
T(t − s)v(s)ds, t ∈ J0. (3.282)
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Thus, for each t ∈ [−r, t1], we get

∣∣h(t)
∣∣ ≤M‖φ‖D +M

∫ t

0

∣∣v(s)
∣∣ds ≤M‖φ‖D +M

∥∥ϕq
∥∥
L1 . (3.283)

Claim 3. G sends bounded sets in PC([−r, t1],E) into equicontinuous sets.
Let r1, r2 ∈ [−r, t1], r1 < r2, and let Bq := {y ∈ PC([−r, t1],E) : ‖y‖ ≤ q}

be a bounded set in PC([−r, t1],E) as in Claim 2 and y ∈ Bq. For each h ∈ G(y),
there exists v ∈ S1

F,y such that

h(t) = T(t)φ(0) +
∫ t

0
T(t − s)v(s)ds, t ∈ J0. (3.284)

Hence

∣
∣h
(
r2
)− h(r1

)∣∣

≤ ∣∣T(r2
)
φ(0)− T(r1

)
φ(0)

∣∣ +
∣
∣∣
∣

∫ r2

0

[
T
(
r2 − s

)− T(r1 − s
)]
v(s)ds

∣
∣∣
∣

+
∣
∣
∣
∣

∫ r2

r1

T
(
r1 − s

)
v(s)ds

∣
∣
∣
∣ ≤

∣
∣T
(
r2
)
φ(0)− T(r1

)
φ(0)

∣
∣

+
∣
∣∣
∣

∫ r2

0

[
T
(
r2 − s

)− T(r1 − s
)]
v(s)ds

∣
∣∣
∣ +M

∫ r2

r1

∣∣v(s)
∣∣ds

≤ ∣∣T(r2
)
φ(0)− T(r1

)
φ(0)

∣
∣

+
∣
∣
∣
∣

∫ r2

0

[
T
(
r2 − s

)− T(r1 − s
)]
ϕr(s)ds

∣
∣
∣
∣ +M

∫ r2

r1

ϕr(s)ds.

(3.285)

The right-hand side of the above inequality tends to zero, as r1 → r2, since T(t)
is a strongly continuous operator, and the compactness of T(t) for t > 0 implies
the continuity in the uniform operator topology. The equicontinuity for the cases
r1 < r2 ≤ 0 and r1 ≤ 0 ≤ r2 follows from the uniform continuity of φ on the
interval [−r, 0]. As a consequence of Claims 1 to 3, together with the Arzelá-Ascoli
theorem, it suffices to show that multivalued G maps Bq into a precompact set in
E. Let 0 < t ≤ b be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bq,
we define

hε(t) = T(t)φ(0) + T(ε)
∫ t−ε

0
T(t − s− ε)v(s)ds, (3.286)

where v ∈ S1
F,y . Then we have, since T(t) is a compact operator, the set Hε(t) =

{hε(t) : hε ∈ G(y)} is a precompact in E for every ε, 0 < ε < t. Moreover, for
every h ∈ G(y), we have

∣
∣h(t)− hε(t)

∣
∣ ≤

∫ t

t−ε

∣
∣T(t − s)∣∣ϕq(s)ds. (3.287)
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Therefore there are precompact sets arbitrarily close to the set H(t) = {hε(t) : h ∈
G(y)}. Hence the set H = {hε(t) : h ∈ G(y)} is precompact in E. We can conclude
that G : PC([−r, t1],E) → P (PC([−r, t1],E)) is completely continuous. Set

U = {y ∈ PC
([− r, t1

]
,E
)

: ‖y‖Ω < b0 + 1
}
. (3.288)

As a consequence of Claims 2 and 3 together with the Arzelá-Ascoli theorem, we
can conclude that G : U → P (PC([−r, t1],E)) is a compact multivalued map.
Claim 4. G has a closed graph.

Let yn → y∗, hn ∈ G(yn), and hn → h∗. We will prove that h∗ ∈ G(y∗).
hn ∈ G(yn) means that there exists vn ∈ SF,yn such that

hn(t) = T(t)φ(0) +
∫ t

0
T(t − s)vn(s)ds, t ∈ [− r, t1

]
. (3.289)

We must prove that there exists v∗ ∈ S1
F,y∗ such that

h∗(t) = T(t)φ(0) +
∫ t

0
T(t − s)v∗(s)ds, t ∈ [− r, t1

]
. (3.290)

Consider the linear continuous operator Γ : L1([0, t1],E) → C([0, t1],E) defined
by

(Γv)(t) =
∫ t

0
T(t − s)v(s)ds. (3.291)

We have

∥∥(hn − T(t)φ(0)
)− (h∗ − T(t)φ(0)

)∥∥ �→ 0 as n �→∞. (3.292)

By Lemma 1.28, it follows that Γ ◦ S1
F is a closed graph operator.

Also from the definition of Γ, we have

hn(t)− T(t)φ(0) ∈ Γ
(
S1
F,yn

)
. (3.293)

Since yn → y∗, it follows from Lemma 1.28 that

h∗(t) = T(t)φ(0) +
∫ t

0
T(t − s)v∗(s)ds, t ∈ J0 (3.294)

for some v∗ ∈ S1
F,y∗ .

By the choice of U , there is no y ∈ ∂U such that y ∈ λG(y) for any λ ∈ (0, 1).
As a consequence of Theorem 1.8, we deduce that G has a fixed point y0 ∈ U

which is a mild solution of (3.267).
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Step 2. Consider now the following problem on J1 := [t1, t2]:

y′ − Ay ∈ F
(
t, yt
)
, t ∈ J1,

y
(
t+1
) = I1

(
y
(
t−1
))
.

(3.295)

Let y be a (possible) mild solution to (3.295). Then, for each t ∈ [t1, t2],

y(t)− T(t − t1
)
I1
(
y
(
t−1
)) ∈

∫ t

t1
T(t − s)F(s, ys

)
ds. (3.296)

By (3.27.2), we get

∣
∣y(t)

∣
∣ ≤M sup

t∈[−r,t1]

∣
∣I1
(
y0
(
t−
))∣∣ +M

∫ t

t1
p(s)ψ

(∥∥ys
∥
∥

D

)
ds, t ∈ [t1, t2

]
.

(3.297)

We consider the function μ1 defined by

μ1(t) = sup
{∣∣y(s)

∣∣ : t1 ≤ s ≤ t
}

, t1 ≤ t ≤ t2. (3.298)

Let t∗ ∈ [t1, t] be such that μ1(t) = |y(t∗)|. Then we have, for t ∈ [t1, t2],

μ1(t) ≤ N1 +M
∫ t

t1
p(s)ψ

(
μ1(s)

)
ds. (3.299)

Let us take the right-hand side of the above inequality as v1(t). Then we have

v1
(
t1
) = N1, μ1(t) ≤ v1(t), t ∈ [t1, t2

]
,

v′1(t) =Mp(t)ψ
(
μ1(t)

)
, t ∈ [t1, t2

]
.

(3.300)

Using the nondecreasing character of ψ, we get

v′1(t) ≤Mp(t)ψ
(
v1(t)

)
, t ∈ [t1, t2

]
. (3.301)

This implies, for each t ∈ [t1, t2], that

∫ v1(t)

N1

dτ

ψ(τ)
≤M

∫ t2

t1
p(s)ds. (3.302)

In view of (3.27.2), we obtain

∣
∣v1
(
t∗
)∣∣ ≤ Γ−1

2

(
M
∫ t2

t1
p(s)ds

)
:=M1. (3.303)
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Since for every t ∈ [t1, t2],‖yt‖D ≤ μ1(t), we have

sup
t∈[t1,t2]

∣∣y(t)
∣∣ ≤M1. (3.304)

A mild solution to (3.3)-(3.6) is a fixed point of the operator G : C(J1,E) →
P (C(J1,E)) defined by

G(y) :=
⎧
⎪⎨

⎪⎩
h ∈ PC

(
J1,E
)

: h(t) =
⎧
⎪⎨

⎪⎩

T
(
t − t1

)
I1
(
y
(
t−1
))

+
∫ t

t1
T(t − s)v(s)ds : v ∈ S1

F,y

⎫
⎪⎬

⎪⎭
. (3.305)

Set

U = {y ∈ PC
([
t1, t2

]
,E
)

: ‖y‖ < M1 + 1
}
. (3.306)

As in Step 1, we can show that G : U → P (Ω) is a compact multivalued map and
u.s.c. By the choice ofU , there is no y ∈ ∂U such that y ∈ λG(y) for any λ ∈ (0, 1).

As a consequence of Theorem 1.8, we deduce that G has a fixed point y1 ∈ U
which is a mild solution of (3.295).
Step 3. Continue this process and construct solutions yk ∈ PC(Jk,E), k = 2, . . . ,m,
to

y′(t)− Ay ∈ F
(
t, yt
)
, a.e. t ∈ Jk,

y
(
t+k
) = Ik

(
y
(
t−k
))
.

(3.307)

Then

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0(t), t ∈ [−r, t1],

y1(t), t ∈ (t1, t2
]
,

...

ym−1(t), t ∈ (tm−1, tm
]
,

ym(t), t ∈ (tm, b
]
,

(3.308)

is a mild solution of (3.261). �
In the second part, a selection theorem due to Bressan and Colombo for lower

semicontinuous multivalued operators with nonempty closed decomposable val-
ues combined with Schaefer’s fixed point theorem is used to investigate the exis-
tence of mild solution for first-order impulsive semilinear functional differential
inclusions with nonconvex-valued right-hand side.

Theorem 3.28. Suppose that (3.5.1), (3.12.1), (3.12.2), and (3.27.1) are satisfied. In
addition we assume that the following condition holds.
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(3.28.1) There exists a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1([0, b], R+) such that

∥
∥F(t,u)

∥
∥ ≤ p(t)ψ

(‖u‖D
)

for a.e. t ∈ [0, b] and each u ∈ D, (3.309)

with

M
∫ b

0
p(s)ds <

∫∞

c

dτ

ψ(τ)
, c =M‖φ‖D +

m∑

k=1

ck. (3.310)

Then the impulsive initial value problem (3.261) has at least one solution.

Proof. First, (3.12.1) and (3.12.2) imply by Lemma 1.29 that F is of lower semi-
continuous type. Then from Theorem 1.5, there exists a continuous function f :
Ω→ L1([0, b],E) such that f (y) ∈ F (y) for all y ∈ Ω. Consider the problem

y′(t)− Ay(t) = f
(
yt
)
, t ∈ [0, b], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0].

(3.311)

Clearly, if y ∈ Ω is a solution of the problem (3.311), then y is a solution to
problem (3.261).

Transform problem (3.311) into a fixed point problem. Consider the operator
N : Ω→ Ω defined by

N(y)(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

T(t)φ(0) +
∫ t

0
T(t − s) f (ys

)
ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

if t ∈ [0, b].

(3.312)

We will show that N is completely continuous. We show first that N is continuous.
Let {yn} be a sequence such that yn → y in Ω. Then

∣∣N
(
yn(t)

)−N(y(t)
)∣∣

≤M
∫ t

0

∣∣ f
(
yn,s
)− f

(
ys
)∣∣ds +M

∑

0<tk<t

∣∣Ik
(
yn
(
tk
))− Ik

(
y
(
t−k
))∣∣

≤M
∫ b

0

∣
∣ f
(
yn,s
)− f

(
ys
)∣∣ds +M

∑

0<tk<t

∣
∣Ik
(
yn
(
tk
))− Ik

(
y
(
t−k
))∣∣.

(3.313)
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Since the functions f and Ik, k = 1, . . . ,m, are continuous, then

∥
∥N
(
yn
)−N(y)

∥
∥ ≤M

∥
∥ f
(
yn
)− f (y)

∥
∥
L1

+M
m∑

k=1

∣
∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣ �→ 0

(3.314)

as n→∞.
As in Theorem 3.27, we can prove that N : Ω→ Ω is completely continuous.
Now it remains to show that the set

E(N) := {y ∈ Ω : y = λN(y) for some 0 < λ < 1
}

(3.315)

is bounded.
Let y ∈ E(N). Then y = λN(y) for some 0 < λ < 1. Thus, for each t ∈ [0, b],

y(t) = λ

[

T(t)φ(0) +
∫ t

0
T(t − s) f (ys

)
ds +

∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
]

. (3.316)

This implies that, for each t ∈ [0, b], we have

∣
∣y(t)

∣
∣ ≤M‖φ‖D +M

∫ t

0
p(s)ψ

(∥∥ys
∥
∥

D

)
ds +M

m∑

k=1

ck. (3.317)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣∣ : −r ≤ s ≤ t
}

, 0 ≤ t ≤ b. (3.318)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ J , then by inequality (3.317)
we have, for t ∈ [0, b],

μ(t) ≤M‖φ‖D +M
∫ t

0
p(s)ψ

(
μ(s)
)
ds +M

m∑

k=1

ck. (3.319)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and inequality (3.319) holds. Let us take the
right-hand side of inequality (3.319) as v(t). Then we have

c = v(0) =M‖φ‖D +M
m∑

k=1

ck, μ(t) ≤ v(t), t ∈ [0, b],

v′(t) =Mp(t)ψ
(
μ(t)
)
, t ∈ [0, b].

(3.320)

Using the nondecreasing character of ψ, we get

v′(t) ≤Mp(t)ψ
(
v(t)
)
, t ∈ [0, b]. (3.321)
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This implies, for each t ∈ [0, b], that

∫ v(t)

v(0)

dτ

ψ(τ)
≤M

∫ b

0
p(s)ds <

∫∞

v(0)

dτ

ψ(τ)
. (3.322)

(3.28.1) implies that there exists a constant K such that v(t) ≤ K , t ∈ [0, b], and
hence μ(t) ≤ K , t ∈ [0, b]. Since for every t ∈ [0, b], ‖yt‖D ≤ μ(t), we have

‖y‖ ≤ max
{‖φ‖D ,K

}
:= K ′, (3.323)

where K ′ depends only on b,M and on the functions p and ψ. This shows that
E(N) is bounded.

SetX :=Ω. As a consequence of Schaefer’s fixed point theorem (Theorem 1.6),
we deduce that N has a fixed point y which is a mild solution to problem (3.311).
Then y is a mild solution to problem (3.261). �

For second-order impulsive functional differential inclusions, we have the fol-
lowing theorem, which we state without proof, since it follows the same steps as
the previous theorem.

Theorem 3.29. Assume (3.5.1), (3.5.2), (3.12.1), (3.12.2), and the following condi-
tions hold.

(3.29.1) C(t), t > 0 is compact, and there exists a constant M1 ≥ 1 such that
‖C(t)‖B(E) ≤M1 for all t ∈ R.

(3.29.2) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1([0, b], R+) such that

∥
∥F(t,u)

∥
∥ ≤ p(t)ψ

(‖u‖D
)

for a.e. t ∈ J and each u ∈ D (3.324)

with

bM1

∫ b

0
p(s)ds <

∫∞

c

dτ

ψ(τ)
,

c =M1‖φ‖D + bM1|η| +
m∑

k=1

[
M1ck +M1

(
b− tk

)
dk
]
.

(3.325)

Then the IVP

y′′(t)− Ay(t) ∈ F
(
t, yt
)
, a.e. t ∈ J = [0, b], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η,

(3.326)

has at least one mild solution.
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3.7. Notes and remarks

The techniques in this chapter have been adapted from [138, 162, 164, 202], where
the nonimpulsive case was discussed. The arguments of Section 3.2 are depen-
dent upon the nonlinear alternative of Leray-Schauder. Theorems 3.2, 3.3, 3.5
are taken from Benchohra et al. [46] and Benchohra and Ntouyas [85]. The re-
sults of Section 3.3 are adapted from Benchohra et al. [49] and extend those of
Section 3.2. Section 3.4 is taken from Benchohra and Ntouyas [82] and Benchohra
et al. [53, 54, 60, 66], with the major tools based on Martelli’s fixed point theorem
for multivalued condensing maps, Schaefer’s fixed point theorem combined with
a selection theorem due to Bressan and Colombo, and the Covitz-Nadler fixed
point theorem for contraction multivalued maps. The material of Section 3.5 is
based on the results given by Benchohra et al. [56, 57], and this section extends
some results given in Section 3.4. The results of last section of Chapter 3 are taken
from Benchohra et al. [64].



4
Impulsive differential inclusions with
nonlocal conditions

4.1. Introduction

In this chapter, we will prove existence results for impulsive semilinear ordinary
and functional differential inclusions, with nonlocal conditions. Often, nonlocal
conditions are motivated by physical problems. For the importance of nonlocal
conditions in different fields we refer to [112]. As indicated in [112, 113, 126]
and the references therein, the nonlocal condition y(0) + g(y) = y0 can be more
descriptive in physics with better effect than the classical initial condition y(0) =
y0. For example, in [126], the author used

g(y) =
p∑

k=1

ci y
(
ti
)
, (4.1)

where ci, i = 1, . . . , p are given constants and 0 < t1 < t2 < · · · < tp ≤ b, to
describe the diffusion phenomenon of a small amount of gas in a transparent tube.
In this case, (4.1) allows the additional measurements at ti, i = 1, . . . , p.

Nonlocal Cauchy problems for ordinary differential equations have been in-
vestigated by several authors, (see, e.g., [103, 113, 114, 202–204, 206, 207]). Non-
local Cauchy problems, in the case where F is a multivalued map, were studied
by Benchohra and Ntouyas [77–79], and Boucherif [103]. Akça et al. [14] initi-
ated the study of a class of first-order semilinear functional differential equations
for which the nonlocal conditions and the impulse effects are combined. Again,
in this chapter, we will invoke some of our fixed point theorems in establishing
solutions for these nonlocal impulsive differential inclusions.

4.2. Nonlocal impulsive semilinear differential inclusions

In this section, we begin the study of nonlocal impulsive initial value problems by
proving existence results for the problem

y′(t) ∈ Ay(t) + F
(
t, y(t)

)
, t ∈ J := [0, b], t �= tk, k = 1, 2, . . . ,m, (4.2)
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Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (4.3)

y(0) +
m+1∑

k=1

ck y
(
ηk
) = y0, (4.4)

where A is the infinitesimal generator of a strongly continuous semigroup, T(t),
t ≥ 0, F : J × E → P (E) is a multivalued map, y0 ∈ E, P (E) is the family of
all subsets of E, 0 ≤ η1 < t1 < η2 < t2 < η3 < · · · < tm < ηm+1 ≤ b, ck �= 0,
k = 1, 2, . . . ,m + 1, are real numbers, Ik ∈ C(E,E) (k = 1, . . . ,m), Δy|t=tk =
y(t+k )− y(t−k ), y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0+ y(tk − h), and E is a
real separable Banach space with norm | · |. We are concerned with the existence
of solutions for problem (4.2)–(4.4) when F : J × E → P (E) is a compact and
convex-valued multivalued map.

We recall that PC(J ,E) = {y : J → E such that y(t) is continuous everywhere
except for some tk at which y(t−k ) and y(t+k ) exist, and y(t−k ) = y(tk), k = 1, 2, . . . ,
m}. Evidently, PC(J ,E) is a Banach space with norm

‖y‖PC = sup
{∣∣y(t)

∣∣ : t ∈ J
}
. (4.5)

Let us define what we mean by a mild solution of problem (4.2)–(4.4).

Definition 4.1. A function y ∈ PC(J ,E) ∩ AC((tk, tk+1),E) is said to be a mild
solution of (4.2)–(4.4) if y(0) +

∑m+1
k=1 ck y(ηk) = y0, Δy|t=tk = Ik(y(t−k )), k =

1, . . . ,m, and there exists a function f ∈ L1(J ,E) such that f (t) ∈ F(t, y(t)) a.e.
on t ∈ J , and y′(t) = Ay(t) + f (t).

Lemma 4.2. Assume
(4.2.1) there exists a bounded operator B : E → E such that

B =
(

I +
m+1∑

k=1

ckT
(
ηk
)
)−1

. (4.6)

If y is a solution of (4.2)–(4.4), then it is given by

y(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
f (s)ds +

∫ t

0
T(t − s) f (s)ds

− T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y
(
t−k−1

))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

, f ∈ SF,y.

(4.7)
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Proof. Let y be a solution of problem (4.2)–(4.4). Then there exists f ∈ SF,y such
that y′(t) = Ay(t) + f (t). We put w(s) = T(t − s)y(s). Then

w′(s) = −T′(t − s)y(s) + T(t − s)y′(s)
= −AT(t − s)y(s) + T(t − s)y′(s)
= T(t − s)[y′(s)− Ay(s)

]

= T(t − s) f (s).

(4.8)

Let t < t1. Integrating the above equation, we have

∫ t

0
w′(s)ds =

∫ t

0
T(t − s) f (s)ds,

w(t)−w(0) =
∫ t

0
T(t − s) f (s)ds,

y(t) = T(t)y(0) +
∫ t

0
T(t − s) f (s)ds.

(4.9)

Consider tk < t, k = 1, . . . ,m. By integrating (4.8) for k = 1, 2, . . . ,m, we have

∫ t1

0
w′(s)ds +

∫ t2

t1
w′(s)ds + · · · +

∫ t

tk
w′(s)ds =

∫ t

0
T(t − s) f (s)ds (4.10)

or

w
(
t−1
)−w(0) +w

(
t−2
)−w(t+1

)
+ · · · +w

(
t+k
)−w(t) =

∫ t

0
T(t − s) f (s)ds,

(4.11)

and consequently

w(t) = w(0) +
∑

0<tk<t

[
w
(
t+k
)−w(t−k

)]
+
∫ t

0
T(t − s) f (s)ds,

y(t) = w(0) +
∑

0<tk<t

T
(
t − tk

)
I
(
y
(
t−k
))

+
∫ t

0
T(t − s) f (s)ds,

(4.12)

where w(0) = T(t)y(0) = T(t)[y0 −
∑m+1

k=1 ck y(ηk)].
It remains to find y(ηk). For that reason we use (4.8) and integrate it from 0

to ηk, k = 1, . . . ,m + 1.
For k = 1,
∫ η1

0
w′(s)ds =

∫ η1

0
T(t − s) f (s)ds−

∫ η1

0
y(s)ds⇐⇒ w

(
η1
)−w(0)

=
∫ η1

0
S(t − s) f (s)ds−

∫ η1

0
y(s)ds⇐⇒ T

(
t − η1

)
y
(
η1
)

= T(t)y(0) +
∫ η1

0
T(t − s) f (s)ds−

∫ η1

0
y(s)ds.

(4.13)
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For k = 2, . . . ,m + 1,

∫ ηk

0
w′(s)ds =

∫ ηk

0
T(t − s) f (s)ds−

∫ ηk

0
y(s)ds⇐⇒

∫ t1

0
w′(s)ds

+
∫ t2

t1
w′(s)ds + · · · +

∫ ηk

tk−1

w′(s)ds

=
∫ ηk

0
T(t − s) f (s)ds−

∫ ηk

0
y(s)ds⇐⇒ w

(
t−1
)

−w(0) +w
(
t−2
)−w(t+1

)
+ · · · +w

(
ηk
)−w(t+k−1

)

=
∫ ηk

0
T(t − s) f (s)ds,

(4.14)

and thus

T
(
t − t1

)
y
(
t−1
)− T(t)y(0) + T

(
t − t2

)
y
(
t−2
)

− T(t − t1
)
y
(
t+1
)

+ · · · + T
(
t − tk

)
y
(
ηk
)− T(t − tk−1

)
y
(
t+k−1

)

=
∫ ηk

0
T(t − s) f (s)ds.

(4.15)

Hence

T
(
t − ηk

)
y
(
ηk
) = T(t)y(0) +

∑

0<tj<ηk

T
(
t − t j

)
I j
(
y
(
t−j
))

+
∫ ηk

0
T(t − s) f (s)ds,

(4.16)

y
(
ηk
) = T

(
ηk
)
y(0) +

∑

0<tj<ηk

T
(
ηk − t j

)
I j
(
y
(
t−j
))

+
∫ ηk

0
T
(
ηk − s

)
f (s)ds.

(4.17)

The nonlocal condition, with the help of (4.17), becomes

y(0)+
m+1∑

k=1

ck

[

T
(
ηk
)
y(0)+

∑

0<tj<ηk

T
(
ηk−t j

)
I j
(
y
(
t−j
))

+
∫ ηk

0
T
(
ηk−s

)
f (s)ds

]

= y0,

y(0)

(

I +
m+1∑

k=1

ckT
(
ηk
)
)

= y0 −
m+1∑

k=2

ck

k−1∑

μ=1

T
(
ηk − tμ

)
Iμ
(
y
(
t−μ
))−

m+1∑

k=1

ck

∫ ηk

0
T
(
ηk − s

)
f (s)ds.

(4.18)

Hence

y(0) = By0 − B
m+1∑

k=2

ck

k−1∑

μ=1

T
(
ηk − tμ

)
Iμ
(
y
(
t−μ
))− B

m+1∑

k=1

ck

∫ ηk

0
T
(
ηk − s

)
f (s)ds.

(4.19)
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Equation (4.12), with the help of (4.19), becomes

y(t) = T(t)

[

By0−B
m+1∑

k=2

ck

k−1∑

μ=1

T
(
ηk−tμ

)
Iμ
(
y
(
t−μ
))−B

m+1∑

k=1

ck

∫ ηk

0
T
(
ηk−s

)
f (s)ds

]

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

+
∫ t

0
T(t − s) f (s)ds,

(4.20)

which completes the proof. �
Now we are able to state and prove our main theorem.

Theorem 4.3. Assume (3.11.1), (3.27.1), (4.2.1), and the following conditions are
satisfied:

(4.3.1) there exist constants θk such that

∣
∣Ik(x)

∣
∣ ≤ θk, k = 1, . . . ,m, ∀x ∈ E; (4.21)

(4.3.2) there exist a continuous nondecreasing function ψ : R+ → (0,∞), a
function p ∈ L1(J , R+), and a constant M > 0 such that

∥
∥F(t, y)

∥
∥ := sup

{|v| : v ∈ F(t, y)
} ≤ p(t)ψ

(|y|) (4.22)

for almost all t ∈ J and all y ∈ E, and

M

α +M2‖B‖B(E)
∑m+1

k=1

∣∣ck
∣∣ψ(M)

∫ ηk
0 p(t)dt +M

∫ b
0 p(s)ψ(M)ds

> 1, (4.23)

where

α =M‖B‖B(E)
∣
∣y0
∣
∣ +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣θk +M

m∑

k=1

θk; (4.24)

(4.3.3) the set {y0 −
∑m+1

k=1 ck y(ηk), y ∈ PC(J ,E), ‖y‖PC ≤ r, r > 0} is rela-
tively compact.

Then the IVP (4.2)–(4.4) has at least one mild solution on J .
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Proof. We transform problem (4.2)–(4.4) into a fixed point problem. Consider the
multivalued map N : PC(J ,E) → P (PC(J ,E)) defined by

N(y) :=
{

h ∈ PC(J ,E) : h(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
g(s)ds

+
∫ t

0
T(t − s)g(s)ds− T(t)B

m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y
(
t−k−1

))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
ds : g ∈ SF,y

}

.

(4.25)

It is clear that the fixed points of N are mild solutions to (4.2)-(4.3).
We will show that N has a fixed point. The proof will be given in several steps.

We first will show thatN is a completely continuous multivalued map, upper semi-
continuous (u.s.c.), with convex closed values.
Step 1. N(y) is convex, for each y ∈ PC(J ,E).

Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ SF,y such that, for
each t ∈ J , we have

hi(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
gi(s)ds

+
∫ t

0
T(t − s)gi(s)ds− T(t)B

m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y
(
t−k−1

))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

, i = 1, 2.

(4.26)

Let 0 ≤ k ≤ 1. Then, for each t ∈ J , we have
(
kh1 + (1− k)h2

)
(t)

= T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)[
kg1(s) + (1− k)g2(s)

]
ds

− T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y
(
t−k−1

))

+
∫ t

0
T(t − s)[kg1(s) + (1− k)g2(s)

]
ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(4.27)

Since SF,y is convex (because F has convex values), then

kh1 + (1− k)h2 ∈ N(y). (4.28)
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Step 2. N is bounded on bounded sets of PC(J ,E).
Indeed, it is enough to show that for any r > 0, there exists a positive constant

� such that, for each h ∈ N(y), y ∈ Br = {y ∈ PC(J ,E) : ‖y‖PC ≤ r}, one has
‖N(y)‖ := {‖h‖PC : h ∈ N(y)} ≤ �. By (3.27.1), (4.3.2), and (4.3.3), we have, for
each t ∈ J , that

∣
∣h(t)

∣
∣ ≤M‖B‖B(E)

∣
∣y0
∣
∣ +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣
∫ ηk

0
p(t)ψ

(∣∣y(t)
∣
∣)dt

+M
∫ t

0
p(s)ψ

(∣∣y(s)
∣
∣)ds +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣θk +M

m∑

k=1

θk

≤M‖B‖B(E)
∣
∣y0
∣
∣ +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣ψ
(‖y‖PC

)‖p‖L1

+Mψ
(‖y‖PC

)‖p‖L1 +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣θk +M

m∑

k=1

θk.

(4.29)

Then, for each h ∈ N(Br), we have

‖h‖PC ≤M‖B‖B(E)
∣
∣y0
∣
∣ +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣‖p‖L1ψ(r)

+M‖p‖L1ψ(r) +M2‖B‖B(E)

m+1∑

k=1

∣∣ck
∣∣θk +M

m∑

k=1

θk := �.

(4.30)

Step 3. N sends bounded sets into equicontinuous sets of PC(J ,E).
Let τ1, τ2 ∈ J \ {t1, . . . , tm}, τ1 < τ2, and Br be a bounded set in PC(J ,E). Then

we have

∣
∣h
(
τ2
)− h(τ1

)∣∣ ≤ ∣∣[T(τ2
)
B − T(τ1

)
B
]
y0
∣
∣

+M‖B‖B(E)

m+1∑

k=1

∣∣ck
∣∣
∫ ηk

0

∥∥T
(
τ2
)− T(τ1

)∥∥
B(E)

∣∣g(s)
∣∣ds

+
∫ τ1

0

∥
∥T
(
τ2 − s

)− T(τ1 − s
)∥∥

B(E)

∣
∣g(s)

∣
∣ds

+
∫ τ2

τ1

∥
∥T
(
τ2 − s

)∥∥
B(E)

∣
∣g(s)

∣
∣ds

+
∥
∥T
(
τ2
)− T(τ1

)∥∥
B(E)‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣Mθk

+
∑

0<tk<τ1

∥
∥T
(
τ2 − tk

)− T(τ1 − tk
)∥∥

B(E)θk +
∑

τ1<tk<τ2

Mθk.

(4.31)
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As τ2 → τ1, the right-hand side of the above inequality tends to zero, since T(t) is
a strongly continuous operator, and the compactness of T(t) for t > 0 implies the
continuity in the uniform operator topology.

This proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It re-
mains to examine the equicontinuity at t = ti.

First we prove equicontinuity at t = t+i . Fix δ1 > 0 such that {tk : k �= i}∩ [ti−
δ1, ti + δ1] = ∅.

For 0 < h < δ1, we have

∣
∣h
(
ti + h

)− h(ti
)∣∣

≤ ∣∣[T(ti + h
)− T(ti

)]
By0
∣
∣

+M2‖B‖B(X)

m+1∑

k=1

∣
∣ck
∣
∣
∫ ηk

0

∣
∣[T
(
ti + h

)− T(ti
)]
g(s)
∣
∣ds

+
∫ ti

0

∣
∣[T
(
ti + h− s)− T(ti − s

)]
g(s)
∣
∣ds +

∫ ti+h

ti
M
∣
∣g(s)

∣
∣ds

+
∥
∥T
(
ti + h

)− T(ti
)∥∥

B(X)‖B‖B(X)M
m+1∑

k=2

∣
∣ck
∣
∣
k−1∑

λ=1

θλ

+
∑

0<tk≤ti

∣
∣[T
(
ti + h− tk

)− T(ti − tk
)]
Ik
(
y
(
t−k
))∣∣ +

∑

ti<tk<ti+h

Mθk.

(4.32)

The right-hand side tends to zero as h→ 0.
Next we prove the equicontinuity at t = t−i . Fix δ1 > 0 such that {tk : k �=

i} ∩ [ti − δ1, ti + δ1] = ∅.
For 0 < h < δ1, we have

∣
∣h
(
ti
)− h(ti − h

)∣∣ ≤ ∣∣[T(ti
)− T(ti − h

)]
By0
∣
∣

+M2‖B‖B(X)

m+1∑

k=1

∣
∣ck
∣
∣
∫ ηk

0

∣
∣[T
(
ti
)− T(ti − h

)]
g(s)
∣
∣ds

+
∫ ti−h

0

∣
∣[T
(
ti − s

)− T(ti − h− s
)]
g(s)
∣
∣ds

+
∥
∥T
(
ti
)− T(ti − h

)∥∥
B(X)‖B‖B(X)M

m+1∑

k=2

∣
∣ck
∣
∣
k−1∑

λ=1

θλ

+
i−1∑

k=1

∣
∣[T
(
ti − tk

)− T(ti − h− tk
)](

Ik
(
y
(
t−k
)))∣∣

+M
∫ ti

ti−h
p(s)ψ(r)ds +

∑

ti−h<t<ti
Mθk.

(4.33)

The right-hand side tends to zero as h→ 0.
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As a consequence of Steps 1 to 3 and (4.3.3), together with the Arzelá-Ascoli
theorem, it suffices to show that N maps Br into a precompact set in E.

Let Y = {h ∈ N(y) : y ∈ Br , y(0) +
∑m+1

k=1 ck y(ηk) = y0}. We show that N
maps Y into relatively compact sets N(Y) of Y . For this reason we will prove that
Y(t) = {h(t) : h ∈ Y}, t ∈ J is precompact in PC(J ,E).

From assumption (4.3.3), we have that Y(0) is relatively compact.
Let 0 < t ≤ b be fixed and let ε be a real number satisfying 0 < ε < t. For

y ∈ Br we define

hε(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
g(s)ds

+
∫ t−ε

0
T(t − ε − s)g(s)ds

− T(t)B
m+1∑

k=2

ck

k−1∑

λ=1

T
(
ηk − tλ

)
Iλ
(
y
(
t−λ
))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(4.34)

Since T(t) is a compact operator for t > 0, the set Yε(t) = {hε(t) : hε ∈ N(y)} is
relatively compact in PC(J ,E), for every ε, 0 < ε < t. Moreover, for every h ∈ N(y),
we have

∣
∣h(t)− hε(t)

∣
∣ ≤M

∫ t

t−ε
p(s)ψ(r)ds. (4.35)

Therefore there are precompact sets arbitrarily close to the set Y(t). Hence the set
Y(t) is precompact.
Step 4. N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists gn ∈ SF,yn such that

hn(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
gn(s)ds

+
∫ t

0
T(t − s)gn(s)ds

− T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
yn
(
t−k−1

))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
yn
(
t−k
))
ds.

(4.36)
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We must prove that there exists g∗ ∈ SF,y∗ such that

h∗(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
g∗(s)ds

+
∫ t

0
T(t − s)g∗(s)ds− T(t)B

m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y∗
(
t−k−1

))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y∗
(
t−k
))

, t ∈ J.

(4.37)

Consider the operator

Γ : L1(J ,E) �→ C(J ,E),

g � �→ Γ(g)(t) =
∫ t

0
T(t − s)g(s)ds−

m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
g(s)ds.

(4.38)

We can see that the operator Γ is linear and continuous. Indeed, one has

∥∥(Γg)
∥∥∞ ≤M‖g‖L1 , (4.39)

where M is given by

M =M +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣. (4.40)

Clearly, we have

∥
∥∥
∥
∥
(
hn − T(t)By0 −

∑

0<tk<t

T
(
t − tk

)
Ik
(
yn
(
t−k
))

+ T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
yn
(
t−k−1

)))

− (h∗ − T(t)By0 −
∑

0<tk<t

T
(
t − tk

)
Ik
(
y∗
(
t−k
))

+ T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y∗
(
t−k−1

)))
∥
∥
∥∥
∥

PC

�→ 0,

(4.41)

as n → ∞. From Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator.
Moreover, we have

hn(t)− T(t)By0 −
∑

0<tk<t

T
(
t − tk

)
Ik
(
yn
(
t−k
))

+ T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
yn
(
t−k−1

)) ∈ Γ
(
SF,yn

)
.

(4.42)
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Since yn → y∗, it follows from Lemma 1.28 that

h∗(t)− T(t)By0 −
∑

0<tk<t

T
(
t − tk

)
Ik
(
y∗
(
t−k
))

= T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y∗
(
t−k−1

))

=
∫ t

0
T(t − s)g∗(s)ds−

m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
g∗(s)ds

(4.43)

for some g∗ ∈ SF,y∗ .
Therefore N is a completely continuous multivalued map, u.s.c., with convex

closed values.
Step 5. A priori bounds on solutions.

Let y be such that y ∈ λN(y), for some λ ∈ (0, 1). Then

y(t) = λT(t)By0 − λ
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
g(s)ds

− λT(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
yn
(
t−k−1

))

+ λ
∫ t

0
T(t − s)g(s)ds + λ−1

∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ J.

(4.44)

This implies by (4.3.1), (4.3.2), and (4.3.3) that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤M‖B‖B(E)

∣
∣y0
∣
∣ +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣ψ
(‖y‖PC

)
∫ ηk

0
p(t)dt

+M
∫ t

0
p(s)ψ

(∣∣y(t)
∣
∣)ds +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣θk +M

m∑

k=1

θk

≤ α +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣ψ
(‖y‖PC

)
∫ ηk

0
p(t)dt

+M
∫ b

0
p(s)ψ

(‖y‖PC
)
ds.

(4.45)

Consequently,

‖y‖PC

α +M2‖B‖B(E)
∑m+1

k=1

∣
∣ck
∣
∣ψ
(‖y‖PC

) ∫ ηk
0 p(t)dt +M

∫ b
0 p(s)ψ

(‖y‖PC
)
ds
≤ 1.

(4.46)

Then by (4.3.3), there exists K such that ‖y‖PC �= K . Set

U = {y ∈ PC(J ,E) : ‖y‖PC < K + 1
}
. (4.47)
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The operator N is continuous and completely continuous. From the choice of U ,
there is no y ∈ ∂U such that y = λN(y), for some λ ∈ (0, 1). As a consequence of
the nonlinear alternative of Leray-Schauder type (Theorem 1.8), we deduce that
N has a fixed point y in U which is a solution of (4.2)–(4.4). �

Theorem 4.4. Assume that hypotheses (3.27.1), (4.3.1), and (4.3.2) are satisfied. In
addition we suppose that the following conditions hold:

(4.4.1) F : J × E → Pcp,cv(E) has the property that F(·, y) : J → Pcp(E) is
measurable, for each y ∈ E;

(4.4.2) there exists l ∈ L1(J , R+) such that Hd(F(t, y),F(t, y)) ≤ l(t)|y − y|,
for almost each t ∈ J and y, y ∈ E, and

d
(
0,F(t, 0)

) ≤ �(t), for almost each t ∈ J ; (4.48)

(4.4.3) there exists constant dk such that

∣
∣Ik
(
y2
)− Ik

(
y1
)∣∣ ≤ dk

∣
∣y2 − y1

∣
∣, ∀y1, y2 ∈ E; (4.49)

(4.4.4) assume that

M

(

M‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣L
(
ηk
)

+ L(b) +M‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣dk−1 +

m∑

k=1

dk

)

< 1,

(4.50)

where L(t) = ∫ t0 �(s)ds.
Then the IVP (4.2)–(4.4) has at least one mild solution on J .

Proof. Set

Ω0 =
{

y ∈ PC(J ,E) : y(0) +
m+1∑

k=1

ck y
(
ηk
) = y0

}

. (4.51)

Transform problem (4.2)–(4.4) into a fixed point problem. Consider the multival-
ued operator N : Ω0 → P (Ω0) defined in Theorem 4.3; that is,

N(y) :=
{

h ∈ Ω0 : h(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
g(s)ds

− T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y
(
t−k−1

))

+
∫ t

0
T(t − s)g(s)ds : g ∈ SF,y

}

.

(4.52)

We will show that N satisfies the assumptions of Theorem 1.11. The proof will be
given in two steps.
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Step 1. N(y) ∈ Pcl(Ω0), for each y ∈ Ω0.
Indeed, let (yn)n≥0 ∈ N(y) such that yn → ỹ in Ω0. Then ỹ ∈ Ω0 and there

exists gn ∈ SF,y such that, for every t ∈ J ,

yn(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
gn(s)ds

+
∫ t

0
T(t − s)gn(s)ds− T(t)B

m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y
(
t−k−1

))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(4.53)

Using the fact that F has compact values and from (4.4.2), we may pass to a sub-
sequence if necessary to get that gn converges to g in L1(J ,E), and hence g ∈ SF,y .
Then, for each t ∈ J ,

yn(t) �→ ỹ(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
g(s)ds

+
∫ t

0
T(t − s)g(s)ds

− T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y
(
t−k−1

))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ J.

(4.54)

So, ỹ ∈ N(y).
Step 2. Hd(N(y1),N(y2)) ≤ γ‖y1 − y2‖PC, for each y1, y2 ∈ PC(J ,E) (where γ <
1).

Let y1, y2 ∈ PC(J ,E) and h1 ∈ N(y1). Then there exists g1(t) ∈ F(t, y1(t))
such that

h1(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
g1(s)ds

+
∫ t

0
T(t − s)g1(s)ds− T(t)B

m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y1
(
t−k−1

))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y1
(
t−k
))

, t ∈ J.

(4.55)

From (4.4.2) it follows that

Hd
(
F
(
t, y1(t)

)
,F
(
t, y2(t)

)) ≤ l(t)
∣∣y1(t)− y2(t)

∣∣, t ∈ J. (4.56)
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Hence there is w ∈ F(t, y2(t)) such that

∣
∣g1(t)−w∣∣ ≤ l(t)

∣
∣y1(t)− y2(t)

∣
∣, t ∈ J. (4.57)

Consider U : J → P (E), given by

U(t) = {w ∈ E :
∣
∣g1(t)−w∣∣ ≤ l(t)

∣
∣y1(t)− y2(t)

∣
∣}. (4.58)

Since the multivalued operator V(t) = U(t)∩ F(t, y2(t)) is measurable (see [119,
Proposition III.4]), there exists g2(t) a measurable selection for V . So, g2(t) ∈
F(t, y2(t)) and

∣∣g1(t)− g2(t)
∣∣ ≤ l(t)

∣∣y1(t)− y2(t)
∣∣, for each t ∈ J. (4.59)

Let us define, for each t ∈ J ,

h2(t) = T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
g2(s)ds

+
∫ t

0
T(t − s)g2(s)ds− T(t)B

m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y2
(
t−k−1

))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y2
(
t−k
))
.

(4.60)

Then we have

∣
∣h1(t)− h2(t)

∣
∣ ≤
∣
∣∣
∣
∣

m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)[
g1(s)− g2(s)

]
ds

+
∫ t

0
T(t − s)[g1(s)− g2(s)

]
ds

− T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)(
Ik−1
(
y2
(
t−k−1

))− Ik−1
(
y1
(
t−k−1

)))

+
∑

0<tk<t

T
(
t − tk

)(
Ik
(
y2
(
t−k
))− Ik

(
y1
(
t−k
)))
∣∣
∣
∣∣

≤
m+1∑

k=1

∣∣ck
∣∣M2‖B‖B(E)

∥∥y1 − y2
∥∥

PC

∫ ηk

0
�(s)ds
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+M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣dk−1

∣
∣y2
(
t−k−1

)− y1
(
t−k−1

)∣∣

+M
∥
∥y1 − y2

∥
∥

PC

∫ t

0
�(s)ds +M

m∑

k=1

dk
∣
∣y2
(
t−k
)− y1

(
t−k
)∣∣

≤
m+1∑

k=1

∣
∣ck
∣
∣L
(
ηk
)
M2‖B‖B(E)

∥
∥y1 − y2

∥
∥

PC

+M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣dk−1

∥
∥y2 − y1

∥
∥

PC

+ L(b)M
∥
∥y1 − y2

∥
∥

PC +M
m∑

k=1

dk
∥
∥y2 − y1

∥
∥

PC.

(4.61)

Then

∥∥h1 − h2
∥∥

PC ≤M

(

M‖B‖B(E)

m+1∑

k=1

∣∣ck
∣∣L
(
ηk
)

+ L(b)

+M‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣dk−1 +

m∑

k=1

dk

)
∥
∥y1 − y2

∥
∥

PC.

(4.62)

By the analogous relation, obtained by interchanging the roles of y1 and y2, it
follows that

Hd
(
N
(
y1
)
,N
(
y2
))
M ≤

(

M‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣L
(
ηk
)

+ L(b)

+M‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣dk−1 +

m∑

k=1

dk

)
∥
∥y1 − y2

∥
∥

PC.

(4.63)

From (4.4.4), we have

γ :=M

(

M‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣L
(
ηk
)

+ L(b) +M‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣dk−1 +

m∑

k=1

dk

)

< 1.

(4.64)

Then N is a contraction and thus, by Theorem 1.11, it has a fixed point y, which
is a mild solution to (4.2)–(4.4). �

By the help of the nonlinear alternative of Leray-Schauder type, combined
with the selection theorem of Bressan and Colombo for lower semicontinuous
maps with decomposable values, we will present a second existence result for prob-
lem (4.2)–(4.4), with a nonconvex-valued right-hand side.
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Theorem 4.5. Suppose, in addition to hypotheses (3.27.1), (4.3.1)–(4.3.3), the fol-
lowing also hold:

(4.5.1) F : J×E → P (E) is a nonempty compact-valued multivalued map such
that

(a) (t, y) �→ F(t, y) is L⊗B measurable,
(b) y �→ F(t, y) is lower semicontinuous for a.e. t ∈ J ;

(4.5.2) for each r > 0, there exists a function hr ∈ L1(J , R+) such that

∥∥F(t, y)
∥∥ := sup

{|v| : v ∈ F(t, y)
} ≤ hr(t), for a.e. t ∈ J , y ∈ E with |y| ≤ r.

(4.65)

Then the initial value problem (4.2)–(4.4) has at least one solution on J .

Proof. Conditions (4.5.1) and (4.5.2) imply that F is of lower semicontinuous
type. Then from Theorem 1.5 there exists a continuous function f : PC(J ,E) →
L1(J ,E) such that f (y) ∈ F (y) for all y ∈ PC(J ,E).

We consider the problem

y′(t) = Ay(t) + f (y)(t), t ∈ J , t �= tk, k = 1, 2, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) +
m+1∑

k=1

ck y
(
ηk
) = y0.

(4.66)

We remark that if y ∈ PC(J ,E) is a solution of problem (4.66), then y is a solution
to problem (4.2)–(4.4).

Transform problem (4.66) into a fixed point problem by considering the op-
erator N1 : PC(J ,E) → PC(J ,E) defined by

N1(y) := T(t)By0 −
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
f (y)(s)ds

+
∫ t

0
T(t − s) f (y)(s)ds

− T(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y
(
t−k−1

))

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(4.67)

We will show that N1 is a completely continuous operator.
First we prove that N1 is continuous.
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Let {yn} be a sequence such that yn → y in C(J ,E). Then

∣
∣N1
(
yn
)
(t)−N1(y)(t)

∣
∣ ≤M2

m+1∑

k=1

∣
∣ck
∣
∣‖B‖B(E)

∫ ηk

0

∣
∣ f
(
yn
)
(s)− f (y)(s)

∣
∣ds

+M
∫ t

0

∣∣ f
(
yn
)
(s)− f (y)(s)

∣∣ds

+M2‖B‖B(E)

m+1∑

k=1

∣∣ck
∣∣∣∣Ik−1

(
yn
(
t−k−1

))−Ik−1
(
y
(
t−k−1

))∣∣

+M
∑

0<tk<t

∣
∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣.

(4.68)

Since the function f is continuous, then

∥
∥N1
(
yn
)−N1(y)

∥
∥

PC �→ 0 as n �→∞. (4.69)

The proof thatN1 is completely continuous is similar to that given in Theorem
4.3. Finally we establish a priori bounds on the solutions. Let y ∈ E(N1). Then
y = λN1(y), for some 0 < λ < 1 and

y(t) = λT(t)By0 − λ
m+1∑

k=1

ckT(t)B
∫ ηk

0
T
(
ηk − s

)
f (y)(s)ds

+ λ
∫ t

0
T(t − s) f (y)(s)ds

− λT(t)B
m+1∑

k=1

ckT
(
ηk − tk−1

)
Ik−1
(
y
(
t−k−1

))

+ λ
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ J.

(4.70)

This implies by (3.27.1), (4.3.2), and (4.3.3) that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤M‖B‖B(E)

(
∣
∣y0
∣
∣ +M

m+1∑

k=1

∣
∣ck
∣
∣
∫ ηk

0
p(t)ψ

(∣∣y(t)
∣
∣)dt

)

+M
∫ t

0
p(s)ψ

(∣∣y(t)
∣
∣)ds +M2‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣θk +M

m∑

k=1

θk

≤M‖B‖B(E)

(
∣
∣y0
∣
∣ +M

m+1∑

k=1

∣
∣ck
∣
∣ψ
(‖y‖PC

)
∫ ηk

0
p(t)dt

)

+M
∫ b

0
p(s)ψ

(‖y‖PC
)
ds +M2‖B‖B(E)

m+1∑

k=1

∣∣ck
∣∣θk +M

m∑

k=1

θk.

(4.71)

We continue as in Theorem 4.3. �
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4.3. Existence results for impulsive functional semilinear differential
inclusions with nonlocal conditions

In this section, we will be concerned with the existence of mild solutions for the
first-order impulsive functional semilinear differential inclusions with nonlocal
conditions in a Banach space of the form

y′(t)− Ay(t) ∈ F
(
t, yt
)
, a.e. t ∈ J := [0, b], t �= tk, k = 1, 2, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) +
(
g
(
yη1 , . . . , yηp

))
(t) = φ(t), t ∈ [−r, 0],

(4.72)

where F : J ×D → P (E) is a bounded-, closed-, convex-valued multivalued map,
D = {ψ : [−r, 0] → E | ψ is continuous everywhere except for a finite number of
points t̄ at which ψ(t̄) and ψ(t̄+) exist and ψ(t̄−) = ψ(t̄)}, φ ∈ D (0 < r < ∞),
(P (E) is the family of all nonempty subsets of E), η1 < · · · < ηp ≤ b, p ∈ N,
g : D p → D, (D p =D ×D × · · · ×D , p-times), A is the infinitesimal generator
of a family of semigroup {T(t) : t ≥ 0}, 0 < t1 < · · · < tm < tm+1 = b, Ik ∈ C(E,E)
(k = 1, . . . ,m), Δy|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h), and y(t−k ) =
limh→0− y(tk − h), and E is a real separable Banach space with norm | · |.

Recall that Ω = PC([−r, b],E) and that the spaces PC([−r, b],E) and PC1([0,
b],E) are defined in Section 3.2.

Definition 4.6. A function y ∈ Ω ∩ AC((tk, tk+1),E) is said to be a mild solution
of (4.72) if there exists a function v ∈ L1(J ,E) such that v(t) ∈ F(t, y(t)) a.e. on J
and

y(t) = T(t)
[
φ(0)− (g(yη1 , . . . , yηp

))
(0)
]

+
∫ t

0
T(t − s)v(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

,
(4.73)

and y(t) + (g(yη1 , . . . , yηp))(t) = φ(t), t ∈ [−r, 0].

Theorem 4.7. Assume that (3.2.1), (3.11.1), [(3.7.1)(i), (ii)], (3.27.1), and the fol-
lowing conditions hold:

(4.7.1) g is completely continuous and there exists a constant Q such that

∣
∣g
(
u1, . . . ,up

)
(t)
∣
∣ ≤ Q, for

(
u1, . . . ,up

) ∈D p, t ∈ [−r, 0]; (4.74)

(4.7.2) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1(J , R+) such that

∥∥F(t,u)
∥∥ ≤ p(t)ψ

(‖u‖D
)
, for a.e. t ∈ J and each u ∈ D, (4.75)
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with

∫∞

1

dτ

ψ(τ)
= ∞. (4.76)

Then the IVP (4.72) has at least one mild solution.

Proof. Transform problem (4.72) into a fixed point problem. Consider the multi-
valued operator N : Ω→ P (Ω) defined by

N(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t)− (g(yη1 , . . . , yηp
))

(t), t ∈ [−r, 0],

T(t)
[
φ(0)− (g(yη1 , . . . , yηp

))
(0)
]

+
∫ t

0
T(t − s)v(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(4.77)

where v ∈ SF,y .
We will show that N satisfies the assumptions of Theorem 1.7. The proof will

be given in several steps.
Step 1. N(y) is convex, for each y ∈ Ω.

Indeed, if h1, h2 belong to N(y), then there exist v1, v2 ∈ SF(y) such that, for
each t ∈ J , we have

hi(t) = T(t)
[
φ(0)− (g(yη1 , . . . , yηp

))
(0)
]

+
∫ t

0
T(t − s)vi(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))

, i = 1, 2.
(4.78)

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(
dh1 + (1− d)h2

)
(t) = T(t)

[
φ(0)− (g(yη1 , . . . , yηp

))
(0)
]

+
∫ t

0
T(t − s)[dv1(s) + (1− d)v2(s)

]
ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(4.79)

Since SF(y) is convex (because F has convex values), then

dh1 + (1− d)h2 ∈ N(y). (4.80)

Step 2. N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant � such that,

for each y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, one has ‖N(y)‖ := sup{‖h‖ : h ∈
N(y)} ≤ �.
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Let y ∈ Bq and h ∈ N(y). Then there exists v ∈ SF(y) such that, for each
t ∈ J , we have

h(t) = T(t)
[
φ(0)− (g(yη1 , . . . , yηp

))
(0)
]

+
∫ t

0
T(t − s)v(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(4.81)

We have, for each t ∈ J ,

∣
∣h(t)

∣
∣ ≤M

[‖φ‖D +Q
]

+M
∫ b

0
ϕq(s)ds +M

m∑

k=1

ck

≤M
[‖φ‖D +Q

]
+M

∥
∥ϕq
∥
∥
L1 +M

m∑

k=1

ck,

(4.82)

where φq is defined in the definition of a Carathéodory function. Then, for each
h ∈ N(Bq), we obtain

∥
∥N(y)

∥
∥ ≤M

[‖φ‖D +Q
]

+M
∥
∥ϕq
∥
∥
L1 +M

m∑

k=1

ck := �. (4.83)

Step 3. N maps bounded sets into equicontinuous sets of Ω.
Let τ1, τ2 ∈ J \{t1, . . . , tm}, τ1 < τ2, and δ > 0 such that {t1, . . . , tm}∩[t−δ, t+

δ] = ∅, and let Bq be a bounded set of Ω as in Step 2. Let y ∈ Bq and h ∈ N(y).
Then there exists v ∈ SF,y such that, for each t ∈ J , we have

∣∣h
(
τ2
)− h(τ1

)∣∣ ≤ ∣∣[T(τ2
)− T(τ1

)]
φ(0)

∣∣

+
∣
∣[T
(
τ2
)− T(τ1

)]
g
(
yη1 , . . . , yηp

)
(0)
∣
∣

+
∫ τ1−ε

0

∥
∥T
(
τ2 − s

)− T(τ1 − s
)∥∥

B(E)ϕq(s)ds

+
∫ τ1

τ1−ε

∥
∥T
(
τ2 − s

)− T(τ1 − s
)∥∥

B(E)ϕq(s)ds

+
∫ τ2

τ1

∥
∥T
(
τ2 − s

)∥∥
B(E)ϕq(s)ds +

∑

0<t<τ2−τ1

Mck

+
∑

0<t<τ2

∥
∥T
(
τ2 − tk

)− T(τ1 − tk
)∥∥

B(E)ck.

(4.84)

As τ2 → τ1, and for ε sufficiently small, the right-hand side of the above inequality
tends to zero, since T(t) is a strongly continuous operator, and the compactness of
T(t), for t > 0, implies the continuity in the uniform operator topology.

This proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It re-
mains to examine the equicontinuity at t = ti.
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Set

h1(t) = T(t)
[
φ(0)− g(yη1 , . . . , yηp

)
(0)
]

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
tk
))

,

h2(t) =
∫ t

0
T(t − s)v(s)ds.

(4.85)

First we prove equicontinuity at t = t−i . Fix δ1 > 0 such that {tk : k �= i} ∩ [ti −
δ1, ti + δ1] = ∅,

h1
(
ti
) = T

(
ti
)[
φ(0)− g(yη1 , . . . , yηp

)
(0)
]

+
∑

0<tk<ti

T
(
t − tk

)
Ik
(
y
(
tk
))

= T
(
ti
)[
φ(0)− g(yη1 , . . . , yηp

)
(0)
]

+
i−1∑

k=1

T
(
ti − tk

)
Ik
(
y
(
tk
))
.

(4.86)

For 0 < h < δ1, we have

∣∣h1
(
ti − h

)− h1
(
ti
)∣∣ ≤ ∣∣(T(ti − h

)− T(ti
))[

φ(0)− g(yη1 , . . . , yηp
)
(0)
]∣∣

+
i−1∑

k=1

∣∣[T
(
ti − h− tk

)− T(ti − tk
)]
I
(
y
(
t−k
))∣∣.

(4.87)

The right-hand side tends to zero as h→ 0.
Moreover,

∣
∣h2
(
ti − h

)− h2
(
ti
)∣∣ ≤

∫ ti−h

0

∣
∣[T
(
ti − h− s

)− T(ti − s
)]
v(s)
∣
∣ds

+
∫ ti

ti−h
Mφq(s)ds,

(4.88)

which tends to zero as h→ 0.
Define

ĥ0(t) = h(t), t ∈ [0, t1
]
,

ĥi(t) =
⎧
⎨

⎩
h(t), t ∈ (ti, ti+1

]
,

h
(
t+i
)
, t = ti.

(4.89)

Next we prove equicontinuity at t = t+i . Fix δ2 > 0 such that {tk : k �= i}∩ [ti−
δ2, ti + δ2] = ∅. Then

ĥ
(
ti
) = T

(
ti
)[
φ(0)− g(yη1 , . . . , yηp

)
(0)
]

+
∫ ti

0
T
(
ti − s

)
v(s)ds

+
i∑

k=1

T
(
ti − tk

)
Ik
(
y
(
t−k
))
.

(4.90)
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For 0 < h < δ2, we have

∣
∣ĥ
(
ti + h

)− ĥ(ti
)∣∣ ≤ ∣∣(T(ti + h

)− T(ti
))[

φ(0)− g(yη1 , . . . , yηp
)
(0)
]∣∣

+
∫ ti

0

∣
∣[T
(
ti + h− s)− T(ti − s

)]
v(s)
∣
∣ds

+
∫ ti+h

ti
Mϕq(s)ds

+
i∑

k=1

∣∣[T
(
ti + h− tk

)− T(ti − tk
)]
I
(
y
(
t−k
))∣∣.

(4.91)

The right-hand side tends to zero as h→ 0.
The equicontinuity for the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ τ2 follows from

the uniform continuity of φ on the interval [−r, 0] and the complete continuity
of g. As a consequence of Steps 1 to 3 and (4.7.1), together with the Arzelá-Ascoli
theorem, it suffices to show that N maps Bq into a precompact set in E.

Let 0 < t ≤ b be fixed and let ε be a real number satisfying 0 < ε < t. For
y ∈ Bq we define

hε(t) = T(t)
[
φ(0)− (g(yη1 , . . . , yηp

))
(0)
]

+ T(ε)
∫ t−ε

0
T(t − s− ε)v1(s)ds

+ T(ε)
∑

0<tk<t−ε
T
(
t − tk − ε

)
Ik
(
y
(
t−k
))

,

(4.92)

where v1 ∈ SF(y). Since T(t) is a compact operator, the set Hε(t) = {hε(t) : hε ∈
N(y)} is precompact in E, for every ε, 0 < ε < t. Moreover, for every h ∈ N(y),
we have

∣
∣h(t)− hε(t)

∣
∣ ≤

∫ t

t−ε

∥
∥T(t − s)∥∥B(E)ϕq(s)ds +

∑

t−ε<tk<t

∥
∥T
(
t − tk

)∥∥
B(E)ck.

(4.93)

Therefore there are precompact sets arbitrarily close to the set H(t) = {hε(t) : h ∈
N(y)}. Hence the set H(t) = {h(t) : h ∈ N(Bq)} is precompact in E. Hence the
operator N : Ω → P (Ω) is completely continuous, and therefore a condensing
operator.
Step 4. N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists vn ∈ SF(yn) such that, for each t ∈ J ,

hn(t) = T(t)
[
φ(0)− (g((yn

)
η1

, . . . ,
(
yn
)
ηp

))
(0)
]

+
∫ t

0
T(t − s)vn(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
yn
(
t−k
))
.

(4.94)
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We have to prove that there exists v∗ ∈ SF(y∗) such that, for each t ∈ J ,

h∗(t) = T(t)
[
φ(0)− (g((y∗

)
η1

, . . . ,
(
y∗
)
ηp

))
(0)
]

+
∫ t

0
T(t − s)v∗(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y∗
(
t−k
))
.

(4.95)

Clearly, since Ik, k = 1, . . . ,m, are continuous and g is completely continuous, we
obtain that

∥
∥∥
∥
∥

(

hn − T(t)
[
φ(0)− (g((yn

)
η1

, . . . ,
(
yn
)
ηp

))
(0)
]−

∑

0<tk<t

T
(
t − tk

)
Ik
(
yn
(
t−k
))
)

−
(

h∗ − T(t)
[
φ(0)− (g((y∗

)
η1

, . . . ,
(
y∗
)
ηp

))
(0)
]

−
∑

0<tk<t

T
(
t − tk

)
Ik
(
y∗
(
t−k
))
)∥∥
∥∥
∥ �→ 0, as n �→∞.

(4.96)

Consider the linear continuous operator

Γ : L1(J ,E) �→ C(J ,E),

g � �→ Γ(g)(t) =
∫ t

0
T(t − s)v(s)ds.

(4.97)

From Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator. Moreover, we
have

hn(t)− T(t)
[
φ(0)− (g((yn

)
η1

, . . . ,
(
yn
)
ηp

))
(0)
]

−
∑

0<tk<t

T
(
t − tk

)
Ik
(
yn
(
tk
)) ∈ Γ

(
SF(yn)

)
. (4.98)

Since yn → y∗, it follows, from Lemma 1.28, that

h∗(t)− T(t)
[
φ(0)− (g((y∗

)
η1

, . . . ,
(
y∗
)
ηp

))
(0)
]−

∑

0<tk<t

T
(
t − tk

)
Ik
(
y∗
(
t−k
))

=
∫ t

0
T(t − s)v∗(s)ds

(4.99)

for some v∗ ∈ SF(y∗).
Step 5. Now it remains to show that the set

M := {y ∈ Ω : λy ∈ N(y) for some λ > 1
}

(4.100)
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is bounded. Let y ∈M. Then λy ∈ N(y), for some λ > 1. Thus, for each t ∈ J ,

y(t) = λ−1

[

T(t)
[
φ(0)− (g(yη1 , . . . , yηp

))
(0)
]

+
∫ t

0
T(t − s)v(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
] (4.101)

for some v ∈ SF(y). This implies that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤M

[‖φ‖D +Q
]

+
∫ t

0
Mp(s)ψ

(∥∥ys
∥
∥

D

)
ds +M

m∑

k=1

ck. (4.102)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣∣ : −r ≤ s ≤ t
}

, 0 ≤ t ≤ b. (4.103)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ J , by the previous in-
equality, we have, for t ∈ J ,

μ(t) ≤M
[‖φ‖D +Q

]
+M

∫ t

0
p(s)ψ

(
μ(s)
)
ds +M

m∑

k=1

ck. (4.104)

If t∗ ∈ [−r, 0], then μ(t) ≤ ‖φ‖D +Q and the previous inequality holds.
Let us denote the right-hand side of the above inequality as v(t). Then, we

have

μ(t) ≤ v(t), t ∈ J ,

v(0) =M
[‖φ‖D +Q

]
+M

m∑

k=1

ck, v′(t) =Mp(t)ψ
(
μ(t)
)
, t ∈ J.

(4.105)

Using the increasing character of ψ, we get

v′(t) ≤Mp(t)ψ
(
v(t)
)
, a.e. t ∈ J. (4.106)

Then, for each t ∈ J , we have

∫ v(t)

v(0)

du

ψ(u)
≤M

∫ b

0
p(s)ds <∞. (4.107)

Assumption (4.7.2) shows that there exists a constant K such that v(t) ≤ K , t ∈ J ,
and hence μ(t) ≤ KZ, t ∈ J . Since, for every t ∈ J , ‖yt‖ ≤ μ(t), we have

‖y‖ ≤ K ′ = max
{‖φ‖D +Q,K

}
, (4.108)
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where K ′ depends on b, φ, Q, and on the functions p and ψ. This shows that M
is bounded. As a consequence of Theorem 1.7, we deduce that N has a fixed point
which is a mild solution of (4.72). �

Theorem 4.8. Suppose that hypotheses (3.13.1)–(3.13.3) and the following condition
are satisfied:

(4.8.1) there exist constants ck such that

∣
∣g
(
u1, . . . ,up

)
(0)− g(u1, . . . ,up

)
(0)
∣
∣ ≤

p∑

k=1

ck
∣
∣uk(0)− uk(0)

∣
∣, (4.109)

for each (u1, . . . ,u2), (u1, . . . ,up) in Dp.
If

M

(

l∗ +
p∑

k=1

ck +
m∑

k=1

ck

)

< 1, l∗ =
∫ b

0
l(s)ds, (4.110)

then the IVP (4.72) has at least one mild solution.

Proof. Set

Ω0 =
{
y ∈ Ω : y(t) = φ(t)− (g(yη1 , . . . , yηp

))
(t), ∀t ∈ [−r, 0]

}
. (4.111)

Transform problem (4.72) into a fixed point problem. Let the multivalued opera-
tor N : Ω0 → P (Ω0) be defined as in the proof of Theorem 4.7. We will show that
N satisfies the assumptions of Theorem 1.11. The proof will be given in two steps.
Step 1. N(y) ∈ Pcl(Ω0), for each y ∈ Ω.

Indeed, let (yn)n≥0 ∈ N(y) be such that yn → ỹ in Ω. Then ỹ ∈ Ω and there
exists vn ∈ SF(y) such that, for each t ∈ J ,

yn(t) = T(t)
[
φ(0)− (g(yη1 , . . . , yηp

))
(0)
]

+
∫ t

0
T(t − s)vn(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(4.112)

Using the fact that F has compact values and from (3.13.2) we may pass to a sub-
sequence if necessary to get that vn converges to v in L1(J ,E) and hence v ∈ SF(y).
Then, for each t ∈ J ,

yn(t) �→ ỹ(t) = T(t)
[
φ(0)− (g(yη1 , . . . , yηp

))
(0)
]

+
∫ t

0
T(t − s)v(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(4.113)

So, ỹ ∈ N(y).
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Step 2. There exists γ < 1 such that

Hd
(
N(y),N(y)

) ≤ γ‖y − y‖, for each y, y ∈ Ω. (4.114)

Let y, y ∈ Ω and h ∈ N(y). Then there exists v(t) ∈ F(t, yt) such that, for each
t ∈ J ,

h(t) = T(t)
[
φ(0)− (g(yη1 , . . . , yηp

))
(0)
]

+
∫ t

0
T(t − s)v(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(4.115)

From (3.13.2), it follows that

Hd
(
F
(
t, yt
)
,F
(
t, yt
)) ≤ l(t)

∥
∥yt − yt

∥
∥

D . (4.116)

Hence there is w ∈ F(t, yt) such that

∣∣v(t)−w∣∣ ≤ l(t)
∥∥yt − yt

∥∥
D , t ∈ J. (4.117)

Consider U : J → P (E), given by

U(t) = {w ∈ E :
∣
∣v(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D

}
. (4.118)

Since the multivalued operator V(t) = U(t) ∩ F(t, yt) is measurable (see [119,
Proposition III.4]), there exists a function t → v(t), which is a measurable selection
for V . So, v(t) ∈ F(t, yt) and

∣∣v(t)− v(t)
∣∣ ≤ l(t)

∥∥yt − yt
∥∥

D , for each t ∈ J. (4.119)

Let us define, for each t ∈ J ,

h(t) = T(t)
[
φ(0)− (g(yη1

, . . . , yηp
))

(0)
]

+
∫ t

0
T(t − s)v(s)ds

+
∑

0<tk<t

T
(
t − tk

)
Ik
(
y
(
t−k
))
.

(4.120)
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Then we have

∣∣h(t)− h(t)
∣∣ ≤M

∣∣(g
(
yη1 , . . . , yηp

))
(0)− g(yη1

, . . . , yηp
)
(0)
∣∣

+M
∫ t

0

∣
∣v(s)− v(s)

∣
∣ds

+
∑

0<tk<t

∣∣T
(
t − tk

)∣∣∣∣Ik
(
y
(
tk
))− Ik

(
y
(
t−k
))∣∣

≤M
p∑

k=1

ck
∣
∣(yηk − yηk

)
(0)
∣
∣

+M
∫ t

0
l(s)
∥∥ys − ys

∥∥
Dds +M

m∑

k=1

ck‖y − y‖

=M
p∑

k=1

ck‖y − y‖ +M
∫ b

0
l(s)‖y − y‖ds +M

m∑

k=1

ck‖y − y‖

≤
[

M
p∑

k=1

ck +Ml∗ +M
m∑

k=1

ck

]

‖y − y‖.
(4.121)

Consequently,

‖h− h‖ ≤M

[ p∑

k=1

ck + l∗ +
m∑

k=1

ck

]

‖y − y‖. (4.122)

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

Hd
(
N(y),N(y)

) ≤M

[ p∑

k=1

ck + l∗ +
m∑

k=1

ck

]

‖y − y‖. (4.123)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point y, which is
a mild solution to (4.72). �

4.4. Notes and remarks

The results of Section 4.2 are adapted from Benchohra et al. [40], while the results
of Section 4.3 come from Benchohra et al. [87]. The techniques in this chapter
have been adapted from [112] where the nonimpulsive case was discussed.





5
Positive solutions for impulsive
differential equations

5.1. Introduction

Positive solutions and multiple positive solutions of differential equations have re-
ceived a tremendous amount of attention. Studies have involved initial value prob-
lems, as well as boundary value problems, for both ordinary and functional differ-
ential equations. In some cases, impulse effects have also been present. The meth-
ods that have been used include multiple applications of the Guo-Krasnosel’skii
fixed point theorem [158], the Leggett-Williams multiple fixed point theorem
[187], and extensions such as the Avery-Henderson double fixed point theorem
[26]. Many such multiple-solution works can be found in the papers [6, 8–10, 19,
52, 94, 95, 137, 159, 194].

This chapter is devoted to positive solutions and multiple positive solutions
of impulsive differential equations.

5.2. Positive solutions for impulsive functional differential equations

Throughout this section, let J = [0, b], and the points 0 = t0 < t1 < · · · < tm <
tm+1 = b are fixed. This section is concerned with the existence of three non-
negative solutions for initial value problems for first- and second-order functional
differential equations with impulsive effects. In Section 5.2.1, we consider the first-
order IVP

y′(t) = f
(
t, yt
)
, t ∈ J = [0, b], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],

(5.1)

where f : J×D → R is a given function, D = {ψ : [−r, 0] → R+ | ψ is continuous
everywhere except for a finite number of points s at which ψ(s) and the right limit
ψ(s+) exist and ψ(s−) = ψ(s)}, φ ∈ D , 0 < r < ∞, Ik : R → R+ (k = 1, 2, . . . ,m),
Δy|t=tk = y(t+k )− y(t−k ), and J ′ = J \ {t1, . . . , tm}.



148 Positive solutions for impulsive differential equations

In Section 5.2.2, we study the second-order impulsive functional differential
equations of the form

y′′(t) = f
(
t, yt
)
, t ∈ J = [0, b], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η,

(5.2)

where f , Ik, and φ are as in problem (5.1), Ik ∈ C(R, R+), and η ∈ R.

5.2.1. First-order impulsive FDEs

In what follows we will assume that f is an L1-Carathéodory function. We seek a
solution of (5.1) via the Leggett-Williams fixed theorem, which employs the con-
cept of concave continuous functionals.

By a concave nonnegative continuous functional ψ on a space C we mean a
continuous mapping ψ : C → [0,∞) with

ψ
(
λx + (1− λ)y

) ≥ λψ(x) + (1− λ)ψ(y), ∀x, y ∈ C, λ ∈ [0, 1]. (5.3)

Let us start by defining what we mean by a solution of problem (5.1). We recall
here that Ω = PC([−r, b], R).

Definition 5.1. A function y ∈ Ω ∩ AC((tk, tk+1), R) is said to be a solution of
(5.1) if y satisfies the equation y′(t) = f (t, yt) a.e. on J ′, the conditions Δy|t=tk =
Ik(y(t−k )), k = 1, . . . ,m, and y(t) = φ(t), t ∈ [−r, 0].

Theorem 5.2. Assume that the following assumptions are satisfied:
(5.2.1) there exist constants ck such that

∣
∣Ik(y)

∣
∣ ≤ ck, k = 1, . . . ,m, for each y ∈ R; (5.4)

(5.2.2) there exist a function p ∈ L1(J , R+), ρ > 0, and 0 < M < 1 such that

∣
∣ f (t,u)

∣
∣ ≤Mp(t) for a.e. t ∈ J and each u ∈ D,

‖φ‖D +
m∑

k=1

ck +M
∫ b

0
p(t)dt < ρ;

(5.5)

(5.2.3) there exist L > ρ, M ≤M1 < 1, and an interval [c,d] ⊂ (0, b) such that

min
t∈[c,d]

(

φ(0) +
∑

0<tk<t

Ik
(
y
(
tk
))

+
∫ t

0
f
(
s, ys
)
ds

)

≥M1

(

φ(0) +
m∑

k=1

Ik
(
y
(
tk
))

+
∫ b

0
f
(
s, ys
)
ds

)

> L;

(5.6)
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(5.2.4) there exist R > L and M2 with M1 ≤M2 < 1 such that

‖φ‖D +
m∑

k=1

ck +M2

∫ b

0
p(t)dt ≤ R. (5.7)

Then problem (5.1) has three nonnegative solutions y1, y2, y3 with

∥
∥y1
∥
∥ < ρ, y2(t) > L for t ∈ [0, b],
∥
∥y3
∥
∥ > ρ with min

t∈[c,d]
y3(t) < L. (5.8)

Proof. Transform problem (5.1) into a fixed point problem. Consider the operator
N : Ω→ Ω defined by

N(y)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) +
∑

0<tk<t

Ik
(
y
(
t−k
))

+
∫ t

0
f
(
s, ys
)
ds if t ∈ [0, b].

(5.9)

We will show that N is a completely continuous operator.
Step 1. N is continuous.

Let {yn} be a sequence such that yn → y in Ω. Then

∣
∣N
(
yn(t)

)−N(y(t)
)∣∣

≤
∫ t

0

∣
∣ f
(
s, yns

)− f
(
s, ys
)∣∣ds +

∑

0<tk<t

∣
∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣

≤
∫ b

0

∣∣ f
(
s, yns

)− f
(
s, ys
)∣∣ds +

∑

0<tk<t

∣∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣.

(5.10)

Since f is an L1-Carathéodory function and Ik, k = 1, . . . ,m, are continuous,
then
∥
∥N
(
yn
)−N(y)

∥
∥

≤ ∥∥ f (·, yn(·)
)− f

(·, y(·)
)∥∥

L1 +
m∑

k=1

∣
∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣ �→0

(5.11)

as n→∞.
Step 2. N maps bounded sets into bounded sets in Ω.

Indeed, it is enough to show that, for any q > 0, there exists a positive constant
� such that, for each y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, we have ‖N(y)‖ ≤ �.

By (5.2.1) we have, for each t ∈ J ,

∣
∣N(y)(t)

∣
∣ ≤ ‖φ‖D +

∫ t

0

∣
∣ f
(
s, ys
)∣∣ds +

∑

0<tk<t

∣
∣Ik
(
y
(
t−k
))∣∣

≤ ‖φ‖D +
∥
∥hq
∥
∥
L1 +

m∑

k=1

ck := �.

(5.12)
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Then

∥
∥N(y)

∥
∥ ≤ �. (5.13)

Step 3. N maps bounded sets into equicontinuous sets of Ω.
Let τ1, τ2 ∈ [0, b], τ1 < τ2, and let Bq be a bounded set of Ω. Let y ∈ Bq. Then

∣∣N(y)
(
τ2
)−N(y)

(
τ1
)∣∣ ≤

∫ τ2

τ1

hq(s)ds +
∑

0<tk<τ1−τ2

ck. (5.14)

As τ2 → τ1 the right-hand side of the above inequality tends to zero. This
proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It remains to
examine the equicontinuity at t = ti. The proof is similar to that given in Theorem
4.3. The equicontinuity for the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ τ2 is obvious.

As a consequence of Steps 1 to 3, together with the Arzelá-Ascoli theorem, we
can conclude that N : Ω→ Ω is completely continuous.

Let

C = {y ∈ Ω : y(t) ≥ 0 for t ∈ [−r, b]
}

(5.15)

be a cone in Ω. Since f and Ik, k = 1, . . . ,m, are all positive functions, N(C) ⊂ C
and N : CR → CR is a completely continuous operator. In addition, by (5.2.4), we
can show that if y ∈ CR, then N(y) ∈ CR. Next, let ψ : C → [0,∞) be defined by

ψ(y) = min
t∈[c,d]

y(t). (5.16)

It is clear that ψ is a nonnegative concave continuous functional and ψ(y) ≤ ‖y‖Ω
for y ∈ CR. Now it remains to show that the hypotheses of Theorem 1.14 are
satisfied.
Claim 1. {y∈C(ψ,L,K) : ψ(y) > L} �= ∅ and ψ(N(y)) > L for all y ∈ C(ψ,L,K).

Let K be such that LM−1 ≤ K ≤ R and y(t) = (L + K)/2 for t ∈ [−r, b].
By the definition of C(ψ,L,K), y belongs to C(ψ,L,K). Then y belongs to {y ∈
C(ψ,L,K) : ψ(y) > L} and hence it is nonempty. Also if y ∈ C(ψ,L,K), then

ψ
(
N(y)

) = min
t∈[c,d]

(

φ(0) +
∑

0<tk<t

Ik
(
y
(
t−k
))

+
∫ t

0
f
(
s, ys
)
ds

)

≥M1

(

φ(0) +
m∑

k=1

Ik
(
y
(
t−k
))

+
∫ b

0
f
(
s, ys
)
ds

)

> L,

(5.17)

by using (5.2.3).
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Claim 2. ‖N(y)‖Ω ≤ ρ for all y ∈ Cρ.
For y ∈ Cρ, we have, from (5.2.1) and (5.2.2),

∣
∣N(y)(t)

∣
∣ ≤ ∣∣φ(0)

∣
∣ +
∫ t

0

∣
∣ f
(
s, ys
)∣∣ds +

∑

0<tk<t

∣
∣Ik
(
y
(
t−k
))∣∣

≤ ‖φ‖D +M‖p‖L1 +
m∑

k=1

ck < ρ.

(5.18)

Claim 3. ψ(N(y))>L for each y ∈ C(ψ,L,R) with ‖N(y)‖ ≥ K . Let y∈C(ψ,L,R)
with ‖N(y)‖ > K . From (5.2.3) we have

ψ
(
N(y)

) = min
t∈[c,d]

(

φ(0) +
∑

0<tk<t

Ik
(
y
(
t−k
))

+
∫ t

0
f
(
s, ys
)
ds

)

≥M1

(

φ(0) +
m∑

k=1

Ik
(
y
(
tk
))

+
∫ b

0
f
(
s, ys
)
ds

)

=M1
∥
∥N(y)

∥
∥>M1K ≥ L.

(5.19)

Then the Leggett-Williams fixed point theorem implies that N has at least three
fixed points y1, y2, y3 which are solutions to problem (5.1). Furthermore, we have

y1 ∈ Cρ, y2 ∈
{
y ∈ C(ψ,L,R) : ψ(y) > L

}
,

y3 ∈ CR −
{
C(ψ,L,R)∪ Cρ

}
.

(5.20)

�

5.2.2. Second-order impulsive FDEs

In this section, we study the existence of three solutions for the second-order IVP
(5.2). Again, these solutions will arise from the Leggett-Williams fixed point theo-
rem.

We adopt the following definition.

Definition 5.3. A function y ∈ Ω ∩ AC1((tk, tk+1), R) is said to be a solution of
(5.2) if y satisfies the equation y′′(t) = f (t, yt) a.e. on J , t �= tk, k = 1, . . . ,m, and
the conditions Δy|t=tk = Ik(y(t)), Δy′|t=tk = Ik(y(tk)), k = 1, . . . ,m, y′(0) = η,
and y(t) = φ(t) on [−r, 0].

We are now in a position to state and prove our existence result for problem
(5.2).

Theorem 5.4. Suppose that hypothesis (5.2.1) holds. In addition assume that the fol-
lowing conditions are satisfied:

(5.4.1) there exist constants dk such that

∣∣Ik(y)
∣∣ ≤ dk, k = 1, . . . ,m, for each y ∈ R; (5.21)



152 Positive solutions for impulsive differential equations

(5.4.2) there exist a function h ∈ L1(J , R+), r∗ > 0, and 0 < M∗ < 1 such that

∣
∣ f (t,u)

∣
∣ ≤M∗h(t) for a.e. t ∈ J and each u ∈ D,

‖φ‖D + b|η| +M∗
∫ b

0
(b− s)h(s)ds +

m∑

k=1

[
ck +

(
b− tk

)
dk
]
< r∗;

(5.22)

(5.4.3) there exist L∗ > r∗, M∗ ≤M∗
1 < 1, and an interval [c,d] ⊂ (0, b) such

that

min
t∈[c,d]

(

φ(0) + tη +
∫ t

0
(t − s) f (s, ys

)
ds +

∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
(
y
(
t−k
))]
)

≥M∗
1

(

φ(0) + bη +
∫ b

0
b f
(
s, ys
)
ds+

m∑

k=1

[
Ik
(
y
(
t−k
))

+
(
b − tk

)
Ik
(
y
(
t−k
))]
)

> L∗;

(5.23)

(5.4.4) there exist R∗ > L∗ and M∗
2 with M∗

1 ≤M∗
2 < 1 such that

‖φ‖D + b|η| +M∗
2

∫ b

0
(b− s)h(s)ds +

m∑

k=1

[
ck +

(
b − tk

)
dk
]
< R∗. (5.24)

Then problem (5.2) has three nonnegative solutions y1, y2, y3 with

∥
∥y1
∥
∥ < r∗, y2(t) > L∗ for t ∈ [0, b],
∥
∥y3
∥
∥ > r∗ with min

t∈[c,d]
y3(t) < L∗. (5.25)

Proof. Transform problem (5.2) into a fixed point problem. Consider the operator
N1 : Ω→ Ω defined by

N1(y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) + ηt +
∫ t

0
(t − s) f (s, ys

)
ds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
(
y
(
t−k
))]

if t ∈ [0, b].

(5.26)

As in Theorem 5.2 we can show that N1 is completely continuous. Now we prove
only that the hypotheses of Theorem 1.14 are satisfied.
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Let

C = {y ∈ Ω : y(t) ≥ 0 for t ∈ [−r, b]
}

(5.27)

be a cone in Ω. Since f , Ik, Ik, k = 1, . . . ,m, are all positive functions, thenN1(C) ⊂
C and N1 : CR∗ → CR∗ is completely continuous. Moreover, by (5.4.4), we can
show that if y ∈ CR∗ , then N1(y) ∈ CR∗ . Next, let ψ : C → [0,∞) be defined by

ψ(y) = min
t∈[c,d]

y(t). (5.28)

It is clear that ψ is a nonnegative concave continuous functional and ψ(y) ≤ ‖y‖
for y ∈ CR.

Now it remains to show that the hypotheses of Theorem 1.14 are satisfied.
First notice that condition (A2) of Theorem 1.14 holds since for y ∈ Cr∗ we have,
from (5.4.1) and (5.4.2),

∣
∣N1(y)(t)

∣
∣ ≤ ∣∣φ(0)

∣
∣ + b|η| +

∫ t

0
(b− s)∣∣ f (s, ys

)∣∣ds

+
∑

0<tk<t

[∣∣Ik
(
y
(
t−k
))∣∣ +

(
b − tk

)
Ik
(
y
(
t−k
))]

≤ ‖φ‖D + b|η| +M∗
∫ b

0
(b− s)h(s)ds +

m∑

k=1

[
ck +

(
b− tk

)
dk
]
< r∗.

(5.29)

Let K∗ be such that L∗M∗−1 ≤ K∗ ≤ R∗ and y(t) = (L∗ + K∗)/2 for t ∈
[−r, b]. By the definition of C(ψ,L∗,K∗), y belongs to C(ψ,L∗,K∗). Then y ∈
{y ∈ C(ψ,L∗,K∗) : ψ(y) > L∗}. Also if y ∈ C(ψ,L∗,K∗), then

ψ
(
N1(y)

)

= min
t∈[c,d]

(

φ(0) + tη+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
(
y
(
t−k
))]

+
∫ t

0
(t−s) f (s, ys

)
ds

)

.

(5.30)

Then from (5.4.3) we have

ψ
(
N1(y)

)

≥ min
t∈[c,d]

(

φ(0) + tη +
∑

0<tk<t

[
Ik
(
y(t)
)

+
(
t − tk

)
Ik
(
y
(
tk
))]

+
∫ t

0
(t − s) f (s, ys

)
ds

)

≥M∗
1

(

φ(0) + bη +
∫ b

0
b f
(
s, ys
)
ds +

m∑

k=1

[
Ik
(
y
(
t−k
))

+
(
b− tk

)
Ik
(
y
(
t−k
))]
)

>L∗.

(5.31)
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So conditions (A1) and (A2) of Theorem 1.14 are satisfied. Finally, to see that
Theorem 1.14(A3) holds, let y ∈ C(ψ,L∗,R∗) with ‖N1(y)‖ > K∗. From (5.4.3)
we have

ψ
(
N1(y)

)

= min
t∈[c,d]

(

φ(0)+tη +
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t − tk

)
Ik
(
y
(
t−k
))]

+
∫ t

0
(t − s) f (s, ys

)
ds

)

≥M∗
1

(

φ(0) + bη +
m∑

k=1

[
Ik
(
y
(
tk
))

+
(
b − tk

)
Ik
(
ytk
)]

+
∫ b

0
b f
(
s, ys
)
ds

)

≥M∗
1

∥
∥N1(y)

∥
∥ > M∗

1 K
∗ ≥ L∗.

(5.32)

Then the Leggett-Williams fixed point theorem implies that N1 has at least
three fixed points y1, y2, y3 which are solutions to problem (5.2). Furthermore, we
have

y1 ∈ Cr∗ , y2 ∈
{
y ∈ C

(
ψ,L∗,R∗

)
: ψ(y) > L∗

}
,

y3 ∈ CR∗ −
{
C
(
ψ,L∗,R∗

)∪ Cr∗
}
.

(5.33)

�

5.3. Positive solutions for impulsive boundary value problems

In this section, we will be concerned with the existence of positive solutions of
the second-order boundary value problem for the impulsive functional differential
equation,

y′′ = f
(
t, yt
)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Īk
(
y
(
t−k
))

, k = 1, . . . ,m,

(5.34)

y(t) = φ(t), t ∈ [−r, 0], y(T) = yT , (5.35)

where f : J×D → R is a given function, D = {ψ : [−r, 0] → R+ | ψ is continuous
everywhere except for a finite number of points s at which ψ(s) and the right limit
ψ(s+) exist and ψ(s−) = ψ(s)}, φ ∈D , 0 < r <∞, 0 = t0 < t1 < · · · < tm < tm+1 =
T , Ik, Īk ∈ C(R, R) (k = 1, 2, . . . ,m) are bounded, yT ∈ R, Δy|t=tk = y(t+k )−y(t−k ),
Δy′|t=tk = y′(t+k ) − y′(t−k ), and y(t−k ), y(t+k ) and y′(t−k ), y′(t+k ) represent the left
and right limits of y(t) and y′(t), respectively, at t = tk.

Definition 5.5. A function y ∈ Ω ∩ AC1((tk, tk+1), R) is said to be a solution of
(5.34)–(5.35) if y satisfies the differential equation y′′(t) = f (t, yt) a.e. on J ′, the
conditions Δy|t=tk = Ik(y(t−k )), Δy′|t=tk = Īk(y(t−k )), k = 1, . . . ,m, and the condi-
tions (5.35).
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In what follows we will use the notation
∑

0<tk<t[y(t+k )−y(tk)] to mean 0 when

k = 0 and 0 < t < t1, and to mean
∑k

i=1[y(t+k )−y(tk)] when k ≥ 1 and tk < t ≤ tk+1.
We establish solutions of (5.34)–(5.35) by an application of a Schaefer fixed point
theorem.

Theorem 5.6. Suppose that the following assumptions are satisfied:
(5.6.1) φ ∈D and yT ≥ 0;
(5.6.2) f : J ×D → (−∞, 0] is an L1-Carathéodory map;
(5.6.3) Ik(v) + (t − tk)Īk(v) ≥ 0 for each v ∈ R, t ≥ tk, and k = 1, . . . ,m;
(5.6.4) Ik(v) + (T − tk)Īk(v) ≤ 0 for each v ∈ R and k = 1, . . . ,m;
(5.6.5) there exist constants ck, dk such that |Ik(y)| ≤ ck, |Īk(y)| ≤ dk, k =

1, . . . ,m, for each y ∈ R;
(5.6.6) there exists a function m ∈ L1(J , R+) such that

∣∣ f (t,u)
∣∣ ≤ m(t) for almost all t ∈ J , ∀u ∈D . (5.36)

Then the impulsive boundary value problem (5.34)–(5.35) has at least one positive
solution on [−r,T].

Proof. Transform problem (5.34)–(5.35) into a fixed point problem. Consider the
multivalued map G : Ω→ Ω defined by

G(y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

T − t
T

φ(0) +
t

T
yT +

∫ T

0
H(t, s) f

(
s, ys
)
ds

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]

− t

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Īk
(
y
(
tk
))]

, t ∈ J ,

(5.37)

where

H(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t

T
(s− T), 0 ≤ s ≤ t ≤ T ,

s

T
(t − T), 0 ≤ t < s ≤ T.

(5.38)

Remark 5.7. We first show that the fixed points of G are positive solutions to
(5.34)–(5.35).

Indeed, assume that y ∈ Ω is a fixed point of G. It is clear that y(t) = φ(t) for
each t ∈ [−r, 0], y(T) = yT , and Δy|t=tk = Ik(y(t−k )), k = 1, . . . ,m. By performing
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direct differentiation twice, we find

y′(t) = −1
T
φ(0) +

1
T
yT +

∫ T

0

∂H

∂t
(t, s) f

(
s, ys
)
ds +

∑

0<tk<t

Īk
(
y
(
tk
))

− 1
T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Īk
(
y
(
tk
))]

, t �= tk,

Δy′|t=tk = Īk
(
y
(
t−k
))

, k = 1, . . . ,m,

y′′(t) = f
(
t, yt
)
, t �= tk,

(5.39)

which imply that y is a solution of the BVP (5.34)–(5.35).
If y is a fixed point of G, then (5.6.1) through (5.6.4) imply that y(t) ≥ 0 for

each t ∈ [−r,T]. We will now show that G satisfies the assumptions of Schaefer’s
fixed point theorem. The proof will be given in several steps.
Step 1. G maps bounded sets into bounded sets in Ω.

Indeed, it is enough to show that there exists a positive constant � such that,
for each y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, one has ‖G(y)‖ ≤ �. For each t ∈ J , we
have

G(y)(t) = T − t
T

φ(0) +
t

T
yT +

∫ T

0
H(t, s) f

(
s, ys
)
ds

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]

− t

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Īk
(
y
(
tk
))]

.

(5.40)

By (5.6.2) we have, for each t ∈ J ,

∣
∣G(y)(t)

∣
∣ ≤ ‖φ‖D +

∣
∣yT
∣
∣ + sup

(t,s)∈J×J

∣
∣H(t, s)

∣
∣
∫ T

0

∣
∣ f
(
s, ys
)∣∣ds

+
∑

0<tk<t

[∣∣Ik
(
y
(
tk
))∣∣ +

∣
∣(t − tk

)∣∣
∣
∣Īk
(
y
(
tk
))∣∣]

+
m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Īk
(
y
(
tk
))] ≤ ‖φ‖D +

∣
∣yT
∣
∣

+ sup
(t,s)∈J×J

∣
∣H(t, s)

∣
∣
∫ T

0
gq(s)ds

+
m∑

k=1

[
2 sup

{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}

+ 2
(
T − tk

)
sup
{∣∣Īk
(|y|)∣∣ : ‖y‖ ≤ q

}] = �.

(5.41)



Boundary value problems 157

Step 2. G maps bounded sets into equicontinuous sets of Ω.
Let r1, r2 ∈ J ′, 0 < r1 < r2, and let Bq = {y ∈ Ω : ‖y‖ ≤ q} be a bounded set

of Ω.
For each y ∈ Bq and t ∈ J , we have

∣∣G(y)
(
r2
)−G(y)

(
r1
)∣∣ ≤ (r2 − r1

)∣∣φ(0)
∣∣ +
(
r2 − r1

)
∣
∣yT
∣
∣

T

+
∫ T

0

∣∣H
(
r2, s
)−H(r1, s

)∣∣gq(s)ds

+
∑

0<tk<r2−r1

[
Ik
(
y
(
tk
))

+
(
r2 − r1

)
Īk
(
y
(
tk
))]

− r2 − r1

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Īk
(
y
(
tk
))]

.

(5.42)

As r2 → r1 the right-hand side of the above inequality tends to zero. This
proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It remains
to examine the equicontinuity at t = ti. The proof is similar to that given in
Theorem 4.3.

The equicontinuity for the cases r1 < r2 ≤ 0 and r1 ≤ 0 ≤ r2 is similar.
Step 3. G is continuous.

Let {yn} be a sequence such that yn → y in Ω. Then there is an integer q such
that ‖yn‖ ≤ q, for all n ∈ N and ‖y‖ ≤ q. So yn ∈ Bq and y ∈ Bq.

We have then by the dominated convergence theorem

∥∥G
(
yn
)−G(y)

∥∥

≤ sup
t∈J

[∫ T

0
H(t, s)

∣
∣ f
(
s, yns

)− f
(
s, ys
)∣∣ds

+
∑

0<tk<t

[∣∣Ik
(
yn
(
tk
))− Ik

(
y
(
tk
))∣∣ +

∣
∣t − tk

∣
∣
∣
∣Īk
(
yn
(
tk
))− Īk

(
y
(
tk
))∣∣]

+
t

T

m∑

1

[∣∣Ik
(
yn
(
tk
))− Ik

(
y
(
tk
))∣∣

+
∣
∣T − tk

∣
∣
∣
∣Īk
(
yn
(
tk
))− Īk

(
y
(
tk
))∣∣]

]

�→ 0.

(5.43)

Thus G is continuous. As a consequence of Steps 1, 2, and 3 together with the
Ascoli-Arzelá theorem we can conclude that G : Ω→ Ω is completely continuous.
Step 4. Now it remains to show that the set

M := {y ∈ Ω : λy = G(y), for some λ > 1
}

(5.44)

is bounded.
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Let y ∈M. Then λy ∈ G(y) for some λ > 1. Thus

y(t) = λ−1T − t
T

φ(0) + λ−1 t

T
yT + λ−1

∫ T

0
H(t, s) f

(
s, ys
)
ds

+ λ−1
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]

− λ−1 t

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Īk
(
y
(
tk
))]

.

(5.45)

This implies by (5.6.5) and (5.6.6) that for each t ∈ J we have

∣
∣y(t)

∣
∣ ≤ ‖φ‖D +

∣
∣yT
∣
∣ + sup

(t,s)∈J×J

∣
∣H(t, s)

∣
∣
∫ T

0
m(s)ds

+
m∑

k=1

[
2ck + 2

(
T − tk

)
dk
]

:= b.

(5.46)

This inequality implies that there exists a constant b depending only on T and on
the function m such that

∣
∣y(t)

∣
∣ ≤ b for each t ∈ J. (5.47)

Hence

‖y‖ := sup
{∣∣y(t)

∣
∣ : −r ≤ t ≤ T

} ≤ max
(‖φ‖D , b

)
. (5.48)

This shows that M is bounded.
Set X := Ω. As a consequence of Theorem 1.6 we deduce that G has a fixed

point y which is a positive solution of (5.34)–(5.35). �

Remark 5.8. We can analogously (with obvious modifications) study the existence
of positive solutions for the following BVP:

y′′ = f
(
t, yt
)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Īk
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0], y′(T) = yT .

(5.49)

We omit the details.
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5.4. Double positive solutions for impulsive boundary value problems

Let 0 < τ < 1 be fixed. We apply an Avery-Henderson fixed point theorem to
obtain multiple positive solutions of the nonlinear impulsive differential equation

y′′ = f (y), t ∈ [0, 1] \ {τ}, (5.50)

subject to the underdetermined impulse condition

Δy(τ) = I
(
y(τ)
)
, (5.51)

and satisfying the right focal boundary conditions

y(0) = y′(1) = 0, (5.52)

where Δy(τ) = y(τ+) − y(τ−), f : R → [0,∞) is continuous, and I : [0,∞) →
[0,∞) is continuous. By a positive solution we will mean positive with respect to a
suitable cone.

Definition 5.9. Let (B,‖ · ‖) be a real Banach space. A nonempty, closed, convex
set P ⊂ B is said to be a cone provided the following are satisfied:

(a) if y ∈ P and λ ≥ 0, then λy ∈ P ;
(b) if y ∈ P and −y ∈ P , then y = 0.

Every cone P ⊂ B induces a partial ordering, ≤, on B defined by

x ≤ y iff y − x ∈ P . (5.53)

Definition 5.10. Given a cone P in a real Banach space B, a functional ψ : P → R
is said to be increasing on P , provided ψ(x) ≤ ψ(y), for all x, y ∈ P with x ≤ y.

Given a nonnegative continuous functional γ on a cone P of a real Banach
space B (i.e., γ : P → [0,∞) continuous), we define, for each d > 0, the convex
set

P (γ,d) = {x ∈ P | γ(x) < d
}
. (5.54)

In this section, we impose growth conditions on f and I and then apply Theorem
1.16 to establish the existence of double positive solutions of (5.50)–(5.52). We
note that, from the nonnegativity of f and I , a solution y of (5.50)–(5.52) is non-
negative and concave on each of [0, τ] and (τ, 1]. We will apply Theorem 1.16 to a
completely continuous operator whose kernel G(t, s) is the Green’s function for

−y′′ = 0, (5.55)
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satisfying (5.52). In this instance,

G(t, s) =
⎧
⎨

⎩
t, 0 ≤ t ≤ s ≤ 1,

s, 0 ≤ s ≤ t ≤ 1.
(5.56)

Properties of G(t, s) for which we will make use are

G(t, s) ≤ G(s, s) = s, 0 ≤ t, s ≤ 1, (5.57)

and for each 0 < p < 1,

G(t, s) ≥ pG(s, s) = ps, p ≤ t ≤ 1, 0 ≤ s ≤ 1. (5.58)

In particular, from (5.58), we have

min
t∈[p,1]

G(t, s) ≥ ps, 0 ≤ s ≤ 1. (5.59)

To apply Theorem 1.16, we must define an appropriate Banach space B, a
cone P , and an operator A. To that end, let

B = {y : [0, 1] �→ R | y ∈ C[0, τ], y ∈ C(τ, 1], and y
(
τ+) ∈ R

}
, (5.60)

equipped with the norm

‖y‖ = max

{

sup
0≤t≤τ

∣
∣y(t)

∣
∣, sup

τ<t≤1

∣
∣y(t)

∣
∣
}

. (5.61)

Naturally, for y ∈ B, we will consider in a piecewise manner that y ∈ C[0, τ] and
y ∈ C[τ, 1]. We also note that if y ∈ B, then y(τ−) = y(τ). Next, let the cone
P ⊂ B be defined by

P = {y ∈ B | y is concave, nondecreasing, and nonnegative on

each of [0, τ] and [τ, 1], and Δy(τ) ≥ 0
}
.

(5.62)

We note that, for each y ∈ P , I(y(τ)) ≥ 0 so that y(τ+) ≥ y(τ) ≥ 0. It follows
that, for y ∈ P ,

‖y‖ = max
{
y(τ), y(1)

} = y(1). (5.63)
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Moreover, if y ∈ P ,

y(t) ≥ 1
2

sup
s∈[τ/2,τ]

y(s) = 1
2
y(τ),

τ

2
≤ t ≤ τ,

y(t) ≥ 1
2

sup
s∈[(τ+1)/2,1]

y(s) = 1
2
y(1),

τ + 1
2

≤ t ≤ 1;
(5.64)

see [19].
For the remainder of this section, fix

τ + 1
2

< r < 1, (5.65)

and define the nonnegative, increasing, continuous functionals γ, θ, and α on P
by

γ(y) = min
(τ+1)/2≤t≤r

y(t) = y
(
τ + 1

2

)
,

θ(y) = max
τ≤t≤(τ+1)/2

y(t) = y
(
τ + 1

2

)
,

α(y) = max
τ≤t≤r y(t) = y(r).

(5.66)

We observe that, for each y ∈ P ,

γ(y) = θ(y) ≤ α(y). (5.67)

Furthermore, for each y ∈ P , γ(y) = y((τ + 1)/2) ≥ (1/2)y(1) = (1/2)‖y‖. So

‖y‖ ≤ 2γ(y), ∀y ∈ P . (5.68)

Finally, we also note that

θ(λy) = λθ(y), 0 ≤ λ ≤ 1, y ∈ ∂P (θ, b). (5.69)

We now state growth conditions on f and I so that problem (5.50)–(5.52) has
at least two positive solutions.

Theorem 5.11. Let 0 < a < (r2/2)b < (r2/4)c, and suppose that f and I satisfy the
following conditions:

(A) f (w) > 4c/(1− τ2) if c ≤ w ≤ 2c,
(B) f (w) < b if 0 ≤ w ≤ 2b,
(C) f (w) > 2a/r2 if 0 ≤ w ≤ a,
(D) I(w) ≤ b/2 if 0 ≤ w ≤ b.
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Then the impulsive boundary value problem (5.50)–(5.52) has at least two positive
solutions x1 and x2 such that

a < max
τ≤t≤r x1(t), with max

τ≤t≤(τ+1)/2
x1(t) < b,

b < max
τ≤t≤(τ+1)/2

x2(t), with min
(τ+1)/2≤t≤r

x2(t) < c.
(5.70)

Proof. We begin by defining the completely continuous integral operator A : B →
B by

Ax(t) = I
(
x(τ)

)
χ(τ,1](t) +

∫ 1

0
G(t, s) f

(
x(s)
)
ds, x ∈ B, 0 ≤ t ≤ 1, (5.71)

where χ(τ,1](t) is the characteristic function. It is immediate that solutions of
(5.50)–(5.52) are fixed points of A and conversely. We proceed to show that the
conditions of Theorem 1.16 are satisfied.

First, let x ∈ P (γ, c). By the nonnegativity of I , f , and G, for 0 ≤ t ≤ 1,

Ax(t) = I
(
x(τ)

)
χ(τ,1](t) +

∫ 1

0
G(t, s) f

(
x(s)
)
ds ≥ 0. (5.72)

Moreover, (Ax)′′(t) = − f (x(t)) ≤ 0 on [0, 1] \ {τ}, which implies (Ax)(t) is
concave on each of [0, τ] and [τ, 1]. In addition,

(Ax)′(t) =
∫ 1

0

∂

∂t
G(t, s) f

(
x(s)
)
ds ≥ 0 on [0, 1] \ {τ}, (5.73)

so that (Ax)(t) is nondecreasing on each of [0, τ] and [τ, 1]. From (Ax)(0) = 0, we
have (Ax)(t) ≥ 0 on [0, τ]. Also, since x ∈ P (γ, c),

Δ(Ax)(τ) = (Ax)
(
τ+)− (Ax)(τ) = I

(
x(τ)

) ≥ 0. (5.74)

This yields (Ax)(τ+) ≥ (Ax)(τ) ≥ 0. Consequently, (Ax)(t) ≥ 0, τ ≤ t ≤ 1, as
well. Ultimately, we have Ax ∈ P and, in particular, A : P (γ, c) → P .

We now turn to property (i) of Theorem 1.16. We choose x ∈ ∂P (γ, c). Then
γ(x) = min(τ+1)/2≤t≤r x(t) = x((τ + 1)/2) = c. Since x ∈ P , x(t) ≥ c, (τ + 1)/2 ≤
t ≤ 1. If we recall that ‖x‖ ≤ 2γ(x) = 2c, we have

c ≤ x(t) ≤ 2c,
τ + 1

2
≤ t ≤ 1. (5.75)

By hypothesis (A),

f
(
x(s)
)
>

4c
1− τ2

,
τ + 1

2
≤ s ≤ r. (5.76)
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By above Ax ∈ P , and so

γ(Ax) = (Ax)
(
τ + 1

2

)
= I
(
x(τ)

)
χ(τ,1]

(
τ + 1

2

)
+
∫ 1

0
G
(
τ + 1

2
, s
)
f
(
x(s)
)
ds

=
∫ 1

0
G
(
τ + 1

2
, s
)
f
(
x(s)
)
ds ≥

∫ 1

(τ+1)/2
G
(
τ + 1

2
, s
)
f
(
x(s)
)
ds

=
(
τ + 1

2

)∫ 1

(τ+1)/2
f
(
x(s)
)
ds >

(
τ + 1

2

)(
4c

1− τ2

)∫ 1

(τ+1)/2
ds = c.

(5.77)

We conclude that Theorem 1.16(i) is satisfied.
We next address Theorem 1.16(ii). This time, we choose x ∈ ∂P (θ, b). Then

θ(x) = maxτ≤t≤(τ+1)/2 x(t) = x((τ + 1)/2) = b. Thus, 0 ≤ x(t) ≤ b, τ+ ≤ t ≤
(τ+1)/2. Yet x ∈ P implies x(τ) ≤ x(τ+), and also x(t) is nondecreasing on [0, τ].
Thus

x(t) ≤ b, 0 ≤ t ≤ τ + 1
2

. (5.78)

By hypothesis (D), we have

I
(
x(τ)

) ≤ b

2
. (5.79)

If we recall that ‖x‖ ≤ 2γ(x) ≤ 2θ(x) = 2b, then we have

0 ≤ x(t) ≤ 2b, 0 ≤ t ≤ 1, (5.80)

and by (B),

f
(
x(s)
)
< b, 0 ≤ s ≤ 1. (5.81)

Then

θ(Ax) = (Ax)
(
τ + 1

2

)
= I
(
x(τ)

)
χ(τ,1]

(
τ + 1

2

)
+
∫ 1

0
G
(
τ + 1

2
, s
)
f
(
x(s)
)
ds

≤ b

2
+
∫ 1

0
s f
(
x(s)
)
ds <

b

2
+ b
∫ 1

0
s ds = b.

(5.82)

In particular, Theorem 1.16(ii) holds.
For the final part, we consider Theorem 1.16(iii). If we define y(t) = a/2, for

all 0 ≤ t ≤ 1, then α(y) = a/2 < a and P (α, a) �= ∅.
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Now choose x ∈ ∂P (α, a). Then α(x) = maxτ≤t≤r x(t) = x(r) = a. This
implies 0 ≤ x(t) ≤ a, τ+ ≤ t ≤ r. Since x is nondecreasing and x(τ+) ≥ x(τ),

0 ≤ x(t) ≤ a, 0 ≤ t ≤ r. (5.83)

By assumption (C),

f
(
x(s)
)
>

2a
r2

, 0 ≤ s ≤ r. (5.84)

As before Ax ∈ P , and so

α(Ax) = (Ax)(r) = I
(
x(τ)

)
χ(τ,1](r) +

∫ 1

0
G(r, s) f

(
x(s)
)
ds ≥

∫ 1

0
G(r, s) f

(
x(s)
)
ds

≥
∫ r

0
G(r, s) f

(
x(s)
)
ds ≥

∫ r

0
s f
(
x(s)
)
ds >

(
2a
r2

)∫ r

0
s ds = a.

(5.85)

Thus Theorem 1.16(iii) is satisfied. Hence there exist at least two fixed points of
A which are solutions x1 and x2, belonging to P (γ, c), of the impulsive boundary
value problem (5.50)–(5.52) such that

a < α
(
x1
)

with θ
(
x1
)
< b,

b < θ
(
x2
)

with γ
(
x2
)
< c.

(5.86)

The proof is complete. �

Example 5.12. For (τ + 1)/2 < r < 1 fixed and for 0 < a < (r2/2)b < (r2/4)c, if
f : R→ [0,∞) and I : [0,∞) → [0,∞) are defined by

f (w) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

br2 + 2a
2r2

, w ≤ 2b,

�(w), 2b ≤ w ≤ c,

4c + 1
1− τ2

, c ≤ w,

I(w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b

2
, 0 ≤ w ≤ b,

w − b

2
, b ≤ w,

(5.87)

where �(w) satisfies �′′ = 0, �(2b) = (br2 + 2a)/2r2, and �(c) = (4c + 1)/(1− τ2),
then by Theorem 5.11 the impulsive boundary value problem (5.50)–(5.52) has at
least two solutions belonging to P (γ, c).
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5.5. Notes and remarks

There is much current interest in multiple fixed point theorems and their applica-
tions to impulsive functional differential equations. The techniques in this chapter
have been adapted from [8, 9, 19] where the nonimpulsive case was discussed.
Section 5.2 deals with the existence of multiple positive solutions for first- and
second-order impulsive functional differential equations by applying the Leggett-
Williams fixed point theorem. The material of Section 5.2 is based on the results
given by Benchohra et al. [95]. The Krasnoselskii twin fixed point theorem is used
in Section 5.3 to obtain two positive solutions for initial value problems for first-
and second-order impulsive semilinear functional differential equations in Hilbert
space. The results of Section 5.3 are adapted from Benchohra et al. [75]. Positive
solutions for impulsive boundary value problems are studied in Section 5.4 and
the results are adapted from Benchohra et al. [52]. The results of Section 5.5 are
taken from Benchohra et al. [25] and concern double positive solutions for impul-
sive boundary value problems. A new fixed point theorem of Avery and Henderson
[26] is applied in Section 5.5.





6
Boundary value problems for impulsive
differential inclusions

6.1. Introduction

The method of upper and lower solutions has been successfully applied to study
the existence of solutions for first-order impulsive initial value problems and
boundary value problems. This method generates solutions of such problems, with
the solutions located in an order interval with the upper and lower solutions serv-
ing as bounds. Moreover, this method, coupled with some monotonicity-type hy-
potheses, leads to monotone iterative techniques which generate in a constructive
way (amenable to numerical treatment) the extremal solutions within the order
interval determined by the upper and lower solutions.

This method has been used only in the context of single-valued impulsive dif-
ferential equations. We refer to the monographs of Lakshmikantham et al. [180],
Samoı̆lenko and Perestyuk [217], the papers of Cabada and Liz [117], Frigon and
O’Regan [151], Heikkilä and Lakshmikantham [163], Liu [188], Liz [192, 193], Liz
and Nieto [194], and Pierson-Gorez [212]. However, this method has been used
recently by Benchohra and Boucherif [35] for the study of first-order initial value
problems for impulsive differential inclusions.

Let us mention that other methods like the nonlinear alternative, such as in
the papers of Benchohra and Boucherif [34, 35], Frigon and O’Regan [150], and
the topological transversality theorem Erbe and Krawcewicz [140], have been used
to analyze first- and second-order impulsive differential inclusions. The first part
of this chapter presents existence results using upper- and lower-solutions meth-
ods to obtain solutions of first-order impulsive differential inclusions with peri-
odic boundary conditions and nonlinear boundary conditions. The last section of
the chapter deals with boundary value problems for second-order impulsive dif-
ferential inclusions.

6.2. First-order impulsive differential inclusions with
periodic boundary conditions

This section is devoted to the existence of solutions for the impulsive periodic
multivalued problem
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y′(t) ∈ F
(
t, y(t)

)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y(T),

(6.1)

where F : J × R → P (R) is a compact and convex-valued multivalued map,
0 = t0 < t1 < · · · < tm < tm+1 = T , Ik ∈ C(R, R) (k = 1, 2, . . . ,m) Δy|t=tk =
y(t+k )− y(t−k ), y(t−k ), and y(t+k ) represent the left and right limits of y(t) at t = tk,
respectively. Also, throughout, J ′ = J \ {t1, . . . , tm}.

AC(J , R) is the space of all absolutely continuous functions y : J → R.
Condition

y ≤ y iff y(t) ≤ y(t), ∀t ∈ J (6.2)

defines a partial ordering in AC(J , R). If α,β ∈ AC(J , R) and α ≤ β, we denote

[α,β] = {y ∈ AC(J , R) : α ≤ y ≤ β
}
. (6.3)

Here PC(J , R) = {y | y : J → R such that y(t) is continuous at t �= tk, left
continuous at t = tk, and y(t+k ) exist, k = 1, 2, . . . ,m}, which is a Banach space
with norm

‖y‖PC = sup
{∣∣y(t)

∣
∣ : t ∈ J

}
. (6.4)

In our results, we do not assume any type of monotonicity condition on Ik,
k = 1, . . . ,m, which is usually the situation in the literature.

Now we introduce concepts of lower and upper solutions for (6.1). These will
be the basic tools in the approach that follows.

Definition 6.1. A function α ∈ PC(J , R)∩ AC(J ′, R) is said to be a lower solution
of (6.1) if there exists v1 ∈ L1(J , R) such that v1(t) ∈ F(t,α(t)) a.e. on J , α′(t) ≤
v1(t) a.e. on J ′, Δα|t=tk ≤ Ik(α(t−k )), k = 1, . . . ,m, and α(0) ≤ α(T).

Similarly a function β ∈ PC(J , R)∩AC(J ′, R) is said to be an upper solution of
(6.1) if there exists v2 ∈ L1(J , R) such that v2(t) ∈ F(t,β(t)) a.e. on J , β′(t) ≥ v2(t)
a.e. on J ′, Δβ|t=tk ≥ Ik(β(t−k )), k = 1, . . . ,m, and β(0) ≥ β(T).

So let us begin by defining what we mean by a solution of problem (6.1).

Definition 6.2. A function y ∈ PC(J , R) ∩ AC(J ′, R) is said to be a solution of
(6.1) if there exists a function v ∈ L1(J , R) such that v(t) ∈ F(t, y(t)) a.e. on J ,
y′(t) = v(t) a.e. on J ′, Δy|t=tk = Ik(y(t−k )), k = 1, . . . ,m, and y(0) = y(T).

We need the following auxiliary result.



Periodic impulsive differential inclusions 169

Lemma 6.3. Let g ∈ L1(J , R). y ∈ PC(J , R)∩AC(J ′, R) be a solution to the periodic
problem

y′(t) + y(t) = g(t), t ∈ J , t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y(T),

(6.5)

if and only if y ∈ PC(J , R) is a solution of the impulsive integral equation

y(t) =
∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))

, (6.6)

where

H(t, s) = (eT − 1
)−1

⎧
⎨

⎩
eT+s−t, 0 ≤ s < t ≤ T ,

es−t, 0 ≤ t ≤ s < T.
(6.7)

Proof. The proof appears as [194, Lemma 2.1]. �
We are now in a position to state and prove our existence result for problem

(6.1).

Theorem 6.4. Let t0 = 0, tm+1 = T , and assume that F : J × R → Pcp,cv(R) is an
L1-Carathéodory multivalued map. In addition suppose that the following hold.

(6.4.1) There exist α and β in PC(J , R) ∩ AC(J ′, R) lower and upper solutions,
respectively, for the problem (6.1) such that α ≤ β.

(6.4.2) Δα|t=tk ≤ min[α(t−k ), β(t−k )] Ik(y) ≤ max[α(t−k ), β(t−k )] Ik(y) ≤ Δβ|t=tk , k =
1, . . . ,m.

Then the problem (6.1) has at least one solution such that

α(t) ≤ y(t) ≤ β(t), ∀t ∈ J. (6.8)

Proof. Transform the problem (6.1) into a fixed point problem. Consider the mod-
ified problem

y′(t) + y(t) ∈ F1
(
t, y(t)

)
, t ∈ J , t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
(τ y)

(
t−k
))

, k = 1, . . . ,m,

y(0) = y(T),

(6.9)

where F1(t, y) = F(t, (τ y)(t))+(τ y)(t) and τ : C(J , R) → C(J , R) is the truncation
operator defined by

(τ y)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

α(t) if y(t) < α(t),

y(t) if α(t) ≤ y ≤ β(t),

β(t) if β(t) < y(t).

(6.10)
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Remark 6.5. (i) Δα|t=tk ≤ Ik((τ y)(t−k )) ≤ Δβ|t=tk for all y ∈ R, k = 1, . . . ,m.
(ii) F1 is an L1-Carathéodory multivalued map with compact convex values

and there exists φ ∈ L1(J , R+) such that

∥∥F1
(
t, y(t)

)∥∥ ≤ φ(t) + max

(

sup
t∈J

∣∣α(t)
∣∣, sup

t∈J

∣∣β(t)
∣∣
)

(6.11)

for a.e. t ∈ J and all y ∈ C(J , R).

Set

C0(J , R) := {y ∈ PC(J , R) : y(0) = y(T)
}
. (6.12)

From Lemma 6.3, it follows that a solution to (6.9) is a fixed point of the operator
N : C0(J , R) → P (C0(J , R)) defined by

N(y)(t) :=
{

h ∈ C0(J , R) : h(t) =
∫ T

0
H(t, s)

[
v(s) + (τ y)(s)

]
ds

+
m∑

k=1

H
(
t, tk
)
Ik
(
(τ y)

(
tk
))

: v ∈ S̃1
F,y

}

,

(6.13)

where

S̃F,y =
{
v ∈ SF,τ y : v(t) ≥ v1(t) a.e. on A1, v(t) ≤ v2(t) a.e. on A2

}
,

SF,τ y =
{
v ∈ L1(J , R) : v(t) ∈ F

(
t, (τ y)(t)

)
for a.e. t ∈ J

}
,

A1 =
{
t ∈ J : y(t) < α(t) ≤ β(t)

}
, A2 =

{
t ∈ J : α(t) ≤ β(t) < y(t)

}
.
(6.14)

Remark 6.6. (i) For each y ∈ C(J , R), the set SF,y is nonempty (see Lasota and
Opial [186]).

(ii) For each y ∈ C(J , R), the set S̃F,y is nonempty. Indeed, by (i) there exists
v ∈ SF,y . Set

w = v1χA1 + v2χA2 + vχA3 , (6.15)

where

A3 =
{
t ∈ J : α(t) ≤ y(t) ≤ β(t)

}
. (6.16)

Then by decomposability, w ∈ S̃F,y .
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We will show that N has a fixed point, by applying Theorem 1.7. The proof
will be given in several steps. We first will show that N is a completely continuous
multivalued map, upper semicontinuous with convex closed values.
Step 1. N(y) is convex for each y ∈ C0(J , R).

Indeed, if h, h belong to N(y), then there exist v ∈ S̃F,y and v ∈ S̃F,y such that

h(t) =
∫ T

0
H(t, s)

[
v(s) + (τ y)(s)

]
ds +

m∑

k=1

H
(
t, tk
)
Ik
(
(τ y)

(
tk
))

, t ∈ J ,

h(t) =
∫ T

0
H(t, s)

[
v(s) + (τ y)(s)

]
ds +

m∑

k=1

H
(
t, tk
)
Ik
(
(τ y)

(
tk
))

, t ∈ J.

(6.17)

Let 0 ≤ l ≤ 1. Then, for each t ∈ J , we have

[
lh + (1− l)h](t) =

∫ T

0
H(t, s)

[
lv(s) + (1− l)v(s) + (τ y)(s)

]
ds

+
m∑

k=1

H
(
t, tk
)
Ik
(
(τ y)

(
tk
))
.

(6.18)

Since S̃F,y is convex (because F has convex values), then

lh + (1− l)h ∈ N(y). (6.19)

Step 2. N is completely continuous.
Let Br := {y ∈ C0(J , R) : ‖y‖PC ≤ r} be a bounded set in C0(J , R) and let

y ∈ Br . Then for each h ∈ N(y), there exists v ∈ S̃F,y such that

h(t) =
∫ T

0
H(t, s)

[
v(s) + (τ y)(s)

]
ds +

m∑

k=1

H
(
t, tk
)
Ik
(
(τ y)

(
tk
))

, t ∈ J. (6.20)

Thus, for each t ∈ J , we get

∣
∣h(t)

∣
∣ ≤
∫ T

0

∥
∥H(t, s)

∥
∥
∣
∣v(s) + (τ y)(s)

∣
∣ds +

m∑

k=1

∥
∥H
(
t, tk
)∥∥
∣
∣Ik
(
(τ y)

(
tk
))∣∣

≤ max
(t,s)∈J×J

∣
∣H(t, s)

∣
∣
[
∥
∥φR
∥
∥
L1 + T max

(

r, sup
t∈J

∣
∣α(t)

∣
∣, sup

t∈J

∣
∣β(t)

∣
∣
)]

+
m∑

k=1

sup
t∈J

∣
∣H
(
t, tk
)∣∣max

(|Δα|t=tk |, |Δβ|t=tk |
)

:= K.

(6.21)
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Furthermore,

∣∣h′(t)
∣∣ ≤
∫ T

0

∥∥H′
t (t, s)

∥∥∣∣v(s) + (τ y)(s)
∣∣ds +

m∑

k=1

∥∥H′
t

(
t, tk
)∥∥∣∣Ik

(
(τ y)

(
tk
))∣∣

≤ max
(t,s)∈J×J

∣
∣H′

t (t, s)
∣
∣
[
∥
∥φR
∥
∥
L1 + T max

(

r, sup
t∈J

∣
∣α(t)

∣
∣, sup

t∈J

∣
∣β(t)

∣
∣
)]

+
m∑

k=1

sup
t∈J

∣
∣H′

t

(
t, tk
)∣∣max

(|Δα|t=tk |, |Δβ|t=tk |
) =: K1.

(6.22)

We note that H(t, s) and H′
t (t, s) are continuous on J × J . Thus N maps bounded

sets of C0(J , R) into uniformly bounded and equicontinuous sets of C0(J , R).
Step 3. N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists vn ∈ S̃F,yn such that

hn(t) =
∫ T

0
H(t, s)

[
vn(s) +

(
τ yn
)
(s)
]
ds +

m∑

k=1

H
(
t, tk
)
Ik
((
τ yn
)(
tk
))

, t ∈ J.

(6.23)

We must prove that there exists v∗ ∈ S̃F,y∗ such that

h∗(t) =
∫ T

0
H(t, s)

[
v∗(s) +

(
τ y∗
)
(s)
]
ds +

m∑

k=1

H
(
t, tk
)
Ik
((
τ y∗)

(
tk
))

, t ∈ J.

(6.24)

Since yn → y∗, hn → h∗, τ and Ik, k = 1, . . . ,m, are continuous functions, we have
that
∥
∥
∥∥
∥

(

hn −
∫ T

0
H(t, s)

(
τ yn
)
(s)ds−

m∑

k=1

H
(
t, tk
)
Ik
((
τ yn
)(
tk
))
)

−
(

h∗ −
∫ T

0
H(t, s)

(
τ y∗
)
(s)ds−

m∑

k=1

H
(
t, tk
)
Ik
((
τ y∗
)(
tk
))
)∥∥
∥
∥∥

PC

�→ 0,

(6.25)

as n→∞.
Now we consider the linear continuous operator

Γ : L1(J , R) �→ C(J , R),

v � �→ Γ(v)(t) =
∫ T

0
H(t, s)v(s)ds.

(6.26)

From Lemma 1.28, it follows that Γ ◦ S̃F is a closed graph operator.
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Moreover, we have that

(

hn(t)−
∫ T

0
H(t, s)

(
τ yn
)
(s)ds−

m∑

k=1

H
(
t, tk
)
Ik
((
τ yn
)(
tk
))
)

∈ Γ
(
S̃F,yn

)
. (6.27)

Since yn → y∗, it follows from Lemma 1.28 that

h∗(t)−
∫ T

0
H(t, s)

(
τ y∗
)
(s)ds−

m∑

k=1

H
(
t, tk
)
Ik
((
τ y∗
)(
tk
)) =

∫ T

0
H(t, s)v∗(s)ds

(6.28)

for some v∗ ∈ S̃F,y∗ .
Therefore N is a completely continuous multivalued map, upper semicontin-

uous, with convex closed values.
Step 4. The set

M := {y ∈ C0(J , R) : λy ∈ N(y) for some λ > 1
}

(6.29)

is bounded.
Let λy ∈ N(y), λ > 1. Then there exists v ∈ S̃F,y such that

y(t) = λ−1
∫ T

0
H(t, s)

[
v(s) + (τ y)(s)

]
ds + λ−1

m∑

k=1

H
(
t, tk
)
Ik
(
(τ y)

(
tk
))

, t ∈ J.

(6.30)

Thus, for each t ∈ J ,

∣
∣y(t)

∣
∣ ≤ ∣∣H(t, s)

∣
∣
∫ T

0

∣
∣v(s) + (τ y)(s)

∣
∣ds

+
m∑

k=1

sup
t∈J

∣∣H
(
t, tk
)∣∣max

(|Δα|t=tk |, |Δβ|t=tk |
)
.

(6.31)

Thus we obtain

‖y‖PC ≤ 1
1− e−T

[

‖ϕ‖L1 + T max

(

sup
t∈J

∣
∣α(t)

∣
∣, sup

t∈J

∣
∣β(t)

∣
∣
)]

+
m∑

k=1

sup
t∈J

∣
∣H
(
t, tk
)∣∣max

(|Δα|t=tk |, |Δβ|t=tk |
)
.

(6.32)

This shows that M is bounded. Hence Theorem 1.7 applies andN has a fixed point
which is a solution to problem (6.9).
Step 5. The solution y of (6.9) satisfies

α(t) ≤ y(t) ≤ β(t), ∀t ∈ J. (6.33)
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Let y be a solution to (6.9). We prove that

y(t) ≤ β(t), ∀t ∈ J. (6.34)

Assume that y − β attains a positive maximum on [t+k , t−k+1] at tk ∈ [t+k , t−k+1] for
some k = 0, . . . ,m, that is,

(y − β)
(
tk
) = max

{
y(t)− β(t) : t ∈ [t+k , t−k+1

]
, k = 0, . . . ,m

}
> 0. (6.35)

We distinguish the following cases.
Case 1. If tk ∈ (t+k , t−k+1], there exists t∗k ∈ [t+k , tk) such that

0 < y(t)− β(t) ≤ y
(
tk
)− β(tk

)
, ∀t ∈ [t∗k , tk

]
. (6.36)

By the definition of τ, there exist v ∈ L1(J , R) with v(t) ≤ v2(t) a.e. on [t∗k , tk] and
v(t) ∈ F(t,β(t)) a.e. on [t∗k , tk] such that

y
(
tk
)− y

(
t∗k
) =
∫ tk

t∗k

(
v(s)− y(s) + β(s)

)
ds

≤
∫ tk

t∗k

(
v2(s)− (y(s)− β(s)

))
ds.

(6.37)

Using the fact that β is an upper solution to (6.1), the above inequality yields

y
(
tk
)− y

(
t∗k
) ≤ β

(
tk
)− β(t∗k

)−
∫ tk

t∗k

(
y(s)− β(s)

)
ds

< β
(
tk
)− β(t∗k

)
.

(6.38)

Thus we obtain the contradiction

β
(
tk
)− β(t∗k

)
< β
(
tk
)− β(t∗k

)
. (6.39)

Case 2. tk = t+k , k = 1, . . . ,m.
Then

Δβ|t=tk < Δy|t=tk = I∗k
(
y
(
t−k
)) ≤ Δβ|t=tk , (6.40)

which is a contradiction. Thus

y(t) ≤ β(t), ∀t ∈ [t+1 ,T
]
. (6.41)
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Case 3. t0 = 0.
Then

β(T) ≤ β(0) < y(0) = y(T), (6.42)

which is also a contradiction. Consequently,

y(t) ≤ β(t), ∀t ∈ J. (6.43)

Analogously, we can prove that

y(t) ≥ α(t), ∀t ∈ J. (6.44)

This shows that the problem (6.9) has a solution in the interval [α,β]. Since τ(y) =
y for all y ∈ [α,β], then y is a solution to (6.1). �

Now we will be concerned with the existence of solutions of the following
first-order impulsive periodic multivalued problem:

y′(t)− a(t, y(t)
)
y(t) ∈ F

(
t, y(t)

)
, t ∈ J , t �= tk, k = 1, . . . ,m,

y(0) = y(T),

Δy|t=tk = Ik
(
y
(
tk
))

, k = 1, . . . ,m,

(6.45)

where F : J×R→ P (R) is a convex compact-valued multivalued map, a : J×R→
R, 0 = t0 < t1 < · · · < tm < tm+1 = T , Ik ∈ C(R, R) (k = 1, 2, . . . ,m) are bounded,
Δy|t=tk = y(t+k )− y(t−k ) and y(t−k ), y(t+k ) represent the left and right limits of y(t),
respectively, at t = tk. Without loss of generality, we assume that a(t, y) > 0 for
each (t, y) ∈ J ×R.

We will provide sufficient conditions on F and Ik, k = 1, . . . ,m, in order to
insure the existence of solutions of the problem (6.45).

For short, we will refer to (6.45) as (NP).

Definition 6.7. A function y ∈ PC(J , R) ∩ AC(J ′, R) is said to be a solution of
(NP) if y satisfies the differential inclusion y′(t) ∈ F(t, y(t)) a.e. on J ′ and the
conditions Δy|t=tk = Ik(y(t−k )), k = 1, . . . ,m, and y(0) = y(T).

We now consider for each u ∈ PC(J , R) ∩ AC(J ′, R) the following “linear
problem”:

y′(t)− a(t,u(t)
)
y(t) = g(t), t �= tk, k = 1, . . . ,m, (6.46)

y(0) = y(T), (6.47)

Δy|t=tk = Ik
(
y
(
tk
))

, k = 1, . . . ,m, (6.48)

where g ∈ PC(J , R) and Ik ∈ C(R, R), k = 1, . . . ,m.
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For short, we will refer to (6.46)–(6.48) as (LP)u. Note that (LP)u is not really
a linear problem since the impulsive functions are not necessarily linear. However,
if Ik, k = 1, . . . ,m, are linear, then (LP)u is a linear impulsive problem.

We have the following auxiliary result.

Lemma 6.8. y ∈ PC(J , R) ∩ AC(J ′, R) is a solution of (LP)u if and only if y ∈
PC(J , R) is a solution of the impulsive integral equation

y(t) =
∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))

, (6.49)

where

H(t, s) = (A(T)− 1
)−1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A(T)A(s)
A(t)

, 0 ≤ s ≤ t ≤ T ,

A(s)
A(t)

, 0 ≤ t < s ≤ T ,

A(t) = exp
(
−
∫ t

0
a
(
s,u(s)

)
ds
)
.

(6.50)

Proof. First, suppose that y ∈ PC(J , R)∩ AC(J ′, R) is a solution of (LP)u. Then

y′ − a(t,u(t)
)
y = g(t), t �= tk, (6.51)

that is,

(
A(t)y(t)

)′ = A(t)g(t), t �= tk. (6.52)

Assume that tk < t ≤ tk+1, k = 0, . . . ,m. By integration of (6.52), we obtain

A
(
t1
)
y
(
t1
)− A(0)y(0) =

∫ t1

0
A(s)g(s)ds,

A
(
t2
)
y
(
t2
)− A(t1

)
y
(
t+1
) =
∫ t2

t1
A(s)g(s)ds,

...

A
(
tk
)
y
(
tk
)− A(tk−1

)
y
(
t+k−1

) =
∫ tk

tk−1

A(s)g(s)ds,

A(t)y(t)− A(tk
)
y
(
t+k
) =
∫ t

tk
A(s)g(s)ds.

(6.53)

Adding these together, we get

A(t)y(t)− y(0) =
∑

0<tk<t

A
(
tk
)
y
(
t+k
)−

∑

0<tk<t

A
(
tk
)
y
(
tk
)

+
∫ t

0
A(s)g(s)ds, (6.54)
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that is,

A(t)y(t) = y(0) +
∑

0<tk<t

A
(
tk
)
Ik
(
y
(
tk
))

+
∫ t

0
A(s)g(s)ds. (6.55)

In view of (6.55) with y(0) = y(T), we get

A(T)y(0) = y(0) +
m∑

k=1

A
(
tk
)
Ik
(
y
(
tk
))

+
∫ T

0
A(s)g(s)ds. (6.56)

Hence

y(0) = (A(T)− 1
)−1
[ m∑

k=1

A
(
tk
)
Ik
(
y
(
tk
))

+
∫ T

0
A(s)g(s)ds

]

. (6.57)

Substituting (6.57) into (6.55), we obtain

A(t)y(t) = (A(T)− 1
)−1
[ m∑

k=1

A
(
tk
)
Ik
(
y
(
tk
))

+
∫ T

0
A(s)g(s)ds

]

+
∑

0<tk<t

A
(
tk
)
Ik
(
y
(
tk
))

+
∫ t

0
A(s)g(s)ds.

(6.58)

Using (6.58) and the fact that

m∑

k=1

Ik
(
y
(
tk
)) =

∑

0<tk<T

Ik
(
y
(
tk
)) =

∑

0<tk<t

Ik
(
y
(
tk
))

+
∑

t≤tk<T
Ik
(
y
(
tk
))

, (6.59)

we get

A(t)y(t) = (A(T)− 1
)−1
[
∑

0<tk<t

A
(
tk
)
Ik
(
y
(
tk
))

+
∑

t≤tk<T
A
(
tk
)
Ik
(
y
(
tk
))

+
∫ t

0
A(s)g(s)ds +

∫ T

t
A(s)g(s)ds

+
(
A(T)− 1

) ∑

0<tk<t

A
(
tk
)
Ik
(
y
(
tk
))

+
(
A(T)− 1

)
∫ t

0
A(s)g(s)ds

]

= (A(T)− 1
)−1
[

A(T)
∑

0<tk<t

A
(
tk
)
Ik
(
y
(
tk
))

+
∑

t≤tk<T
A
(
tk
)
Ik
(
y
(
tk
))

+ A(T)
∫ t

0
A(s)g(s)ds +

∫ T

t
A(s)g(s)ds

]

.

(6.60)
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Thus

y(t) = (A(T)− 1
)−1
[∫ t

0

A(T)A(s)
A(t)

g(s)ds +
∫ T

t

A(s)
A(t)

g(s)ds

+
∑

0<tk<t

A(T)A
(
tk
)

A(t)
Ik
(
y
(
tk
))

+
∑

t≤tk<T

A
(
tk
)

A(t)
Ik
(
y
(
tk
))
]

=
∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
.

(6.61)

In particular, y is a solution of (6.49).
Conversely, assume that y ∈ PC(J , R)∩ AC(J ′, R) is a solution of (6.49).
Direct differentiation on (6.49) implies that for t �= tk,

y′(t) =
∫ T

0

∂H(t, s)
∂t

g(s)ds +
m∑

k=1

[
∂H
(
t, tk
)

∂t
Ik
(
y
(
tk
))]

= g(t) +
∫ T

0

[
a
(
t,u(t)

)]
H(t, s)g(s)ds +

m∑

k=1

[
a
(
t,u(t)

)]
H
(
t, tk
)
Ik
(
y
(
tk
))

= g(t) + a
(
t,u(t)

)
[∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
]

,

= g(t) + a
(
t,u(t)

)
y(t).

(6.62)

It is easy to see that

Δ

[ m∑

k=1

H
(
t, tk
)
Ik

]∣∣
∣∣
∣
t=tk

= Ik. (6.63)

Moreover, we have

Δy|t=tk = Ik
(
y
(
tk
))
. (6.64)

Making use of the fact thatH(0, s) = H(T , s) for s ∈ J , we obtain that y(0) = y(T).
Hence y ∈ PC(J , R) ∩ AC(J ′, R) is a solution of impulsive periodic problem

(LP)u. �
Although the linear differential problem (6.46)-(6.47) possesses a unique so-

lution y ∈ PC(J , R)∩ AC(J ′, R) for any g ∈ PC(J , R), the impulse problem (LP)u
is not always solvable even for g ≡ 0.

Example 6.9. Consider the problem (LP)u with a(t,u(t)) ≡ 1, g ≡ 0, and I1(x) =
(e−T − 1)x + 1.



Periodic impulsive differential inclusions 179

The general solution of the equation y′−y=0 subject to the impulse Δy|t=t1=
I1(y(t1)) is

y(t) =
⎧
⎪⎨

⎪⎩

y(0)et, t ∈ [0, t1
]
,

[
y(0)et1 + I1

(
y(0)et1

)]
et−t1 , t ∈ (t1,T

]
.

(6.65)

This solution satisfies the periodic boundary condition (6.47) if and only if

y(0) = [y(0)et1 + I1
(
y(0)et1

)]
e(T−t1), (6.66)

that is,

y(0)et1
(
e−T − 1

) = I1
(
y(0)et1

)
. (6.67)

By the definition of I1, there is no initial condition y(0) satisfying this last equality.
Hence the problem has no solution. In this example, the impulse function is not
linear.

We now present another example with linear impulse so that (LP)u is indeed
a linear problem, but with no solution.

Example 6.10. We now inspect problem (LP)u with a(t,u(t)) ≡ 1, k = 1, and
I1(x) = (e−T − 1)x, and g ∈ Ω, e−Td1 + d2 �= 0, where

d1 =
∫ t1

0
eT−sg(s)ds, d2 =

∫ T

t1
eT−sg(s)ds. (6.68)

In this case, the general solution of (6.46) and (6.48) is

y(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(0)et +
∫ t

0
et−sg(s)ds, t ∈ [0, t1

]
,

y
(
t+1
)
et−t1 +

∫ T

t1
et−sg(s)ds, t ∈ (t1,T

]
,

(6.69)

where

y
(
t+1
) = y

(
t−1
)

+ I1
(
y
(
t1
))

,

y
(
t−1
) = y

(
t1
) = y(0)et1 +

∫ t1

0
et1−sg(s)ds.

(6.70)
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Thus y satisfies the periodic boundary condition (6.47) if and only if

y(0) = eT−t1
[
y(0)et1 +

∫ t1

0
et1−sg(s)ds + I1

(
y(0)et1 +

∫ t1

0
et1−sg(s)ds

)]

+
∫ T

t1
eT−sg(s)ds

= eT−t1
[
y(0)et1 +

∫ t1

0
et1−sg(s)ds +

(
e−T − 1

)
(
y(0)et1 +

∫ t1

0
et1−sg(s)ds

)]

+
∫ T

t1
eT−sg(s)ds

= y(0) +
∫ t1

0
e−sg(s)ds +

∫ T

t1
eT−sg(s)ds.

(6.71)

Thus

∫ t1

0
e−sg(s)ds +

∫ T

t1
eT−sg(s)ds = 0. (6.72)

But

∫ t1

0
e−sg(s)ds +

∫ T

t1
eT−sg(s)ds = e−Td1 + d2, (6.73)

which is a contradiction.

Example 6.11. Consider now a simple example of a periodic problem y′(t) = f (t),
t ∈ [0,T], y(0) = y(T). It is clear that without impulses, this problem does not
have a solution if f (t) > 0. If we consider the corresponding impulsive prob-
lem with the impulsive conditions y(ti) = βi y(ti − 0), i = 1, 2, . . . ,m, where
β1β2 · · ·βm �= 1, this problem has a solution for each f (t). In this case, impulses
“improve” existence.

As a consequence of Lemma 6.8, we have that y is a solution of (NP) if and
only if y satisfies the impulsive integral inclusion

y(t) ∈
∫ T

0
H(t, s)F

(
s, y(s)

)
ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
. (6.74)

We now give the existence result for the nonlinear problem (NP).

Theorem 6.12. Assume that the following hold.
(6.9.1) F : J ×R→ Pcp,cv(R) is an L1- Carathéodory multivalued map.
(6.9.2) There exist constants ck such that |Ik(y)| ≤ ck, k = 1, . . . ,m, for each

y ∈ R.
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(6.9.3) There exists a function m ∈ L1(J , R+) such that

∥
∥F(t, y)

∥
∥ := sup

{|v| : v ∈ F(t, y)
} ≤ m(t) (6.75)

for almost all t ∈ J and for all y ∈ R.
Then the nonlinear impulsive problem (NP) has at least one solution.

Proof. Transform the problem (NP) into a fixed point problem. Consider the mul-
tivalued map G : PC(J , R) → P (PC(J , R)) defined by

G(y)(t) =
{

h ∈ PC(J , R) : h(t) =
∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
}

,

(6.76)

where g ∈ SF,y .
We will show that G satisfies the assumptions of Theorem 1.7. The proof will

be given in several steps.
Step 1. G(y) is convex for each y ∈ PC(J , R).

Indeed, if h1, h2 belong to G(y), then there exist g1, g2 ∈ SF,y such that, for
each t ∈ J , we have

hi(t) =
∫ T

0
H(t, s)gi(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))

, i = 1, 2. (6.77)

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(
dh1 + (1− d)h2

)
(t)=

∫ T

0
H(t, s)

[
dg1(s) + (1− d)g2(s)

]
ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
.

(6.78)

Since SF,y is convex (because F has convex values), then

dh1 + (1− d)h2 ∈ G(y). (6.79)

Step 2. G maps bounded sets into bounded sets in PC(J , R).
Indeed, it is enough to show that there exists a positive constant � such that

for each h ∈ G(y) with y ∈ Bq = {y ∈ PC(J , R) : ‖y‖PC ≤ q}, one has ‖h‖PC ≤ �.
If h ∈ G(y), then there exists g ∈ SF,y such that for each t ∈ J , we have

h(t) =
∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
. (6.80)
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By (6.9.1) and (6.9.2), we have for each t ∈ J ,

∣
∣h(t)

∣
∣ ≤
∫ T

0

∣
∣H(t, s)

∣
∣
∣
∣g(s)

∣
∣ds +

m∑

k=1

∣
∣H
(
t, tk
)∣∣
∣
∣Ik
(
y
(
tk
))∣∣

≤ sup
(t,s)∈J×J

∣
∣H(t, s)

∣
∣
∫ T

0
gq(s)ds

+
m∑

k=1

sup
t∈J

∣∣H
(
t, tk
)∣∣ sup

{∣∣Ik
(|y|)∣∣ : ‖y‖PC ≤ q

} = �.

(6.81)

Step 3. G maps bounded sets into equicontinuous sets of PC(J , R).
Let r1, r2 ∈ J ′, r1 < r2, and let Bq = {y ∈ PC(J , R) : ‖y‖PC ≤ q} be a bounded

set of PC(J , R).
For each y ∈ Bq and h ∈ G(y), there exists g ∈ SF,y such that

h(t) =
∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
. (6.82)

Thus

∣∣h
(
r2
)− h(r1

)∣∣ ≤
∫ T

0

∣∣H
(
r2, s
)−H(r1, s

)∣∣gq(s)ds

+
m∑

k=1

∣
∣H
(
r2, s
)−H(r1, s

)∣∣Ik
(
y
(
tk
))
.

(6.83)

As r2 → r1, the right-hand side of the above inequality tends to zero. This
proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. The proof of the
equicontinuity at t = ti is similar to that given in Theorem 4.3.
Step 4. G has a closed graph.

Let yn → y∗, hn ∈ G(yn), and hn → h∗. We will prove that h∗ ∈ G(y∗).
hn ∈ G(yn) means that there exists gn ∈ SF,yn such that, for each t ∈ J ,

hn(t) =
∫ T

0
H(t, s)gn(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
yn
(
tk
))
. (6.84)

We must prove that there exists g∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) =
∫ T

0
H(t, s)g∗(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y∗
(
tk
))
. (6.85)
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Clearly since Ik, k = 1, . . . ,m, are continuous, we have that

∥
∥
∥∥
∥

(

hn −
m∑

k=1

H
(
t, tk
)
Ik
(
yn
(
tk
))
)

−
(

h∗ −
m∑

k=1

H
(
t, tk
)
Ik
(
y∗
(
tk
))
)∥∥
∥∥
∥

PC

�→ 0,

(6.86)

as n→∞.
Consider the linear continuous operator

Γ : L1(J , R) �→ C(J , R),

g � �→ Γ(g)(t) =
∫ T

0
H(t, s)g(s)ds.

(6.87)

From Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator.
Moreover, we have that

(

hn(t)−
m∑

k=1

H
(
t, tk
)
Ik
(
yn
(
tk
))
)

∈ Γ
(
SF,yn

)
. (6.88)

Since yn → y∗, it follows from Lemma 1.28 that

(

h∗(t)−
m∑

k=1

H
(
t, tk
)
Ik
(
y∗
(
tk
))
)

=
∫ T

0
H(t, s)g∗(s)ds (6.89)

for some g∗ ∈ SF,y∗ .
Step 5. Now it remains to show that the set

M := {y ∈ PC(J , R) : λy ∈ G(y), for some λ > 1
}
. (6.90)

is bounded.
Let y ∈ M. Then λy ∈ G(y) for some λ > 1. Thus there exists g ∈ SF,y such

that

y(t) = λ−1
∫ T

0
H(t, s)g(s)ds + λ−1

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
. (6.91)

This implies by (6.9.2)-(6.9.3) that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤ sup

(t,s)∈J×J

∣
∣H(t, s)

∣
∣
∫ T

0
m(s)ds +

m∑

k=1

sup
t∈J

∣
∣H
(
t, tk
)∣∣ck = b. (6.92)

This inequality implies that there exists a constant b such that |y(t)| ≤ b, t ∈ J .
This shows that M is bounded.
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Set X := PC(J , R). As a consequence of Theorem 1.7, we deduce that G has a
fixed point y which is a solution of (6.45). �

6.3. Upper- and lower-solutions method for impulsive differential
inclusions with nonlinear boundary conditions

This section is concerned with the existence of solutions for the boundary multi-
valued problem with nonlinear boundary conditions and impulsive effects given
by

y′(t) ∈ F
(
t, y(t)

)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m,

y
(
t+k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m,

L
(
y(0), y(T)

) = 0,

(6.93)

where F : J × R → P (R) is a compact convex-valued, multivalued map, and L :
R2 → R is a single-valued map, 0 = t0 < t1 < · · · < tm < tm+1 = T , Ik ∈ C(R, R)
(k = 1, 2, . . . ,m) are bounded, and y(t−k ) and y(t+k ) represent the left and right
limits of y(t) at t = tk.

Let us start by defining what we mean by a solution of problem (6.93).

Definition 6.13. A function y ∈ PC(J , R) ∩ AC(J ′, R) is said to be a solution of
(6.93) if y satisfies the inclusion y′(t) ∈ F(t, y(t)) a.e. on J ′ and the conditions
y(t+k ) = Ik(y(t−k )), k = 1, . . . ,m, and L(y(0), y(T)) = 0.

The following concept of lower and upper solutions for (6.93) was introduced
by Benchohra and Boucherif [34] for initial value problems for impulsive differ-
ential inclusions of first order. These will be the basic tools in the approach that
follows.

Definition 6.14. A function α ∈ PC(J , R)∩AC(J ′, R) is said to be a lower solution
of (6.93) if there exists v1 ∈ L1(J , R) such that v1(t) ∈ F(t,α(t)) a.e. on J , α′(t) ≤
v1(t) a.e. on J ′, α(t+k ) ≤ Ik(α(t−k )) k = 1, . . . ,m, and L(α(0),α(T)) ≤ 0.

Similarly a function β ∈ PC(J , R)∩ AC(J ′, R) is said to be an upper solution
of (6.93) if there exists v2 ∈ L1(J , R) such that v2(t) ∈ F(t,β(t)) a.e. on J , β′(t) ≥
v2(t) a.e. on J ′, β(t+k ) ≥ Ik(β(t−k )), k = 1, . . . ,m, and L(β(0),β(T)) ≥ 0.

We are now in a position to state and prove our existence result for the prob-
lem (6.93).

Theorem 6.15. Assume the following hypotheses hold.
(6.12.1) F : J ×R→ P (R) is an L1-Carathéodory multivalued map.
(6.12.2) There exist α and β ∈ PC(J , R) ∩ AC((tk, tk+1), R), k = 0, . . . ,m,

lower and upper solutions for the problem (6.93) such that α ≤ β.
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(6.12.3) L is a continuous single-valued map in (x, y) ∈ [α(0),β(0)] × [α(T),
β(T)] and nonincreasing in y ∈ [α(T),β(T)].

(6.12.4)

α
(
t+k
) ≤ min

y∈[α(t−k ),β(t−k )]
Ik(y) ≤ max

y∈[α(t−k ),β(t−k )]
Ik(y) ≤ β

(
t+k
)
, k = 1, . . . ,m.

(6.94)

Then the problem (6.93) has at least one solution y such that

α(t) ≤ y(t) ≤ β(t), ∀t ∈ J. (6.95)

Proof. Transform the problem (6.93) into a fixed point problem. Consider the fol-
lowing modified problem:

y′(t) + y(t) ∈ F1
(
t, y(t)

)
, a.e. t ∈ J , t �= tk, k = 1, . . . ,m,

y
(
t+k
) = Ik

(
τ
(
t−k , y

(
t−k
)))

, k = 1, . . . ,m,

y(0) = τ
(
0, y(0)− L(y(0), y(T)

))
,

(6.96)

where F1(t, y) = F(t, τ(t, y)) + τ(t, y), τ(t, y) = max(α(t), min(y,β(t))), and
y(t) = τ(t, y). A solution to (6.96) is a fixed point of the operator N : PC(J , R)→
P (PC(J , R)) defined by

N(y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
h ∈ PC(J , R) : h(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(0) +
∫ t

0

[
g(s) + y(s)− y(s)

]
ds

+
∑

0<tk<t

Ik
(
τ
(
t−k , y

(
t−k
)))

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (6.97)

where g ∈ S̃1
F,y , and

S̃F,y =
{
v ∈ SF,y : v(t) ≥ v1(t) a.e. on A1, v(t) ≤ v2(t) a.e. on A2

}
,

SF,y =
{
v ∈ L1(J , R) : v(t) ∈ F

(
t, y(t)

)
for a.e. t ∈ J

}
,

A1 =
{
t ∈ J : y(t) < α(t) ≤ β(t)

}
, A2 =

{
t ∈ J : α(t) ≤ β(t) < y(t)

}
.
(6.98)

Remark 6.16. (i) Notice that F1 is an L1-Carathéodory multivalued map with com-
pact convex values, and there exists ϕ ∈ L1(J , R) such that

∥
∥F1(t, y)

∥
∥ ≤ ϕ(t) + max

(

sup
t∈J

∣
∣α(t)

∣
∣, sup

t∈J

∣
∣β(t)

∣
∣
)

. (6.99)
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(ii) By the definition of τ, it is clear that

α(0) ≤ y(0) ≤ β(0),

α
(
t+k
) ≤ Ik

(
τ
(
tk, y
(
tk
))) ≤ β

(
t+k
)
, k = 1, . . . ,m.

(6.100)

We will show that N satisfies the assumptions of Theorem 1.7. The proof will
be given in several steps.
Step 1. N(y) is convex for each y ∈ PC(J , R).

Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ S̃1
F,y such that, for

each t ∈ J , we have

hi(t) = y(0) +
∫ t

0

[
gi(s) + y(s)− y(s)

]
ds +

∑

0<tk<t

Ik
(
τ
(
t−k , y

(
t−k
)))

, i = 1, 2.

(6.101)

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(
dh1 + (1− d)h2

)
(t) =

∫ t

0

[
dg1(s) + (1− d)g2(s) + y(s)− y(s)

]
ds

+
∑

0<tk<t

Ik
(
τ
(
t−k , y

(
t−k
)))

.
(6.102)

Since S̃1
F1,y is convex (because F1 has convex values), then

dh1 + (1− d)h2 ∈ N(y). (6.103)

Step 2. N maps bounded sets into bounded sets in PC(J , R).
Indeed, it is enough to show that for each q > 0, there exists a positive constant

� such that, for each y ∈ Bq = {y∈PC(J , R) : ‖y‖PC ≤ q}, one has ‖N(y)‖PC ≤ �.

Let y ∈ Bq and h ∈ N(y). Then there exists g ∈ S̃1
F,y such that, for each t ∈ J ,

we have

h(t) = y(0) +
∫ t

0

[
g(s) + y(s)− y(s)

]
ds +

∑

0<tk<t

Ik
(
τ
(
t−k , y

(
t−k
)))

. (6.104)

By (6.12.1), we have that, for each t ∈ J ,

∣
∣h(t)

∣
∣ ≤ ∣∣y(0)

∣
∣ +
∫ T

0

[∣∣g(s)
∣
∣ +
∣
∣y(s)

∣
∣ +
∣
∣y(s)

∣
∣]ds +

∑

0<tk<t

∣
∣Ik
(
τ
(
tk, y
(
tk
)))∣∣

≤ max
(∣∣α(0)

∣
∣,
∣
∣β(0)

∣
∣) +

∥
∥ϕq
∥
∥
L1 + T max

(

q, sup
t∈J

∣
∣α(t)

∣
∣, sup

t∈J

∣
∣β(t)

∣
∣
)

+ Tq
m∑

k=1

max
(
q,
∣
∣α
(
t−k
)∣∣,
∣
∣β
(
t−k
)∣∣).

(6.105)
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In particular, if

� = max
(∣∣α(0)

∣
∣,
∣
∣β(0)

∣
∣) +

∥
∥ϕq
∥
∥
L1 + T max

(

q, sup
t∈J

∣
∣α(t)

∣
∣, sup

t∈J

∣
∣β(t)

∣
∣
)

+ Tq +
m∑

k=1

max
(
q,
∣∣α
(
t−k
)∣∣,
∣∣β
(
t−k
)∣∣),

(6.106)

then ‖N(y)‖PC ≤ �.
Step 3. N maps bounded set into equicontinuous sets of PC(J , R).

Let u1,u2 ∈ J ′, u1 < u2, and let Bq be a bounded set of PC(J , R) as in Step 2.

Let y ∈ Bq and h ∈ N(y). Then there exists g ∈ S̃1
F,y such that, for each t ∈ J , we

have

h(t) = y(0) +
∫ t

0

[
g(s) + y(s)− y(s)

]
ds +

∑

0<tk<t

Ik
(
τ
(
t−k , y

(
t−k
)))

. (6.107)

Then

∣∣h
(
u2
)− h(u1

)∣∣ ≤
∫ u2

u1

φq(s)ds +
(
u2 − u1

)
max

(

q, sup
t∈J

∣∣α(t)
∣∣, sup

t∈J

∣∣β(t)
∣∣
)

+
(
u2 − u1

)
q +

∑

u1<tk<u2

max
(
q,
∣
∣α
(
t−k
)∣∣,
∣
∣β
(
t−k
)∣∣).

(6.108)

As u2 → u1 the right-hand side of the above inequality tends to zero. This
proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. The proof of the
equicontinuity at t = ti is similar to that given in Theorem 4.3.

As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem,
we can conclude that N : PC(J , R) → P (PC(J , R)) is a completely continuous
multivalued map, and therefore a condensing map.
Step 4. N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists gn ∈ S̃1

F,yn
such that, for each t ∈ J ,

hn(t) = yn(0) +
∫ t

0

[
gn(s) + yn(s)− yn(s)

]
ds +

∑

0<tk<t

Ik
(
τ
(
t−k , yn

(
tk
)))

. (6.109)

We must prove that there exists g∗ ∈ S̃1
F,y∗

such that, for each t ∈ J ,

h∗(t) = y∗(0) +
∫ t

0

[
g∗(s) + y∗(s)− y∗(s)

]
ds +

∑

0<tk<t

Ik
(
τ
(
tk, y∗

(
tk
)))

.

(6.110)
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Since τ and Ik, k = 1, . . . ,m, are continuous, we have

∥
∥∥
∥
∥

(

hn − yn(0)−
∑

0<tk<t

Ik
(
τ
(
t−k , yn

(
tk
)))−

∫ t

0
yn(s)− yn(s)ds

)

−
(

h∗ − y∗(0)−
∑

0<tk<t

Ik
(
τ
(
t−k , y∗

(
tk
)))−

∫ t

0
y∗(s)− y∗(s)ds

)∥∥∥
∥
∥

PC

�→ 0,

(6.111)

as n→∞.
Consider the linear continuous operator

Γ : L1(J , R) �→ C(J , R),

g � �→ (Γg)(t) =
∫ t

0
g(s)ds.

(6.112)

From Lemma 1.28, it follows that Γ ◦ S̃F is a closed graph operator.
Moreover, we have that

(

hn(t)− yn(0)−
∫ t

0

[
yn(s)− yn(s)

]
ds−

∑

0<tk<t

Ik
(
τ
(
t−k , yn

(
tk
)))
)

∈ Γ
(
S̃1
F,yn

)
.

(6.113)

Since yn → y∗, it follows from Lemma 1.28 that

(

h∗(t)− y∗(0)−
∫ t

0

[
y∗(s)− y∗(s)

]
ds−

∑

0<tk<t

Ik
(
τ
(
tk, y∗

(
tk
)))
)

=
∫ t

0
g∗(s)ds

(6.114)

for some g∗ ∈ S̃1
F,y∗ .

Step 5. Now it remains to show that the set

M := {y ∈ PC(J , R) : y ∈ λN(y), for some 0 < λ < 1
}

(6.115)

is bounded.
Let y ∈M. Then y ∈ λN(y) for some 0 < λ < 1. Thus, for each t ∈ J ,

y(t) = λ

[

y(0) +
∫ t

0

[
g(s)− y(s)− y(s)

]
ds +

∑

0<tk<t

Ik
(
τ
(
t−k , y

(
tk
)))
]

. (6.116)
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This implies by (6.12.2)–(6.12.4) that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤ ∣∣y(0)

∣
∣ +
∫ t

0

[∣∣g(s)
∣
∣ +
∣
∣y(s)

∣
∣ +
∣
∣y(s)

∣
∣]ds +

m∑

k=1

∣
∣Ik
(
τ
(
t−k , y

(
tk
)))∣∣

≤ max
(∣∣α(0)

∣
∣,
∣
∣β(0)

∣
∣) + ‖ϕ‖L1 + T max

(

sup
t∈J

∣
∣α(t)

∣
∣, sup

t∈J

∣
∣β(t)

∣
∣
)

+
∫ t

0

∣
∣y(s)

∣
∣ds +

m∑

k=1

max
(∣∣α
(
t−k
)∣∣,
∣
∣β
(
t−k
)∣∣).

(6.117)

Set

z0 = max
(∣∣α(0)

∣∣,
∣∣β(0)

∣∣) + ‖ϕ‖L1 + T max

(

sup
t∈J

∣∣α(t)
∣∣, sup

t∈J

∣∣β(t)
∣∣
)

+
m∑

k=1

max
(∣∣α
(
t−k
)∣∣,
∣
∣β
(
t−k
)∣∣).

(6.118)

Using Gronwall’s lemma (see [160, page 36]), we get that, for each t ∈ J ,

∣
∣y(t)

∣
∣ ≤ z0e

t. (6.119)

Thus

‖y‖PC ≤ z0e
T . (6.120)

This shows that M is bounded.
Set X := PC(J , R). As a consequence of Theorem 1.7, we deduce that N has a

fixed point which is a solution of (6.96).
Step 6. The solution y of (6.96) satisfies

α(t) ≤ y(t) ≤ β(t), ∀t ∈ J. (6.121)

Let y be a solution to (6.96). We prove that

y(t) ≤ β(t), ∀t ∈ J. (6.122)

Assume that y − β attains a positive maximum on [t+k , t−k+1] at tk ∈ [t+k , t−k+1] for
some k = 0, . . . ,m, that is,

(y − β)
(
tk
) = max

{
y(t)− β(t) : t ∈ [t+k , t−k+1

]
, k = 0, . . . ,m

}
> 0. (6.123)

We distinguish the following cases.
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Case 1. If tk ∈ (t+k , t−k+1], there exists t∗k ∈ [t+k , tk) such that

0 < y(t)− β(t) ≤ y
(
tk
)− β(tk

)
, ∀t ∈ [t∗k , tk

]
. (6.124)

By the definition of τ, one has

y′(t) + y(t) ∈ F
(
t,β(t)

)
+ β(t) a.e. on

[
t∗k , tk

]
. (6.125)

Thus there exist v(t) ∈ F(t,β(t)) a.e. on [t∗k , tk], with v(t) ≤ v2(t) a.e. on [t∗k , tk]
such that

y′(t) + y(t) = v(t) + β(t) a.e on
[
t∗k , tk

]
. (6.126)

An integration on [t∗k , tk] yields

y
(
tk
)− y

(
t∗k
) =
∫ tk

t∗k

(
v(s)− y(s) + β(s)

)
ds

≤
∫ tk

t∗k

(
v2(s)− (y(s)− β(s)

))
ds.

(6.127)

Using the fact that β is an upper solution to (6.93), the above inequality yields

y
(
tk
)− y

(
t∗k
) ≤ β

(
tk
)− β(t∗k

)−
∫ tk

t∗k

(
y(s)− β(s)

)
ds

< β
(
tk
)− β(t∗k

)
.

(6.128)

Thus we obtain the contradiction

y
(
tk
)− y

(
t∗k
)
< β
(
tk
)− β(t∗k

)
. (6.129)

Case 2. tk = t+k , k = 1, . . . ,m.
Then

β
(
t+k
)
< Ik
(
τ
(
t−k , y

(
t−k
))) ≤ β

(
t+k
)

(6.130)

which is a contradiction. Thus

y(t) ≤ β(t), ∀t ∈ [0,T]. (6.131)

Analogously, we can prove that

y(t) ≥ α(t), ∀t ∈ J. (6.132)

This shows that the problem (6.96) has a solution in the interval [α,β].
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Finally, we prove that every solution of (6.96) is also a solution to (6.93). We
only need to show that

α(0) ≤ y(0)− L(y(0), y(T)
) ≤ β(0). (6.133)

Notice first that we can prove

α(T) ≤ y(T) ≤ β(T). (6.134)

Suppose now that y(0)− L(y(0), y(T)) < α(0). Then y(0) = α(0) and

y(0)− L(y(T), y(0)
)
< α(0). (6.135)

Since L is nonincreasing in y, we have

α(0) ≤ α(0)− L(α(0),α(T)
) ≤ α(0)− L(α(0), y(T)

)
< α(0) (6.136)

which is a contradction. Analogously, we can prove that

y(0)− L(y(0), y(T)
) ≤ β(0). (6.137)

Then y is a solution to (6.93). �

Remark 6.17. Observe that if L(x, y) = ax − by − c, then Theorem 6.15 gives an
existence result for the problem

y′(t) ∈ F
(
t, y(t)

)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m,

y
(
t+k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m,

ay(0)− by(T) = c,

(6.138)

with a, b ≥ 0, a + b > 0, which includes the periodic case (a = b = 1, c = 0) and
the initial and the terminal problems.

6.4. Second-order boundary value problems

In this section, we will be concerned with the existence of solutions of the second-
order boundary value problem for the impulsive functional differential inclusion,

y′′(t) ∈ F
(
t, yt
)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0], y(T) = yT ,

(6.139)
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where F : J ×D → P (E) is a given multivalued map with compact and convex
values, D = {ψ : [−r, 0] → E | ψ is continuous everywhere except for a finite
number of points s at which ψ(s) and the right limit ψ(s+) exist, and ψ(s−) =
ψ(s)}, φ ∈ D , (0 < r < ∞), 0 = t0 < t1 < · · · < tm < tm+1 = T , Ik, Ik ∈ C(E,E)
(k = 1, 2, . . . ,m) are bounded, yT ∈ E, Δy|t=tk = y(t+k )−y(t−k ), Δy′|t=tk = y′(t+k )−
y′(t−k ), and y(t−k ), y(t+k ), y′(t−k ), and y′(t+k ) represent the left and right limits of
y(t) and y′(t), respectively, at t = tk, and E is a real separable Banach space with
norm | · |.

The notations from Section 3.2 are used in the sequel.

Definition 6.18. A function y ∈ Ω ∩ AC1(J ′,E) is said to be a solution of (6.139)
if y satisfies the differential inclusion y′′(t) ∈ F(t, yt) a.e. on J ′ and the conditions
Δy|t=tk = Ik(y(t−k )), Δy′|t=tk = Ik(y(t−k )), k = 1, . . . ,m.

In what follows, we will use the notation
∑

0<tk<t[y(t+k ) − y(tk)] to mean 0,

when k = 0 and 0 < t < t1, and to mean
∑k

i=1[y(t+k ) − y(tk)], when k ≥ 1 and
tk < t ≤ tk+1.

Theorem 6.19. Suppose that the following hold.
(6.16.1) F : J ×D → Pb,cp,cv(E) is an L1-Carathéodory multivalued map.
(6.16.2) There exist constants ck, dk such that |Ik(y)| ≤ ck, |Ik(y)| ≤ dk, k =

1, . . . ,m, for each y ∈ E.
(6.16.3) There exists a function m ∈ L1(J , R+) such that

∥∥F(t,u)
∥∥ := sup

{|v| : v ∈ F(t,u)
} ≤ m(t) (6.140)

for almost all t ∈ J and for all u ∈D .
(6.16.4) For each bounded B ⊆ Ω, and for each t ∈ J , the set

{
T − t
T

φ(0) +
t

T
yT +

∫ T

0
H(t, s)g(s)ds

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Ik
(
y
(
tk
))]

− t

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Ik
(
y
(
tk
))]

: g ∈ SF,B

}

(6.141)

is relatively compact in E, where SF,B = {SF,y : y ∈ B} and

H(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t

T
(s− T), 0 ≤ s ≤ t ≤ T ,

s

T
(t − T), 0 ≤ t < s ≤ T.

(6.142)

Then the impulsive boundary value problem (6.139) has at least one solution on
[−r,T].
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Proof. Transform the problem (6.139) into a fixed point problem. Consider the
multivalued map G : Ω→ P (Ω) defined by

G(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

T − t
T

φ(0) +
t

T
yT +

∫ T

0
H(t, s)g(s)ds

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Ik
(
y
(
tk
))]

− t

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Ik
(
y
(
tk
))]

, t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.143)

where g ∈ SF,y .
Indeed, assume that y ∈ Ω is a fixed point of G. It is clear that

y(t) = φ(t) for each t ∈ [−r, 0], y(T) = yT ,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m.
(6.144)

By performing direct differentiation twice, we find

y′(t) = −1
T
φ(0) +

1
T
yT +

∫ T

0
H′
t (t, s)g(s)ds

+
∑

0<tk<t

Ik
(
y
(
tk
))− 1

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Ik
(
y
(
tk
))]

, t �= tk,

y′′(t) = g(t), t �= tk,
(6.145)

which imply that y is a solution of BVP (6.139).
We will now show that G satisfies the assumptions of Theorem 1.7. The proof

will be given in several steps.
Step 1. G(y) is convex for each y ∈ Ω.

Indeed, if h1, h2 belong to G(y), then there exist g1, g2 ∈ SF,y such that, for
each t ∈ J , we have

hi(t) = T − t
T

φ(0) +
t

T
yT +

∫ T

0
H(t, s)gi(s)ds

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Ik
(
y
(
tk
))]

− t

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Ik
(
y
(
tk
))]

, i = 1, 2.

(6.146)
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Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(
dh1 + (1− d)h2

)
(t)

= T − t
T

φ(0) +
t

T
yT +

∫ T

0
H(t, s)

[
dg1(s) + (1− d)g2(s)

]
ds

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Ik
(
y
(
tk
))]

− t

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Ik
(
y
(
tk
))]

.

(6.147)

Since SF,y is convex (because F has convex values), then

dh1 + (1− d)h2 ∈ G(y). (6.148)

Step 2. G maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant � such that,

for each h ∈ G(y) with y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, one has ‖h‖ ≤ �. If
h ∈ G(y), then there exists g ∈ SF,y such that, for each t ∈ J , we have

h(t) = T − t
T

φ(0) +
t

T
yT +

∫ T

0
H(t, s)g(s)ds

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Ik
(
y
(
tk
))]

− t

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Ik
(
y
(
tk
))]

.

(6.149)

By (6.16.2) and (6.16.3), we have that, for each t ∈ J ,

∣
∣h(t)

∣
∣ ≤ ‖φ‖D +

∣
∣yT
∣
∣ + sup

(t,s)∈J×J

∣
∣H(t, s)

∣
∣
∫ T

0

∣
∣g(s)

∣
∣ds

+
∑

0<tk<t

[∣∣Ik
(
y
(
tk
))∣∣ +

∣∣(t − tk
)∣∣∣∣Ik

(
y
(
tk
))∣∣]

+
m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Ik
(
y
(
tk
))]

≤ ‖φ‖D +
∣
∣yT
∣
∣ + sup

(t,s)∈J×J

∣
∣H(t, s)

∣
∣
∫ T

0
gq(s)ds

+
m∑

k=1

[

2 sup
{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}

+ 2
(
T − tk

)
sup
{∣∣Ik

(|y|)∣∣ : ‖y‖ ≤ q
}
]

= �.

(6.150)
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Step 3. G maps bounded sets into equicontinuous sets of Ω.
Let r1, r2 ∈ J ′, r1 < r2, and let Bq = {y ∈ Ω : ‖y‖ ≤ q} be a bounded set of Ω.
For each y ∈ Bq and h ∈ G(y), there exists g ∈ SF,y such that

h(t) = T − t
T

φ(0) +
t

T
yT +

∫ T

0
H(t, s)g(s)ds

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Ik
(
y
(
tk
))]

− t

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Ik
(
y
(
tk
))]

.

(6.151)

Thus

∣
∣h
(
r2
)− h(r1

)∣∣ ≤ (r2 − r1
)∣∣φ(0)

∣
∣ +
(
r2 − r1

)
∣
∣yT
∣
∣

T

+
∫ T

0

∣
∣H
(
r2, s
)−H(r1, s

)∣∣gq(s)ds

+
∑

0<tk<r2−r1

[
Ik
(
y
(
tk
))

+
(
r2 − r1

)
Ik
(
y
(
tk
))]

− r2 − r1

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Ik
(
y
(
tk
))]

.

(6.152)

As r2 → r1, the right-hand side of the above inequality tends to zero. This
proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. The proof of the
equicontinuity at t = ti is similar to that given in Theorem 4.3.

The equicontinuity for the cases r1 < r2 ≤ 0 and r1 ≤ 0 ≤ r2 are obvious.
Step 4. G has a closed graph.

Let yn → y∗, hn ∈ G(yn), and hn → h∗. We will prove that h∗ ∈ G(y∗).
hn ∈ G(yn) means that there exists gn ∈ SF,yn such that, for each t ∈ J ,

hn(t) = T − t
T

φ(0) +
t

T
yT +

∫ T

0
H(t, s)gn(s)ds

+
∑

0<tk<t

[
Ik
(
yn
(
tk
))

+
(
t − tk

)
Ik
(
yn
(
tk
))]

− t

T

m∑

k=1

[
Ik
(
yn
(
tk
))

+
(
T − tk

)
Ik
(
yn
(
tk
))]

.

(6.153)



196 Boundary value problems

We must prove that there exists g∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) = T − t
T

φ(0) +
t

T
yT +

∫ T

0
H(t, s)g∗(s)ds

+
∑

0<tk<t

[
Ik
(
y∗
(
tk
))

+
(
t − tk

)
Ik
(
y∗
(
tk
))]

− t

T

m∑

k=1

[
Ik
(
y∗
(
tk
))

+
(
T − tk

)
Ik
(
y∗
(
tk
))]

.

(6.154)

Clearly since Ik and Ik, k = 1, . . . ,m, are continuous, we have that

∥
∥
∥∥
∥

(

hn − T − t
T

φ(0)− t

T
yT −

∑

0<tk<t

[
Ik
(
yn
(
tk
))

+
(
t − tk

)
Ik
(
yn
(
tk
))]

+
t

T

m∑

k=1

[
Ik
(
yn
(
tk
))

+
(
T − tk

)
Ik
(
yn
(
tk
))]
)

−
(

h∗ − T − t
T

φ(0)− t

T
yT −

∑

0<tk<t

[
Ik
(
y∗
(
tk
))

+
(
t − tk

)
Ik
(
y∗
(
tk
))]

+
t

T

m∑

k=1

[
Ik
(
y∗
(
tk
))

+
(
T − tk

)
Ik
(
y∗
(
tk
))]
)∥∥∥
∥
∥ �→ 0, as n �→∞.

(6.155)

Consider the linear continuous operator

Γ : L1(J ,E) �→ C(J ,E),

g � �→ Γ(g)(t) =
∫ T

0
H(t, s)g(s)ds.

(6.156)

From Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator.
Moreover, we have that

(

hn(t)− T − t
T

φ(0)− t

T
yT −

∑

0<tk<t

[
Ik
(
yn
(
tk
))

+
(
t − tk

)
Ik
(
yn
(
tk
))]

+
t

T

m∑

k=1

[
Ik
(
yn
(
tk
))

+
(
T − tk

)
Ik
(
yn
(
tk
))]
)

∈ Γ
(
SF,yn

)
.

(6.157)



Second-order boundary value problems 197

Since yn → y∗, it follows from Lemma 1.28 that

(

h∗(t)− T − t
T

φ(0)− t

T
yT −

∑

0<tk<t

[
Ik
(
y∗
(
tk
))

+
(
t − tk

)
Ik
(
y∗
(
tk
))]

+
t

T

m∑

k=1

[
Ik
(
y∗
(
tk
))

+
(
T − tk

)
Ik
(
y∗
(
tk
))]
)

=
∫ T

0
H(t, s)g∗(s)ds

(6.158)

for some g∗ ∈ SF,y∗ .
Step 5. Now it remains to show that the set

M := {y ∈ Ω : λy ∈ G(y), for some λ > 1
}

(6.159)

is bounded.
Let y ∈ M. Then λy ∈ G(y) for some λ > 1. Thus there exists g ∈ SF,y such

that

y(t) = λ−1T − t
T

φ(0) + λ−1 t

T
yT + λ−1

∫ T

0
H(t, s)g(s)ds

+ λ−1
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Ik
(
y
(
tk
))]

− λ−1 t

T

m∑

k=1

[
Ik
(
y
(
tk
))

+
(
T − tk

)
Ik
(
y
(
tk
))]

.

(6.160)

This implies by (6.16.2)-(6.16.3) that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤ ‖φ‖D +

∣
∣yT
∣
∣ + sup

(t,s)∈J×J

∣
∣H(t, s)

∣
∣
∫ T

0
m(s)ds

+
m∑

k=1

[
2ck + 2

(
T − tk

)
dk
] = b.

(6.161)

This inequality implies that there exists a constant b depending only on T and on
the function m such that

∣
∣y(t)

∣
∣ ≤ b for each t ∈ J. (6.162)

Hence

‖y‖ ≤ max
(‖φ‖D , b

)
. (6.163)

This shows that M is bounded.
Set X := Ω. As a consequence of Theorem 1.7, we deduce that G has a fixed

point y which is a solution of (6.139). �
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Remark 6.20. We can analogously (with obvious modifications) study the bound-
ary value problem

y′′ ∈ F
(
t, yt
)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0], y′(T) = yT .

(6.164)

6.5. Notes and remarks

Sections 6.2 and 6.3 are based on upper- and lower-solutions methods for first-
order impulsive differential inclusions. The results of Section 6.2, which address
periodic multivalued problems, are adapted from Benchohra et al. [50, 59], and
the results of Section 6.3, which deal with multivalued impulsive boundary value
problems with nonlinear boundary conditions, are adapted from Benchohra et al.
[52]. The material of Section 6.4 on second-order impulsive boundary value prob-
lems is taken from Benchohra et al. [58].



7
Nonresonance impulsive differential
inclusions

7.1. Introduction

This chapter is devoted to impulsive differential inclusions satisfying periodic
boundary conditions. These problems are termed as being nonresonant, because
the linear operator involved will be invertible in the absence of impulses. The first
problem addressed concerns first-order problems. A result from [51] that gener-
alizes a paper by Nieto [199] is presented. The methods used involve the Martelli
fixed point theorem (Theorem 1.7) and the Covitz-Nadler fixed point theorem
(Theorem 1.11).

The second part of the chapter is focused on a second-order problem, and
a result of [55] is obtained which is an extension of the first-order result. Again
the method used involves an application of Theorem 1.7. Then, the final section
of the chapter is a successful extension of these results to nth order nonresonance
problems, which were first established in [63]. Also, an initial value function is
introduced for the higher-order consideration.

7.2. Nonresonance first-order impulsive functional differential
inclusions with periodic boundary conditions

This section is concerned with the existence of solutions for the nonresonance
problem for functional differential inclusions with impulsive effects as

y′(t)− λy(t) ∈ F
(
t, yt
)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m, (7.1)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (7.2)

y(t) = φ(t), t ∈ [−r, 0], (7.3)

φ(0) = y(0) = y(T), (7.4)

where λ �= 0 and λ is not an eigenvalue of y′, F : J ×D → P (E) is a compact
convex-valued multivalued map, D = {ψ : [−r, 0] → E | ψ is continuous every-
where except for a finite number of points s at which ψ(s) and the right limit ψ(s+)
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exist and ψ(s−) = ψ(s)}, φ ∈ D , (0 < r < ∞), 0 = t0 < t1 < · · · < tm < tm+1 = T ,
Ik ∈ C(E,E) (k = 1, 2, . . . ,m) are bounded, Δy|t=tk = y(t+k ) − y(t−k ), y(t−k ) and
y(t+k ) represent the left and right limits of y(t) at t = tk, respectively, and E is a real
separable Banach space with norm | · | and J ′ = J \ {t1, . . . , tk}.

Definition 7.1. A function y ∈ Ω∩AC(J ′,E) is said to be a solution of (7.1)–(7.4)
if y satisfies the inclusion y′(t) − λy(t) ∈ F(t, yt) a.e on J \ {t1, . . . , tm} and the
conditions Δy|t=tk = Ik(y(t−k )), k = 1, . . . ,m, and y(0) = y(T).

We now consider the following “linear problem” (7.2), (7.3), (7.4), (7.5),
where (7.5) is the equation

y′(t)− λy(t) = g(t), t �= tk, k = 1, . . . ,m, (7.5)

where g ∈ L1(Jk,E), k = 1, . . . ,m. For short, we will refer to (7.2), (7.3), (7.4), (7.5)
as (LP). Note that (LP) is not really a linear problem since the impulsive functions
are not necessarily linear. However, if Ik, k = 1, . . . ,m, are linear, then (LP) is a
linear impulsive problem.

We need the following auxiliary result.

Lemma 7.2. y ∈ Ω∩AC(J ′,E) is a solution of (LP) if and only if y ∈ Ω∩AC(J ′,E)
is a solution of the impulsive integral equation

y(t) =
∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))

, (7.6)

where

H(t, s) = (e−λT − 1
)−1

⎧
⎨

⎩
e−λ(T+s−t), 0 ≤ s ≤ t ≤ T ,

e−λ(s−t), 0 ≤ t < s ≤ T.
(7.7)

Proof. First, suppose that y ∈ Ω∩ AC(J ′,E) is a solution of (LP). Then

y′(t)− λy(t) = g(t), t �= tk, (7.8)

that is,

(
e−λt y(t)

)′ = e−λtg(t), t �= tk. (7.9)
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Assume that tk < t ≤ tk+1, k = 0, . . . ,m. By integration of (7.9), we obtain

e−λt1 y
(
t1
)− y(0) =

∫ t1

0
e−λsg(s)ds,

e−λt2 y
(
t2
)− e−λt1 y(t+1

) =
∫ t2

t1
e−λsg(s)ds,

...

e−λtk y
(
tk
)− e−λtk−1 y

(
t+k−1

) =
∫ tk

tk−1

e−λsg(s)ds,

e−λt y(t)− e−λtk y(t+k
) =
∫ t

tk
e−λsg(s)ds.

(7.10)

Adding these together, we get

e−λt y(t)− y(0) =
∑

0<tk<t

e−λtk y
(
t+k
) ∑

0<tk<t

e−λtk y
(
tk
)

+
∫ t

0
e−λsg(s)ds, (7.11)

that is,

e−λt y(t) = y(0) +
∑

0<tk<t

e−λtk Ik
(
y
(
tk
))

+
∫ t

0
e−λsg(s)ds. (7.12)

In view of (7.12) with y(0) = y(T), we get

e−λT y(0) = y(0) +
m∑

k=1

e−λtk Ik
(
y
(
tk
))

+
∫ T

0
e−λsg(s)ds. (7.13)

Hence

y(0) = (e−λT − 1
)−1
[ m∑

k=1

e−λtk Ik
((
tk
))

+
∫ T

0
e−λsg(s)ds

]

. (7.14)

Substituting (7.14) in (7.12), we obtain

e−λt y(t) = (e−λT − 1
)−1
[ m∑

k=1

e−λtk Ik
(
y
(
tk
))

+
∫ T

0
e−λsg(s)ds

]

+
∑

0<tk<t

e−λtk Ik
(
y
(
tk
))

+
∫ t

0
e−λsg(s)ds.

(7.15)

Using (7.15) and the fact that

m∑

k=1

Ik
(
y
(
tk
)) =

∑

0<tk<T

Ik
(
y
(
tk
)) =

∑

0<tk<t

Ik
(
y
(
tk
))

+
∑

t≤tk<T
Ik
(
y
(
tk
))

, (7.16)
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we get

e−λt y(t) = (e−λT − 1
)−1
[
∑

0<tk<t

e−λtk Ik
(
y
(
tk
))

+
∑

t≤tk<T
e−λtk Ik

(
y
(
tk
))

+
∫ t

0
e−λsg(s)ds +

∫ T

t
e−λsg(s)ds

+
(
e−λT − 1

) ∑

0<tk<t

e−λtk Ik
(
y
(
tk
))

+
(
e−λT − 1

)
∫ t

0
e−λsg(s)ds

]

= (e−λT − 1
)−1
[

e−λT
∑

0<tk<t

e−λtk Ik
(
y
(
tk
))

+
∑

t≤tk<T
e−λtk Ik

(
y
(
tk
))

+ e−λT
∫ t

0
e−λsg(s)ds +

∫ T

t
e−λsg(s)ds

]

.

(7.17)

Thus

y(t) = (e−λT − 1
)−1
[∫ t

0
e−λ(T+s−t)g(s)ds +

∫ T

t
e−λ(s−t)g(s)ds

+
∑

0<tk<t

e−λ(T+tk−t)Ik
(
y
(
tk
))

+
∑

t≤tk<T
e−λ
(
tk−t
)
Ik
(
y
(
tk
))
]

=
∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))

,

(7.18)

that is, y is a solution of (7.6).
Conversely, assume that y is a solution of (7.6). Direct differentiation on (7.6)

implies, for t �= tk,

y′(t) =
∫ T

0

∂H(t, s)
∂t

g(s)ds +
m∑

k=1

[
∂H
(
t, tk
)

∂t
Ik
(
y
(
tk
))
]

= g(t) +
∫ T

0
λH(t, s)g(s)ds +

m∑

k=1

λH
(
t, tk
)
Ik
(
y
(
tk
))

= g(t) + λ

[∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
]

= g(t) + λy(t).

(7.19)
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It is easy to see that

Δ

[ m∑

k=1

H
(
t, tk
)
Ik

]∣∣
∣∣
∣
t=tk

= Ik. (7.20)

Moreover, we have

Δy|t=tk = Ik
(
y
(
tk
))
. (7.21)

Making use of the fact H(0, s) = H(T , s) for s ∈ J , we obtain that y(0) = y(T).
Hence y is a solution of the impulsive periodic problem (LP). �

We are now in a position to state and prove our existence result for problem
(7.1)–(7.4).

Theorem 7.3. Assume that
(7.3.1) F : J ×D �→ P (E) is an L1-Carathéodory multivalued map;
(7.3.2) there exist constants ck such that |Ik(y)| ≤ ck, k = 1, . . . ,m, for each

y ∈ E;
(7.3.3) there exists m ∈ L1(J , R) such that

∥
∥F
(
t, yt
)∥∥ := sup

{|v| : v ∈ F
(
t, yt
)} ≤ m(t) (7.22)

for almost all t ∈ J and all y ∈ Ω;
(7.3.4) for each bounded B ⊆ Ω and t ∈ J , the set

{∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))

: g ∈ SF,B

}

(7.23)

is relatively compact in E, where SF,B = ∪{SF,y : y ∈ B}.
Then problem (7.1)–(7.4) has at least one solution on [−r,T].

Proof. Transform problem (7.1)–(7.4) into a fixed point problem. Consider the
multivalued operator N : Ω→ P (Ω) defined by

N(y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y(0) if t ∈ [−r, 0],
∫ T

0
H(t, s)g(s)ds

+
m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))

if t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(7.24)

where g ∈ SF,y .
We will show that N satisfies the assumptions of Theorem 1.7. The proof will

be given in several steps.
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Step 1. N(y) is convex, for each y ∈ Ω.
Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ SF,y such that, for

each t ∈ J , we have

hi(t) =
∫ T

0
H(t, s)gi(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))

, i = 1, 2. (7.25)

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(
dh1 + (1− d)h2

)
(t)=

∫ T

0
H(t, s)

[
dg1(s)+(1− d)g2(s)

]
ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
.

(7.26)

Since SF,y is convex (because F has convex values), then

dh1 + (1− d)h2 ∈ N(y). (7.27)

Step 2. N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant � such that,

for each y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, one has ‖N(y)‖ ≤ �.
Let y ∈ Bq and h ∈ N(y). Then there exists g ∈ SF,y such that, for each t ∈ J ,

we have

h(t) =
∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
. (7.28)

By (7.3.1), we have, for each t ∈ J ,

∣∣h(t)
∣∣ ≤

∫ T

0

∣∣H(t, s)
∣∣∣∣g(s)

∣∣ds +
m∑

k=1

∣∣H
(
t, tk
)∣∣∣∣Ik

(
y
(
tk
))∣∣

≤
∫ T

0

∣
∣H(t, s)

∣
∣lq(s)ds +

m∑

k=1

∣
∣H
(
t, tk
)∣∣ sup

{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}
.

(7.29)

Then, for each h ∈ N(Bq), we have

‖h‖Ω ≤ sup
(t,s)∈J×J

∣
∣H(t, s)

∣
∣
∫ T

0
lq(s)ds

+
m∑

k=1

sup
t∈J

∣∣H
(
t, tk
)∣∣ sup

{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

} = �.

(7.30)
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Step 3. N maps bounded set into equicontinuous sets of Ω.
Let τ1, τ2 ∈ J ′, τ1 < τ2, and let Bq be a bounded set of Ω as in Step 1. Let

y ∈ Bq and h ∈ N(y). Then there exists g ∈ SF,y such that, for each t ∈ J , we have

h(t) =
∫ T

0
H(t, s)g(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
. (7.31)

Then

∣
∣h
(
τ2
)− h(τ1

)∣∣ ≤
∫ T

0

∣
∣H
(
τ2, s
)−H(τ1, s

)∣∣lq(s)ds

+
m∑

k=1

∣
∣H
(
τ2, tk

)−H(τ1, tk
)∣∣
∣
∣Ik
(
y
(
tk
))∣∣.

(7.32)

As τ2 → τ1, the right-hand side of the above inequality tends to zero. This
proves the equicontinuity for the case, where t �= ti, i = 1, . . . ,m. The proof of the
equicontinuity at t = ti is similar to that given in Theorem 4.3.

As a consequence of Steps 1–3, and (7.3.4) together with the Arzelá-Ascoli
theorem, we can conclude that N : Ω→ P (Ω) is completely continuous multival-
ued, and therefore a condensing map.
Step 4. N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists gn ∈ SF,yn such that, for each t ∈ J ,

hn(t) =
∫ T

0
H(t, s)gn(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
yn
(
tk
))
. (7.33)

We must prove that there exists g∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) =
∫ T

0
H(t, s)g∗(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y∗
(
tk
))
. (7.34)

Clearly since Ik, k = 1, . . . ,m, are continuous, we have that

∥
∥
∥∥
∥

(

hn −
m∑

k=1

H
(
t, tk
)
Ik
(
yn
(
tk
))
)(

h∗ −
m∑

k=1

H
(
t, tk
)
Ik
(
y∗
(
tk
))
)∥∥
∥∥
∥ �→ 0, (7.35)

as n→∞. Consider the linear continuous operator

Γ : L1(J ,E) �→ C(J ,E),

g � �→ Γ(g)(t) =
∫ T

0
H(t, s)g(s)ds.

(7.36)

From Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator.
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Moreover, we have that

(

hn(t)−
m∑

k=1

H
(
t, tk
)
Ik
(
yn
(
tk
))
)

∈ Γ
(
SF,yn

)
. (7.37)

Since yn → y∗, it follows from Lemma 1.28 that

(

h∗(t)−
m∑

k=1

H
(
t, tk
)
Ik
(
y∗
(
tk
))
)

=
∫ T

0
H(t, s)g∗(s)ds (7.38)

for some g∗ ∈ SF,y∗ .
Step 5. Now it remains to show that the set

M := {y ∈ Ω : λy ∈ N(y), for some λ > 1
}

(7.39)

is bounded.
Let y ∈M. Then y ∈ λN(y) for some 0 < λ < 1. Thus, for each t ∈ J ,

y(t) = λ
∫ T

0
H(t, s)g(s)ds + λ

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
tk
))
. (7.40)

This implies by (7.3.2)-(7.3.3) that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤
∫ T

0

∣
∣H(t, s)g(s)

∣
∣ds +

m∑

k=1

∣
∣H
(
t, tk
)∣∣
∣
∣Ik
(
y
(
tk
))∣∣

≤ sup
(t,s)∈J×J

∣∣H(t, s)
∣∣
∫ T

0
m(s)ds +

m∑

k=1

sup
t∈J

∣∣H
(
t, tk
)∣∣ck := b,

(7.41)

where b depends only on T and on the functionm. This shows that M is bounded.
Set X := Ω. As a consequence of Theorem 1.7, we deduce that N has a fixed

point which is a solution of (7.1)–(7.4). �

Theorem 7.4. Assume the following conditions are satisfied:
(7.4.1) F : [0,T] ×D → Pcp,cv(E) has the property that F(·,u) : [0,T] →

Pcp(E) is measurable, for each u ∈D ;
(7.4.2) there exists l ∈ L1([0,T], R+) such that

Hd
(
F(t,u),F(t,u)

) ≤ l(t)‖u− u‖D , (7.42)

for each t ∈ [0,T] and u,u ∈D , and

d
(
0,F(t, 0)

) ≤ l(t), for almost each t ∈ J ; (7.43)

(7.4.3) |Ik(y) − Ik(y)| ≤ ck‖y − y‖D , for each y, y ∈ E, k = 1, . . . ,m, where
ck are nonnegative constants.
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Let h0 = sup(t,s)∈J×J |H(t, s)| and l∗ = ∫ T0 l(t) dt. If

h0l
∗ + h0

m∑

k=1

ck < 1, (7.44)

then problem (7.1)–(7.4) has at least one solution on [−r,T].

Proof. Transform problem (7.1)–(7.4) into a fixed point problem. It is clear from
Lemma 7.2 that solutions of problem (7.1)–(7.4) are fixed points of the multival-
ued operator N : Ω→ P (Ω) defined by

N(y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(0) if t ∈ [−r, 0],

∫ T

0
H(t, s)v(s)ds

+
m∑

k=1

H
(
t, tk
)
Ik
(
y
(
t−k
))

if t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.45)

where v ∈ SF,y.
We will show thatN satisfies the assumptions of Theorem 1.11. The proof will

be given in two steps.
Step 1. N(y) ∈ Pcl(Ω), for each y ∈ Ω.

Indeed, let (yn)n≥0 ∈ N(y) such that yn → ỹ in Ω. Then ỹ ∈ Ω and, for each
t ∈ J ,

yn(t) ∈
∫ T

0
H(t, s)F

(
s, ys
)
ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
t−k
))
. (7.46)

Using the fact that F has compact values and from (7.4.2), we may pass to
a subsequence, if necessary, to get that gn converges to g in L1(J ,E), and hence
g ∈ SF,y. Then, for each t ∈ [0, b],

yn(t) �→ ỹ(t) =
∫ T

0
H(t, s)F

(
s, ys
)
ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
t−k
))
. (7.47)

So, ỹ ∈ N(y).
Step 2. H(N(y),N(y)) ≤ γ‖y − y‖, for each y, y ∈ Ω (where γ < 1).

Let y, y ∈ Ω and h1 ∈ N(y). Then there exists v1(t) ∈ F(t, yt) such that, for
each t ∈ J ,

h1(t) =
∫ T

0
H(t, s)v1(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
t−k
))
. (7.48)

From (7.4.2), it follows that

H
(
F
(
t, yt
)
,F
(
t, yt
)) ≤ l(t)

∥∥yt − yt
∥∥

D , t ∈ J. (7.49)
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Hence there is w ∈ F(t, yt) such that

∣
∣v1(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D , t ∈ J. (7.50)

Consider U : J → P (E), given by

U(t) = {w ∈ E :
∣
∣v1(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D

}
. (7.51)

Since the multivalued operator V(t) = U(t) ∩ F(t, yt) is measurable (see [119,
Proposition III.4]), there exists v2(t), which is a measurable selection for V . So,
v2(t) ∈ F(t, yt) and

∣∣v1(t)− v2(t)
∣∣ ≤ l(t)‖y − y‖D , for each t ∈ J. (7.52)

Let us define, for each t ∈ J ,

h2(t) =
∫ T

0
H(t, s)v2(s)ds +

m∑

k=1

H
(
t, tk
)
Ik
(
y
(
t−k
))
. (7.53)

Then we have

∣
∣h1(t)− h2(t)

∣
∣ ≤
∫ T

0

∣
∣H(t, s)

∣
∣
∣
∣v1(s)− v2(s)

∣
∣ds

+
m∑

k=1

∣∣H
(
t, tk
)∣∣∣∣Ik

(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

≤ h0

∫ T

0
l(s)
∥
∥ys − ys

∥
∥

Dds + h0

m∑

k=1

ck
∣
∣y
(
t−k
)− y

(
t−k
)∣∣

≤ h0l
∗‖y − y‖ + h0

m∑

k=1

ck‖y − y‖.

(7.54)

Then

∥∥h1 − h2
∥∥
Ω ≤

[

h0l
∗ + h0

m∑

k=1

ck

]

‖y − y‖. (7.55)
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By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

H
(
N(y),N(y)

) ≤
[

h0l
∗ + h0

m∑

k=1

ck

]

‖y − y‖. (7.56)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point y, which is
a solution to (7.1)–(7.4). �

7.3. Nonresonance second-order impulsive functional differential
inclusions with periodic boundary conditions

This section is concerned with the existence of solutions for the nonresonance
problem, for functional differential inclusions, with impulsive effects,

y′′(t)− λy(t) ∈ F
(
t, yt
)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m, (7.57)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (7.58)

Δy′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (7.59)

y(t) = φ(t), t ∈ [−r, 0], (7.60)

y(0)− y(T) = μ0, y′(0)− y′(T) = μ1, (7.61)

where F : J × D → P (R) is a compact convex-valued multivalued map, (0 <
r < ∞), λ �= 0 and λ is not an eigenvalue of y′′, μ0,μ1 ∈ R, 0 = t0 < t1 <
· · · < tm < tm+1 = T , Ik, Ik ∈ C(R, R) (k = 1, 2, . . . ,m) are bounded, Δy|t=tk =
y(t+k )− y(t−k ),Δy′|t=tk = y′(t+k )− y′(t−k ), y(t−k ), y(t+k ), y′(t−k ), and y′(t+k ) represent
the left and right limits of y(t) and y′(t), respectively, at t = tk.

Note that when μ0 = μ1 = 0, we have periodic boundary conditions.

Definition 7.5. A function y ∈ Ω∩ AC1(J ′, R) is said to be a solution of problem
(7.57)–(7.61) if y satisfies conditions (7.57) to (7.61).

We now consider the “linear problem” (7.58), (7.59), (7.60), (7.61), (7.62),
where (7.62) is the equation

y′′(t)− λy(t) = g(t), t �= tk, k = 1, . . . ,m, (7.62)

where g ∈ L1(Jk, R), k = 1, . . . ,m. For brevity, we will refer to (7.58), (7.59),
(7.60), (7.61), (7.62) as (LP). Note that (LP) is not really a linear problem since
the impulsive functions are not necessarily linear. However, if Ik, Ik, k = 1, . . . ,m
are linear, then (LP) is a linear impulsive problem.

We need the following auxiliary result.
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Lemma 7.6. y ∈ Ω ∩ AC1(J ′, R) is a solution of (LP) if and only if y ∈ Ω is a
solution of the impulsive integral equation

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(0), t ∈ [−r, 0],
∫ T

0
H(t, s)g(s)ds +H(t, 0)μ1 + L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
y
(
tk
))

+L
(
t, tk
)
Ik
(
y
(
tk
))]

, t ∈ J ,

(7.63)

where

H(t, s) = −1

2
√
λ
(
e
√
λT − 1

)

⎧
⎪⎨

⎪⎩

e
√
λ(T+s−t) + e

√
λ(t−s), 0 ≤ s ≤ t ≤ T ,

e
√
λ(T+t−s) + e

√
λ(s−t), 0 ≤ t < s ≤ T ,

L(t, s) = ∂

∂t
H(t, s) = 1

2
(
e
√
λT − 1

)

⎧
⎪⎨

⎪⎩

e
√
λ(T+s−t) − e

√
λ(t−s), 0 ≤ s ≤ t ≤ T ,

e
√
λ(s−t) − e

√
λ(T+t−s), 0 ≤ t < s ≤ T.

(7.64)

Proof. We omit the proof since it is simple. �
We are now in a position to state and prove our existence result for problem

(7.57)–(7.61).

Theorem 7.7. Assume that (7.3.1)–(7.3.3) hold. Moreover, assume that
(7.7.1) there exist constants dk such that |Ik(y)| ≤ dk , k = 1, . . . ,m, for each

y ∈ R.
Then problem (7.57)–(7.61) has at least one solution on [−r,T].

Proof. Transform the problem (7.57)–(7.61) into a fixed point problem. Consider
the multivalued operator N : Ω→ P (Ω) defined by

N(y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(0), t∈[−r, 0],

∫ T

0
H(t, s)g(s)ds+H(t, 0)μ1+L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
y
(
tk
))

+L
(
t, tk
)
Ik
(
y
(
tk
))]

, t∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.65)

where g ∈ SF,y .
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We will show that N satisfies the assumptions of Theorem 1.7. The proof will
be given in several steps.
Step 1. N(y) is convex, for each y ∈ Ω.

Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ SF,y such that, for
each t ∈ J , we have

hi(t) =
∫ T

0
H(t, s)gi(s)ds +H(t, 0)μ1 + L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
y
(
tk
))

+ L
(
t, tk
)
Ik
(
y
(
tk
))]

, i = 1, 2.
(7.66)

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(
dh1 + (1− d)h2

)
(t) =

∫ T

0
H(t, s)

[
dg1(s) + (1− d)g2(s)

]
ds +H(t, 0)μ1 + L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
y
(
tk
))

+ L
(
t, tk
)
Ik
(
y
(
tk
))]

.

(7.67)

Since SF,y is convex (because F has convex values), then

dh1 + (1− d)h2 ∈ N(y). (7.68)

Step 2. N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant � such that,

for each y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, one has ‖N(y)‖ ≤ �.
Let y ∈ Bq and h ∈ N(y). Then there exists g ∈ SF,y such that, for each t ∈ J ,

we have

h(t) =
∫ T

0
H(t, s)g(s)ds +H(t, 0)μ1 + L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
y
(
tk
))

+ L
(
t, tk
)
Ik
(
y
(
tk
))]

.

(7.69)

By (7.7.1), we have, for each t ∈ J ,

∣
∣h(t)

∣
∣ ≤
∫ T

0

∣
∣H(t, s)

∣
∣
∣
∣g(s)

∣
∣ds +

∣
∣H(t, 0)

∣
∣
∣
∣μ1
∣
∣ +
∣
∣L(t, 0)

∣
∣
∣
∣μ0
∣
∣

+
m∑

k=1

∣∣H
(
t, tk
)
Ik
(
y
(
tk
))

+ L
(
t, tk
)
Ik
(
y
(
tk
))∣∣
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≤
∫ T

0

∣
∣H(t, s)

∣
∣lq(s)ds +

∣
∣H(t, 0)

∣
∣
∣
∣μ1
∣
∣ +
∣
∣L(t, 0)

∣
∣
∣
∣μ0
∣
∣

+
m∑

k=1

[∣∣H
(
t, tk
)∣∣ sup

{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}

+
∣
∣L
(
t, tk
)∣∣ sup

{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}]
.

(7.70)

Then, for each h ∈ N(Bq), we have

‖h‖Ω ≤ sup
(t,s)∈J×J

∣∣H(t, s)
∣∣
∫ T

0
lq(s)ds

+
∣
∣μ1
∣
∣ sup

t∈J

∣
∣H(t, 0)

∣
∣ +
∣
∣μ0
∣
∣ sup

t∈J

∣
∣L(t, 0)

∣
∣

+
m∑

k=1

[

sup
t∈J

∣
∣H
(
t, tk
)∣∣ sup

{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}

+ sup
t∈J

∣
∣L
(
t, tk
)∣∣ sup

{∣∣Ik
(|y|)∣∣ : ‖y‖ ≤ q

}
]

= �.

(7.71)

Step 3. N maps bounded sets into equicontinuous sets of Ω.
Let τ1, τ2 ∈ J ′, τ1 < τ2, and let Bq be a bounded set of Ω as in Step 2. Let

y ∈ Bq and h ∈ N(y). Then there exists g ∈ SF,y such that, for each t ∈ J , we have

h(t) =
∫ T

0
H(t, s)g(s)ds +H(t, 0)μ1 + L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
y
(
tk
))

+ L
(
t, tk
)
Ik
(
y
(
tk
))]

.
(7.72)

Then

∣
∣h
(
τ2
)− h(τ1

)∣∣ ≤
∫ T

0

∣
∣H
(
τ2, s
)−H(τ1, s

)∣∣lq(s)ds

+
∣
∣H
(
τ2, 0
)−H(τ1, 0

)∣∣
∣
∣μ1
∣
∣+
∣
∣L
(
τ2, 0
)− L(τ1, 0

)∣∣
∣
∣μ0
∣
∣

+
m∑

k=1

[∣∣H
(
τ2, tk

)−H(τ1, tk
)∣∣ck +

∣
∣L
(
τ2, tk

)−L(τ1, tk
)∣∣dk

]
.

(7.73)

As τ2 → τ1, the right-hand side of the above inequality tends to zero. This
proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. The proof of the
equicontinuity at t = ti is similar to that given in Theorem 4.3. The equicontinuity
for the cases τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 are obvious.
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As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem,
we can conclude that N : Ω → P (Ω) is completely continuous multivalued, and
therefore a condensing multivalued map.
Step 4. N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists gn ∈ SF,yn such that, for each t ∈ J ,

hn(t) =
∫ T

0
H(t, s)gn(s)ds +H(t, 0)μ1 + L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
yn
(
tk
))

+ L
(
t, tk
)
Ik
(
yn
(
tk
))]

.
(7.74)

We must prove that there exists g∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) =
∫ T

0
H(t, s)g∗(s)ds +H(t, 0)μ1 + L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
y∗
(
tk
))

+ L
(
t, tk
)
Ik
(
y∗
(
tk
))]

.
(7.75)

Clearly since Ik, Ik, k = 1, . . . ,m, are continuous, we have that

∥
∥
∥
∥∥

(

hn −H(t, 0)μ1 − L(t, 0)μ0 −
m∑

k=1

[
H
(
t, tk
)
Ik
(
yn
(
tk
))− L(t, tk

)
Ik
(
yn
(
tk
))]
)

−
(

h∗ −H(t, 0)μ1 − L(t, 0)μ0

−
m∑

k=1

[
H
(
t, tk
)
Ik
(
y∗
(
tk
))− L(t, tk

)
Ik
(
y∗
(
tk
))]
)∥∥∥
∥
∥ �→ 0, as n �→∞.

(7.76)

Consider the linear continuous operator

Γ : L1(J , R) �→ C(J , R),

g � �→ Γ(g)(t) =
∫ T

0
H(t, s)g(s)ds.

(7.77)

From Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator.
Moreover, we have that

hn(t)−H(t, 0)μ1 − L(t, 0)μ0

−
m∑

k=1

[
H
(
t, tk
)
Ik
(
yn
(
tk
))− L(t, tk

)
Ik
(
yn
(
tk
))] ∈ Γ

(
SF,yn

)
.

(7.78)
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Since yn → y∗, it follows from Lemma 1.28 that

h∗(t)−H(t, 0)μ1 − L(t, 0)μ0

−
m∑

k=1

[
H
(
t, tk
)
Ik
(
y∗
(
tk
))− L(t, tk

)
Ik
(
y∗
(
tk
))] =

∫ T

0
H(t, s)g∗(s)ds

(7.79)

for some g∗ ∈ SF,y∗ .
Step 5. Now it remains to show that the set

M := {y ∈ Ω : βy ∈ N(y), for some β > 1
}

(7.80)

is bounded.
Let y ∈M. Then βy ∈ N(y) for some β > 1. Thus, for each t ∈ J ,

y(t) = β−1
∫ T

0
H(t, s)g(s)ds + β−1H(t, 0)μ1 + β−1L(t, 0)μ0

+ β−1
m∑

k=1

[
H
(
t, tk
)
Ik
(
y
(
tk
))

+ L
(
t, tk
)
Ik
(
y
(
tk
))]

.
(7.81)

This implies by (7.7.1) that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤
∫ T

0

∣
∣H(t, s)g(s)

∣
∣ds +

∣
∣H(t, 0)

∣
∣
∣
∣μ1
∣
∣ +
∣
∣L(t, 0)

∣
∣
∣
∣μ0
∣
∣

+
m∑

k=1

∣
∣H
(
t, tk
)
Ik
(
y
(
tk
))

+ L
(
t, tk
)
Ik
(
y
(
tk
))∣∣

≤ sup
(t,s)∈J×J

∣∣H(t, s)
∣∣
∫ T

0
m(s)ds +

∣∣H(t, 0)
∣∣∣∣μ1

∣∣ +
∣∣L(t, 0)

∣∣∣∣μ0
∣∣

+
m∑

k=1

∣
∣H
(
t, tk
)
ck + L

(
t, tk
)
dk
∣
∣.

(7.82)

Thus

‖y‖Ω ≤ sup
(t,s)∈J×J

∣∣H(t, s)
∣∣
∫ T

0
m(s)ds + sup

t∈J

∣∣H(t, 0)
∣∣∣∣μ1

∣∣

+ sup
t∈J

∣
∣L(t, 0)

∣
∣
∣
∣μ0
∣
∣ +

m∑

k=1

[

sup
t∈J

∣
∣H
(
t, tk
)∣∣ck + sup

t∈J

∣
∣L
(
t, tk
)∣∣dk

]

:= b,

(7.83)

where b depends only on T and on the functionm. This shows that M is bounded.
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Set X := Ω. As a consequence of Theorem 1.7, we deduce that N has a fixed
point which is a solution of (7.57)–(7.61). �

Theorem 7.8. Assume that (7.4.1)–(7.4.3) and the following are satisfied:
(7.8.1) |Ik(y) − Ik(y)| ≤ dk|y(t) − y(t)|, for each y, y ∈ R, k = 1, . . . ,m,

where dk are nonnegative constants.
Let m0 = sup(t,s)∈J×J |H(t, s)|, l0 = sup(t,s)∈J×J |L(t, s)|. If

m0l
∗ +m0

m∑

k=1

ck + l0

m∑

k=1

dk < 1, (7.84)

then problem (7.57)–(7.61) has at least one solution on [−r,T].

Proof. Transform problem (7.57)–(7.61) into a fixed point problem. It is clear that
the solutions of problem (7.57)–(7.61) are fixed points of the multivalued operator
N : Ω→ P (Ω) defined by

N(y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(0) if t∈[−r, 0],

∫ T

0
H(t, s)v(s)ds+H(t, 0)μ1 +L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
y
(
tk
))

+L
(
t, tk
)
Ik
(
y
(
tk
))]

if t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.85)

where v ∈ SF,y.
We will show thatN satisfies the assumptions of Theorem 1.11. The proof will

be given in two steps.
Step 1. N(y) ∈ Pcl(Ω), for each y ∈ Ω.

The proof is similar to that of Step 1 of Theorem 7.4.
Step 2. H(N(y),N(y)) ≤ γ‖y − y‖, for each y, y ∈ Ω (where γ < 1).

Let y, y ∈ Ω and h1 ∈ N(y). Then there exists v1(t) ∈ F(t, yt) such that, for
each t ∈ J ,

h1(t) =
∫ T

0
H(t, s)v1(s)ds +H(t, 0)μ1 + L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
y
(
tk
))

+ L
(
t, tk
)
Ik
(
y
(
tk
))]

.
(7.86)

From (7.4.2), it follows that

H
(
F
(
t, yt
)
,F
(
t, yt
)) ≤ l(t)

∥∥yt − yt
∥∥

D , t ∈ J. (7.87)
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Hence there is w ∈ F(t, yt) such that

∣
∣v1(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D , t ∈ J. (7.88)

Consider U : J → P (R), given by

U(t) = {w ∈ R :
∣
∣v1(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D

}
. (7.89)

Since the multivalued operator V(t) = U(t) ∩ F(t, yt) is measurable (see [119,
Proposition III.4]), there exists v2(t), which is a measurable selection for V . So,
v2(t) ∈ F(t, yt) and

∣∣v1(t)− v2(t)
∣∣ ≤ l(t)‖y − y‖D , for each t ∈ J. (7.90)

Let us define, for each t ∈ J ,

h2(t) =
∫ T

0
H(t, s)v2(s)ds +H(t, 0)μ1 + L(t, 0)μ0

+
m∑

k=1

[
H
(
t, tk
)
Ik
(
y
(
tk
))

+ L
(
t, tk
)
Ik
(
y
(
tk
))]

.
(7.91)

Then we have

∣∣h1(t)− h2(t)
∣∣ ≤
∫ T

0

∣∣H(t, s)
∣∣∣∣v1(s)− v2(s)

∣∣ds

+
m∑

k=1

∣
∣H
(
t, tk
)∣∣
∣
∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

+
m∑

k=1

∣
∣L
(
t, tk
)∣∣
∣
∣Ik
(
y
(
t−k
))− Ik

(
y
(
t−k
))∣∣

≤ m0

∫ T

0
l(s)
∥
∥ys − ys

∥
∥

Dds +m0

m∑

k=1

ck
∣
∣y
(
t−k
)− y

(
t−k
)∣∣

+ l0

m∑

k=1

dk
∣
∣y
(
t−k
)− y

(
t−k
)∣∣

≤ m0l
∗‖y − y‖ +m0

m∑

k=1

ck‖y − y‖ + l0

m∑

k=1

dk‖y − y‖.

(7.92)
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Then

∥
∥h1 − h2

∥
∥ ≤

[

m0l
∗ +m0

m∑

k=1

ck + l0

m∑

k=1

dk

]

‖y − y‖. (7.93)

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

H
(
N(y),N(y)

) ≤
[

m0l
∗ +m0

m∑

k=1

ck + l0

m∑

k=1

dk

]

‖y − y‖. (7.94)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point y, which is
a solution to (7.57)–(7.61). �

7.4. Nonresonance higher-order boundary value problems for
impulsive functional differential inclusions

In the interval J = [0,T], let 0 = t0 < t1 < · · · < tm < tm+1 = T be fixed. In
this section, we are concerned with the existence of solutions for a nonresonance
problem for the functional differential inclusion,

y(n)(t)− λy(t) ∈ F
(
t, yt
)
, t ∈ J \ {t1, . . . , tm

}
, (7.95)

subject to the impulse effects

Δy(i)(tk
) = Iik

(
y
(
t−k
))

, 0 ≤ i ≤ n− 1, 1 ≤ k ≤ m, (7.96)

satisfying the initial condition

y(t) = φ(t), t ∈ [−r, 0], (7.97)

and satisfying the boundary conditions

y(i)(0)− y(i)(T) = μi, 0 ≤ i ≤ n− 1, (7.98)

where F : J ×D → P(R) is a compact convex-valued multivalued map, P(R) is
the power set of R, λ �= 0 and λ is not an eigenvalue of yn, μi ∈ R, 0 ≤ i ≤ n − 1,
Iik ∈ C(R, R) are bounded, 0 ≤ i ≤ n− 1, 1 ≤ k ≤ m, and Δy(i)(tk) = Δy(i)(t+k )−
Δy(i)(t−k ), 0 ≤ i ≤ n − 1. As usual, for any continuous function y defined on
[−r,T] \ {t1, . . . , tm} and any t ∈ J , we define yt ∈ D by yt(θ) = y(t + θ), θ ∈
[−r, 0].

We now define what we mean by a solution of problem (7.95)–(7.98).

Definition 7.9. A function y ∈ Ω ∩ ACn−1(tk, tk+1), k = 0, . . . ,m, is said to be a
solution of problem (7.95)–(7.98) if y satisfies conditions (7.95) to (7.98).
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Next, let G(t, s) be Green’s function for the periodic boundary value problem

y(n)(t)− λy(t) = 0, y(i)(0)− y(i)(T) = 0, 0 ≤ i ≤ n− 1. (7.99)

Among various properties of G(t, s), we recall that

∂i

∂ti
G(0, 0)− ∂i

∂ti
G(T , 0) =

⎧
⎨

⎩
0, 0 ≤ i ≤ n− 2,

1, i = n− 1.
(7.100)

We now consider the equation

y(n)(t)− λy(t) = g(t), t �= tk, k = 1, . . . ,m, (7.101)

satisfying (7.96), (7.98), where g ∈ L1(Jk, R), k = 1, . . . ,m. For brevity, we will re-
fer to (7.96), (7.97), (7.98), (7.101), as (LP). Note that (LP) is not a linear problem,
since the impulsive functions are not necessarily linear, however, if Iik, 0 ≤ i ≤ n−1,
k = 1, . . . ,m, are linear, then (LP) is a linear impulsive problem.

The following is also fundamental in establishing solutions of (7.95)–(7.98).
The proof is much along the lines of Dong’s result [133], and we omit the proof.

Lemma 7.10. A function y ∈ Ω∩ACn−1(tk, tk+1), k = 1, . . . ,m, is a solution of (LP)
if and only if y ∈ Ω, and there exists g ∈ SF,y such that y is a solution of the impulsive
integral equation

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],
∫ T

0
G(t, s)g(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1

+
m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))

, t ∈ J.

(7.102)

We provide constraints on F and the impulse operators Iik so that (7.95)–
(7.98) has a solution. Our main tool will be Lemma 7.10.

Theorem 7.11. Assume that conditions (7.3.1) and (7.3.3) are satisfied. Suppose also
that

(7.11.1) for each 0 ≤ i ≤ n − 1, 1 ≤ k ≤ m, there exist constants dik ≥ 0 such
that |Iik(y)| ≤ dik, for each y ∈ R;

(7.11.2) for each t ∈ J , the multivalued map F(t, ·) : D → P (E) maps bounded
sets into relatively compact sets.

Then problem (7.95)–(7.98) has at least one solution on [−r,T].
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Proof. In order to apply the Martelli fixed point theorem, that is, Theorem 1.7, we
define a multivalued operator N : Ω→ P (Ω) by

N(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

∫ T

0
G(t, s)g(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1

+
m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))

, t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.103)

where g ∈ SF,y . It is straightforward that fixed points of N are solutions of (7.95)–
(7.98). In addition, Lasota and Opial [186] have proved that, for each y ∈ Ω, the
set SF,y is nonempty.

We now exhibit that N satisfies the conditions of Theorem 1.7. The proof will
be done in several steps.

Our first step is to show that, for each y ∈ Ω, the set N(y) is convex. Indeed,
if h1,h2 ∈ N(y), then there exist g1, g2 ∈ SF,y such that, for each t ∈ J , we have

hi(t) =
∫ T

0
G(t, s)gi(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1

+
m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))

, i = 1, 2.

(7.104)

Then, for 0 ≤ d ≤ 1 and t ∈ J , we have

(
dh1 + (1− d)h2

)
(t) =

∫ T

0
G(t, s)

[
dg1(s) + (1− d)g2(s)

]
ds

+
n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 +

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))
.

(7.105)

The convexity of F implies SF,y is convex, which in turn implies

dh1 + (1− d)h2 ∈ N(y); (7.106)

that is, N(y) is convex.
Our next step is to argue that N maps bounded sets into bounded sets in Ω.

In particular, we show that, for each y ∈ Bq = {y ∈ Ω : ‖y‖Ω ≤ q}, there exists
an � > 0 such that ‖N(y)‖Ω ≤ �.
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So, let y ∈ Bq and h ∈ N(y). Then there exists g ∈ SF,y such that, for each
t ∈ J , we have

h(t) =
∫ T

0
G(t, s)g(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 +

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))
.

(7.107)

By (7.11.1), we have, for each t ∈ J ,

∣∣h(t)
∣∣ ≤
∫ T

0

∣∣G(t, s)
∣∣∣∣g(s)

∣∣ds +
n−1∑

i=0

∣
∣∣
∣
∂i

∂ti
G(t, 0)

∣
∣∣
∣
∣∣μn−i−1

∣∣

+
m∑

k=1

n−1∑

i=0

∣
∣
∣∣
∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))
∣
∣
∣∣

≤
∫ T

0

∣
∣G(t, s)

∣
∣lq(s)ds +

n−1∑

i=0

∣
∣
∣∣
∂i

∂ti
G(t, 0)

∣
∣
∣∣
∣
∣μn−i−1

∣
∣

+
m∑

k=1

n−1∑

i=0

∣
∣
∣
∣
∂i

∂ti
G
(
t, tk
)
∣
∣
∣
∣ sup

{∣∣Iik
(|y|)∣∣ : ‖y‖ ≤ q

}
.

(7.108)

Then, for each h ∈ N(Bq), we have

‖h‖Ω ≤ sup
(t,s)∈J×J

∣
∣G(t, s)

∣
∣
∫ T

0
lq(s)ds +

n−1∑

i=0

∣
∣μn−i−1

∣
∣ sup

t∈J

∣∣
∣
∣
∂i

∂ti
G(t, 0)

∣∣
∣
∣

+
m∑

k=1

n−1∑

i=0

sup
t∈J

∣
∣∣
∣
∂i

∂ti
G
(
t, tk
)
∣
∣∣
∣ sup

{∣∣Iik
(|y|)∣∣ : ‖y‖ ≤ q

}
:= �.

(7.109)

We next show that N maps bounded sets into equicontinuous sets of Ω. Let
τ1, τ2 ∈ J , τ1 < τ2, and Bq be a bounded set (as described above) in Ω. Choose
y ∈ Bq and h ∈ N(y). Then there exists g ∈ SF,y such that, for each t ∈ J , we have

h(t) =
∫ T

0
G(t, s)g(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 +

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))

,

(7.110)

which yields

∣∣h
(
τ2
)− h(τ1

)∣∣ ≤
∫ T

0

∣∣G
(
τ2, s
)−G(τ1, s

)∣∣lq(s)ds

+
n−1∑

i=0

∣
∣∣
∣
∂i

∂ti
G
(
τ2, 0
)− ∂i

∂ti
G
(
τ1, 0
)
∣
∣∣
∣
∣∣μn−i−1

∣∣

+
m∑

k=1

n−1∑

i=0

∣
∣
∣∣
∂i

∂ti
G
(
τ2, tk

)− ∂i

∂ti
G
(
τ1, tk

)
∣
∣
∣∣d

i
k.

(7.111)
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In the inequality, if we let τ2 → τ1, the right side tends to zero. Also, the
equicontinuity for the other cases, τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2, are straightforward.

As a consequence of the convexity of N(y), for each y ∈ Ω, and N mapping
bounded sets into equicontinuous sets of Ω, when coupled with the Arzelá-Ascoli
theorem, we conclude that N : Ω → P (Ω) is completely continuous multivalued,
and therefore, a condensing multivalued map.

The next step of our argument involves exhibiting that N has a closed graph.
To that end, let yn → y∗, hn ∈ N(yn), and hn → h∗. It remains to show that
h∗ ∈ N(y∗).

Since hn ∈ N(yn), there exists gn ∈ SF,yn such that, for each t ∈ J ,

hn(t) =
∫ T

0
G(t, s)gn(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 +

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
yn
(
tk
))
.

(7.112)

Since each Iik is continuous, we have that

∥∥
∥
∥
∥

(

hn −
n−1∑

i=0

G(t, 0)μn−i−1 −
m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
yn
(
tk
))
)

−
(

h∗ −
n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 −

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y∗
(
tk
))
)∥∥
∥
∥
∥
∞
�→ 0,

(7.113)

as n→∞.
If we define a continuous linear operator Γ : L1(J , R) → C(J , R) by

Γ(g)(t) =
∫ T

0
G(t, s)g(s)ds, (7.114)

then, by Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator. Moreover,
we have that

hn(t)−
n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 −

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
yn
(
tk
)) ∈ Γ

(
SF,yn

)
. (7.115)

Since yn → y∗, we also have from Lemma 1.28 that

h∗(t)−
n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 −

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y∗
(
tk
)) =

∫ T

0
G(t, s)g∗(s)ds

(7.116)

for some g∗ ∈ SF,y∗ . In particular, h∗ ∈ N(y∗), and N has closed graph.
Our final step is to exhibit that the set

M := {y ∈ Ω : βy ∈ N(y), for some β > 1
}

(7.117)



222 Nonresonance impulsive differential inclusions

is bounded. So we choose y ∈ M. Then βy ∈ N(y), for some β > 1, and thus, for
each t ∈ J ,

y(t)=β−1

[∫ T

0
G(t, s)g(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 +

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))
]

,

(7.118)

and so, by (7.11.1), we have

∣
∣y(t)

∣
∣ ≤ sup

(t,s)∈J×J

∣
∣G(t, s)

∣
∣
∫ T

0
m(s)ds +

n−1∑

i=0

sup
t∈J

∣
∣
∣∣
∂i

∂ti
G(t, 0)

∣
∣
∣∣
∣
∣μn−i−1

∣
∣

+
m∑

k=1

n−1∑

i=0

sup
t∈J

∣
∣
∣
∣
∂i

∂ti
G
(
t, tk
)
∣
∣
∣
∣d

i
k := b,

(7.119)

where b depends only on T and on the function w. In particular, ‖y‖ ≤ b, and M
is bounded.

Set X := Ω. As a consequence of Theorem 1.7, we deduce that N has a fixed
point which is a solution of (7.95)–(7.98). �

In this section, we provide constraints on F and the impulse operators Iik so
that (7.95)–(7.98) has a solution. This will be done by an application of Theorem
1.11.

Theorem 7.12. Assume that (7.4.1)-(7.4.2) are satisfied. Suppose also that
(7.12.1) for each 0 ≤ i ≤ n − 1, 1 ≤ k ≤ m, there exist constants dik ≥ 0 such

that |Iik(y)− Iik(y)| ≤ dik|y − y|, for each y, y ∈ E.
Then problem (7.95)–(7.98) has at least one solution on [−r,T].

Proof. In order to apply the Covitz-Nadler fixed point theorem, that is, Theorem
1.11, we define a multivalued operator N : Ω→ P (Ω) by

N(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],
∫ T

0
G(t, s)v(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1

+
m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))

, t ∈ J ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.120)

where v ∈ SF,y . It is straightforward that fixed points of N are solutions of (7.95)–
(7.98). In addition, by (7.12.1), F has a measurable selection from which Castaing
and Valadier (see [119, Theorem III]) have proved that, for each y ∈ Ω, the set
SF,y is nonempty.

We now exhibit that N satisfies the conditions of Theorem 1.11, which will be
done in a couple of steps.
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Our first step is to show that, for each y ∈ Ω, we have N(y) ∈ Pcl(Ω). Indeed,
let (yn)n≥0 ∈ N(y) be such that yn → ỹ in Ω. Then ỹ ∈ Ω, and there exists
gn ∈ SF,y such that, for each t ∈ J ,

yn(t) ∈
∫ T

0
G(t, s)gn(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 +

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
t−k
))
.

(7.121)

Using the fact that F has compact values and from (7.12.1), we may pass to a
subsequence if necessary to get that gn converges to g in L1(J ,E) and hence g ∈
SF,y. Then, for each t ∈ [0, b],

yn(t) → ỹ(t)=
∫ T

0
G(t, s)g(s)ds+

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 +

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
t−k
))
.

(7.122)

So, ỹ ∈ N(y), and in particular, N(y) ∈ Pcl(Ω).
Our second step is to show there exists a 0 ≤ γ < 1 such thatHd(N(y),N(y))≤

γ‖y − y‖, for each y, y ∈ Ω.
So, let y, y ∈ Ω and h1 ∈ N(y). Then there exists v1(t) ∈ F(t, yt) such that,

for each t ∈ J ,

h1(t) =
∫ T

0
G(t, s)v1(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 +

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
t−k
))
.

(7.123)

From (7.12.1), it follows that, for t ∈ J ,

Hd
(
F
(
t, yt
)
,F
(
t, yt
)) ≤ l(t)

∥
∥yt − yt

∥
∥

D . (7.124)

Hence there is w ∈ F(t, yt) such that

∣
∣v1(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D , t ∈ J. (7.125)

Consider U : J → P (E), defined by

U(t) = {w ∈ E :
∣
∣v1(t)−w∣∣ ≤ l(t)

∥
∥yt − yt

∥
∥

D

}
. (7.126)



224 Nonresonance impulsive differential inclusions

By Castaing and Valadier (see [119, Proposition III.4]), the multivalued operator
V(t) = U(t)∩F(t, yt) is measurable, and hence there exists a measurable selection
for V ; call it v2(t). So, v2(t) ∈ F(t, yt) and

∣∣v1(t)− v2(t)
∣∣ ≤ l(t)‖y − y‖D , t ∈ J. (7.127)

We define, for each t ∈ J ,

h2(t) =
∫ T

0
G(t, s)v2(s)ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 +

m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
t−k
))
.

(7.128)

Then, we have, for t ∈ J ,

∣
∣h1(t)− h2(t)

∣
∣ ≤

∫ T

0

∣
∣G(t, s)

∣
∣
∣
∣v1(s)− v2(s)

∣
∣ds

+
m∑

k=1

n−1∑

i=0

∣
∣
∣∣
∂i

∂ti
G
(
t, tk
)
∣
∣
∣∣
∣
∣Iik
(
y
(
t−k
))− Iik

(
y
(
t−k
))∣∣

≤M0

∫ T

0
l(s)
∥
∥ys − ys

∥
∥

Dds +
m∑

k=1

n−1∑

i=0

Mid
i
k

∣
∣y
(
t−k
)− y

(
t−k
)∣∣

≤
[

M0l
∗ +

m∑

k=1

n−1∑

i=0

Mid
i
k

]

‖y − y‖.
(7.129)

Then

∥∥h1 − h2
∥∥ ≤

[

M0l
∗ +

m∑

k=1

n−1∑

i=0

Mid
i
k

]

‖y − y‖. (7.130)

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

Hd
(
N(y),N(y)

) ≤
[

M0l
∗ +

m∑

k=1

n−1∑

i=0

Mid
i
k

]

‖y − y‖. (7.131)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point y, which is
a solution to (7.95)–(7.98). �

By the help of Schaefer’s fixed point theorem combined with the selection
theorem of Bressan and Colombo for lower semicontinuous maps with decom-
posable values, we will present an existence result for problem (7.95)-(7.96), with
a nonconvex valued right-hand side.



Nonresonance higher-order impulsive inclusions 225

Theorem 7.13. Suppose (7.3.3), (7.11.1), (7.11.2), and the following conditions are
satisfied:

(7.13.1) F : [0,T] × D → P (E) is a nonempty, compact-valued, multivalued,
map such that
(a) (t,u) �→ F(t,u) is L⊗B measurable;
(b) u �→ F(t,u) is lower semicontinuous for a.e. t ∈ [0,T];

(7.13.2) for each q > 0, there exists a function hq ∈ L1([0,T], R+) such that

∥
∥F(t,u)

∥
∥ := sup

{|v| : v ∈ F(t,u)
} ≤ hq(t) for a.e. t ∈ [0,T], (7.132)

and for u ∈ D with ‖u‖D ≤ q.
Then problem (7.95)–(7.98) has at least one solution on [−r,T].

Proof. Conditions (7.13.1) and (7.13.2) imply that F is of lower semicontinu-
ous type. Then from Theorem 1.5, there exists a continuous function f : Ω →
L1([0,T],E) such that f (y) ∈ F (y) for all y ∈ Ω.

Consider problem

y′(t) = f
(
yt
)
, t ∈ [0,T], t �= tk, k = 1, . . . ,m,

Δy(i)(tk
) = Iik

(
y
(
t−k
))

, 0 ≤ i ≤ n− 1, 1 ≤ k ≤ m,

y(t) = φ(t), t ∈ [−r, 0],

y(i)(0)− y(i)(T) = μi, 0 ≤ i ≤ n− 1.

(7.133)

Transform problem (7.133) into a fixed point problem. Consider the operator
N : Ω→ Ω defined by

N(y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [−r, 0],

∫ T

0
G(t, s) f

(
ys
)
ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1

+
m∑

k=1

n−1∑

i=0

∂i

∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))

, t ∈ J.

(7.134)

We will show thatN is completely continous; that is, continuous and sends bound-
ed sets into relatively compact sets.
Step 1. N is continuous.

Let {yn} be a sequence such that yn → y in Ω. Then

∣
∣N
(
yn(t)

)−N(y(t)
)∣∣ ≤

∫ T

0

∣
∣G(t, s)

∣
∣
∣
∣ f
(
yns
)− f

(
ys
)∣∣ds

+
m∑

k=1

n−1∑

i=0

∂i

∂ti
∣
∣G
(
t, tk
)∣∣
∣
∣Iik
(
yn
(
tk
))− Iik

(
y
(
tk
))∣∣.

(7.135)
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Since the functions f and Ik, k = 1, . . . ,m, are continuous, then

∥∥N
(
yn
)−N(y)

∥∥ �→ 0 as n �→∞. (7.136)

Step 2. N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant � such that,

for each y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, we have ‖N(y)‖ ≤ �.
By our assumptions, we have, for each t ∈ J ,

∣
∣h(t)

∣
∣ ≤
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∣
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∣
∣
∣
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∣
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(
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∣∣
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∣∣
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Then, for each h ∈ N(Bq), we have

‖h‖ ≤ sup
(t,s)∈J×J

∣∣G(t, s)
∣∣
∫ T

0
lq(s)ds +

n−1∑

i=0

∣∣μn−i−1
∣∣ sup

t∈J

∣
∣∣
∣
∂i

∂ti
G(t, 0)

∣
∣∣
∣

+
m∑

k=1
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∣∣
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(
t, tk
)
∣
∣
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(|y|)∣∣ : ‖y‖ ≤ q

}
:= �.
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Step 3. N maps bounded sets into equicontinuous sets of Ω.
Let τ1, τ2 ∈ J , τ1 < τ2, and Bq be a bounded set (as described above) in Ω. Let

y ∈ Bq. Then

∣
∣h
(
τ2
)− h(τ1

)∣∣ ≤
∫ T

0

∣
∣G
(
τ2, s
)−G(τ1, s
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+
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∣∣
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)
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∣
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i
k.

(7.139)

In the inequality, if we let τ2 → τ1, the right side tends to zero. Also, the
equicontinuity for the other cases, τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2, are straightforward.

As a consequence of Steps 1 to 3, and (7.13.3) together with the Arzelá-Ascoli
theorem, we conclude that N : Ω→ Ω is completely continuous.
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Step 4. Now it remains to show that the set

E(N) := {y ∈ Ω : y = βN(y), for some 0 < β < 1
}

(7.140)

is bounded.
So we choose y ∈ E(N). Then y = βN(y), for some 0 < β < 1, and thus, for

each t ∈ J ,

y(t) = β

[∫ T

0
G(t, s) f

(
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)
ds +

n−1∑

i=0

∂i

∂ti
G(t, 0)μn−i−1 +
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∂ti
G
(
t, tk
)
Iik
(
y
(
tk
))
]

,
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and so, by (7.13.1) and (7.13.2), we have

∣
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∣
∣ ≤ sup
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∣
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∣
∣
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)
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i
k := b,
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where b depends only on T and on the function m. In particular, ‖y‖ ≤ b, and
E(N) is bounded.

With X := Ω, we conclude by Schaefer’s theorem that N has a fixed point
which is a solution of (7.95)–(7.98). �

7.5. Notes and remarks

Chapter 7 deals with nonresonance problems for impulsive functional differential
inclusions. The results of Section 7.1, on first-order inclusions, are adapted from
Benchohra et al. [51, 60], while the results of Section 7.2, on second-order inclu-
sions, are adapted from Benchohra et al. [56, 60]. Finally, the results of Section 7.4,
on higher-order boundary value problems for impulsive functional differential in-
clusions, are taken from Benchohra et al. [44, 63].





8
Impulsive differential equations &
inclusions with variable times

8.1. Introduction

The theory of impulsive differential equations with variable time is relatively less
developed due to the diffculties created by the state-dependent impulses. Recently,
some interesting extensions to impulsive differential equations with variable times
have been done by Bajo and Liz [31], Frigon and O’Regan [150, 151], Kaul [173],
Kaul et al. [174], and Benchohra et al. [43, 45, 70, 71, 91, 92].

8.2. First-order impulsive differential equations with variable times

This section is concerned with the existence of solutions, for initial value problems
(IVP for short), for first-order functional differential equations with impulsive ef-
fects

y′(t) = f
(
t, yt
)
, a.e. t ∈ J = [0,T], t �= τk

(
y(t)
)
, k = 1, . . . ,m,

y
(
t+
) = Ik

(
y(t)
)
, t = τk

(
y(t)
)
, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],

(8.1)

where f : J×D → Rn is a given function, D = {ψ : [−r, 0] → Rn : ψ is continuous
everywhere except for a finite number of points t at which ψ(t) and ψ(t+) exist, and
ψ(t−) = ψ(t)}, φ ∈ D, 0 < r < ∞, τk : Rn → R, Ik : Rn → Rn, k = 1, 2, . . . ,m, are
given functions satisfying some assumptions that will be specified later.

The main theorem of this section extends the problem (8.1) considered by
Benchohra et al. [46] when the impulse times are constant. Our approach is based
on Schaefer’s fixed point theorem.

Let us start by defining what we mean by a solution of problem (8.1).

Definition 8.1. A function y ∈ Ω ∩ AC((tk, tk+1), R), k = 0, . . . ,m, is said to be a
solution of (8.1) if y satisfies the equation y′(t) = f (t, yt) a.e. on J , t �= τk(y(t)),
k = 1, . . . ,m, and the conditions y(t+) = Ik(y(t)), t = τk(y(t)), k = 1, . . . ,m, and
y(t) = φ(t) on [−r, 0].



230 Variable times impulsive differential equations

We are now in a position to state and prove our existence result for the prob-
lem (8.1). Recall that throughout Ω = PC([−r,T]Rn).

Theorem 8.2. Assume the following hypotheses are satisfied:
(8.2.1) f : J ×D → Rn is an L1-Carathéodory function;
(8.2.2) the functions τk ∈ C1(Rn, R) for k = 1, . . . ,m. Moreover,

0 < τ1(x) < · · · < τm(x) < T , ∀x ∈ R
n; (8.2)

(8.2.3) there exist constants ck such that |Ik(x)| ≤ ck, k = 1, . . . ,m, for each
x ∈ Rn;

(8.2.4) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1(J , R+) such that

∣
∣ f (t,u)

∣
∣ ≤ p(t)ψ

(‖u‖D
)

(8.3)

for a.e. t ∈ J and each u ∈D with

∫∞

1

ds

ψ(s)
= ∞; (8.4)

(8.2.5) for all (t, x) ∈ [0,T]×Rn and for all yt ∈ D,

〈
τ′k(x), f

(
t, yt
)〉 �= 1, for k = 1, . . . ,m, (8.5)

where 〈·, ·〉 denotes the scalar product in Rn;
(8.2.6) for all x ∈ Rn,

τk
(
Ik(x)

) ≤ τk(x) < τk+1
(
Ik(x)

)
, for k = 1, . . . ,m. (8.6)

Then the IVP (8.1) has at least one solution on [−r,T].

Proof. The proof will be given in several steps.
Step 1. Consider the problem

y′(t) = f
(
t, yt
)
, a.e. t ∈ [0,T],

y(t) = φ(t), t ∈ [−r, 0].
(8.7)

Transform the problem (8.7) into a fixed point problem. Consider the operator
N : Ω→ Ω defined by

N(y)(t) =
⎧
⎪⎨

⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) +
∫ t

0
f
(
s, ys
)
ds if t ∈ [0,T].

(8.8)

We will show that the operator N is completely continuous.
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Claim 1. N is continuous.
Let {yn} be a sequence such that yn → y in Ω.
Then

∣
∣N
(
yn
)
(t)−N(y)(t)

∣
∣ ≤
∫ t

0

∣
∣ f
(
s, yns

)− f
(
s, ys
)∣∣ds

≤
∫ T

0

∣∣ f
(
s, yns

)− f
(
s, ys
)∣∣ds.

(8.9)

Since f is an L1-Carathéodory function, we have by the Lebesgue dominated con-
vergence theorem

∥
∥N
(
yn
)−N(y)

∥
∥ ≤ ∥∥ f (·, yn

)− f (·, y)
∥
∥
L1 �→ 0 as n �→∞. (8.10)

Claim 2. N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that for any q > 0, there exists a positive constant

l such that, for each y ∈ Bq = {y ∈ Ω : ‖y‖ ≤ q}, we have ‖N(y)‖ ≤ l. We have,
for each t ∈ [0,T],

∣
∣N(y)(t)

∣
∣ ≤ ∣∣φ(0)

∣
∣ +
∫ t

0

∣
∣ f
(
s, ys
)∣∣ds ≤ ‖φ‖D +

∥
∥hq
∥
∥
L1 . (8.11)

Thus

∥
∥N(y)

∥
∥
Ω ≤ ‖φ‖D +

∥
∥hq
∥
∥
L1 := l. (8.12)

Claim 3. N maps bounded sets into equicontinuous sets of Ω.
Let l1, l2 ∈ [0,T], l1 < l2, and let Bq be a bounded set of Ω as in Claim 2, and

let y ∈ Bq. Then

∣
∣N(y)

(
l2
)−N(y)

(
l1
)∣∣ ≤

∫ l2

l1
hq(s)ds. (8.13)

As l2 → l1, the right-hand side of the above inequality tends to zero. The equicon-
tinuity for the cases l1 < l2 ≤ 0 and l1 ≤ 0 ≤ l2 is obvious.

As a consequence of Claims 1 to 3 together with the Arzelá-Ascoli theorem,
we can conclude that N : Ω→ Ω is completely continuous.
Claim 4. Now it remains to show that the set

E(N) := {y ∈ Ω : y = λN(y) for some 0 < λ < 1
}

(8.14)

is bounded.
Let y ∈ E(N). Then y = λN(y) for some 0 < λ < 1. Thus, for each t ∈ [0,T],

y(t) = λ
(
φ(0) +

∫ t

0
f
(
s, ys
)
ds
)
. (8.15)
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This implies by (8.2.2), (8.3.2) that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤ ‖φ‖D +

∫ t

0
p(s)ψ

(∥∥ys
∥
∥

D

)
ds. (8.16)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣
∣ : −r ≤ s ≤ t

}
, 0 ≤ t ≤ T. (8.17)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous in-
equality, we have, for t ∈ [0,T],

μ(t) ≤ ‖φ‖D +
∫ t

0
p(s)ψ

(
μ(s)
)
ds. (8.18)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and the previous inequality holds. Let us take
the right-hand side of the above inequality as v(t). Then we have

c = v(0) = ‖φ‖D , μ(t) ≤ v(t), t ∈ [0,T],

v′(t) = p(t)ψ
(
μ(t)
)
, a.e. t ∈ [0,T].

(8.19)

Using the nondecreasing character of ψ, we get

v′(t) ≤ p(t)ψ
(
v(t)
)
, a.e. t ∈ [0,T]. (8.20)

This implies that, for each t ∈ [0,T],

∫ v(t)

v(0)

ds

ψ(s)
≤
∫ T

0
p(s)ds <

∫∞

v(0)

ds

ψ(s)
. (8.21)

Thus there exists a constant K such that v(t) ≤ K , t ∈ [0,T], and hence μ(t) ≤ K ,
t ∈ [0,T]. Since for every t ∈ [0,T], ‖yt‖D ≤ μ(t), we have

‖y‖ ≤ K ′ = max
{‖φ‖D ,K

}
, (8.22)

where K ′ depends on T and on the functions p and ψ. This shows that E(N) is
bounded.

Set X := Ω. As a consequence of Schaefer’s fixed point theorem, Theorem 1.6,
we deduce that N has a fixed point y which is a solution to problem (8.7). Denote
this solution by y1.

Define the function

rk,1(t) = τk
(
y1(t)

)− t, for t ≥ 0. (8.23)

Hypothesis (8.2.1) implies that

rk,1(0) �= 0, for k = 1, . . . ,m. (8.24)
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If

rk,1(t) �= 0 on [0,T], for k = 1, . . . ,m, (8.25)

that is,

t �= τk
(
y1(t)

)
on [0,T] and for k = 1, . . . ,m, (8.26)

then y1 is a solution of the problem (8.1).
It remains to consider the case when

rk,1(t) = 0, for some t ∈ [0,T], k = 1, . . . ,m. (8.27)

Now since

rk,1(0) �= 0 (8.28)

and rk,1 is continuous, there exists t1 > 0 such that

rk,1
(
t1
) = 0, rk,1(t) �= 0, ∀t ∈ [0, t1

)
. (8.29)

Step 2. Consider now the problem

y′(t) = f
(
t, yt
)
, a.e. t ∈ [t1,T

]
, (8.30)

y
(
t+1
) = I1

(
y1
(
t1
))

, (8.31)

y(t) = y1(t), t ∈ [t1 − r, t1
]
. (8.32)

Transform the problem (8.30)–(8.32) into a fixed point problem. Consider the
operator N1 : PC([t1 − r,T], Rn) → PC([t1 − r,T], Rn) defined by

N1(y)(t) =
⎧
⎪⎨

⎪⎩

y
(
t1
)
, t ∈ [t1 − r, t1

]
,

I1
(
y1
(
t1
))

+
∫ t

t1
f
(
s, ys
)
ds, t ∈ [t1,T

]
.

(8.33)

As in Step 1, we can show that N1 is completely continuous, and the set

E
(
N1
)

:= {y ∈ PC
([
t1 − r,T

]
, Rn
)

: y = λN1(y) for some 0 < λ < 1
}

(8.34)

is bounded.
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Set X := PC([t1 − r,T], Rn). As a consequence of Schaefer’s theorem, we de-
duce that N1 has a fixed point y which is a solution to problem (8.30)-(8.31).
Denote this solution by y2. Define

rk,2(t) = τk
(
y2(t)

)− t, for t ≥ t1. (8.35)

If

rk,2(t) �= 0 on
(
t1,T

]
, ∀k = 1, . . . ,m, (8.36)

then

y(t) =
⎧
⎨

⎩
y1(t) if t ∈ [0, t1

]
,

y2(t) if t ∈ (t1,T
] (8.37)

is a solution of problem (8.1).
It remains to consider the case when

rk,2(t) = 0, for some t ∈ (t1,T
]
, k = 2, . . . ,m. (8.38)

By (8.2.6), we have

rk,2
(
t+1
) = τk

(
y2
(
t+1
))− t1 = τk

(
I1
(
y1
(
t1
)))− t1

> τk−1
(
y1
(
t1
))− t1 ≥ τ1

(
y1
(
t1
))− t1

= r1,1
(
t1
) = 0.

(8.39)

Since rk,2 is continuous, there exists t2 > t1 such that

rk,2
(
t2
) = 0,

rk,2(t) �= 0, ∀t ∈ (t1, t2
)
.

(8.40)

Suppose now that there is s ∈ (t1, t2] such that

r1,2(s) = 0. (8.41)

From (8.2.6), it follows that

r1,2
(
t+1
) = τ1

(
y2
(
t+1
))− t1 = τ1

(
I1
(
y1
(
t1
)))− t1

≤ τ1
(
y1
(
t1
))− t1 = r1,1

(
t1
) = 0.

(8.42)

Thus the function r1,2 attains a nonnegative maximum at some point s1 ∈ (t1,T].
Since

y′2(t) = f
(
t,
(
y2
)
t

)
, (8.43)
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then

r′1,2

(
s1
) = τ′1

(
y2
(
s1
))
y′2
(
s1
)− 1 = 0. (8.44)

Therefore

〈
τ′1
(
y2
(
s1
))

, f
(
s1,
(
y2
)
s1

)〉 = 1, (8.45)

which is a contradiction by (8.2.5).
Step 3. We continue this process taking into account that ym+1 := y |[tm,T] is a
solution to the problem

y′(t) = f
(
t, yt
)
, a.e. t ∈ (tm,T

)
,

y
(
t+m
) = Im

(
ym−1

(
tm
))

,

y(t) = ym−1(t), t ∈ [tm − r, tm
]
.

(8.46)

The solution y of the problem (8.1) is then defined by

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1(t) if t ∈ [− r, t1
]
,

y2(t) if t ∈ (t1, t2
]
,

...

ym+1(t) if t ∈ (tm,T
]
.

(8.47)

�

8.3. Higher-order impulsive differential equations with variable times

Consider now initial value problems (IVP for short), for higher-order functional
differential equations with impulsive effects

y(n)(t) = f
(
t, yt
)
, a.e. t ∈ J = [0,T], t �= τk

(
y(t)
)
, k = 1, . . . ,m,

y(i)(t+
) = Ik,i

(
y(t)
)
, t = τk

(
y(t)
)
, k = 1, . . . ,m, i = 1, . . . ,n− 1,

y(i)(0) = yi, i = 1, 2, . . . ,n− 1,

(8.48)

y(t) = φ(t), t ∈ [−r, 0], (8.49)

where n ∈ N, f : J ×D → Rn is a given function, D = {ψ : [−r, 0] → Rn : ψ
is continuous everywhere except for a finite number of points t at which ψ(t) and
ψ(t+) exist, and ψ(t−) = ψ(t)}, φ ∈D , 0 < r <∞, τk : Rn → R, Ik : Rn → Rn, k =
1, 2, . . . ,m, are given functions satisfying some assumptions that will be specified
later. Here y(i) denotes the ith derivative of the function y.

The main theorem of this section extends the problem (8.48) for the particular
case n = 1 considered by Benchohra et al. [46, 71] when the impulse times are
constant and variable, respectively. Our approach is based on Schaefer’s fixed point
theorem.
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Let us start by defining what we mean by a solution of problem (8.48).

Definition 8.3. A function y ∈ Ω ∩ ACn−1((tk, tk+1), Rn), k = 0, . . . ,m, is said
to be a solution of (8.48) if y satisfies the equation y(n)(t) = f (t, yt) a.e. on J ,
t �= τk(y(t)), k = 1, . . . ,m, and the conditions y(i)(t+) = Ik,i(y(t)), t = τk(y(t)),
k = 1, . . . ,m, i = 1, 2, . . . ,n − 1, y(i)(0) = yi, i = 1, . . . ,n − 1, and y(t) = φ(t) on
[−r, 0].

We are now in a position to state and prove our existence result for the prob-
lem (8.48).

Theorem 8.4. Assume that conditions (8.2.1)–(8.2.3) and (8.2.5) hold. Suppose also
the following is satisfied.

(8.4.1) For all (t, s, x) ∈ [0,T]× [0,T]×Rn and for all yt ∈ D,

〈

τ′k(x),
n−1∑

i=2

Ik,i(s)
(t − s)i−2

(i− 2)!
+
∫ t

s

(t − s)n−2

(n− 2)!
f
(
s, ys
)
ds

〉

�= 1 (8.50)

for k = 1, . . . ,m, where 〈·, ·〉 denotes the scalar product in Rn.
Then the IVP (8.48)–(8.49) has at least one solution on [−r,T].

Proof. The proof will be given in several steps.
Step 1. Consider the following problem:

y(n)(t) = f
(
t, yt
)
, a.e. t ∈ [0,T], (8.51)

y(i)(0) = yi, i = 1, . . . ,n− 1, (8.52)

y(t) = φ(t), t ∈ [−r, 0]. (8.53)

Transform the problem (8.51)–(8.53) into a fixed point problem. Consider the
operator N : Ω→ Ω defined by

N(y)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(t) if t ∈ [−r, 0],

φ(0) +
n−1∑

i=1

yi
ti

i!
+
∫ t

0

(t − s)n−1

(n− 1)!
f
(
s, ys
)
ds if t ∈ [0,T].

(8.54)

We will show that the operator N is completely continuous.
Claim 1. N is continuous.

Let {yn} be a sequence such that yn → y in Ω.
Then

∣
∣N
(
yn
)
(t)−N(y)(t)

∣
∣ ≤
∫ t

0

(t − s)n−1

(n− 1)!

∣
∣ f
(
s, yns

)− f
(
s, ys
)∣∣ds

≤ Tn−1

(n− 1)!

∫ T

0

∣∣ f
(
s, yns

)− f
(
s, ys
)∣∣ds.

(8.55)
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Since f is an L1-Carathéodory function, we have by the Lebesgue dominated con-
vergence theorem

∥∥N
(
yn
)−N(y)

∥∥ ≤ Tn−1

(n− 1)!

∥∥ f
(·, yns

)− f
(·, ys

)∥∥
L1 �→ 0 as n �→∞.

(8.56)

Claim 2. N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that for any p∗ > 0, there exists a positive con-

stant l such that, for each y ∈ Bp∗ = {y ∈ Ω : ‖y‖ ≤ p∗}, we have ‖N(y)‖ ≤ l.
We have, for each t ∈ [0,T],

∣
∣N(y)(t)

∣
∣ ≤ ‖φ‖D +

n−1∑

i=1

∣
∣yi
∣
∣ t

i

i!
+

Tn−1

(n− 1)!

∫ t

0

∣
∣ f
(
s, ys
)∣∣ds (8.57)

≤ ‖φ‖D +
n−1∑

i=1

∣
∣yi
∣
∣T

i

i!
+

Tn−1

(n− 1)!

∥
∥hp∗

∥
∥
L1 . (8.58)

Thus

∥
∥N(y)

∥
∥∞ ≤ ‖φ‖D +

n−1∑

i=1

∣
∣yi
∣
∣T

i

i!
+

Tn−1

(n− 1)!

∥
∥hp∗

∥
∥
L1 := l. (8.59)

Claim 3. N maps bounded sets into equicontinuous sets of Ω.
Let l1, l2 ∈ [0,T], l1 < l2, and let Bp∗ be a bounded set of Ω as in Claim 2, and

let y ∈ Bp∗ . Then

∣
∣N(y)

(
l2
)−N(y)

(
l1
)∣∣ ≤

n−1∑

i=1

∣
∣yi
∣
∣ l1

i − l2i
i!

+
∫ l2

l1

∣∣l2 − s
∣∣n−1

(n− 1)!
hp∗(s)ds

+
∫ l1

0

∣∣
∣
(
l2 − s

)n−1 − (l2 − s
)n−1
∣∣
∣

(n− 1)!
hp∗(s)ds.

(8.60)

As l2 → l1, the right-hand side of the above inequality tends to zero. The equicon-
tinuity for the cases l1 < l2 ≤ 0 and l1 ≤ 0 ≤ l2 is obvious. As a consequence
of Claims 1 to 3 together with the Arzela-Ascoli theorem, we can conclude that
N : Ω→ Ω is completely continuous.
Claim 4. Now it remains to show that the set

E(N) := {y ∈ Ω : y = λN(y) for some 0 < λ < 1
}

(8.61)

is bounded.
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Let y ∈ E(N). Then y = λN(y) for some 0 < λ < 1. Thus, for each t ∈ [0,T],

y(t) = λ

(

φ(0) +
n−1∑

i=1

yi
ti

i!
+
∫ t

0

(t − s)n−1

(n− 1)!
f
(
s, ys
)
ds

)

. (8.62)

This implies that, for each t ∈ J , we have

∣∣y(t)
∣∣ ≤ ‖φ‖D +

n−1∑

i=1

∣∣yi
∣∣T

i

i!
+
∫ t

0

Tn−1

(n− 1)!
p(s)ψ

(∥∥ys
∥∥

D

)
ds. (8.63)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣
∣ : −r ≤ s ≤ t

}
, 0 ≤ t ≤ T. (8.64)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous in-
equality we have, for t ∈ [0,T],

μ(t) ≤ ‖φ‖D +
n−1∑

i=1

∣
∣yi
∣
∣T

i

i!
+
∫ t

0

Tn−1

(n− 1)!
p(s)ψ

(
μ(s)
)
ds. (8.65)

If t∗ ∈ [−r, 0], then μ(t) ≤ ‖φ‖D and the previous inequality holds. Let us take
the right-hand side of the above inequality as v(t). Then we have

v(0) = ‖φ‖D +
n−1∑

i=1

∣
∣yi
∣
∣T

i

i!
, μ(t) ≤ v(t), t ∈ [0,T],

v′(t) = Tn−1

(n− 1)!
p(t)ψ

(
μ(t)
)
, a.e. t ∈ [0,T].

(8.66)

Using the nondecreasing character of ψ, we get

v′(t) ≤ Tn−1

(n− 1)!
p(t)ψ

(
v(t)
)
, a.e. t ∈ [0,T]. (8.67)

This implies that, for each t ∈ [0,T],

∫ v(t)

v(0)

ds

ψ(s)
≤ Tn−1

(n− 1)!

∫ T

0
p(s)ds < +∞. (8.68)

Thus there exists a constant K such that v(t) ≤ K , t ∈ [0,T], and hence μ(t) ≤ K ,
t ∈ [0,T]. Since for every t ∈ [0,T], ‖yt‖ ≤ μ(t), we have

‖y‖ ≤ K ′ = max
{‖φ‖D ,K

}
, (8.69)

where K ′ depends on T and on the functions p and ψ. This shows that E(N) is
bounded.
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Set X := Ω. As a consequence of Schaefer’s theorem, we deduce that N has
a fixed point y which is a solution to problem (8.51)-(8.52). Denote this solution
by y1.

Define the function

rk,1(t) = τk
(
y1(t)

)− t, for t ≥ 0. (8.70)

Hypothesis (8.2.2) implies that

rk,1(0) �= 0, for k = 1, . . . ,m. (8.71)

If

rk,1(t) �= 0 on [0,T], for k = 1, . . . ,m, (8.72)

that is,

t �= τk
(
y1(t)

)
on [0,T] and for k = 1, . . . ,m, (8.73)

then y1 is a solution of the problem (8.48). It remains to consider the case when

rk,1(t) = 0, for some t ∈ [0,T], k = 1, . . . ,m. (8.74)

Now since

rk,1(0) �= 0 (8.75)

and rk,1 is continuous, there exists t1 > 0 such that

rk,1
(
t1
) = 0, rk,1(t) �= 0, ∀t ∈ [0, t1

)
. (8.76)

Step 2. Consider now the following problem:

y(n)(t) = f
(
t, yt
)
, a.e. t ∈ [t1,T

]
, (8.77)

y(i)(t+1
) = I1,i

(
y1
(
t1
))

, i = 1, . . . ,n− 1, (8.78)

y(t) = y1(t), t ∈ [t1 − r, t1
]
. (8.79)

Transform the problem (8.77)–(8.79) into a fixed point problem. Consider the
operator N1 : PC([t1 − r,T], Rn) → PC([t1 − r,T], Rn) defined by

N1(y)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1(t), t ∈ [t1 − r, t1
]

n−1∑

i=1

I1,i
(
y1
(
t1
))
(
t − t1

)i

i!
+
∫ t

t1

(t − s)n−1

(n− 1)!
f
(
s, ys
)
ds, t ∈ [t1,T

]
.

(8.80)
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As in Step 1, we can show that N1 is completely continuous, and the set

E
(
N1
)

:= {y ∈ PC
([
t1 − r,T

]
, Rn
)

: y = λN1(y) for some 0 < λ < 1
}

(8.81)

is bounded.
Set X := PC([t1 − r,T], Rn). As a consequence of Schaefer’s theorem, we de-

duce that N1 has a fixed point y which is a solution to problem (8.53)-(8.77).
Denote this solution by y2. Define

rk,2(t) = τk
(
y2(t)

)− t, for t ≥ t1. (8.82)

If

rk,2(t) �= 0 on
(
t1,T

]
, ∀k = 1, . . . ,m, (8.83)

then

y(t) =
⎧
⎨

⎩
y1(t) if t ∈ [0, t1

]
,

y2(t) if t ∈ (t1,T
]
,

(8.84)

is a solution of the problem (8.48)-(8.49). It remains to consider the case when

rk,2(t) = 0, for some t ∈ (t1,T
]
, k = 2, . . . ,m. (8.85)

By (8.2.6), we have

rk,2
(
t+1
) = τk

(
y2
(
t+1
))− t1 = τk

(
I1,1
(
y1
(
t1
)))− t1

> τk−1
(
y1
(
t1
))− t1 ≥ τ1

(
y1
(
t1
))− t1 = r1,1

(
t1
) = 0.

(8.86)

Since rk,2 is continuous, there exists t2 > t1 such that

rk,2
(
t2
) = 0,

rk,2(t) �= 0, ∀t ∈ (t1, t2
)
.

(8.87)

Suppose now that there is s ∈ (t1, t2] such that

r1,2(s) = 0. (8.88)

From (8.2.6), it follows that

r1,2
(
t+1
) = τ1

(
y2
(
t+1
))− t1 = τ1

(
I1,1
(
y1
(
t1
)))− t1

≤ τ1
(
y1
(
t1
))− t1 = r1,1

(
t1
) = 0.

(8.89)
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Thus the function r1,2 attains a nonnegative maximum at some point s1 ∈ (t1,T].
Since

y′2(t) =
n−1∑

i=2

I1,i
(
y1
(
t1
))
(
t − t1

)i−2

(i− 2)!
+
∫ t

t1

(t − s)n−2

(n− 2)!
f
(
s, ys
)
ds, (8.90)

then

r′1,2

(
s1
) = τ′1

(
y2
(
s1
))
y′2(s)− 1 = 0. (8.91)

Therefore

〈

τ′1
(
y2
(
s1
))

,
n−1∑

i=2

I1,i
(
y1
(
t1
))
(
s1 − t1

)i−2

(i− 2)!
+
∫ s1

t1

(
s1 − s

)n−2

(n− 2)!
f
(
s, ys
)
ds

〉

= 1,

(8.92)

which is a contradiction by (8.4.1).
Step 3. We continue this process taking into account that ym := y |[tm,T] is a solu-
tion to the problem

y(n)(t) = f
(
t, yt
)
, a.e. t ∈ (tm,T

)
,

y(i)(t+m
) = Im,i

(
ym−1

(
tm
))

, i = 1, . . . ,n− 1,

y(t) = ym−1(t), t ∈ [tm − r, tm
]
, i = 1, . . . ,n− 1.

(8.93)

The solution y of the problem (8.48) is then defined by

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1(t) if t ∈ [− r, t1
]
,

y2(t) if t ∈ (t1, t2
]
,

...

ym(t) if t ∈ (tm,T
]
.

(8.94)

�

8.4. Boundary value problems for differential inclusions
with variable times

This section is concerned with the existence of solutions for first-order boundary
value problems with impulsive effects as

y′(t) ∈ F
(
t, y(t)

)
, t ∈ J = [0,T], t �= τk

(
y(t)
)
, k = 1, . . . ,m,

y
(
t+
) = Ik

(
y(t)
)
, t = τk

(
y(t)
)
, k = 1, . . . ,m,

L
(
y(0), y(T)

) = 0,

(8.95)

where F : J × R → P (R) is a compact convex-valued multivalued map, and L :
R2 → R is a single-valued map, τk : R → R, Ik ∈ C(R, R) (k = 1, 2, . . . ,m), are
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bounded maps, y(t−) and y(t+) represent the left and right limits of y(s) at s = t,
respectively.

So let us start by defining what we mean by a solution of problem (8.95).

Definition 8.5. A function y ∈ PC(J , R) ∩ (AC(tk, tk+1), R), k = 0, . . . ,m, is said
to be a solution of (8.95) if there exists v ∈ L1(J , R) with v(t) ∈ F(t, y(t)) for
a.e. t ∈ J such that y satisfies the differential equation y′(t) = v(t) a.e. on J ,
t �= τk(y(t)), k = 1, . . . ,m, and the conditions y(t+) = Ik(y(t)), t = τk(y(t)),
k = 1, . . . ,m, and L(y(0), y(T)) = 0.

The following concept of lower and upper solutions for (8.95) has been intro-
duced by Benchohra et al. [53] for periodic boundary value problems for impul-
sive differential inclusions at fixed moments (see also [35]). It will be the basic tool
in the approach that follows.

Definition 8.6. A function α ∈ PC(J , R)∩ (AC(tk, tk+1), R), k = 0, . . . ,m, is said to
be a lower solution of (8.95) if there exists v1 ∈ L1(J , R) such that v1(t) ∈ F(t,α(t))
a.e. on J , α′(t) ≤ v1(t) a.e. on J , t �= τk(α(t)), α(t+) ≤ Ik(α(t−)), t = τk(α(t)), k =
1, . . . ,m, and L(α(0),α(T)) ≤ 0.

Similarly a function β ∈ PC(J , R)∩(AC(tk, tk+1), R), k = 0, . . . ,m, is said to be
an upper solution of (8.95) if there exists v2 ∈ L1(J , R) such that v2(t) ∈ F(t,β(t))
a.e. on J , β′(t) ≥ v2(t) a.e. on J , tk �= τk(β(t)), β(t+) ≥ Ik(β(t−)), t = τ(βk(t)),
k = 1, . . . ,m, and L(β(0),β(T)) ≥ 0.

We are now in a position to state and prove our existence result for the prob-
lem (8.95).

Theorem 8.7. Assume that the following hypotheses hold.
(8.7.1) F : J ×R→ P (R) is an L1-Carathéodory multivalued map.
(8.7.2) There exist α and β ∈ PC(J , R), lower and upper solutions for the prob-

lem (8.95) such that α ≤ β.
(8.7.3) L is a continuous single-valued map in (x, y) ∈ [α(0),β(0)] × [α(T),

β(T)], nonincreasing and linear in y ∈ [α(T),β(T)], and L(x, 0) = 0
for each x ∈ R.

(8.7.4) For each k = 1, . . . ,m, the function Ik is nondecreasing.
(8.7.5) The functions τk ∈ C1(R, R) for k = 1, . . . ,m. Moreover,

0 = τ0(x) < τ1(x) < · · · < τm(x) < τm+1(x) = T , ∀x ∈ R. (8.96)

(8.7.6) For all y ∈ C([0,T], R) and for all v ∈ SF,y ,

τ′k
(
y(t)
)
v(t) �= 1, for t ∈ [0,T], k = 1, . . . ,m. (8.97)

(8.7.7) For all x ∈ R,

τk
(
Ik(x)

) ≤ τk(x) < τk+1
(
Ik(x)

)
, for k = 1, . . . ,m. (8.98)
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Then the problem (8.95) has at least one solution y such that

α(t) ≤ y(t) ≤ β(t), ∀t ∈ J. (8.99)

Proof. The proof will be given in several steps.
Step 1. Consider the following problem:

y′(t) ∈ F
(
t, y(t)

)
, a.e. t ∈ [0,T],

L
(
y(0), y(T)

) = 0.
(8.100)

Transform the problem (8.100) into a fixed point problem. Consider the modified
problem

y′(t) + y(t) ∈ F1
(
t, y(t)

)
, a.e.t ∈ J , (8.101)

y(0) = γ
(
0, y(0)− L(y(0), y(T)

))
, (8.102)

where F1(t, y) = F(t, γ(t, y)) + γ(t, y), γ(t, y) = max(α(t)), min(y,β(t)), and
y(t) = γ(t, y). A solution to (8.101)-(8.102) is a fixed point of the operator N :
PC(J , R) → P (PC(J , R)) defined by

N(y) =
{
h ∈ PC(J , R) : h(t) = y(0) +

∫ t

0

[
g(s) + y(s)− y(s)

]
ds
}

, (8.103)

where g ∈ S̃F,y , and

S̃F,y =
{
v ∈ SF,y : v(t) ≥ v1(t) a.e. on A1 and v(t) ≤ v2(t) a.e. on A2

}
,

SF,y =
{
v ∈ L1(J , R) : v(t) ∈ F

(
t, y(t)

)
for a.e. t ∈ J

}
,

A1 =
{
t ∈ J : y(t) < α(t) ≤ β(t)

}
, A2 =

{
t ∈ J : α(t) ≤ β(t) < y(t)

}
.

(8.104)

Remark 8.8. (i) Notice that F1 is an L1-Carathéodory multivalued map with com-
pact convex values and there exists ϕ ∈ L1(J , R) such that

∥∥F1(t, y)
∥∥ ≤ ϕ(t) + max

(

sup
t∈J

∣∣α(t)
∣∣, sup

t∈J

∣∣β(t)
∣∣
)

. (8.105)

(ii) By the definition of γ, it is clear that

α(0) ≤ y(0) ≤ β(0),

Ik
(
α(t)
) ≤ Ik

(
γ
(
t, y(t)

)) ≤ Ik
(
β(t)
)
, k = 1, . . . ,m.

(8.106)

In order to apply the nonlinear alternative of Leray-Schauder type, we will
first show that N is completely continuous with convex values. The proof will be
given in several claims.
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Claim 1. N(y) is convex for each y ∈ PC(J , R).
Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ S̃F,y such that, for

each t ∈ J , we have

hi(t) = y(0) +
∫ t

0

[
gi(s) + y(s)− y(s)

]
ds, i = 1, 2. (8.107)

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(
dh1 + (1− d)h2

)
(t) =

∫ t

0

[
dg1(s) + (1− d)g2(s) + y(s)− y(s)

]
ds. (8.108)

Since S̃F1,y is convex (because F1 has convex values), then

dh1 + (1− d)h2 ∈ N(y). (8.109)

Claim 2. N maps bounded sets into bounded sets in PC(J , R).
Indeed, it is enough to show that for each q > 0 there exists a positive constant

l such that for each y ∈ Bq = {y ∈ C(J , R) : ‖y‖PC ≤ q}, one has ‖N(y)‖PC :=
sup{‖h‖PC : h ∈ N(y)} ≤ l.

Let y ∈ Bq and h ∈ N(y), then there exists g ∈ S̃F,y such that, for each t ∈ J ,
we have

h(t) = y(0) +
∫ t

0

[
g(s) + y(s)− y(s)

]
ds. (8.110)

By (8.7.1), we have, for each t ∈ J ,

∣∣h(t)
∣∣ ≤ ∣∣y(0)

∣∣ +
∫ T

0

[∣∣g(s)
∣∣ +
∣∣y(s)

∣∣ +
∣∣y(s)

∣∣]ds

≤ max
(∣∣α(0)

∣
∣,
∣
∣β(0)

∣
∣) +

∥
∥φq
∥
∥
L1

+ T max

(

q, sup
t∈J

∣
∣α(t)

∣
∣, sup

t∈J

∣
∣β(t)

∣
∣
)

+ Tq.

(8.111)

Claim 3. N maps bounded set into equicontinuous sets of PC(J , R).
Let u1,u2 ∈ J , u1 < u2, and let Bq be a bounded set of PC(J , R) as in Claim 2.

Let y ∈ Bq and h ∈ N(y). Then there exists g ∈ S̃F,y such that, for each t ∈ J , we
have

h(t) = y(0) +
∫ t

0

[
g(s) + y(s)− y(s)

]
ds. (8.112)
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Then

∣
∣h
(
u2
)− h(u1

)∣∣ ≤
∫ u2

u1

φq(s)ds +
(
u2 − u1

)
max

(

q, sup
t∈J

∣
∣α(t)

∣
∣, sup

t∈J

∣
∣β(t)

∣
∣
)

+
(
u2 − u1

)
q.

(8.113)

As u2 → u1, the right-hand side of the above inequality tends to zero.
As a consequence of Claims 1 to 3 together with the Arzela-Ascoli theorem,

we can conclude that N : PC(J , R) → P (PC(J , R)) is a completely continuous
multivalued map, and therefore, a condensing map.
Claim 4. N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists gn ∈ S̃F,yn such that for each t ∈ J ,

hn(t) = yn(0) +
∫ t

0

[
gn(s) + yn(s)− yn(s)

]
ds. (8.114)

We must prove that there exists g∗ ∈ S̃F,y∗ such that, for each t ∈ J ,

h∗(t) = y∗(0) +
∫ t

0

[
g∗(s) + y∗(s)− y∗(s)

]
ds. (8.115)

Since γ is continuous, then we have

∥
∥∥
∥

(
hn − yn(0)−

∫ t

0

[
yn(s)− yn(s)

]
ds
)

−
(
h∗ − y∗(0)−

∫ t

0

[
y∗(s)− y∗(s)

]
ds
)∥∥∥
∥
∞
�→ 0,

(8.116)

as n→∞.
Consider the linear continuous operator

Γ : L1(J , R) �→ C(J , R),

g � �→ (Γg)(t) =
∫ t

0
g(s)ds.

(8.117)

From Lemma 1.28, it follows that Γ ◦ S̃F is a closed graph operator.
Moreover, we have

hn(t)− yn(0)−
∫ t

0

[
yn(s)− yn(s)

]
ds ∈ Γ

(
S̃F,yn

)
. (8.118)
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Since yn → y∗, it follows from Lemma 1.28 that

(
h∗(t)− y∗(0)−

∫ t

0

[
y∗(s)− y∗(s)

]
ds
)
=
∫ t

0
g∗(s)ds (8.119)

for some g∗ ∈ S̃F,y∗ .
Claim 5. A priori bounds on solutions.

Let y be such that y ∈ λN(y) for some λ ∈ (0, 1). Then

y(t) = λy(0) + λ
∫ t

0

[
g(s)− y(s)− y(s)

]
ds. (8.120)

This implies by Remark 8.8 that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤ ∣∣y(0)

∣
∣ +
∫ t

0

[∣∣g(s)
∣
∣ +
∣
∣y(s)

∣
∣ +
∣
∣y(s)

∣
∣]ds

≤ max
(∣∣α(0)

∣∣,
∣∣β(0)

∣∣) + ‖ϕ‖L1

+ T max

(

sup
t∈J

∣
∣α(t)

∣
∣, sup

t∈J

∣
∣β(t)

∣
∣
)

+
∫ t

0

∣
∣y(s)

∣
∣ds.

(8.121)

Set

z0 = max
(∣∣α(0)

∣∣,
∣∣β(0)

∣∣) + ‖ϕ‖L1 + T max

(

sup
t∈J

∣∣α(t)
∣∣, sup

t∈J

∣∣β(t)
∣∣
)

.

(8.122)

Using Gronwall’s lemma, we get, for each t ∈ J ,

∣
∣y(t)

∣
∣ ≤ z0e

t. (8.123)

Thus

‖y‖PC ≤ z0e
T . (8.124)

Set

U = {y ∈ PC(J , R) : ‖y‖PC < z0e
T + 1

}
, (8.125)

and consider the operator N defined on U . From the choice of U there is no y ∈
∂U such that y ∈ λN(y) for some λ ∈ (0, 1). As a consequence of the nonlinear
alternative of Leray Schauder type [157], we deduce that N has a fixed point y1 in
U is a solution of the problem (8.101)-(8.102).
Claim 6. The solution y of (8.101)-(8.102) satisfies

α(t) ≤ y(t) ≤ β(t), ∀t ∈ J. (8.126)
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Let y be a solution to (8.101)-(8.102). We prove that

α(t) ≤ y(t), ∀t ∈ J. (8.127)

Suppose not. Then there exist c1, c2 ∈ J , c1 < c2, such that

y
(
c1
) = α

(
c1
)
, y(t) < α(t), ∀t ∈ (c1, c2

)
. (8.128)

In view of the definition of γ, one has

y′(t) + y(t) ∈ F
(
t,α(t)

)
+ α(t), a.e. on

(
c1, c2

)
. (8.129)

Thus there exists v(t) ∈ F(t,α(t)) a.e. on (c1, c2), v(t) ≥ v1(t) a.e. on (c1, t] such
that

y′(t) + y(t) = v(t) + α(t) a.e on
(
c1, t
]
. (8.130)

An integration on (c1, t] yields

y(t)− y
(
c1
) =
∫ t

c1

(
v(s)− y(s) + α(s)

)
ds >

∫ t

c1

v(s)ds. (8.131)

Using the fact that α is a lower solution to (8.95), we get

α(t)− α(c1
) ≤
∫ t

c1

v1(s)ds, t ∈ (c1, c2
)
. (8.132)

It follows that from the facts y(c1) = α(c1), v(t) ≥ v1(t), we get

y(t) > α(t), for each t ∈ (c1, c2
)
, (8.133)

which is a contradiction. Consequently,

α(t) ≤ y(t), ∀t ∈ J. (8.134)

Analogously, we can prove that

y(t) ≤ β(t), ∀t ∈ J. (8.135)

This shows that the problem (8.101)-(8.102) has a solution in the interval [α,β].
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Finally, we prove that every solution of (8.101)-(8.102) is also a solution to
(8.95). We need to show only that

α(0) ≤ y(0)− L(y(0), y(T)
) ≤ β(0). (8.136)

Notice first that we readily have

α(T) ≤ y(T) ≤ β(T). (8.137)

Suppose now that y(0)− L(y(0), y(T)) ≤ α(0). Then y(0) = α(0) and

y(0)− L(α(T), y(0)
) ≤ α(0). (8.138)

Since L is nonincreasing in y, we have

α(0) ≤ α(0)− L(α(0),α(T)
) ≤ α(0)− L(α(0), y(T)

)
< α(0), (8.139)

which is a contradiction. Analogously, we can prove that

y(0)− L(y(0), y(T)
) ≤ β(0). (8.140)

Then y is a solution to (8.100). Denote this solution by y1. Define the function

rk,1(t) = τk
(
y1(t)

)− t, for t ≥ 0. (8.141)

(8.7.5) implies that

rk,1(0) �= 0, for k = 1, . . . ,m. (8.142)

If

rk,1(t) �= 0 on [0,T], for k = 1, . . . ,m, (8.143)

that is,

t �= τk
(
y1(t)

)
on [0,T] and for k = 1, . . . ,m, (8.144)

then y1 is a solution of the problem (8.95).
It remains to consider the case when

rk,1(t) = 0, for some t ∈ [0,T]. (8.145)
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Now since

rk,1(0) �= 0 (8.146)

and rk,1 is continuous, there exists t1 > 0 such that

rk,1
(
t1
) = 0, rk,1(t) �= 0, ∀t ∈ [0, t1

)
. (8.147)

Step 2. Consider now the problem

y′(t) ∈ F
(
t, y(t)

)
, a.e. t ∈ [t1,T

]
,

y
(
t+1
) = I1

(
y1
(
t1
))
.

(8.148)

Transform the problem (8.148) into a fixed point problem. Consider the mod-
ified problem

y′(t) + y(t) ∈ F
(
t, γ(t, y)

)
+ γ(t, y), a.e. t ∈ [t1,T

]
, (8.149)

y
(
t+1
) = I1

(
γ
(
t−1 , y

(
t−1
)))

. (8.150)

A solution to (8.149)-(8.150) is a fixed point of the operator N1 : PC([t1,T], R) →
P (PC([t1,T], R)) defined by

N1(y)

=
{
h ∈ PC

([
t1,T

]
, R
)

: h(t)=I1
(
γ
(
t−1 , y

(
t−1
))

)+
∫ t

t1

[
g(s)+y(s)−y(s)

]
ds
}

,

(8.151)

where g ∈ S̃F,y .
As in Step 1, we can show that N1 is completely continuous, and there exists a

constant M1 > 0 such that for any solution y of problem (8.149)-(8.150) one has

∣
∣y(t)

∣
∣ ≤M1, for each t ∈ [t1,T

]
. (8.152)

Let the set

U2 =
{
y ∈ C

([
t1,T

]
, R
)

: ‖y‖PC < M1 + 1
}
. (8.153)

As in Step 1, we show that the operator N1 : U2 → P (PC([t1,T], Rn)) is com-
pletely continuous. From the choice of U2 there is no y ∈ ∂U2 such that y ∈
λN2(y) for some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray
Schauder type [157] we deduce thatN2 has a fixed point y inU2 which is a solution
to problem (8.148). Note this solution by y2. Define

rk,2(t) = τk
(
y2(t)

)− t, for t ≥ t1. (8.154)
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If

rk,2(t) �= 0 on
(
t1,T

]
, ∀k = 1, . . . ,m, (8.155)

then

y(t) =
⎧
⎨

⎩
y1(t) if t ∈ [0, t1

]
,

y2(t) if t ∈ (t1,T
]
,

(8.156)

is a solution of problem (8.95).
It remains to consider the case when

rk,2(t) = 0, for some t ∈ (t1,T
]
, k = 2, . . . ,m. (8.157)

By (8.7.7), we have

rk,2
(
t+1
) = τk

(
y2
(
t+1
))− t1 = τk

(
I1
(
y1
(
t1
)))− t1

≥ τ1
(
y1
(
t1
))− t1 = r1,1

(
t1
) = 0.

(8.158)

Since rk,2 is continuous, there exists t2 > t1 such that

rk,2
(
t2
) = 0,

rk,2(t) �= 0, ∀t ∈ (t1, t2
)
.

(8.159)

Suppose now that there is s ∈ (t1, t2] such that

r1,2(s) = 0. (8.160)

From (8.7.5), it follows that

r1,2
(
t+1
) = τ1

(
y2
(
t+1
))− t1 = τ1

(
I1
(
y1
(
t1
)))− t1

≤ τ1
(
y1
(
t1
))− t1 = r1,1

(
t1
) = 0.

(8.161)

Thus the function r1,2 attains a nonnegative maximum at some point s1 ∈ (t1,T].
Since

y′2(t) ∈ F
(
t, y2(t)

)
, a.e. t ∈ (t1,T

)
, (8.162)

then there exist v(·) ∈ L1((t1,T)) with v(t) ∈ F(t, y2(t)), a.e. t ∈ (t1,T) such that

y′2(t) = v(t), a.e. t ∈ (t1,T
]
. (8.163)

Thus

r′1,2

(
s1
) = τ′1

(
y2
(
s1
))
v
(
s1
)− 1 = 0. (8.164)
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Therefore

τ′1
(
y2
(
s1
))
v
(
s1
) = 1, (8.165)

which contradicts (8.7.6).
Step 3. We continue this process taking into account that ym := y |[tm,T] is a solu-
tion to the problem

y′(t) ∈ F
(
t, y(t)

)
, a.e. t ∈ (tm,T

)
,

y
(
t+m
) = Im

(
ym−1

(
t−m
))
.

(8.166)

Consider the modified problem

y′(t) + y(t) ∈ F
(
t, γ(t, y)

)
+ γ(t, y), a.e. t ∈ [tm,T

]
,

y
(
t+m
) = Im

(
γ
(
t−m, y

(
t−m
)))

.
(8.167)

Transform the problem into a fixed point problem. Consider the operator Nm :
PC([tm,T], R) → P (PC([tm,T], R)) defined by

Nm(y)=
{
h∈C([tm,T

]
, R
)

: h(t) = Im
(
γ
(
t−m, y

(
t−m
)))

+
∫ t

tm

[
g(s) + y(s)−y(s)

]
ds
}

,

(8.168)

where g ∈ S̃F,y . By Remark 8.8 and using Gronwall’s lemma there exists Mm such
that for every possible solution y of problem (8.167), we have

‖y‖PC ≤Mm. (8.169)

Let the set

C1 =
{
y ∈ PC

([
tm,T

]
, Rn
)

: L
(
y1(0), y(T)

) = 0
}
. (8.170)

From (8.7.3), C1 is convex. Set

Um =
{
y ∈ C1 : ‖y‖PC < Mm + 1

}
. (8.171)

As in Step 1, we show that the operator Nm : Um → P (PC([tm,T], R)) is com-
pletely continuous. From the choice of Um there is no y ∈ ∂Um such that y ∈
λNm(y) for some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-
Schauder type, we deduce that Nm has a fixed point y in Um which is a solution of
the problem (8.166), and

α(t) ≤ y(t) ≤ β(t), t ∈ [tm,T
]
. (8.172)
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Since γ(t, y) = y for all y ∈ [α,β], then y is a solution to the problem (8.102)–
(8.149). Denote this solution by ym.

The solution y of the problem (8.95) is then defined by

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1(t) if t ∈ [0, t1
]
,

y2(t) if t ∈ (t1, t2
]
,

...

ym(t) if t ∈ (tm,T
]
.

(8.173)

�

8.5. Notes and remarks

The results of Section 8.2 were obtained by Benchohra et al. [71]. Section 8.3 ap-
peared in [70]. The results of Section 8.4 were obtained by Benchohra et al. [45].



9
Nondensely defined impulsive
differential equations & inclusions

9.1. Introduction

This chapter deals with semilinear functional differential equations and functional
differential inclusions involving linear operators that are nondensely defined on a
Banach space. This chapter extends several previous results of this book that were
devoted to semilinear problems with densely defined operators. Some of the results
of this chapter were first presented in the work by Benchohra et al. [76].

9.2. Nondensely defined impulsive semilinear differential
equations with nonlocal conditions

In this section, we will prove existence results for an evolution equation with non-
local conditions of the form

y′(t) = Ay(t) + F
(
t, y(t)

)
, t ∈ J := [0,T], t �= tk, k = 1, . . . ,m, (9.1)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (9.2)

y(0) + g(y) = y0, (9.3)

where A : D(A) ⊂ E → E is a nondensely defined closed linear operator, F :
J × E → E is continuous, g : C(J ′,E) → E, (J ′ = J\{t1, . . . , tm}), Ik : E → D(A),
k = 1, . . . ,m, Δy|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h) and y(t−k ) =
limh→0+ y(tk − h), and E is a separable Banach space with norm | · |.

As indicated in [112, 115, 126] and the references therein, the nonlocal condi-
tion y(0) + g(y) = y0 can be applied to physics with better effect than the classical
initial condition y(0) = y0. For example, in [126], the author used

g(y) =
p∑

k=1

ci y
(
ti
)
, (9.4)

where ci, i = 1, . . . , p, are given constants and 0 < t1 < t2 < · · · < tp ≤ T ,
to describe the diffusion phenomenon of a small amount of gas in a transparent
tube. In this case, (9.4) allows the additional measurements at ti, i = 1, . . . , p.
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When operator A generates a C0 semigroup, or equivalently, when a closed
linear operator A satisfies

(i) D(A) = E, (D means domain),
(ii) the Hille-Yosida condition; that is, there exists M ≥ 0 and τ ∈ R such

that (τ,∞) ⊂ ρ(A), sup{(λI − τ)n|(λI − A)−n| : λ > τ, n ∈ N} ≤M,
where ρ(A) is the resolvent operator set of A and I is the identity operator, then
(9.1) with nonlocal conditions has been studied extensively. Existence, uniqueness,
and regularity, among other things, are derived; see [112–115, 126, 205].

However, as indicated in [124], we sometimes need to deal with nondensely
defined operators. For example, when we look at a one-dimensional heat equation
with Dirichlet conditions on [0, 1] and consider A = ∂2/∂x2 in C([0, 1], R), in
order to measure the solutions in the sup-norm, then the domain

D(A) = {φ ∈ C2([0, 1], R
)

: φ(0) = φ(1) = 0
}

(9.5)

is not dense in C([0, 1], R) with the sup-norm. See [124] for more examples and
remarks concerning nondensely defined operators.

Our purpose here is to extend the results of densely defined impulsive evo-
lution equations with nonlocal conditions. We use Schaefers fixed point theorem
and integrated semigroups to derive the existence of integral solutions (when the
operator is nondensely defined).

In order to define the solution of (9.1)–(9.3) we will consider the following
space:

Ω = {y : [0,T] �→ E : yk ∈ C
(
Jk,E
)
, k = 0, . . . ,m, and there exist

y
(
t−k
)
, y
(
t+k
)
, k = 1, . . . ,m with y

(
t−k
) = y

(
tk
)}

,
(9.6)

which is a Banach space with the norm

‖y‖Ω = max
{∥∥yk

∥
∥
Jk

, k = 0, . . . ,m
}

, (9.7)

where yk is the restriction of y to Jk = (tk, tk+1], k = 0, . . . ,m.
Consider the initial value problem

y′(t)− Ay(t) = f (t), t ∈ [0,T], y(0) = y0, (9.8)

and let (S(t))t≥0 be the integrated semigroup generated byA. Then sinceA satisfies
the Hille-Yosida condition, ‖S′(t)‖B(E) ≤ Meωt, t ≥ 0, where M and ω are from
the Hille-Yosida condition (see [21, 175]).

Theorem 9.1. Let f : [0,T] → E be a continuous function. Then, for y0 ∈ D(A),
there exists a unique continuous function y : [0,T] → E such that

(i)
∫ t

0 y(s)ds ∈ D(A), t ∈ [0,T],
(ii) y(t) = y0 +A

∫ t
0 y(s)ds +

∫ t
0 f (s)ds, t ∈ [0,T],

(iii) |y(t)| ≤Meωt(|y0| +
∫ t

0 e
−ωs| f (s)|ds), t ∈ [0,T].
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Moreover, y satisfies the following variation of constants formula:

y(t) = S′(t)y0 +
d

dt

∫ t

0
S(t − s) f (s)ds, t ≥ 0. (9.9)

Let Bλ = λR(λ,A) := λ(λI−A)−1. Then (see [175]) for all x ∈ D(A), Bλx → x
as λ → ∞. Also from the Hille-Yosida condition (with n = 1) it easy to see that
limλ→∞ |Bλx| ≤M|x|, since

∣
∣Bλ
∣
∣ = ∣∣λ(λI − A)−1

∣
∣ ≤ Mλ

λ− ω . (9.10)

Thus limλ→∞ |Bλ| ≤M. Also if y satisfies (9.9), then

y(t) = S′(t)y0 + lim
λ→∞

∫ t

0
S′(t − s)Bλ f (s)ds, t ≥ 0. (9.11)

Definition 9.2. Given F ∈ L1(J × E,E) and y0 ∈ E, say that y : J → E is an integral
solution of (9.1)–(9.3) if

(i) y ∈ Ω,
(ii)

∫ t
0 y(s)ds ∈ D(A) for t ∈ J ,

(iii) y(t) = y0 − g(y) +A
∫ t

0 y(s)ds+
∫ t

0 F(s, y(s))ds+
∑

0<tk<t Ik(y(t−k )), t ∈ J .

From (ii) it follows that y(t) ∈ D(A), for all t ≥ 0. Also from (iii) it follows
that y0 − g(y) ∈ D(A). So, if we assume that y0 ∈ D(A), we conclude that g(y) ∈
D(A).

Here and hereafter we assume that
(H1) A satisfies the Hille-Yosida condition.

Lemma 9.3. If y is an integral solution of (9.1)–(9.3), then it is given by

y(t) = S′(t)
[
y0 − g(y)

]
+
d

dt

∫ t

0
S(t − s)F(s, y(s)

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, for t ∈ J.
(9.12)

Proof. Let y be a solution of problem (9.1)–(9.3). Definew(s) = S(t−s)y(s). Then
we have

w′(s) = −S′(t − s)y(s) + S(t − s)y′(s)
= −AS(t − s)y(s)− y(s) + S(t − s)y′(s)
= S(t − s)[y′(s)− Ay(s)

]− y(s)

= S(t − s)F(s, y(s)
)− y(s).

(9.13)
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Consider tk < t, k = 1, . . . ,m. Then integrating the previous equation we have

∫ t

0
w′(s)ds =

∫ t

0
S(t − s)F(s, y(s)

)
ds−

∫ t

0
y(s)ds. (9.14)

For k = 1,

w(t)−w(0) =
∫ t

0
S(t − s)F(s, y(s)

)
ds−

∫ t

0
y(s)ds (9.15)

or

∫ t

0
y(s) = S(t)y(0) +

∫ t

0
S(t − s)F(s, y(s)

)
ds

= S(t)
(
y0 − g(y)

)
+
∫ t

0
S(t − s)F(s, y(s)

)
ds.

(9.16)

Now, for k = 2, . . . ,m, we have that

∫ t1

0
w′(s)ds +

∫ t2

t1
w′(s)ds + · · · +

∫ t

tk
w′(s)ds

=
∫ t

0
S(t − s)F(s, y(s)

)
ds−

∫ t

0
y(s)ds

⇐⇒ w
(
t−1
)−w(0) +w

(
t−2
)−w(t+1

)
+ · · · +w

(
t+k
)−w(t)

=
∫ t

0
S(t − s)F(s, y(s)

)
ds−

∫ t

0
y(s)ds,

∫ t

0
y(s)ds = w(0) +

∑

0<tk<t

[
w
(
t+k
)−w(t−k

)]
+
∫ t

0
S(t − s)F(s, y(s)

)
ds

= S(t)
(
y0 − g(y)

)
+
∑

0<tk<t

S
(
t − tk

)
I
(
y
(
t−k
))

+
∫ t

0
S(t − s)F(s, y(s)

)
ds.

(9.17)

By differentiating the above equation we have that

y(t) = S′(t)
(
y0 − g(y)

)

+
∑

0<tk<t

S′
(
t − tk

)
I
(
y
(
t−k
))

+
d

dt

∫ t

0
S(t − s)F(s, y(s)

)
ds,

(9.18)

which proves the lemma. �
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We set Ω′ = Ω∩ C(J ,D(A)).
Now we are able to state and prove our main theorem in this section.

Theorem 9.4. Assume that (H1) holds. Suppose also that
(9.4.1) for each t ∈ J , the function F(t, ·) is continuous and for each y, the

function F(·, y) is measurable;
(9.4.2) the operator S′(t) is compact in D(A) whenever t > 0;
(9.4.3) there exist a continuous function p : [0,T] → R+ and a continuous

nondecreasing function ψ : [0,∞) → [0,∞) such that

∣
∣F(t, x)

∣
∣ ≤ p(t)ψ

(|x|), t ∈ J , x ∈ E; (9.19)

(9.4.4) g : Ω′ → D(A) is completely continuous (i.e., continuous and takes
a bounded set into a compact set) and there exists G > 0 such that
|g(y)| ≤ G, for all y ∈ Ω;

(9.4.5) Ik : E → D(A) are completely continuous and there exist constants dk,
k = 1, . . . ,m, such that

∣∣Ik(y)
∣∣ ≤ dk, y ∈ D(A); (9.20)

(9.4.6) y0 ∈ D(A) and

∫ T

0
max

(
ω,Mp(s)

)
ds <

∫∞

c

ds

s + ψ(s)
, (9.21)

where c = M(|y0| + G +
∑m

k=1 e
−ωtkdk) and M and ω are from the

Hille-Yosida condition.
Then problem (9.1)–(9.3) has at least one integral solution on J .

Proof. Consider the operator N : Ω′ → Ω′ defined by

N(y)(t) = S′(t)
[
y0 − g(y)

]
+
d

dt

∫ t

0
S(t − s)F(s, y(s)

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ J.
(9.22)

Step 1. N is continuous.
Let {yn} be a sequence in Ω′ with limn→∞ yn = y in Ω′. By the continuity of

F with respect to the second argument, we deduce that for each s ∈ J , F(s, yn(s))
converges to F(s, y(s)) in E, and we have that

∣
∣N
(
yn
)
(t)−Ny(t)

∣
∣≤eωT

[
∣
∣g
(
yn
)− g(y)

∣
∣+
∫ T

0
e−ωs
∣
∣F
(
s, yn(s)

)−F(s, y(s)
)∣∣ds

+
m∑

k=1

e−ωtk
∣
∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣
]

.

(9.23)
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The sequence {yn} is bounded in Ω′. Then by assumption (9.4.5), and using
Lebesgue’s dominated convergence theorem and the continuity of g, we obtain
that

lim
n→∞N

(
yn
) = N(y), in Ω′, (9.24)

which implies that the mapping N is continuous on Ω′.
Step 2. N maps bounded sets into compact sets.

First, we will prove that {Ny(t) : y ∈ B} is relatively compact in E, where B is
a bounded set in Ω′. Let t ∈ J be fixed.

If t = 0, then {Ny(0) : y ∈ B} = {y0 − g(y) : y ∈ B} is relatively compact
since we assumed that g is completely continuous.

If t ∈ (0,T], choose ε such that 0 < ε < t. Then

N(y)(t) = S′(t)
[
y0 − g(y)

]
+ lim
λ→∞

∫ t

0
S′(t − s)BλF

(
s, y(s)

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

= S′(t)
[
y0 − g(y)

]
+ S′(ε) lim

λ→∞

∫ t−ε

0
S′(t − ε − s)× BλF

(
s, y(s)

)
ds

+ lim
λ→∞

∫ t

t−ε
S′(t − s)BλF

(
s, y(s)

)
ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
.

(9.25)

Since S′(t) is compact, we deduce that there exists a compact set W1 such that

S′(ε) lim
λ→∞

∫ t−ε

0
S′(t − ε − s)BλF

(
s, y(s)

)
ds ∈W1, (9.26)

for y ∈ B. Furthermore, by (9.4.4), there exists a positive constant b1 such that

∣
∣∣
∣ lim
λ→∞

∫ t

t−ε
S′(t − s)BλF

(
s, y(s)

)
ds
∣
∣∣
∣ ≤ b1ε, for y ∈ B. (9.27)

Moreover, by (9.4.4) and since S′(t) is compact, the set

S′(t)
[
y0 − g(y)

]
+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

: y ∈ B (9.28)

is relatively compact. We conclude that {Ny(t) : y ∈ B} is totally bounded and
therefore, it is relatively compact in E.
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Finally, let us show that NB is equicontinuous. For every 0 < τ0 < τ ≤ T and
y ∈ B,

∣
∣Ny(τ)−Ny(τ0

)∣∣

= ∣∣(S′(τ)− S′(τ0
))[

y0 − g(y)
]∣∣

+
∣∣
∣
∣ lim
λ→∞

∫ τ0

0

[
S′(τ − s)− S′(τ0 − s

)]
BλF
(
s, y(s)

)
ds
∣∣
∣
∣

+
∣
∣
∣
∣ lim
λ→∞

∫ τ

τ0

S′(τ − s)BλF
(
s, y(s)

)
ds
∣
∣
∣
∣

+

∣
∣∣
∣
∣

∑

0<tk<τ0

[
S′
(
τ − tk

)− S′(τ0 − tk
)]
Ik
(
y
(
t−k
))
∣
∣∣
∣
∣

+

∣
∣∣
∣
∣

∑

τ0<tk<τ

S′
(
τ − tk

)
Ik
(
y
(
t−k
))
∣
∣∣
∣
∣

≤ ∣∣[S′(τ)− S′(τ0
)][

y0 − g(y)
]∣∣

+
∣
∣
∣∣
[
S′
(
τ − τ0

)− I] lim
λ→∞

∫ τ0

0
S′
(
τ0 − s

)
BλF
(
s, y(s)

)
ds
∣
∣
∣∣

+ eωT lim
λ→∞

∫ τ

τ0

e−ωs p(s)ψ
(∣∣y(s)

∣
∣)ds

+
∑

0<tk<τ0

∥
∥S′
(
τ − tk

)− S′(τ0 − tk
)∥∥

B(E)dk

+ eωT
∑

τ0<tk<τ

e−ωtkdk.

(9.29)

The right-hand side tends to zero as τ → τ0, since S′(t) is strongly continuous,
and the compactness of S′(t), t > 0, implies the continuity in the uniform operator
topology. This proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It
remains to examine the equicontinuity at t = ti. The proof is similar to that given
in Theorem 4.3. Thus, NB is equicontinuous.

The equicontinuity for τ0 = 0 is obvious. As a consequence of the above steps
and the Arzelá-Ascoli theorem, we deduce that N maps B into precompact sets in
D(A).
Step 3. The set

Φ = {x ∈ Ω′ : x = σNx for some 0 < σ < 1} (9.30)

is bounded.
For y ∈ Φ, there exists σ ∈ (0, 1) such that y = σN y; that is,

y(t) = σS′(t)
[
y0 − g(y)

]
+ σ

d

dt

∫ t

0
S(t − s)F(s, y(s)

)
ds

+ σ
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ J.
(9.31)
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Using assumptions (9.4.3)–(9.4.6), we get

e−ωt
∣
∣y(t)

∣
∣ ≤M

[
∣
∣y0
∣
∣ +G +

∫ t

0
e−ωs p(s)ψ

(∣∣y(s)
∣
∣)ds +

m∑

k=1

e−ωtkdk

]

. (9.32)

Let v(t) denote the right-hand side of the above inequality, then

v′(t) =Me−ωt p(t)ψ
(∣∣y(t)

∣
∣), for t ∈ J ,

v(0) =M

(

y0 +G +
m∑

k=1

e−ωtkdk

)

.
(9.33)

From (9.32), we have that |y(t)| ≤ e−ωtv(t). Then

v′(t) ≤Me−ωt p(t)ψ
(
eωtv(t)

)
, t ∈ J. (9.34)

Accordingly, we have that

(
eωtv(t)

)′ ≤ max
{
ω,Mp(t)

}(
eωtv(t) + ψ

(
eωtv(t)

))
, t ∈ J , (9.35)

which implies that

∫ eωtv(t)

c

ds

s + ψ(s)
≤
∫ T

0
max

(
ω,Mp(s)

)
ds <

∫∞

c

ds

s + ψ(s)
, t ∈ J. (9.36)

Using (9.4.7) we deduce that there exists a positive constant α which depends on
T and the functions p, ψ such that |y(t)| ≤ α for all y ∈ Φ, which implies that Φ
is bounded.

Consequently, the mappingN is completely continuous and Theorem 1.6 im-
plies that N has at least one fixed point, which gives rise to an integral solution of
problem (9.1)–(9.3). �

9.2.1. A special case

In this section, we suppose that the nonlocal condition is given by

g(y) =
m+1∑

k=1

ck y
(
ηk
)
, (9.37)

where ck, k = 1, . . . ,m + 1, are nonnegative constants and 0 ≤ η1 < t1 < η2 < t2 <
· · · < tm < ηm+1 ≤ T .
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Lemma 9.5. Assume that
(9.5.1) there exists a bounded operator B : E → E such that

B =
(

I +
m+1∑

k=1

ckS
′(ηk
)
)−1

. (9.38)

If y is an integral solution of (9.1), (9.2), (9.4), then it is given by

y(t) = S′(t)B

[

y0 −
m+1∑

k=2

ck

k−1∑

λ=1

S′
(
ηk − t j

)
I j
(
y
(
t−j
))

−
m+1∑

k=1

ck

∫ ηk

0
S′
(
ηk − s

)
F
(
s, y(s)

)
]

+
d

dt

∫ t

0
S(t − s)F(s, y(s)

)
ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ J.

(9.39)

Proof. Let y be a solution of problem (9.1), (9.2), (9.4). As in Lemma 9.3 we con-
clude that

∫ t

0
y(s)ds = w(0) +

∑

0<tk<t

S
(
t − tk

)
Ik
(
y
(
t−k
))

+
∫ t

0
S(t − s)F(s, y(s)

)
ds, (9.40)

where w(0) = S(t)y(0) = S(t)[y0 −
∑m+1

k=1 ck y(ηk)].
It remains to find y(ηk). The proof follows the steps of Lemma 4.2, with the

necessary modifications of integrated semigroups, and for this reason is omited.
�

Now we are able to state and prove our main theorem in this section.

Theorem 9.6. Assume that assumptions (H1), (9.4.1), (9.4.2), (9.4.5), (9.5.1) hold.
Also assume that

(9.6.1) there exist a continuous nondecreasing function ψ : R+ → (0,∞), a
function p ∈ L1(J , R+), and a constant M > 0 such that

∥
∥F(t, y)

∥
∥ ≤ p(t)ψ

(|y|) (9.41)

for almost all t ∈ J and all y ∈ E, and

M

α + P +Q
> 1, (9.42)
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where

α =MeωT
(

‖B‖B(E)
∣∣y0
∣∣ +M‖B‖B(E)

m+1∑

k=2

∣∣ck
∣∣
k−1∑

μ=1

e−ωtkdμ +
m∑

k=1

e−ωtkdk

)

,

P =M2eωT‖B‖B(E)

m+1∑

k=1

∣
∣ck
∣
∣ψ(M)

∫ ηk

0
p(t)dt,

Q =MeωT
∫ b

0
p(s)ψ(M)ds′;

(9.43)

(9.6.2) the set {y0 −
∑m+1

k=1 ck y(ηk)} is relatively compact.
Then problem (9.1), (9.2), (9.4) has at least one integral solution on J .

Proof. Consider the operator N : Ω′ → Ω′ defined by

N(y) = S′(t)B

[

y0 −
m+1∑

k=2

ck

k−1∑

μ=1

S′
(
ηk − tμ

)
Iμ
(
y
(
t−μ
))

−
m+1∑

k=1

ck lim
λ→∞

∫ ηk

0
S′
(
ηk − s

)
BλF
(
s, y(s)

)
]

+
d

dt

∫ t

0
S(t − s)F(s, y(s)

)
ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ J.

(9.44)

We will prove thatN is compact. Let {yn} be a sequence in Ω′ with limn→∞ yn=
y in Ω′. By the continuity of F with respect to the second argument, we deduce
that, for each s ∈ J , F(s, yn(s)) converges to F(s, y(s)) in E, and we have that

∣
∣N
(
yn
)
(t)−N(y)(t)

∣
∣

≤M‖B‖B(E)

[m+1∑

k=2

∣∣ck
∣∣
k−1∑

μ=1

eω(ηk−tμ)
∣∣Iμ
(
yn
(
t−μ
))− Iμ

(
y
(
t−μ
))∣∣

+
m+1∑

k=1

∣
∣ck
∣
∣eωηk

∫ ηk

0
e−ωs
∣
∣F
(
s, yn(s)

)− F(s, y(s)
)∣∣ds

]

+ eωT
[∫ T

0
e−ωs
∣
∣F
(
s, yn(s)

)− F(s, y(s)
)∣∣ds

+
m∑

k=1

e−ωtk
∣
∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣
]

.

(9.45)
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The sequence {yn} is bounded in Ω′. Then by using the Lebesgue dominated con-
vergence theorem we obtain that

lim
n→∞N

(
yn
) = N(y) in Ω′, (9.46)

which implies that the mapping N is continuous on Ω′.
Next, we use Arzelá-Ascoli’s theorem to prove that N maps every bounded set

into a compact set. Let B be a bounded set of Ω′ and let t ∈ J be fixed. Then we
need to prove that {N(y)(t) : y ∈ B} is relatively compact in D(A). If t = 0, then
from hypothesis (9.6.2) we have that {N(y)(0) : y ∈ B} = {y0 −

∑m+1
k=1 ck y(ηk) :

y ∈ B} is relatively compact. If t ∈ (0,T], the proof of relative compactness and
equicontinuity is similar to that given in Theorem 9.4.

It remains to prove that the set Φ = {x ∈ Ω′ : x = σNx for some 0 < σ < 1}
is bounded. For y ∈ Φ, there exists σ ∈ (0, 1) such that y = σN y; that is,

y(t) = σS′(t)B

[

y0 −
m+1∑

k=2

ck

k−1∑

μ=1

S′
(
ηk − tμ

)
Iμ
(
y
(
t−μ
))

−
m+1∑

k=1

ck lim
λ→∞

∫ ηk

0
S′
(
ηk − s

)
BλF
(
s, y(s)

)
]

+ σ
d

dt

∫ t

0
S(t − s)F(s, y(s)

)
ds + σ

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ J.

(9.47)

Using assumptions (9.5.1) and (9.6.1), we get

∣
∣y(t)

∣
∣ ≤Meωt‖B‖B(E)

[
∣
∣y0
∣
∣ +M

m+1∑

k=2

∣
∣ck
∣
∣
k−1∑

μ=1

e−ωtkdμ

+M
m+1∑

k=1

∣
∣ck
∣
∣
∫ ηk

0
m(s)ψ

(∣∣y(s)
∣
∣)ds

]

+Meωt
∫ t

0
e−ωsm(s)ψ

(∣∣y(s)
∣
∣)ds +Meωt

m∑

k=1

e−ωtkdk

≤MeωT‖B‖B(E)

[
∣
∣y0
∣
∣ +M

m+1∑

k=2

∣
∣ck
∣
∣
k−1∑

μ=1

e−ωtkdμ

+M
m+1∑

k=1

∣
∣ck
∣
∣
∫ ηk

0
m(s)ψ

(∣∣y(s)
∣
∣)ds

]

+MeωT
∫ t

0
e−ωsm(s)ψ

(∣∣y(s)
∣
∣)ds +MeωT

m∑

k=1

e−ωtkdk.

(9.48)
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Consequently,

‖y‖PC

α + P +Q
≤ 1. (9.49)

Then, by (9.6.1), there exists M such that ‖y‖PC �=M. Set

U = {y ∈ PC(J ,E) : ‖y‖PC < M + 1
}
. (9.50)

The operator N is continuous and completely continuous. From the choice of U ,
there is no y ∈ ∂U such that y = σN(y) for some σ ∈ (0, 1). As a consequence of
the nonlinear alternative of Leray-Schauder type (Theorem 1.8), we deduce that
N has at least one fixed point, which gives rise to an integral solution of problem
(9.1), (9.2), (9.4). �

9.3. Nondensely defined impulsive semilinear differential
inclusions with nonlocal conditions

In this section, we will prove existence results for evolution impulsive differential
inclusions, with nonlocal conditions, of the form

y′(t) ∈ Ay(t) + F
(
t, y(t)

)
, t ∈ J := [0, b], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) + g(y) = y0,

(9.51)

whereA : D(A) ⊂ E → E is a nondensely defined closed linear operator, F : J×E →
P (E) is a multivalued map (P (E) is the family of all subsets of E), g : C(J ′,E) → E,
(J ′ = J\{t1, . . . , tm}), Ik : E → D(A), k = 1, . . . ,m, Δy|t=tk = y(t+k ) − y(t−k ),
y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0+ y(tk − h), y0 ∈ E, and E is a
separable Banach space with norm | · |.

Lemma 9.7. If y is an integral solution of

y′(t) = Ay(t) + f (t), t ∈ J = [0, b], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) + g(y) = y0,

(9.52)

where F : J × E → E and A, g, Ik, k = 1, . . . ,m, are as in problem (9.51), then y is
given by

y(t) = S′(t)
[
y0 − g(y)

]
+
d

dt

∫ t

0
S(t − s) f (s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, for t ∈ J.
(9.53)
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Definition 9.8. Say that y : J → E is an integral solution of (9.51) if
(i) y ∈ Ω,

(ii)
∫ t

0 y(s)ds ∈ D(A) for t ∈ J ,
(iii) there exists a function f ∈ L1(J ,E) such that f (t) ∈ F(t, y(t)) a.e. in J

and y(t) = y0 − g(y) + A
∫ t

0 y(s)ds +
∫ t

0 f (s)ds +
∑

0<tk<t Ik(y(t−k )), t ∈ J .

From (ii) it follows that y(t) ∈ D(A), for all t ≥ 0. Also from (iii) it follows
that y0 − g(y) ∈ D(A). So, if we assume that y0 ∈ D(A), we conclude that g(y) ∈
D(A).

Definition 9.9. If y is an integral solution of (9.51), then y is given by

y(t) = S′(t)
(
y0 − g(y)

)
+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

+
d

dt

∫ t

0
S(t − s) f (s)ds, t ∈ J.

(9.54)

9.3.1. Existence result: the convex case

In this section, we are concerned with the existence of solutions for problem
(9.51). Recall that

Ω′ = Ω∩ C(J ,D(A)
)
. (9.55)

Now we are able to state and prove our main theorem in this section.

Theorem 9.10. Assume that (H1), (9.4.2), (9.4.4), (9.4.5), and the following as-
sumptions hold:

(9.10.1) let F : J ×E → Pcp(E); (t, y) �→ F(t, y) be measurable with respect to t,
for each y ∈ E, u.s.c., with respect to y, for each t ∈ J ;

(9.10.2) there exist a continuous function p : [0, b] → R+ and a continuous
nondecreasing function ψ : [0,∞) → [0,∞) such that

∥
∥F(t, y)

∥
∥ := sup

{|v| : v ∈ F(t, y)
} ≤ p(t)ψ

(|y|), t ∈ J , y ∈ E, (9.56)

with
∫ T

0
m(s)ds <

∫∞

c

ds

ψ(s)
, (9.57)

where

m(t) =M∗e−ωs p(t), c =M∗
(
∣
∣y0
∣
∣ + L +

m∑

k=1

e−ωtkdk

)

, (9.58)

and M∗ =Mmax{eωb, 1}.
Then problem (9.51) has at least one integral solution on J .
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Proof. Consider the operator N : Ω′ → P (Ω′) defined by

N(y) =
{

h ∈ Ω′ : h(t) = S′(t)
[
y0 − g(y)

]
+
d

dt

∫ t

0
S(t − s) f (s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, f ∈ SF,y

}

, t ∈ J.

(9.59)

Let

K = {y ∈ Ω′ : ‖y‖Ω′ ≤ α(t), t ∈ J
}

, (9.60)

where

α(t) = I−1
(∫ t

0
m(s)ds

)
,

I(z) =
∫ z

c

du

ψ(u)
.

(9.61)

It is clear that K is a closed convex and bounded set. �
Step 1. N(K) ⊂ K .

For y ∈ K and h ∈ N(y), there exists a function f ∈ SF,y such that, for every
t ∈ J , we have

h(t) = S′(t)
(
y0 − g(y)

)
+ lim
λ→∞

∫ t

0
S′(t − s)Bλ f (s)ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
.

(9.62)

Thus

∣
∣h(t)

∣
∣ ≤Meωt

(∣∣y0
∣
∣ + L

)
+Meωt

∫ t

0
e−ωs p(s)ψ

(∣∣y(s)
∣
∣)ds +Meωt

m∑

k=1

e−ωtkdk

≤M∗(∣∣y0
∣
∣ + L

)
+M∗

∫ t

0
e−ωs p(s)ψ

(
α(s)
)
ds +M∗

m∑

k=1

e−ωtkdk

≤M∗(∣∣y0
∣
∣ + L

)
+
∫ t

0
m(s)ψ

(
α(s)
)
ds +M∗

m∑

k=1

e−ωtkdk

=M∗
(
∣
∣y0
∣
∣ + L +

m∑

k=1

e−ωtkdk

)

+
∫ t

0
α′(s)ds = α(t),

(9.63)
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since

∫ α(s)

c

du

ψ(u)
=
∫ t

0
m(s)ds. (9.64)

Thus N(y) ∈ K .
Step 2. N(K) is relatively compact.

Since K is bounded and N(K) ⊂ K , it is clear that N(K) is bounded.
Let t ∈ (0, b] be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ K

and h ∈ N(y), there exists a function f ∈ SF,y such that

h(t) = S′(t)
(
y0 − g(y)

)
+ lim
λ→∞

∫ t−ε

0
S′(t − s)Bλ f (s)ds

+ lim
λ→∞

∫ t

t−ε
S′(t − s)Bλ f (s)ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
.

(9.65)

Define

hε(t) = S′(t)
(
y0 − g(y)

)
+ lim
λ→∞

∫ t−ε

0
S′(t − s)Bλ f (s)ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

= S′(t)
(
y0 − g(y)

)
+ S′(ε) lim

λ→∞

∫ t−ε

0
S′(t − ε − s)Bλ f (s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
.

(9.66)

Since S′(t), t > 0, is compact, the set Hε(t) = {hε(t) : hε ∈ N(y)} is precompact in
D(A) for every ε, 0 < ε < t. Moreover, for every h ∈ N(y),

∣
∣h(t)− hε(t)

∣
∣ ≤M∗

∫ t

t−ε
e−ωs p(s)ψ

(∣∣y(s)
∣
∣)ds ≤M∗

∫ t

t−ε
e−ωs p(s)ψ

(
α(s)
)
ds.

(9.67)

Therefore there are precompact sets arbitrarily close to the set {h(t) : h ∈
N(y)}. Hence the set {h(t) : h ∈ N(y)} is precompact in D(A).
Step 3. N(K) is equicontinuous.

Let τ1, τ2 ∈ J ′, τ1 < τ2. Let y ∈ K and h ∈ N(y). Then there exists f ∈ SF,y

such that, for each t ∈ J , we have

h(t) = S′(t)
(
y0 − g(y)

)
+ lim
λ→∞

∫ t

0
S′(t − s)Bλ f (s)ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
.

(9.68)
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Then

∣
∣h
(
τ2
)− h(τ1

)∣∣

≤ ∣∣[S′(τ2
)− S′(τ1

)](
y0 − g(y)

)∣∣

+
∣
∣
∣∣ lim
λ→∞

∫ τ1

0

[
S′
(
τ2 − s

)− S′(τ1 − s
)]
Bλ f (s)ds

∣
∣
∣∣

+
∣∣
∣
∣ lim
λ→∞

∫ τ2

τ1

S′
(
τ2 − s

)
Bλ f (s)ds

∣∣
∣
∣

+

∣
∣
∣∣
∣

∑

0<t<τ1

[
S′
(
τ2 − tk

)− S′(τ1 − tk
)]
Ik
(
y
(
t−k
))
∣∣
∣
∣

+

∣∣
∣
∣∣

∑

τ1<t<τ2

S′
(
τ2 − tk

)
Ik
(
y
(
t−k
))
∣∣
∣
∣∣

≤ ∣∣[S′(τ2
)− S′(τ1

)](
y0 − g(y)

)∣∣

+
∣
∣∣
∣
[
S′
(
τ2 − τ1

)− I] lim
λ→∞

∫ τ1

0
S′
(
τ1 − s

)
Bλ f (s)ds

∣
∣∣
∣

+M∗
∫ τ2

τ1

e−ωs p(s)ψ
(
α(s)
)
ds

+
∑

0<tk<τ1

∥∥S′
(
τ2 − tk

)− S′(τ1 − tk
)∥∥

B(E)dk +M∗ ∑

τ1<tk<τ2

e−ωtkdk.

(9.69)

The right-hand side tends to zero as τ2−τ1 → 0, since S′(t) is strongly continuous,
and the compactness of S′(t), t > 0, implies the continuity in the uniform operator
topology.

This proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It re-
mains to examine the equicontinuity at t = ti. The proof is similar to that given in
Theorem 4.3.

As a consequence of Steps 2-3 and the Arzelá-Ascoli theorem, we deduce that
N maps K into precompact sets in D(A).
Step 4. N has closed graph.

Let yn → y∗, hn ∈ N(yn), yn ∈ K and hn → h∗. We will prove that h∗ ∈
N(y∗).

hn ∈ N(yn) means that there exists vn ∈ SF,yn such that, for each t ∈ J ,

hn(t) = S′(t)
[
y0 − g

(
yn
)]

+ lim
λ→∞

∫ t

0
S′(t − s)Bλvn(s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
yn
(
t−k
))
.

(9.70)
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We must prove that there exists v∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) = S′(t)
[
y0 − g(y∗)

]
+ lim
λ→∞

∫ t

0
S′(t − s)Bλv∗(s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y∗
(
t−k
))
.

(9.71)

Clearly since Ik, k = 1, . . . ,m, and g are continuous, we have that

∥
∥
∥
∥∥

(

hn − S′(t)
[
y0 − g

(
yn
)]−

∑

0<tk<t

S′
(
t − tk

)
Ik
(
yn
(
t−k
))
)

−
(

h∗ − S′(t)
[
y0 − g(y∗)

]−
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y∗
(
t−k
))
)∥∥
∥
∥∥
Ω′
�→ 0,

(9.72)

as n→∞.
Consider the linear continuous operator

Γ : L1(J ,E) �→ C(J ,E),

v � �→ Γ(v)(t) = lim
λ→∞

∫ t

0
S′(t − s)Bλv(s)ds.

(9.73)

From Lemma 1.28, it follows that Γ ◦ SF is a closed graph operator. Moreover, we
have that

hn(t)− S′(t)[y0 − g
(
yn
)]−

∑

0<tk<t

S′
(
t − tk

)
Ik
(
yn
(
t−k
)) ∈ Γ

(
SF,yn

)
. (9.74)

Since yn → y∗, it follows from Lemma 1.28 that

h∗(t)− S′(t)[y0 − g(y∗)
]−

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y∗
(
t−k
))

= lim
λ→∞

∫ t

0
S′(t − s)Bλv∗(s)ds

(9.75)

for some v∗ ∈ SF,y∗ .
As a consequence of Theorem 1.9, we deduce that N has a fixed point which

gives rise to an integral solution of problem (9.51).
Our next result in this section is based on Covitz and Nadler’s fixed point

theorem for contraction multivalued operators.

Theorem 9.11. Assume that (H1) and the following hypotheses hold:
(9.11.1) F : [0, b] × E → Pcp,cv(E) has the property that F(·, y) : [0, b] →

Pcp(E) is measurable for each y ∈ E;
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(9.11.2) there exists l ∈ L1([0, b], R+) such that

Hd
(
F(t, y),F(t, y)

) ≤ l(t)|y − y|, for almost each t ∈ [0, b] (9.76)

and y, y ∈ E, and

d
(
0,F(t, 0)

) ≤ �(t), for almost each t ∈ [0, b]; (9.77)

(9.11.3) there exist constants dk such that

∥
∥Ik
(
y1
)− Ik

(
y2
)∥∥

D(A) ≤ d′k
∣
∣y1 − y2

∣
∣, ∀y1, y2 ∈ E; (9.78)

(9.11.4) g is continuous and there exists constant a c′ > 0 such that

∣
∣g
(
y1
)− g(y2

)∣∣ ≤ c′
∥
∥y1 − y2

∥
∥
Ω′ , ∀y1, y2 ∈ Ω′; (9.79)

(9.11.5) for M∗ =Mmax{eωb, 1}, and M is from the Hille-Yosida condtion,

M∗
(

c′ +
∫ b

0
e−ωsl(s)ds +

m∑

k=1

e−ωtkd′k

)

< 1. (9.80)

Then the IVP (9.51) has at least one integral solution on [0, b].

Proof. Transform problem (9.51) into a fixed point problem. Consider the multi-
valued operator N defined in Theorem 9.10.

We will show thatN satisfies the assumptions of Theorem 1.11. The proof will
be given in two steps.
Step 1. N(y) ∈ Pcl(Ω′) for each y ∈ Ω′.

Indeed, let (yn)n≥0 ∈ N(y) such that yn → ỹ in Ω′. Then ỹ ∈ Ω′ and there
exists fn ∈ SF,y such that, for every t ∈ [0, b],

yn(t) = S′(t)
[
y0 − g(y)

]
+
d

dt

∫ t

0
S(t − s) fn(s)ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
.

(9.81)

Using the fact that F has compact values and from (9.11.2), we may pass to a
subsequence if necessary to get that fn converges to f in L1([0, b],E) and hence
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f ∈ SF,y . Then, for each t ∈ [0, b],

yn(t) �→ ỹ(t) = S′(t)
[
y0 − g(y)

]
+
d

dt

∫ t

0
S(t − s) f (s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
.

(9.82)

So, ỹ ∈ N(y).
Step 2. Hd(N(y1),N(y2)) ≤ γ‖y1 − y2‖Ω′ for each y1, y2 ∈ Ω′ (where γ < 1).

Let y1, y2 ∈ Ω′ and h1 ∈ N(y1). Then there exists f1(t) ∈ F(t, y1(t)) such that

h1(t) = S′(t)
[
y0 − g

(
y1
)]

+
d

dt

∫ t

0
S(t − s) f1(s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y1
(
t−k
))

, t ∈ [0, b].
(9.83)

From (9.11.2) it follows that

Hd
(
F
(
t, y1(t)

)
,F
(
t, y2(t)

)) ≤ l(t)
∣∣y1(t)− y2(t)

∣∣, t ∈ [0, b]. (9.84)

Hence there is w ∈ F(t, y2(t)) such that

∣
∣ f1(t)−w∣∣ ≤ l(t)

∣
∣y1(t)− y2(t)

∣
∣, t ∈ [0, b]. (9.85)

Consider U : [0, b] → P (E), given by

U(t) = {w ∈ E :
∣
∣ f1(t)−w∣∣ ≤ l(t)

∣
∣y1(t)− y2(t)

∣
∣}. (9.86)

Since the multivalued operator V(t) = U(t)∩ F(t, y2(t)) is measurable (see [119,
Proposition III.4]), there exists f2(t) a measurable selection for V . So, f2(t) ∈
F(t, y2(t)) and

∣∣ f1(t)− f2(t)
∣∣ ≤ l(t)

∣∣y1(t)− y2(t)
∣∣, for each t ∈ [0, b]. (9.87)

Let us define, for each t ∈ [0, b],

h2(t) = S′(t)
[
y0 − g

(
y2
)]

+
d

dt

∫ t

0
S(t − s) f2(s)ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y2
(
t−k
))
.

(9.88)
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Then we have
∣
∣h1(t)− h2(t)

∣
∣

≤
∣∣
∣
∣
∣S
′(t)
[
g
(
y1
)− g(y2

)]
+ lim
λ→∞

∫ t

0
S′(t − s)Bλ

[
f1(s)− f2(s)

]
ds

+
∑

0<tk<t

S′
(
t − tk

)(
Ik
(
y2
(
t−k
))− Ik

(
y1
(
t−k
)))
∣
∣∣
∣
∣

≤M∗c′
∥
∥y1 − y2

∥
∥
Ω′ +M∗

∫ t

0
e−ωs�(s)

∣
∣y1(s)− y2(s)

∣
∣ds

+M∗
m∑

k=1

e−ωtkd′k
∣
∣y1
(
t−k
)− y2

(
t−k
)∣∣

≤M∗c′
∥
∥y1 − y2

∥
∥
Ω′ +M∗∥∥y1 − y2

∥
∥
Ω′

∫ t

0
e−ωs�(s)ds

+M∗∥∥y1 − y2
∥
∥
Ω′

m∑

k=1

e−ωtkd′k

≤
[

M∗c′ +M∗
∫ b

0
e−ωs�(s)ds +M∗

m∑

k=1

e−ωtkd′k

]

× ∥∥y1 − y2
∥
∥
Ω′ .

(9.89)

Then

∥
∥h1 − h2

∥
∥
Ω′ ≤M∗

(

c′ +
∫ b

0
e−ωs�(s)ds +

m∑

k=1

e−ωtkd′k

)
∥
∥y1 − y2

∥
∥
Ω′ . (9.90)

By the analogous relation, obtained by interchanging the roles of y1 and y2, it
follows that

Hd
(
N
(
y1
)
,N
(
y2
)) ≤M∗

(

c′ +
∫ b

0
e−ωs�(s)ds +

m∑

k=1

e−ωtkd′k

)
∥
∥y1 − y2

∥
∥
Ω′ .

(9.91)

From (9.11.5) we have that

γ :=M∗
(

c′ +
∫ b

0
e−ωs�(s)ds +

m∑

k=1

e−ωtkd′k

)

< 1. (9.92)

Then N is a contraction and thus, by Theorem 1.11, N has a fixed point y, which
is a mild solution to (9.51). �

9.3.2. Existence results: the nonconvex case

In this section, we consider the problems (9.51), with a nonconvex-valued right-
hand side.
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By the help of the Schaefer’s fixed point theorem, combined with the selection
theorem of Bressan and Colombo for lower semicontinuous maps with decompos-
able values, we will present a second existence result for problem (9.51).

Theorem 9.12. Suppose, in addition to hypotheses (H1), (9.4.2), (9.4.4), (9.4.5),
(9.10.2), the following also hold:

(9.12.1) F : [0, b]×E → P (E) is a nonempty compact-valued multivalued map
such that
(a) (t, y) �→ F(t, y) is L⊗B measurable,
(b) y �→ F(t, y) is lower semicontinuous for a.e. t ∈ [0, b];

(9.12.2) for each r > 0, there exists a function hr ∈ L1([0, b], R+) such that

∥
∥F(t, y)

∥
∥ :=sup

{|v| : v ∈ F(t, y)
}≤hr(t) for a.e. t ∈ [0, b], y ∈ E with |y|≤r;

(9.93)

(9.12.3)

∫ b

0
m(s)ds <

∫∞

c1

ds

s + ψ(s)
, (9.94)

where M and ω are from the Hille-Yosida condition and

m(t) = max
{
ω,Mp(t)

}
, t ∈ [0, b], c1 =M

(
∣∣y0
∣∣ + L +

m∑

k=1

e−ωtkdk

)

.

(9.95)

Then the initial value problem (9.51) has at least one integral solution on [0, b].

Proof. Hypotheses (9.12.1) and (9.12.2) imply that F is of lower semicontinu-
ous type. Then, from Theorem 1.5, there exists a continuous function h : Ω′ →
L1([0, b],E) such that h(y) ∈ F (y) for all y ∈ Ω′.

We consider the problem

y′(t) = Ay(t) + h(y)(t), t ∈ J = [0, b], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) + g(y) = y0.

(9.96)

We remark that if y ∈ Ω′ is a solution of the problem (9.96), then y is a solution
to problem (9.51).

Transform problem (9.96) into a fixed point problem by considering the op-
erator N1 : Ω′ → Ω′ defined by

N1(y) = S′(t)
[
y0 − g(y)

]
+
d

dt

∫ t

0
S(t − s)h(y)(s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ J.
(9.97)
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Step 1. N1 is continuous.
Let {yn} be a sequence such that yn → y in Ω′. Then

∣
∣N1
(
yn
)
(t)−N1(y)(t)

∣
∣ ≤M∗∣∣g

(
yn
)− g(y)

∣
∣ +M∗

∫ t

0
e−ωsBλ

∣
∣ fn(s)− f (s)

∣
∣ds

+M∗ ∑

0<tk<t

e−ωtk
∥
∥Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∥∥

D(A).

(9.98)

Since the functions f , g are continuous, then

∥
∥N1
(
yn
)−N1(y)

∥
∥
Ω′ �→ 0, as n �→∞. (9.99)

Step 2. N1 maps bounded sets into bounded sets in Ω′.
Indeed, it is enough to show that for any q > 0 there exists a positive constant

� such that, for each y ∈ Bq = {y ∈ Ω′ : ‖y‖Ω′ ≤ q}, we have ‖N1(y)‖Ω′ ≤ �. For
each t ∈ [0, b], we have that

∣
∣N1(y)(t)

∣
∣ =
∣
∣∣
∣
∣S
′(t)
(
y0 − g(y)

)
+
d

dt

∫ t

0
S(t − s) f (s, y(s)

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
∣
∣
∣∣
∣

≤M∗
[
∣
∣y0
∣
∣ + L +

∫ t

0
e−ωshq(s)ds +

m∑

k=1

e−ωtkdk

]

≤M∗
[
∣
∣y0
∣
∣ + L +N

∥
∥hq
∥
∥
L1 +

m∑

k=1

e−ωtkdk

]

,

(9.100)

where N = max{1, e−ωb}.
Thus

∥
∥N1(y)

∥
∥
Ω′ ≤M∗

[
∣
∣y0
∣
∣ + L +N

∥
∥hq
∥
∥
L1 +

m∑

k=1

e−ωtkdk

]

:= �. (9.101)

Step 3. N1 maps bounded sets into equicontinuous sets of Ω′.
Let 0 < τ1 < τ2 ∈ J ′, τ1 < τ2, and let Bq be a bounded set of Ω as in Step 2.

Let y ∈ Bq. Then, for each t ∈ J , we have

N1(y)(t) = S′(t)
(
y0 − g(y)

)
+ lim
λ→∞

∫ t

0
S′(t − s)Bλh(y)(s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
.

(9.102)
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Then
∣
∣N1(y)

(
τ2
)−N1(y)

(
τ1
)∣∣

≤ ∣∣[S′(τ2
)− S′(τ1

)](
y0 − g(y)

)∣∣

+
∣
∣
∣
∣ lim
λ→∞

∫ τ2

τ1

S′
(
τ2 − s

)
Bλh(y)(s)ds

∣
∣∣
∣
∣

+
∣∣
∣
∣ lim
λ→∞

∫ τ1

0

(
S′
(
τ2 − s

)− S′(τ1 − s
))
Bλh(y)(s)ds

∣∣
∣
∣

+
∑

0<tk<τ1

dk
∣
∣S′
(
τ2 − tk

)− S′(τ1 − tk
)∣∣

+ eωτ2
∑

τ1<tk<τ2

dke
−ωtk .

(9.103)

The right-hand side tends to zero as τ2−τ1 → 0, since S′(t) is strongly continuous,
and the compactness of S′(t), t > 0, implies the continuity in the uniform operator
topology.

This proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It re-
mains to examine the equicontinuity at t = ti. The proof is similar to that given in
Theorem 4.3.

As a consequence of Steps 1 to 3 and (9.4.4), together with the Arzelá-Ascoli
theorem, we can conclude that N1 : Ω′ → Ω′ is a completely continuous operator.
Step 4. Now it remains to show that the set

E
(
N1
)

:= {y ∈ Ω′ : y = σN1(y) for some 0 < σ < 1
}

(9.104)

is bounded.
Let y ∈ E(N1). Then y = σN1(y) for some 0 < σ < 1. Thus for each t ∈ J ,

y(t) = σ

(

S′(t)
(
y0 − g(y)

)
+
d

dt

∫ t

0
S(t − s)h(y)(s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
)

.

(9.105)

This implies that, for each t ∈ J , we have

∣
∣y(t)

∣
∣ ≤Meωt

(∣∣y0
∣
∣ + L

)
+Meωt

∫ t

0
e−ωs p(s)ψ

(∣∣y(s)
∣
∣)ds +Meωt

m∑

k=1

e−ωtkdk

(9.106)

or

e−ωt
∣
∣y(t)

∣
∣ ≤M

(∣∣y0
∣
∣ + L

)
+M

∫ t

0
e−ωs p(s)ψ

(∣∣y(s)
∣
∣)ds +M

m∑

k=1

e−ωtkdk.

(9.107)
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Let us take the right-hand side of the above inequality as v(t). Then we have

∣
∣y(t)

∣
∣ ≤ eωtv(t), ∀t ∈ J = [0, b],

v(0) =M

(
∣
∣y0
∣
∣ + L +

m∑

k=1

e−ωtkdk

)

,

v′(t) =Me−ωt p(t)ψ
(∣∣y(t)

∣
∣) ≤Me−ωt p(t)ψ

(
eωtv(t)

)
, t ∈ J = [0, b].

(9.108)

Then, for each t ∈ [0, b], we have

(
eωtv(t)

)′ = ωeωtv(t) + v′(t)eωt ≤ ωeωtv(t) +Mp(t)ψ
(
eωtv(t)

)

≤ m(t)
[
eωtv(t) + ψ

(
eωtv(t)

)]
, t ∈ [0, b].

(9.109)

Thus

∫ eωtv(t)

v(0)

du

u + ψ(u)
≤
∫ b

0
m(s)ds <

∫∞

v(0)

du

u + ψ(u)
. (9.110)

Consequently, there exists a constant d such that v(t) ≤ d, t ∈ [0, b], and hence
‖y‖Ω′ ≤ d where d depends only on the constants M, ω, dk and the functions p
and ψ. This shows that E(N1) is bounded.

As a consequence of Schaefer’s theorem (Theorem 1.6), we deduce that N1

has a fixed point y which is a solution to problem (9.96). Then y is a solution to
problem (9.51). �

9.4. Nondensely defined impulsive semilinear functional
differential equations

In this section, we will be concerned with the existence of integral solutions for
first-order impulsive semilinear functional and neutral functional differential
equations in Banach spaces. First, we will consider first-order impulsive semilinear
functional differential equations of the form

y′(t)− Ay(t) = f
(
t, yt
)
, a.e. t ∈ J = [0,T]\{t1, . . . , tm

}
,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],

(9.111)

where f : [0,T] ×D → E is a function, D = {ψ : [−r, 0] → E : ψ is continuous
everywhere except for a finite number of points t at which ψ(t) and ψ(t+) exist
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and ψ(t−) = ψ(t)} (0 < r < ∞), A : D(A) ⊂ E → E is a nondensely defined
closed linear operator on E, φ ∈ D , 0 = t0 < t1 < · · · < tm < tm+1 = T , Ik ∈
C(E,E)(k = 1, . . . ,m), Δy|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h) and
y(t−k ) = limh→0− y(tk − h), and E is a real separable Banach space with norm | · |.

Next, we study the first-order impulsive semilinear neutral functional differ-
ential equations of the form

d

dt

[
y(t)− g(t, yt

)] = Ay(t) + f
(
t, yt
)
, a.e. t ∈ J = [0,T]\{t1, . . . , tm

}
,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],
(9.112)

where f , Ik, A, and φ are as in problem (9.111), g : [0,T]×D → D(A) is a given
function.

Definition 9.13. The map f : J ×D → E is said to be an L1-Carathéodory if
(i) t �→ f (t,u) is measurable for each u ∈D ;

(ii) u �→ f (t,u) is continuous for all t ∈ J ;
(iii) for each ρ > 0, there exists ϕρ ∈ L1(J , R+) such that

∣
∣ f (t,u)

∣
∣ ≤ ϕρ(t), ∀‖u‖D ≤ ρ for a.e. t ∈ J. (9.113)

9.4.1. Existence results for functional differential equations

In this section we are concerned with the existence of integral solutions for prob-
lem (9.111). Here we use again the symbol Ω for the space,

Ω = {y : [−r,T] �→ E : yk ∈ C
(
Jk,E
)
, k = 0, . . . ,m ∃ y(t−k

)
,

y
(
t+k
)
, k = 1, . . . ,m with y

(
t−k
) = y

(
tk
)}

,
(9.114)

which is a Banach space with the norm

‖y‖Ω = max
{∥∥yk

∥
∥
Jk

, k = 0, . . . ,m
}

, (9.115)

where yk is the restriction of y to Jk = (tk, tk+1], k = 0, . . . ,m.
Let us start by defining what we mean by an integral solution of problem

(9.111).
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Definition 9.14. A function y ∈ Ω is said to be an integral solution of (9.111) if y
is the solution of the impulsive integral equation

y(t) = S′(t)φ(0) + A
∫ t

0
y(s)ds +

∫ t

0
f
(
s, ys
)
ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
tk
))

,

∫ t

0
y(s)ds ∈ D(A), t ∈ [0,T], y(t) = φ(t), t ∈ [−r, 0].

(9.116)

Theorem 9.15. Assume that (H1), (9.4.2), (9.4.5) hold and that f is an L1-Car-
athéodory function. Also we suppose that

(9.15.1) φ(0) ∈ D(A);
(9.15.2) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)

and p ∈ L1(J , R+) such that

∣
∣ f (t,u)

∣
∣ ≤ p(t)ψ

(‖u‖D
)

for a.e. t ∈ J , each u ∈D , (9.117)

with

∫ b

0
m(s)ds <

∫∞

c

du

u + ψ(u)
, (9.118)

where

m(s) = max
(
ω,Mp(s)

)
, c =M

(

‖φ‖ +
m∑

k=1

e−ωtk ck

)

. (9.119)

Then the IVP (9.111) has at least one integral solution on [−r,T].

Proof. Transform problem (9.111) into a fixed point problem. Consider the oper-
ator N : Ω→ Ω defined by

N(y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

S′(t)φ(0) +
d

dt

∫ t

0
S(t − s) f (s, ys

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

if t ∈ [0,T].

(9.120)

We will show that N is completely continuous. The proof will be given in
several steps.
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Step 1. N is continuous.
Let {yn} be a sequence such that yn → y in Ω. Then

∣
∣N
(
yn
)
(t)−N(y)(t)

∣
∣ ≤
∣
∣
∣
∣
d

dt

∫ t

0
S(t − s)[ f (s, yns

)− f
(
s, ys
)]
ds
∣
∣
∣
∣

+
m∑

k=1

∣
∣S′
(
t − tk

)∣∣
∣
∣Ik
(
yn
(
tk
))− Ik

(
y
(
t−k
))∣∣

≤MeωT
∫ T

0
e−ωs
∣
∣ f
(
s, yns

)− f
(
s, ys
)∣∣ds

+MeωT
m∑

k=1

∣
∣Ik
(
yn
(
tk
))− Ik

(
y
(
t−k
))∣∣.

(9.121)

Since f is an L1-Carathéodory function, we have by the Lebesgue dominated con-
vergence theorem

∥
∥N
(
yn
)−N(y)

∥
∥
Ω

≤MeωT
[
∥∥ f
(·, yn

)− f (·, y)
∥∥
L1 +

m∑

k=1

∣∣Ik
(
yn
(
t−k
))− Ik

(
y
(
t−k
))∣∣
]

�→ 0,

(9.122)

as n→∞. Thus N is continuous.
Step 2. N maps bounded sets into bounded sets in Ω.

Indeed, it is enough to show that for any q > 0 there exists a positive constant
� such that, for each y ∈ Bq = {y ∈ Ω : ‖y‖Ω ≤ q}, we have ‖N(y)‖Ω ≤ �. Then
we have, for each t ∈ [0,T],

∣
∣N(y)(t)

∣
∣ =
∣
∣
∣∣
∣S
′(t)φ(0) +

d

dt

∫ t

0
S(t − s) f (s, ys

)
ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
∣
∣
∣∣
∣

≤Meωt1
[

‖φ‖D +
∫ t1

0
e−ωsϕq(s)ds +

m∑

k=1

e−ωtk
∣∣Ik
(
y
(
t−k
))∣∣
]

≤MeωT
[

‖φ‖D +
∥
∥ϕq
∥
∥ +

m∑

k=1

e−ωtk ck

]

.

(9.123)

Thus

∥∥N(y)
∥∥
Ω ≤MeωT

[

‖φ‖D +
∥∥ϕq
∥∥
L1 +

m∑

k=1

e−ωtk ck

]

:= �. (9.124)
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Step 3. N maps bounded sets into equicontinuous sets of Ω.
Let 0 < τ1 < τ2 ∈ J , τ1 < τ2, and let Bq be a bounded set of Ω as in Step 2. Let

y ∈ Bq. Then for each t ∈ J we have

N(y)(t) = S′(t)φ(0) + lim
λ→∞

∫ t

0
S′(t − s)Bλ f

(
s, ys
)
ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
.

(9.125)

Then

∣
∣N(y)

(
τ2
)−N(y)

(
τ1
)∣∣

≤ ∣∣[S′(τ2
)− S′(τ1

)]
φ(0)

∣∣

+
∣∣
∣
∣ lim
λ→∞

∫ τ2

τ1

S′
(
τ2 − s

)
Bλ f
(
s, ys
)
ds
∣∣
∣
∣

+
∣
∣
∣∣ lim
λ→∞

∫ τ1

0

(
S′
(
τ2 − s

)− S′(τ1 − s
))
Bλ f
(
s, ys
)
ds
∣
∣
∣∣

+
∑

0<tk<τ1

ck
∣∣S′
(
τ2 − tk

)− S′(τ1 − tk
)∣∣

+
∑

τ1<tk<τ2

ck
∣
∣S′
(
τ2 − tk

)∣∣.

(9.126)

The right-hand side tends to zero as τ2−τ1 → 0, since S′(t) is strongly continuous,
and the compactness of S′(t), t > 0, implies the continuity in the uniform operator
topology.

This proves the equicontinuity for the case where t �= ti, i = 1, . . . ,m. It re-
mains to examine the equicontinuity at t = ti. The proof is similar to that given in
Theorem 4.3.

As a consequence of Steps 1 to 3 and (9.15.2) together with the Arzelá-Ascoli
theorem, it suffices to show that the operator N maps Bq into a precompact set in
D(A). Let 0 < t ≤ T be fixed and let ε be a real number satisfying 0 < ε < t. For
y ∈ Bq we define

Nε(y)(t) = S′(t)φ(0) + S′(ε) lim
λ→∞

∫ t−ε

0
S′(t − s− ε)Bλ f

(
s, ys
)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
.

(9.127)

Since S′(t) is a compact operator, the set Hε(t) = {Nε(y)(t) : y ∈ Bq} is precom-
pact in E for every ε, 0 < ε < t. Moreover, for every y ∈ Bq, we have

∣
∣Nε(y)(t)−N(y)(t)

∣
∣ ≤M

∣
∣
∣∣ lim
λ→∞

∫ t

t−ε

(
S′(t − s− ε)− S(t − s))Bλ f

(
s, ys
)
ds
∣
∣
∣∣.

(9.128)
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Therefore there are precompact sets arbitrarily close to the set {N(y)(t) : y ∈ Bq}.
Hence the set {N(y)(t) : y ∈ Bq} is precompact in D(A). Thus we can conclude
that N : Ω→ Ω is a completely continuous operator.
Step 4. Now it remains to show that the set

E(N) := {y ∈ Ω : y = σN(y) for some 0 < σ < 1
}

(9.129)

is bounded.
Let y ∈ E(N). Then y = σN(y) for some 0 < σ < 1. Thus, for each t ∈ J ,

y(t) = σ

(

S′(t)φ(0) +
d

dt

∫ t

0
S(t − s) f (s, ys

)
ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
)

.

(9.130)

This implies by (9.15.3) that for each t ∈ J we have

∣
∣y(t)

∣
∣ ≤Meωt

[
∣
∣φ(0)

∣
∣ +
∫ t

0
e−ωs p(s)ψ

(∥∥ys
∥
∥

D

)
ds +

m∑

k=1

e−ωtk ck

]

. (9.131)

We consider the function μ defined by

μ(t) = sup
{∣∣y(s)

∣
∣ : −r ≤ s ≤ t

}
, 0 ≤ t ≤ T. (9.132)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous in-
equality we have, for t ∈ [0,T],

e−ωtμ(t) ≤M

[

‖φ‖D +
m∑

k=1

e−ωtk ck +
∫ t

0
e−ωs p(s)ψ

(
μ(s)
)
ds

]

. (9.133)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and the previous inequality holds. Let us take
the right-hand side of the above inequality as v(t). Then we have

μ(t) ≤ eωtv(t), ∀t ∈ [0,T],

v(0) =M

(

‖φ‖D +
m∑

k=1

e−ωtk ck

)

, v′(t) =Me−ωt p(t)ψ
(
μ(t)
)
, t ∈ [0,T].

(9.134)

Using the increasing character of ψ, we get

v′(t) ≤Me−ωt p(t)ψ
(
eωtv(t)

)
, a.e. t ∈ [0,T]. (9.135)
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Then for each t ∈ [0,T] we have

(
eωtv(t)

)′ = ωeωtv(t) + v′(t)eωt

≤ ωeωtv(t) +Mp(t)ψ
(
eωtv(t)

)

≤ m(t)
[
eωtv(t) + ψ

(
eωtv(t)

)]
, t ∈ [0,T].

(9.136)

Thus

∫ eωtv(t)

v(0)

du

u + ψ(u)
≤
∫ T

0
m(s)ds <

∫∞

v(0)

du

u + ψ(u)
. (9.137)

Consequently, there exists a constant d such that eωtv(t) ≤ d, t ∈ [0,T], and
hence ‖y‖Ω ≤ max(‖φ‖D ,d) where d depends only on the constant M, ω, ck
and the functions p and ψ. This shows that E(N) is bounded. As a consequence of
Schaefer’s theorem we deduce thatN has a fixed point which is an integral solution
of (9.111). �

9.4.2. Impulsive neutral functional differential equations

In this section, we study problem (9.112). We give first the definition of integral
solution of problem (9.112).

Definition 9.16. A function y ∈ Ω is said to be an integral solution of (9.112) if
y(t) = φ(t), t ∈ [−r, 0],

∫ t
0 y(s)ds ∈ D(A), t ∈ [0,T], and y is the solution of

impulsive integral equation

y(t) = S′(t)
[
φ(0)− g(0,φ(0)

)
] + g

(
t, yt
)

+A
∫ t

0
y(s)ds

+
∫ t

0
f
(
s, ys
)
ds +

∑

0<tk<t

Ik
(
y
(
t−k
))
.

(9.138)

Theorem 9.17. Assume (H1), (9.4.2), (9.4.5), f is an L1-Carathéodory function, and
the following conditions hold:

(9.17.1) there exist constants 0 ≤ c1 < 1, c2 ≥ 0 such that

∣∣g(t,u)
∣∣ ≤ c1‖u‖D + c2, a.e. t ∈ [0,T], u ∈ D; (9.139)

(9.17.2) (i) the function g is completely continuous,
(ii) for any bounded set B in C([−r,T],E), the set {t → g(t, yt) :

y ∈ B} is equicontinuous in Ω;
(9.17.3) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞)

and p ∈ L1([0,T], R+) such that

∣∣ f (t,u)
∣∣ ≤ p(t)ψ

(‖u‖D
)

for a.e. t ∈ [0,T] and each u ∈D , (9.140)
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with
∫ T

0
m(s)ds <

∫∞

c

du

u + ψ(u)
, (9.141)

where

m(t) = max
{
ω,

M

1− c1
p(t)
}

,

c = M

1− c1

[
(
1 + c1

)‖φ‖D +
c2

M
+

m∑

k=1

e−ωtk ck

]

.
(9.142)

Then the IVP (9.112) has at least one integral solution on [−r,T].

Proof. Transform problem (9.112) into a fixed point problem. Consider the oper-
ator N : Ω→ Ω defined by

N(y)(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

S′(t)
[
φ(0)− g(0,φ(0)

)]
+ g
(
t, yt
)

+
d

dt

∫ t

0
S(t − s) f (s, ys

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

if t ∈ [0,T].

(9.143)

Let Ñ : Ω→ Ω be defined by

Ñ(y)(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

S′(t)φ(0) +
d

dt

∫ t

0
S(t − s) f (s, ys

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

if t ∈ [0,T].

(9.144)

As in the proof of Theorem 9.15, we can prove that Ñ is completely continuous
and by (9.17.2) N is completely continuous.

Now we prove only that the set

E(N) := {y ∈ Ω : y = σN(y) for some 0 < σ < 1
}

(9.145)

is bounded. Let y ∈ E(N). Then σN(y) = y, for some 0 < σ < 1 and

y(t) = σ

[

S′(t)
[
φ(0)− g(0,φ(0)

)]
+ g
(
t, yt
)

+
d

dt

∫ t

0
S(t − s) f (s, ys

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
]

.

(9.146)
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This implies that, for each t ∈ [0,T], we have

∣∣y(t)
∣∣ ≤Meωt

[(
1 + c1

)‖φ‖D + c2
]

+ c1
∥∥yt
∥∥

D + c2

+Meωt
∫ t

0
e−ωs p(s)ψ

(∥∥ys
∥∥

D

)
ds +Meωt

m∑

k=1

e−ωtk ck.
(9.147)

We consider the function μ defined by

μ(t) := sup
{∣∣y(s)

∣
∣ : −r ≤ s ≤ t

}
, t ∈ [0,T]. (9.148)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous in-
equality, we have, for t ∈ [0,T],

(
1− c1

)
μ(t) ≤Meωt

[(
1 + c1

)‖φ‖D + c2
]

+ c2

+Meωt
∫ t

0
e−ωs p(s)ψ

(
μ(s)
)
ds +Meωt

m∑

k=1

e−ωtk ck
(9.149)

or

e−ωtμ(t) ≤ M

1− c1

[
(
1 + c1

)‖φ‖D + c2 +
c2

M
+
∫ t

0
e−ωs p(s)ψ

(
μ(s)
)
ds +

m∑

k=1

e−ωtk ck

]

.

(9.150)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖ and the inequality holds. Let us take the
right-hand side of the above inequality as v(t). Then we have

v(0) = M

1− c1

[
(
1 + c1

)‖φ‖D + c2 +
c2

M
+

m∑

k=1

e−ωtk ck

]

,

v′(t) = M

1− c1
e−ωt p(t)ψ

(
μ(t)
) ≤ M

1− c1
e−ωt p(t)ψ

(
eωtv(t)

)
, t ∈ [0,T].

(9.151)

Then for each t ∈ [0,T] we have

(
eωtv(t)

)′ = ωeωtv(t) + v′(t)eωt ≤ ωeωtv(t) +
M

1− c1
p(t)ψ

(
eωtv(t)

)

≤ m(t)
[
eωtv(t) + ψ

(
eωtv(t)

)]
, t ∈ [0,T].

(9.152)

By using (9.17.3) we then have

∫ eωtv(t)

v(0)

du

u + ψ(u)
≤
∫ t

0
m(s)ds ≤

∫ T

0
m(s)ds <

∫∞

v(0)

du

u + ψ(u)
. (9.153)
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This inequality implies that there exists a constant b depending only on T , M, ck
and on the functions p and ψ such that

∣
∣y(t)

∣
∣ ≤ b, for each t ∈ [0,T]. (9.154)

Hence

‖y‖Ω ≤ max
(‖φ‖D , b

)
. (9.155)

This shows that E(N) is bounded. Set X := Ω. As a consequence of Schaefer’s the-
orem we deduce that N has a fixed point which is an integral solution of problem
(9.112). �

9.5. Nondensely defined impulsive semilinear functional
differential inclusions

In this section, we will be concerned with the existence of integral solutions for
first-order impulsive semilinear functional and neutral functional differential in-
clusions in Banach spaces. First, we will consider first-order impulsive semilinear
functional differential inclusions of the form

y′(t)− Ay(t) ∈ F
(
t, yt
)
, a.e. t ∈ J = [0,T]\{t1, . . . , tm

}
,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],

(9.156)

where F : [0,T]×D → P(E) is a function, D = {ψ : [−r, 0] → E : ψ is continuous
everywhere except for a finite number of points t at which ψ(t) and ψ(t+) exist and
ψ(t−) = ψ(t)}, (0 < r < ∞), A : D(A) ⊂ E → E is a nondensely defined closed
linear operator on E, φ ∈ D , 0 = t0 < t1 < · · · < tm < tm+1 = T , Ik ∈ C(E,E)
(k = 1, . . . ,m), Δy|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h) and y(t−k ) =
limh→0− y(tk − h), and E is a real separable Banach space with norm | · |.

Later, we study first-order impulsive semilinear neutral functional differential
equations of the form

d

dt

[
y(t)− g(t, yt

)]− Ay(t) ∈ F
(
t, yt
)
, a.e. t ∈ J = [0,T]\{t1, . . . , tm

}
,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],
(9.157)

where F, Ik, A, and φ are as in problem (9.156), g : [0,T] × D → E is a given
function.
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9.5.1. Impulsive functional differential inclusions

Let us start by defining what we mean by an integral solution of problem (9.156).

Definition 9.18. A function y ∈ Ω is said to be an integral solution of (9.156) if
there exists f (t) ∈ F(t, yt) a.e. on J such that y is the solution of the impulsive
integral equation

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S′(t)φ(0) + A
∫ t

0
y(s)ds +

∫ t

0
f (s)ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

,
∫ t

0
y(s)ds ∈ D(A), t ∈ [0,T],

φ(t), t ∈ [−r, 0].
(9.158)

By the definition, it follows that y(t) ∈ D(A), t ≥ 0. Moreover, y satisfies the
following variation of constants formula:

y(t) = S′(t)y0 +
d

dt

∫ t

0
S(t − s) f (s, ys

)
ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, t ≥ 0.

(9.159)

Let Bλ = λR(λ,A). Then for all x ∈ D(A), Bλx → x as λ → ∞. As a conse-
quence, if y satisfies (9.159), then

y(t) = S′(t)y0 + lim
λ→∞

∫ t

0
S′(t − s)Bλ f

(
s, ys
)
ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, t ≥ 0.

(9.160)

Theorem 9.19. Assume that (H1), (9.4.2), (9.4.5), (9.15.2) and the following condi-
tions hold:

(9.19.1) F : [0,T]×D → P (D(A)) is a nonempty compact valued multivalued
map such that
(a) (t,u) �→ F(t,u) is L⊗B measurable,
(b) u �→ F(t,u) is lower semicontinuous for a.e. t ∈ [0,T];

(9.19.2) for each q > 0, there exists a function hq ∈ L1([0,T], R+) such that

∥
∥F(t,u)

∥
∥ := sup

{|v| : v ∈ F(t,u)
} ≤ hq(t) for a.e. t ∈ [0,T], (9.161)

and for u ∈ D with ‖u‖D ≤ q.
Then the IVP (9.156) has at least one integral solution.

Proof. Hypotheses (9.19.1) and (9.19.2) imply by Frigon [148, Lemma 2.2] that
F is of lower semicontinuous type. Then from Theorem 1.5, there exists a contin-
uous function f : Ω → L1([0,T],D(A)) such that f (y) ∈ F (y) for all y ∈ Ω.
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Consider the following problem:

y′(t)− Ay(t) = f
(
yt
)
, t ∈ [0,T], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0].

(9.162)

Clearly, if y ∈ Ω is an integral solution of problem (9.162), then y is a solution to
problem (9.156).

Transform problem (9.162) into a fixed point problem. Consider the operator
N : Ω→ Ω defined by

N(y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

S′(t)φ(0) +
d

dt

∫ t

0
S(t − s) f (ys

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

if t ∈ [0,T].

(9.163)

The proof that N has a fixed point is similar to that of Theorem 9.15 and we
omit the details. �

9.5.2. Impulsive neutral functional differential inclusions

In this section, we study problem (9.157). We give first the definition of an integral
solution of problem (9.157).

Definition 9.20. A function y ∈ Ω is said to be an integral solution of (9.157) if
there exists f (t) ∈ F(t, yt) a.e. on [0,T] such that y is the solution of impulsive
integral equation

y(t) = S′(t)
[
φ(0)− g(0,φ(0)

)
] + g

(
t, yt
)

+ A
∫ t

0
y(s)ds

+
∫ t

0
f (s)ds +

∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

, t ∈ [0,T],
(9.164)

and y(t) = φ(t), t ∈ [−r, 0],
∫ t

0 y(s)ds ∈ D(A), t ∈ [0,T].

Theorem 9.21. Assume (H1), (9.4.2), (9.4.5), (9.17.2), (9.19.1), (9.19.2) and the
following conditions hold:

(9.21.1) there exist constants 0 ≤ c1 < 1, c2 ≥ 0 such that

∣∣g(t,u)
∣∣ ≤ c1‖u‖D + c2, a.e. t ∈ [0,T], u ∈ D; (9.165)
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(9.21.2) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1([0,T], R+) such that

∥
∥F(t,u)

∥
∥ := sup

{|v| : v ∈ F(t,u)
} ≤ p(t)ψ

(‖u‖D
)

(9.166)

for a.e. t ∈ [0,T] and each u ∈D with

∫ T

0
m(s)ds <

∫∞

c

du

u + ψ(u)
, (9.167)

where

m(t) = max
{
ω,

M

1− c1
p(t)
}

,

c = M

1− c1

[
(
1 + c1

)‖φ‖D +
c2

M
+

m∑

k=1

e−ωtk ck

]

.
(9.168)

Then the IVP (9.157) has at least one integral solution.

Proof. Let f : Ω→ L1([0,T],D(A)) be a selection of F, and consider the problem

d

dt

[
y(t)− g(t, yt

)]− Ay(t) = f
(
yt
)
, t ∈ J , t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0].

(9.169)

Consider the operator N : Ω→ Ω defined by

N(y)(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

S′(t)
[
φ(0)− g(0,φ(0)

)]
+ g
(
t, yt
)

+
d

dt

∫ t

0
S(t − s) f (ys

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

if t ∈ [0,T].

(9.170)

Let Ñ : Ω→ Ω be defined by

Ñ(y)(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(t) if t ∈ [−r, 0],

S′(t)φ(0) +
d

dt

∫ t

0
S(t − s) f (ys

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))

if t ∈ [0,T].

(9.171)
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As in the proof of Theorem 9.19, we can prove that Ñ is completely continuous
and by using (9.19.2) N is completely continuous.

Now we prove only that the set

E(N) := {y ∈ Ω : y = σN(y) for some 0 < σ < 1
}

(9.172)

is bounded. Let y ∈ E(N). Then σN(y) = y for some 0 < σ < 1 and

y(t) = σ

[

S′(t)
[
φ(0)− g(0,φ(0)

)]
+ g
(
t, yt
)

+
d

dt

∫ t

0
S(t − s) f (ys

)
ds

+
∑

0<tk<t

S′
(
t − tk

)
Ik
(
y
(
t−k
))
]

.

(9.173)

This implies that for each t ∈ [0,T] we have

∣∣y(t)
∣∣ ≤Meωt

[(
1 + c1

)‖φ‖D + c2
]

+ c1
∥∥yt
∥∥

D + c2

+Meωt
∫ t

0
e−ωs p(s)ψ

(∥∥ys
∥∥

D

)
ds +Meωt

m∑

k=1

e−ωtk ck.
(9.174)

We consider the function μ defined by

μ(t) := sup
{∣∣y(s)

∣
∣ : −r ≤ s ≤ t

}
, t ∈ [0,T]. (9.175)

Let t∗ ∈ [−r, t] be such that μ(t) = |y(t∗)|. If t∗ ∈ [0,T], by the previous in-
equality we have, for t ∈ [0,T],

(
1− c1

)
μ(t) ≤Meωt

[(
1 + c1

)‖φ‖D + c2
]

+ c2

+Meωt
∫ t

0
e−ωs p(s)ψ

(
μ(s)
)
ds +Meωt

m∑

k=1

e−ωtk ck
(9.176)

or

e−ωtμ(t) ≤ M

1− c1

[
(
1 + c1

)‖φ‖D + c2 +
c2

M
+
∫ t

0
e−ωs p(s)ψ

(
μ(s)
)
ds +

m∑

k=1

e−ωtk ck

]

.

(9.177)

If t∗ ∈ [−r, 0], then μ(t) = ‖φ‖D and the inequality holds. Let us take the
right-hand side of the above inequality as v(t). Then we have

v(0) = M

1− c1

[
(
1 + c1

)‖φ‖D + c2 +
c2

M
+

m∑

k=1

e−ωtk ck

]

,

v′(t) = M

1− c1
e−ωt p(t)ψ

(
μ(t)
) ≤ M

1− c1
e−ωt p(t)ψ

(
eωtv(t)

)
, t ∈ [0,T].

(9.178)
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Then for each t ∈ [0,T] we have

(
eωtv(t)

)′ = ωeωtv(t) + v′(t)eωt ≤ ωeωtv(t) +
M

1− c1
p(t)ψ

(
eωtv(t)

)

≤ m(t)
[
eωtv(t) + ψ

(
eωtv(t)

)]
, t ∈ [0,T].

(9.179)

By using (A3) we then have

∫ eωtv(t)

v(0)

du

u + ψ(u)
≤
∫ t

0
m(s)ds ≤

∫ T

0
m(s)ds <

∫∞

v(0)

du

u + ψ(u)
. (9.180)

This inequality implies that there exists a constant b depending only on T , M, ck
and on the functions p and ψ such that

∣
∣y(t)

∣
∣ ≤ b, for each t ∈ [0,T]. (9.181)

Hence

‖y‖Ω ≤ max
(‖φ‖D , b

)
. (9.182)

This shows that E(N) is bounded. Set X := Ω. As a consequence of Schaefer’s the-
orem we deduce that N has a fixed point which is an integral solution of problem
(9.157). �

9.6. Notes and remarks

The results of Section 9.2 are taken from [38] and concern nondensely defined ev-
olution equations with nonlocal conditions. These results are extended in Section
9.3, for nondensely defined impulsive differential inclusions, where the results
from Benchohra et al. [39] are presented. Sections 9.4 and 9.5 deal with non-
densely defined semilinear functional and neutral functional differential equations
and inclusions, respectively. The material of Section 9.4 is taken from Benchohra
et al. [42], and Section 9.5 contains results from Benchohra et al. [76].



10
Hyperbolic impulsive
differential inclusions

10.1. Introduction

In this chapter, we will be concerned with the existence of solutions for second-
order impulsive hyperbolic differential inclusions in a separable Banach space.
More precisely, we will consider impulsive hyperbolic differential inclusions of the
form

∂2u(t, x)
∂t∂x

∈ F
(
t, x,u(t, x)

)
, a.e. (t, x) ∈ Ja × Jb, t �= tk, k = 1, . . . ,m,

Δu
(
tk, x
) = Ik

(
u
(
tk, x
))

, k = 1, . . . ,m,

u(t, 0) = ψ(t), t ∈ Ja, u(0, x) = φ(x), x ∈ Jb,

(10.1)

where Ja = [0, a], Jb = [0, b], F : Ja × Jb × E → P (E) is a multivalued map (P (E)
is the family of all nonempty subsets of E), φ ∈ C(Ja,E), 0 = t0 < t1 < · · · < tm <
tm+1 = a, Ik ∈ C(E,E) (k = 1, . . . ,m), Δu|t=tk = u(t+k , y) − u(t−k , y), u(t+k , y) =
lim(h,x)→(0+,y) u(tk + h, x) is the right limit and u(t−k , y) = lim(h,x)→(0+,y) u(tk − h, x)
is left limit of u(t, x) at (tk, x), and E is a real separable Banach space with norm
| · |.

In the last few years impulsive differential and partial differential equations
have become the object of increasing investigation in some mathematical models
of real world phenomena, especially in biological or medical domain; see the mon-
ographs by Baı̆nov and Simeonov [29], Lakshmikantham et al. [180], Samoı̆lenko
and Perestyuk [217].

In the last three decades several papers have been devoted to the study of hy-
perbolic partial differential equations with local and nonlocal initial conditions;
see for instance [113, 115, 182] and the references cited therein. For similar results
with set-valued right-hand side, we refer to the papers by Byszewski and Papageor-
giou [116], Papageorgiou [208], and Benchohra and Ntouyas [33, 81, 83, 84].

Here we will present three existence results for problem (10.1) in the cases
when F has convex and nonconvex values. In the convex case, an existence result
will be given by means of the nonlinear alternative of Leray-Schauder type for
multivalued maps. In the nonconvex, case two results will be presented. The first
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one relies on a fixed point theorem due to Covitz and Nadler for contraction mul-
tivalued maps and the second one on the nonlinear alternative of Leray-Schauder
type for single-valued maps combined with a selection theorem due to Bressan
and Colombo [105] for lower semicontinuous multivalued operators with closed
and decomposable values. Our results extend to the multivalued case some ones
considered in the previous literature.

10.2. Preliminaries

We will briefly recall some basic definitions and facts from multivalued analysis
that we will use in the sequel.

C(Ja × Jb,E) is the Banach space of all continuous functions from Ja × Jb into
E with the norm

‖u‖∞ = sup
{∣∣u(t, s)

∣
∣ : (t, s) ∈ Ja × Jb

}
. (10.2)

A measurable function z : Ja × Jb → E is Bochner integrable if and only if |z|
is Lebesgue integrable. (For properties of the Bochner integral, see, e.g., Yosida
[230].)

L1(Ja × Jb,E) denotes the Banach space of functions z : Ja × Jb → E which are
Bochner integrable normed by

‖z‖L1 =
∫ a

0

∫ b

0

∣∣z(t, s)
∣∣dt ds. (10.3)

A multivalued map N : Ja × Jb × E → Pcl(E) is said to be measurable, if for
every w ∈ E, the function t �→ d(w,N(t, x,u)) = inf{‖w − v‖ : v ∈ N(t, x,u)} is
measurable, where d is the metric induced from the Banach space E.

Definition 10.1. The multivalued map F : Ja × Jb × E → P (E) is said to be L1-
Carathéodory, if

(i) (t, x) �→ F(t, x,u) is measurable for each u ∈ E;
(ii) u �→ F(t, x,u) is upper semicontinuous for almost all (t, x) ∈ Ja × Jb;

(iii) for each ρ > 0, there exists ϕρ ∈ L1(Ja × Jb, R+) such that

∥
∥F(t, x,u)

∥
∥ = sup

{|v| : v ∈ F(t, x,u)
} ≤ ϕρ(t, x) (10.4)

for all |u| ≤ ρ and for a.e. (t, x) ∈ Ja × Jb.

For each u ∈ C(Ja × Jb,E), define the set of selections of F by

SF,u =
{
v ∈ L1(Ja × Jb,E

)
: v(t, s) ∈ F

(
t, x,u(t, x)

)
a.e. (t, x) ∈ Ja × Jb

}
. (10.5)

The following lemma can be reduced easily from the corresponding one in [186].
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Lemma 10.2 (see [186]). Let X be a Banach space. Let F : Ja×Jb×X → Pcp,cv(X) be
an L1-Carathéodory multivalued map with SF �= ∅, and let Ψ be a linear continuous
mapping from L1(Ja × Jb,X) to C(J × Jb,X). Then the operator

Ψ ◦ SF : C
(
Ja × Jb,X

)
�→ Pcp,c

(
C
(
Ja × Jb,X

))
, u � �→ (Ψ ◦ SF

)
(u) := Ψ

(
SF,u
)

(10.6)

is a closed graph operator in C(Ja × Jb,X)× C(Ja × Jb,X).

10.3. Main results

In this section, we are concerned with the existence of solutions for problem (10.1)
when the right-hand side has convex as well as nonconvex values. First, we assume
that F : Ja × Jb × E → P (E) is a compact and convex valued multivalued map. In
order to define the solution of (10.1) we will consider the space

Ω = {u : Ja × Jb �→ E : uk ∈ C
(
Γk,E

)
, k = 0, . . . ,m,

∃u(t−k , ·),u
(
t+k , ·), k = 1, . . . ,m, with u

(
t−k , ·) = u

(
tk, ·)} (10.7)

which is a Banach space with the norm

‖u‖Ω = max
{∥∥uk

∥
∥, k = 0, . . . ,m

}
, (10.8)

where uk is the restriction of u to Γk := (tk, tk+1)× [0, b], k = 0, . . . ,m.

Definition 10.3. A function u ∈ Ω ∩ AC1(Γk,E), k = 1, . . . ,m, is said to be a
solution of (10.1) if there exists v ∈ L1(Ja× Jb,E) such that v(t, x) ∈ F(t, x,u(t, x))
a.e. on Ja × Jb, and

u(t, x) = z(t, x) +
∫ t

0

∫ x

0
v(s, τ)ds dτ +

∑

0<tk<t

Ik
(
u
(
tk, x
))

, (10.9)

where z(t, x) = ψ(t) + φ(x)− ψ(0).

Theorem 10.4. Assume that the following conditions are satisfied:
(10.4.1) F : Ja × Jb × E → Pb,cp,cv(E) is an L1-Carathéodory multimap;
(10.4.2) there exist constants ck,dk such that

∣
∣Ik(u)

∣
∣ ≤ ck, for each u ∈ E, k = 1, . . . ,m; (10.10)

(10.4.3) there exist functions p, q ∈ L1(Ja × Jb, R+) such that

∥
∥F(t, x,u)

∥
∥ ≤ p(t, x) + q(t, x)|u| (10.11)

for a.e. (t, x) ∈ Ja × Jb and each u ∈ E;
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(10.4.4) for each bounded B ⊆ Ω and t ∈ J , the set

{

z(t, x) +
∫ t

0

∫ x

0
v(s, τ)ds dτ +

∑

0<tk<t

Ik
(
u
(
tk, x
))

, v ∈ SF,B

}

(10.12)

is relatively compact in E, where SF,B = ∪{SF,y : y ∈ B}. Then prob-
lem (10.1) has at least one solution.

Proof. Transform the problem (10.1) into a fixed point problem. Consider the
multivalued operator N : Ω→ P (Ω) defined by

N(u) =
{

h ∈ Ω : h(t, x) = z(t, x) +
∫ t

0

∫ x

0
v(s, τ)ds dτ

+
∑

0<tk<t

Ik
(
u
(
tk, x
))

, v ∈ SF,u

}

.

(10.13)

We will show that N satisfies the assumptions of Theorem 1.8. The proof will be
given in several steps.
Step 1. N(u) is convex for each u ∈ Ω.

Indeed, if h1, h2 belong to N(u), then there exist v1, v2 ∈ SF,u such that for
each (t, x) ∈ Ja × Jb we have

hi(t, x) = z(t, x) +
∫ t

0

∫ x

0
vi(s, τ)ds dτ +

∑

0<tk<t

Ik
(
u
(
tk, x
))

, i = 1, 2. (10.14)

Let 0 ≤ d ≤ 1. Then for each (t, x) ∈ Ja × Jb we have

(
dh1 + (1− d)h2

)
(t)

= z(t, x) +
∫ t

0

∫ x

0

[
dv1(s, τ) + (1− d)v2(s, τ)

]
ds dτ +

∑

0<tk<t

Ik
(
u
(
tk, x
))
.

(10.15)

Since SF,u is convex (because F has convex values), then

dh1 + (1− d)h2 ∈ N(u). (10.16)

Step 2. N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant � such that,

for each u ∈ Br = {u ∈ Ω : ‖u‖Ω ≤ r}, one has ‖N(u)‖Ω ≤ �.
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Let u ∈ Br and h ∈ N(u). Then by (10.4.2)-(10.4.3) we have, for each (t, x) ∈
Ja × Jb,

∣∣h(t, x)
∣∣ ≤ ∣∣z(t, x)

∣∣ +
∫ a

0

∫ b

0

∣∣p(t, x)
∣∣ +
∣∣q(t, x)

∣∣∣∣u(t, x)
∣∣ds +

m∑

k=1

ck

≤ ‖z‖∞ + ‖p‖L1 + r‖q‖L1 +
m∑

k=1

ck := �.

(10.17)

Step 3. N maps bounded sets into equicontinuous sets of Ω.
Let (τ1, x1), (τ2, x2) ∈ Ja × Jb, τ1 < τ2, x1 < x2, and Bq be a bounded set of Ω

as in Step 2. Then

∣
∣h
(
τ2, x2

)− h(τ1, x1
)∣∣ ≤ ∣∣z0

(
τ2, x2

)− z0
(
τ1, x1

)∣∣ +
∫ τ1

0

∫ x2

x1

φq(t, s)dt ds

+
∫ τ2

0

∫ x2

x1

φq(t, s)dt ds +
∫ τ1

τ2

∫ x2

x1

φq(t, s)dt +
∑

0<t<τ2−τ1

ck.

(10.18)

The right-hand side tends to zero as τ2 − τ1 → 0, x2 − x1 → 0.
As a consequence of Steps 1 to 3 and (10.4.4) together with the Arzelá-Ascoli

theorem we can conclude that N : Ω→ P(Ω) is a completely continuous multival-
ued map.
Step 4. N has a closed graph.

Let un → u∗, hn ∈ N(un), and hn → h∗. We will prove that h∗ ∈ N(u∗).
hn ∈ N(un) means that there exists vn ∈ SF,un such that for each (t, x) ∈ Ja×Jb,

hn(t, x) = z(t, x) +
∫ t

0

∫ x

0
vn(s, x)ds +

∑

0<tk<t

Ik
(
un
(
tk, x
))
. (10.19)

We must prove that there exists v∗ ∈ SF,u∗ such that for each (t, x) ∈ Ja × Jb,

h∗(t, x) = z(t, x) +
∫ t

0

∫ x

0
v∗(s, x)ds +

∑

0<tk<t

Ik
(
u∗
(
tk, x
))
. (10.20)

Clearly since Ik, k = 1, . . . ,m, and φ are continuous, we have that

∥
∥∥
∥
∥

(

hn − z(t, x)−
∑

0<tk<t

Ik
(
un
(
tk, x
))
)

−
(

h∗ − z(t, x)−
∑

0<tk<t

Ik
(
u∗
(
tk, x
))
)∥∥∥
∥
∥
∞
�→ 0,

(10.21)

as n→∞.
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Consider the linear continuous operator

Ψ : L1(Ja × Jb,E
)
�→ C

(
Ja × Jb,E

)
,

v � �→ Ψ(v)(t, x) =
∫ t

0

∫ x

0
v(s, τ)ds dτ.

(10.22)

From Lemma 10.2, it follows that Ψ ◦ SF is a closed graph operator. Moreover, we
have that

hn(t, x)− z(t, x)−
∑

0<tk<t

Ik
(
un(tk, x)

) ∈ Ψ
(
SF,un

)
. (10.23)

Since un → u∗, it follows from Lemma 10.2 that

h∗(t, x) = z(t, x) +
∫ t

0

∫ x

0
v∗(s, x)ds +

∑

0<tk<t

Ik
(
u∗
(
tk, x
))

, (10.24)

for some v∗ ∈ SF,u∗ .
Step 5. A priori bounds on solutions.

Let u ∈ Ω be such that u ∈ λN(u) for some λ ∈ (0, 1). Then by (10.4.2)-
(10.4.3) for each (t, x) ∈ Ja × Jb we have

∣
∣u(t, x)

∣
∣ ≤ ‖z‖∞ +

∫ t

0

∫ x

0

[∣∣p(s, τ)
∣
∣ +
∣
∣q(s, τ)

∣
∣
∣
∣u(s, τ)

∣
∣]ds dτ +

m∑

k=1

ck

≤ ‖z‖∞ +
∫ t

0

∫ x

0

∣
∣q(s, τ)

∣
∣
∣
∣u(s, τ)

∣
∣ds dτ + ‖p‖L1 +

m∑

k=1

ck.

(10.25)

Let

z0 = ‖z‖∞ + ‖p‖L1 +
m∑

k=1

ck. (10.26)

Then, for (t, x) ∈ Ja × Jb,

u(t, x) ≤ z0 +
∫ t

0

∫ x

0

∣
∣q(s, τ)

∣
∣
∣
∣u(s, τ)

∣
∣ds dτ. (10.27)

Invoking Gronwall’s inequality (see, e.g., [160]), we get that

u(t, x) ≤ z0e
‖q‖L1 :=M. (10.28)

Then

‖u‖Ω < M. (10.29)
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Set

U = {u ∈ Ω : ‖u‖Ω < M + 1
}
. (10.30)

From the choice of U there is no u ∈ ∂U such that u ∈ λN(u) for some λ ∈ (0, 1).
As a consequence of the nonlinear alternative of Leray-Schauder type [157] we
deduce that N has a fixed point u in U which is a solution of problem (10.1). �

Theorem 10.5. Suppose that the following hypotheses are satisfied:
(10.5.1) F : Ja× Jb×E → Pcp,cv(E); (t, x,u) �→ F(t, x,u) is measurable for each

u ∈ E;
(10.5.2) there exist constants c∗k such that

∣
∣Ik(u)− Ik(u)

∣
∣ ≤ c∗k |u− u|, (10.31)

for each k = 1, . . . ,m, and for all u,u ∈ E;
(10.5.3) there exists a function l ∈ L1(Ja × Jb, R+) such that

Hd
(
F(t, x,u),F(t, x,u)

) ≤ l(t, s)|u− u|, (10.32)

for a.e. (t, x) ∈ Ja × Jb and all u,u ∈ E, and

d
(
0,F(t, x, 0)

) ≤ l(t, s) for a.e. (t, x) ∈ Ja × Jb. (10.33)

If

‖l‖L1 +
m∑

k=1

c∗k < 1, (10.34)

then problem (10.1) has at least one solution.

Proof. Transform the problem (10.1) into a fixed point problem. Let the multi-
valued operator N : Ω → P(Ω) defined as in Theorem 10.4. We will show that N
satisfies the assumptions of Theorem 1.11. The proof will be given in two steps.
Step 1. N(u) ∈ Pcl(Ω) for each u ∈ Ω.

Indeed, let (un)n≥0 ∈ N(u) such that un → ũ in Ω. Then there exists vn ∈ SF,u

such that for each (t, x) ∈ Ja × Jb,

un(t, x) = z(t, x) +
∫ t

0

∫ x

0
vn(s, τ)ds dτ +

∑

0<tk<t

Ik
(
u
(
tk, x
))
. (10.35)

Using the fact that F has compact values, and from (10.5.3), we may pass to a
subsequence if necessary to get that vn converges to v in L1(Ja × Jb,E) and hence
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v ∈ SF,u. Then, for each (t, x) ∈ Ja × Jb,

un(t, x) �→ ũ(t, x) = z(t, x) +
∫ t

0

∫ x

0
v(s, τ)ds dτ +

∑

0<tk<t

Ik
(
u
(
tk, x
))
. (10.36)

So ũ ∈ N(u).
Step 2. There exists γ < 1 such that

Hd
(
N(u),N(u)

) ≤ γ‖u− u‖Ω for each u,u ∈ Ω. (10.37)

Let u,u ∈ Ω and h ∈ N(u). Then there exists v(·, ·) ∈ F(·, ·,u(·, ·)) such that, for
each (t, x) ∈ Ja × Jb,

h(t, x) = z(t, x) +
∫ t

0

∫ x

0
v(s, τ)ds dτ +

∑

0<tk<t

Ik
(
u(tk, x)

)
. (10.38)

From (10.5.3) it follows that

Hd
(
F
(
t, x,u(t, x)

)
,F
(
t, x,u(t, x)

)) ≤ l(t, x)
∣
∣u(t, x)− u(t, x)

∣
∣. (10.39)

Hence there is w ∈ F(t, x,u(t, x)) such that

∣
∣v(t, x)−w∣∣ ≤ l(t, x)

∣
∣u(t, x)− u(t, x)

∣
∣, (t, x) ∈ Ja × Jb. (10.40)

Consider U : Ja × Jb → P (E) given by

U(t, x) = {w ∈ E :
∣
∣v(t, x)−w∣∣ ≤ l(t, x)

∣
∣u(t, x)− u(t, x)

∣
∣}. (10.41)

Since the multivalued operator V(t, x) = U(t, x) ∩ F(t, x,u(t, x)) is measurable
(see [119, Proposition III.4]), there exists a function v(t, x), which is a measurable
selection for V . So, v(t, x) ∈ F(t, x,u(t, x)) and

∣
∣v(t, x)− v(t, x)

∣
∣ ≤ l(t, x)

∣
∣u(t, x)− u(t, x)

∣
∣, for each (t, x) ∈ Ja × Jb.

(10.42)

Let us define, for each (t, x) ∈ Ja × Jb,

h(t, x) = z(t, x) +
∫ t

0

∫ x

0
v(s, τ)ds dτ +

∑

0<tk<t

Ik
(
u
(
tk, x
))
. (10.43)
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Then we have

∣∣h(t, x)− h(t, x)
∣∣ ≤
∫ t

0

∫ x

0
l(s, τ)

∣∣u(s, τ)− u(s, τ)
∣∣ds dτ

+
m∑

k=1

∣
∣Ik
(
u
(
tk, x
))− Ik

(
u
(
tk, x
))∣∣

≤
∫ a

0

∫ b

0
l(s, τ)

∣∣u(s, τ)− u(s, τ)
∣∣ds dτ

+
m∑

k=1

c∗k
∣
∣u
(
tk, x
)− u(tk, x

)∣∣

≤
(

‖l‖L1 +
m∑

k=1

c∗k

)

‖u− u‖Ω.

(10.44)

By an analogous relation, obtained by interchanging the roles of u and u, it follows
that

Hd
(
N(u),N(u)

) ≤
(

‖l‖L1 +
m∑

k=1

c∗k

)

‖u− u‖Ω. (10.45)

So, N is a contraction and thus, by Theorem 1.11, N has a fixed point u, which is
a solution to (10.1). �

We present now a result for the problem (10.1) in the spirit of the nonlinear
alternative of Leray-Schauder type for single-valued maps combined with a selec-
tion theorem due to Bressan and Colombo.

Let A be a subset of Ja× Jb×E. A is L⊗B measurable if A belongs to the σ-
algebra generated by all sets of the form N ×D, where N is Lebesgue measurable in
Ja× Jb and D is Borel measurable in E. A subset I of L1(Ja× Jb,E) is decomposable
if, for all u, v ∈ I and N ⊂ Ja × Jb measurable, the function uχN + vχJa×Jb−N ∈ I,
where χJa×Jb stands for the characteristic function of Ja × Jb.

Let E be a Banach space, X a nonempty closed subset of E, and G : X → P (E)
a multivalued operator with nonempty closed values. G is lower semicontinuous
(l.s.c.), if the set {x ∈ X : G(x)∩ B �= ∅} is open for any open set B in E.

Definition 10.6. LetY be a separable metric space and letN : Y → P (L1(Ja×Jb,E))
be a multivalued operator. Say N has property (BC) if

(1) N is lower semicontinuous (l.s.c.);
(2) N has nonempty closed and decomposable values.

Let F : Ja × Jb × E → P (E) be a multivalued map with nonempty compact
values. Assign to F the multivalued operator

F : Ω �→ P
(
L1(Ja × Jb,E

))
(10.46)
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by letting

F (u) = {w ∈ L1(Ja × Jb,E
)

: w(t, x) ∈ F
(
t, x,u(t, x)

)
for a.e. (t, x) ∈ Ja × Jb

}
.

(10.47)

The operator F is called the Niemytzki operator associated to F.

Definition 10.7. Let F : Ja × Jb × E → P (E) be a multivalued function with
nonempty compact values. Say F is of lower semicontinuous type (l.s.c. type) if
its associated Niemytzki operator F is lower semicontinuous and has nonempty
closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo.

Theorem 10.8 ([105]). Let Y be separable metric space and let N : Y → P (L1(Ja ×
Jb,E)) be a multivalued operator which has property (BC). Then N has a continuous
selection, that is, there exists a continuous function (single-valued) g : Y → L1(Ja ×
Jb,E) such that g(u) ∈ N(u) for every u ∈ Y .

Theorem 10.9. Suppose that hypotheses (10.4.2)–(10.4.4) and the following hold:
(10.9.1) F : Ja × Jb × E → P (E) is a nonempty compact valued multivalued

map such that
(a) (t, x,u) �→ F(t, x,u) is L⊗B measurable,
(b) u �→ F(t, x,u) is lower semicontinuous for a.e. (t, x) ∈ Ja × Jb.
Then problem (10.1) has at least one solution.

Proof. Hypotheses (10.4.3) and (10.9.1) imply by Lemma 2.2 in Frigon [148] that
F is of lower semicontinuous type. Then from Theorem 10.8 there exists a contin-
uous function g : Ω→ L1(Ja×Jb,E) such that g(u) ∈ F (u) for all u ∈ Ω. Consider
the problem

∂2u(t, x)
∂t∂x

= g
(
t, x,u(t, x)

)
, a.e. (t, x) ∈ Ja × Jb, t �= tk, k = 1, . . . ,m,

Δu
(
tk, x
) = Ik

(
u(tk, x)

)
, k = 1, . . . ,m,

u(t, 0) = ψ(t), t ∈ Ja, u(0, x) = φ(x), x ∈ Jb.
(10.48)

Clearly, if u ∈ Ω is a solution of the problem (10.48), then u is a solution to
the problem (10.1). Transform the problem (10.48) into a fixed point problem.
Consider the operator N1 : Ω→ Ω defined by

N1(u)(t, x) = z(t, x) +
∫ t

0

∫ x

0
g
(
u(s, τ)

)
ds dτ +

∑

0<tk<t

Ik
(
u
(
tk, x
))
. (10.49)
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We can easily show as in Theorem 10.4 that N1 is completely continuous and there
is no u ∈ ∂U such that u = λN1(u) for some λ ∈ (0, 1). We omit the details and
give only the proof that N1 is continuous.

Let {un} be a sequence such that un → u in Ω. Then

∣
∣N1
(
un(t, x)

)−N1
(
u(t, x)

)∣∣ ≤
∫ t

0

∫ x

0

∣
∣g
(
un(s, τ)

)− g(u(s, τ)
)∣∣ds dτ

+
∑

0<tk<t

∣
∣Ik
(
un
(
tk, x
))− Ik

(
u
(
tk, x
))∣∣

≤
∫ a

0

∫ b

0

∣∣g
(
un(s, τ)

)− g(u(s, τ)
)∣∣ds dτ

+
∑

0<tk<t

∣
∣Ik
(
un
(
tk, x
))− Ik

(
u
(
tk, x
))∣∣.

(10.50)

Since the functions g and Ik, k = 1, . . . ,m, are continuous, then

∥
∥N1
(
un
)−N1(u)

∥
∥
Ω ≤

∥
∥g
(
un(·, x)

)− g(u(·, x)
)∥∥

L1

+
m∑

k=1

∣
∣Ik
(
un
(
tk, x
))− Ik

(
u
(
tk, x
))∣∣ �→ 0 as n �→∞.

(10.51)

As a consequence of the nonlinear alternative of Leray-Schauder type, we deduce
that N1 has a fixed point u in U , which is a solution of the problem (10.48). Hence
u is a solution to the problem (10.1). �

In the rest of this section, we will be concerned with the existence of solu-
tions for the second-order impulsive hyperbolic differential inclusion with vari-
able times,

∂2u(t, x)
∂t∂x

∈ F
(
t, x,u(t, x)

)
, a.e. (t, x) ∈ Ja × Jb, t �= τk

(
u(t, x)

)
, k = 1, . . . ,m,

(10.52)

u
(
t+k , x
) = Ik

(
u(t, x)

)
, t = τk

(
u(t, x)

)
, k = 1, . . . ,m, (10.53)

u(t, 0) = ψ(t), t ∈ Ja, u(0, x) = φ(x), x ∈ Jb, (10.54)

where F : Ja×Jb×Rn → P(Rn) is a multivalued map with compact values, J := Ja×
Jb := [0, a]× [0, b], Ik ∈ C1(Rn, Rn), φ ∈ C(Ja, Rn), u(t+, y) = lim(h,x)→(0+,y) u(t +
h, x) and u(t−, y) = lim(h,x)→(0+,y) u(t−h, x), and Rn is Euclidean space with norm
| · |.

So let us start by defining what we mean by a solution of problem (10.52)–
(10.54).
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Definition 10.10. A function u ∈ Ω ∩ AC1(Γk, Rn), k = 1, . . . ,m, is said to be
a solution of (10.52)–(10.54) if there exist v ∈ L1(Ja × Jb) such that v(t, x) ∈
F(t, x,u(t, x)) is satisfied a.e. on Ja × Jb, ∂2u(t, x)/∂t∂x = v(t, x) a.e. on Ja × Jb, and
the conditions (10.53)-(10.54).

Theorem 10.11. Assume that the following hypotheses are satisfied:
(10.11.1) there exist constants ck such that |Ik(u)| ≤ ck, k = 1, . . . ,m, for each

u ∈ Rn;
(10.11.2) there exist functions p, q ∈ L1(Ja × Jb, R+) such that

∥
∥F(t, x,u)

∥
∥ ≤ p(t, x) + q(t, x)|u| (10.55)

for a.e. (t, x) ∈ Ja × Jb and each u ∈ Rn;
(10.11.3) the functions τk ∈ C1(Rn, R) for k = 1, . . . ,m. Moreover,

0 < τ1(x) < · · · < τm(x) < a, ∀x ∈ R
n; (10.56)

(10.11.4) for all u ∈ C(Ja × Jb, Rn) and all v ∈ SF,u,

〈
τ′k(x),

∫ t

t̄
v(s, x)ds

,
�= 1, ∀(t, t̄, x) ∈ Ja × Ja ×R

n (10.57)

and k = 0, . . . ,m, where 〈·, ·〉 denotes the scalar product in Rn;
(10.11.5) for all x ∈ Rn,

τk
(
Ik(x)

) ≤ τk(x) < τk+1
(
Ik(x)

)
for k = 1, . . . ,m. (10.58)

Then the IVP (10.52)–(10.54) has at least one solution.

Proof. The proof will be given in several steps.
Step 1. Consider the problem

∂2u(t, x)
∂t∂x

∈ F
(
t, x,u(t, x)

)
, a.e. (t, x) ∈ Ja × Jb,

u(t, 0) = ψ(t), t ∈ Ja, u(0, x) = φ(x), x ∈ Jb.
(10.59)

A solution to problem (10.59) is a fixed point of the operator N : C(Ja × Jb, Rn) →
P (C(Ja × Jb, Rn)) defined by

N(u) =
{

h ∈ C
(
Ja × Jb, Rn

)
: h(t, x) = z0(t, x) +

∫ t

0

∫ x

0
v(s, y)ds dy, v ∈ SF,u

}

,

(10.60)

where z0(t, x) := ψ(t) + φ(x)− ψ(0). The proof will be given in several claims.
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Claim 1. N(u) is convex for each u ∈ Ω.
Indeed, if h1, h2 belong to N(u), then there exist v1, v2 ∈ SF,u such that for

each (t, x) ∈ Ja × Jb we have

hi(t, x) = z0(t, x) +
∫ t

0

∫ x

0
vi(s, y)ds dy, i = 1, 2. (10.61)

Let 0 ≤ d ≤ 1. Then for each (t, x) ∈ Ja × Jb we have

(
dh1 + (1− d)h2

)
(t) = z0(t, x) +

∫ t

0

∫ x

0

[
dv1(s, y) + (1− d)v2(s, y)

]
ds dy.

(10.62)

Since SF,u is convex (because F has convex values), then

dh1 + (1− d)h2 ∈ N(u). (10.63)

Claim 2. N maps bounded sets into bounded sets in C(Ja × Jb, Rn).
Indeed, it is enough to show that there exists a positive constant � such that,

for each u ∈ Bq = {u ∈ C(Ja × Jb, Rn) : ‖u‖∞ ≤ q}, one has ‖N(u)‖∞ ≤ �.
Let h ∈ N(u), then there exist v ∈ SF,u such that

h(t, x) = z0(t, x) +
∫ t

0

∫ x

0
v(s, y)ds dy. (10.64)

Since F is L1-Carathéodory we have for each (t, x) ∈ Ja × Jb,

∣
∣h(t, x)

∣
∣ ≤ ∣∣z0(t, x)

∣
∣ +
∫ a

0

∫ b

0

∣
∣ϕq(t, x)

∣
∣ds

≤ ∥∥z0
∥
∥∞ +

∥
∥ϕq
∥
∥
L1 := �.

(10.65)

Claim 3. N maps bounded sets into equicontinuous sets of C(Ja × Jb, Rn).
Let (t̄1, x1), (t̄2, x2) ∈ Ja × Jb, t̄1 < t̄2, x1 < x2, and Bq be a bounded set of

C(Ja × Jb, Rn), with each as in Claim 2. Then

∣
∣h
(
t̄2, x2

)− h(t̄1, x1
)∣∣ ≤ ∣∣z0

(
t̄2, x2

)− z0
(
t̄1, x1

)∣∣

+
∫ t̄2

0

∫ x2

x1

ϕq(t, s)dt ds +
∫ t̄2

t̄1

∫ x1

0
ϕq(t, s)dt.

(10.66)

The right-hand side tends to zero as t̄2 − t̄1 → 0, x2 − x1 → 0.
As a consequence of Claims 2 to 3 with the Arzela-Ascoli theorem, we can

conclude that N : C(Ja × Jb, Rn) → C(Ja × Jb, Rn) is completely continuous.
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Claim 4. N has a closed graph.
Let un → u∗, hn ∈ N(un) and hn → h∗. We will prove that h∗ ∈ N(u∗).
hn ∈ N(un) means that there exists vn ∈ SF,un such that, for each t ∈ J ,

hn(t, x) = z0(t, x) +
∫ t

0

∫ x

0
vn(s, x)ds. (10.67)

We must prove that there exists v∗ ∈ SF,u∗ such that, for each (t, x) ∈ Ja × Jb,

h∗(t, x) = z0(t, x) +
∫ t

0

∫ x

0
v∗(s, x)ds. (10.68)

Clearly since φ is continuous, we have that

∥
∥∥
(
hn − z0(t, x)

)
−
(
h∗ − z0(t, x)

)∥∥∥∞ �→ 0, as n→∞. (10.69)

Consider the linear continuous operator

Ψ : L1(Ja × Jb, Rn
)
�→ C

(
Ja × Jb, Rn

)
,

v � �→ Ψ(v)(t, x) =
∫ t

0

∫ x

0
v(s, τ)ds dτ.

(10.70)

From Lemma 1.28, it follows that Ψ ◦ SF is a closed graph operator. Moreover, we
have that

(
hn(t, x)− z0(t, x)

) ∈ Ψ
(
SF,un

)
. (10.71)

Since un → u∗, it follows from Lemma 1.28 that

h∗(t, x) = z0(t, x) +
∫ t

0

∫ x

0
v∗(s, y)ds dy, (10.72)

for some v∗ ∈ SF,u∗ .
Claim 5. A priori bounds on solutions.

Let u ∈ Ω by a possible solution to (10.59). Then there exists v ∈ SF,u such
that, for each (t, x) ∈ Ja × Jb,

u(t, x) = z0(t, x) +
∫ t

0

∫ x

0
v(s, y)ds dy. (10.73)

This implies by (10.11.2)–(10.11.4) that for each (t, x) ∈ Ja × Jb we have

∣∣u(t, x)
∣∣ ≤ ∥∥z0

∥∥∞ +
∫ t

0

∫ x

0

[∣∣p(s, τ)
∣∣ +
∣∣q(s, τ)

∣∣∣∣u(s, τ)
∣∣]ds dτ

≤ ∥∥z0
∥
∥∞ +

∫ t

0

∫ x

0

∣
∣q(s, τ)

∣
∣
∣
∣u(s, τ)

∣
∣ds dτ + ‖p‖L1 .

(10.74)
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Invoking Gronwall’s inequality (see, e.g., [160]), we get that

∣
∣u(t, x)

∣
∣ ≤ [∥∥z0

∥
∥∞ + ‖p‖L1

]
exp
(‖q‖L1

)
:=M. (10.75)

Then

‖u‖Ω < M. (10.76)

Set

U1 =
{
u ∈ C

(
Ja × Jb, Rn

)
: ‖u‖∞ < M + 1

}
. (10.77)

N : U1 → P(C(Ja × Jb, Rn)) is completely continuous. From the choice of U1 there
is no u ∈ ∂U1 such that u ∈ λN(u) for some λ ∈ (0, 1). As a consequence of the
nonlinear alternative of Leray Schauder type, we deduce that N has a fixed point u
in U1, which is a solution of (10.59). Denote this solution by u1.

Define the function

rk,1(t, x) = τk
(
u1(t, x)

)− t for t ≥ 0. (10.78)

Hypothesis (10.11.3) implies that

rk,1(0, 0) �= 0 for k = 1, . . . ,m. (10.79)

If

rk,1(t, x) �= 0 on Ja × Jb, for k = 1, . . . ,m, (10.80)

that is,

t �= τk
(
u1(t, x)

)
on Ja × Jb, for k = 1, . . . ,m, (10.81)

then u1 is a solution of the problem (10.52)–(10.54).
It remains to consider the case when

r1,1(t, x) = 0 for some (t, x) ∈ Ja × Jb. (10.82)

Now since

r1,1(0, 0) �= 0 (10.83)

and r1,1 is continuous, there exist t1 > 0 and x1 > 0 such that

r1,1
(
t1, x1

) = 0, r1,1(t, x) �= 0, ∀(t, x) ∈ [0, t1
)× [0, x1

]
. (10.84)
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Thus by (10.11.4) we have

r1,1
(
t1, x1

) = 0, r1,1(t, x) �= 0, ∀(t, x) ∈ [0, t1
)× [0, x1

]∪ (x1, b
]
. (10.85)

Suppose that there exists (t̄, x̄) ∈ [0, t1) × [0, x1) ∪ (x1, b] such that r1,1(t̄, x̄) = 0.
The function r1,1 attains a maximum at some point (s, s̄) ∈ [0, t1]× Jb. Since

∂2u(t, x)
∂t∂x

∈ F
(
t, x,u1(t, x)

)
, a.e. (t, x) ∈ Ja × Jb, (10.86)

then there exists v(·, ·) ∈ L1(Ja × Jb) with v(t, x) ∈ F(t, x,u1(t, x)), a.e. (t, x) ∈
Ja × Jb such that

∂2u(t, x)
∂t∂x

= v(t, x) a.e. t ∈ Ja × Jb;

∂u1(t, x)
∂t

,
∂u1(t, x)

∂x
exist.

(10.87)

Then

∂r1,1(s, s̄)
∂t

= τ′1
(
u1(s, s̄)

)∂u1(s, s̄)
∂t

− 1 = 0. (10.88)

Since

∂u1(t, x)
∂t

=
∫ t

0
v
(
s, x,u1(s, x)

)
ds, (10.89)

then

τ′1
(
u1(s, s̄)

)
∫ s

0
v(τ, s̄)dτ − 1 = 0. (10.90)

Therefore

〈
τ′1
(
u1(s, s̄)

)
,
∫ s

0
v(τ, s̄)dτ

,
= 1, (10.91)

which contradicts (10.11.4). From (10.11.3) we have

rk,1(t, x) �= 0, ∀t ∈ [0, t1
)× Jb, k = 1, . . . ,m. (10.92)

Step 2. Consider now the following problem:

∂2u(t, x)
∂t∂x

∈ F
(
t, x,u(t, x)

)
, a.e. t ∈ [t1, a

]× Jb,

u
(
t+1 , x
) = I1

(
u1
(
t1, x
))

, u(t, 0) = ψ(t).
(10.93)
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Transform the problem (10.93) into a fixed point problem. Consider the op-
erator N1 : C([t1, a]× Jb, Rn) → C([t1, a]× Jb, Rn) defined by

N1(u) =
{

h ∈ C
([
t1, a
]× Jb, Rn

)
: h(t, x) = I1

(
u1
(
t1, x
))

+ ψ(t)− ψ(t1
)

+
∫ t

t1

∫ x

0
v(s, y)ds dy, v ∈ SF,u

}

.

(10.94)

As in Step 1 we can show that N1 is completely continuous, and each possible
solution of (10.93) is a priori bounded by a constant M2. Set

U2 := {u ∈ C
([
t1, a
]× Jb, Rn

)
: ‖u‖∞ < M2 + 1

}
. (10.95)

From the choice of U2 there is no u ∈ ∂U2 such that u = λN1(u) for some
λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray Schauder type
[157] we deduce that N1 has a fixed point u in U2 which is a solution of (10.93).
Denote this solution by u2. Define

rk,2(t, x) = τk
(
u2(t, x)

)− t for (t, x) ∈ [t1, a
]× Jb. (10.96)

If

rk,2(t, x) �= 0 on
(
t1, a
]× Jb, ∀k = 1, . . . ,m, (10.97)

then

u(t, x) =
⎧
⎨

⎩
u1(t, x) if (t, x) ∈ [0, t1

)× Jb,

u2(t, x) if (t, x) ∈ [t1, a
]× Jb,

(10.98)

is a solution of the problem (10.52)–(10.54).
It remains to consider the case when

r2,2(t, x) = 0, for some (t, x) ∈ (t1, a
]× Jb. (10.99)

By (10.11.5) we have

r2,2
(
t+1 , x1

) = τ2
(
u2
(
t+1 , x1

))− t1
= τ2

(
I1
(
u1
(
t1, x1

)))− t1
> τ1
(
u1
(
t1, x1

))− t1
= r1,1

(
t1, x1

) = 0.

(10.100)

Since r2,2 is continuous and by (10.11.3), there exist t2 > t1 and x2 > x1 such that

r2,2
(
u2
(
t2, x2

)) = 0,

r2,2(t, x) �= 0, ∀ (t, x) ∈ (t1, t2
)× Jb.

(10.101)
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It is clear by (10.11.3) that

rk,2(t, x) �= 0, ∀ (t, x) ∈ (t1, t2
)× Jb, k = 2, . . . ,m. (10.102)

Suppose now that there is (s, s̄) ∈ (t1, t2]× [0, x2)∪ (x2, b] such that

r1,2(s, s̄) = 0. (10.103)

From (10.11.5) it follows that

r1,2
(
t+1 , x1

) = τ1
(
u2
(
t+1 , x1

))− t1
= τ1

(
I1
(
u1
(
t1, x1

)))− t1
≤ τ1

(
u1
(
t1, x1

))− t1
= r1,1

(
t1, x1

) = 0.

(10.104)

Thus the function r1,2 attains a nonnegative maximum at some point (s1, s̄1) ∈
(t1, a]× [0, x2)∪ (x2, b]. Since

∂2u2(t, x)
∂t∂x

∈ F
(
t, x,u2(t, x)

)
, (10.105)

then there exist v(t, x) ∈ F(t, x,u2(t, x)) a.e. (t, x) ∈ [t1, a]× Jb such that

∂2u2(t, x)
∂t∂x

= v(t, x), (t, x) ∈ [t1, a
]× Jb. (10.106)

Then we have

r′1,2(t, x) = τ′1
(
u2(t, x)

)∂u2(t, x)
∂t

− 1 = 0. (10.107)

Therefore

〈
τ′1
(
u2
(
s1, s̄1

))
,
∫ s1

t1
v
(
s, s̄1
)
ds
,
= 1, (10.108)

which contradicts (10.11.4).
Step 3. We continue this process, and taking into account that um := y|[tm,a]×Jb is
a solution to the problem

∂2u(t, x)
∂t∂x

∈ F
(
t, x,u(t, x)

)
, a.e. t ∈ (tm, a

]× (0, b],

u
(
t+m, x

) = Im
(
um−1

(
t−m, x

))
, u(t, 0) = ψ(t).

(10.109)
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The solution u of the problem (10.52)–(10.54) is then defined by

u(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1(t, x) if t ∈ [0, t1
)× Jb,

u2(t, x) if t ∈ [t1, t2
)× Jb,

...

um(t, x) if t ∈ [tm, a
]× Jb.

(10.110)

�

10.4. Notes and remarks

Impulsive differential and partial differential equations with fixed moments have
become more important in recent years in theoretical developments as well as
in some mathematical models of real phenomena. The results of Section 10.2 are
taken from Benchohra et al. [41], and the results of Section 10.3 are from [43].





11
Impulsive dynamic equations
on time scales

11.1. Introduction

In recent years dynamic equations on time scales have received much attention. We
refer to the books by Agarwal and O’Regan [7], Bohner and Peterson [101, 102],
and Lakshmikantham et al. [184], and the papers by Anderson [15, 18], Agarwal
et al. [2, 3, 5], Bohner and Guseinov [100], Bohner and Eloe [99], and Erbe and
Peterson [141, 142].

The time scales calculus has a tremendous potential for applications in some
mathematical models of real processes and phenomena studied in physics, chem-
ical technology, population dynamics, biotechnology and economics, neural net-
works, social sciences, as is pointed out in the monographs of Aulbach and Hilger
[24], Bohner and Peterson [101, 102], and Lakshmikantham et al. [184].

The existence of solutions of boundary value problem on a time scale was re-
cently studied by Agarwal and O’Regan [7], Anderson [16, 17], Henderson [166],
and Sun and Li [223]. In this chapter, dynamic equations on time scales are con-
sidered for both impulsive initial value problems and impulsive boundary value
problems. The results here are based on work from [72, 165].

11.2. Preliminaries

We will introduce some basic definitions and facts from the time scale calculus
that we will use in the sequel.

A time scale T is a nonempty closed subset of R. It follows that the jump
operators σ , ρ : T→ T defined by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t} (11.1)

(supplemented by inf ∅ := sup T and sup∅ := inf T) are well defined. The point
t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t,
σ(t) = t, σ(t) > t, respectively. If T has a right-scattered minimum m, define
Tk := T − {m}; otherwise, set Tk = T. If T has a left-scattered maximum M,
define Tk := T − {M}; otherwise, set Tk = T. The notations [c,d], [c,d), and so
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on, will denote time scale intervals such as

[c,d] = {t ∈ T : c ≤ t ≤ d}, (11.2)

where c,d ∈ T with c < ρ(d).

Definition 11.1. Let X be a Banach space. The function f : T → X is called rd-
continuous provided it is continuous at each right-dense point and has a left-sided
limit at each point; write f ∈ Crd(T) = Crd(T,X).

For t ∈ Tk, let the Δ derivative of f at t, denoted by f Δ(t), be the number
(provided it exists) such that for all ε > 0 there exists a neighboord U of t such that

∣∣ f
(
σ(t)
)− f (s)− f Δ(t)

[
σ(t)− s]∣∣ ≤ ε

∣∣σ(t)− s∣∣ (11.3)

for all s ∈ U .
A function F is called an antiderivative of f : T→ X provided

FΔ(t) = f (t), for each t ∈ T
k. (11.4)

C([a, b], R) is the Banach space of all continuous functions from [a, b] into R

where [a, b] ⊂ T with the norm

‖y‖∞ = sup
{∣∣y(t)

∣∣ : t ∈ [a, b]
}
. (11.5)

Remark 11.2. (i) If f is continuous, then f is rd-continuous.
(ii) If f is delta differentiable at t, then f is continuous at t.

A function p : T→ R is called regressive if

1 + μ(t)p(t) �= 0, ∀t ∈ Tk, (11.6)

where μ(t) = σ(t) − t, which is called the graininess function. The generalized
exponential function ep is defined as the unique solution y(t) = ep(t, a) of the
initial value problem yΔ = p(t)y, y(a) = 1, where p is a regressive function. An
explicit formula for ep(t, a) is given by

ep(t, s) = exp
{∫ t

s
ξμ(τ)
(
p(τ)

)
Δτ
}

with ξh(z) =

⎧
⎪⎪⎨

⎪⎪⎩

Log(1 + hz)
h

if h �= 0,

z if h = 0.
(11.7)

For more details, see [101]. Clearly, ep(t, s) never vanishes. We now give some fun-
damental properties of the exponential function. Let p, q : T→ R be two regressive
functions. We define

p ⊕ q = p + q + μpq, �p := − p

1 + μp
, p � q := p ⊕ (�q). (11.8)
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Theorem 11.3 (see [101]). Assume that p, q : T → R are regressive functions. Then
the following hold:

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);

(iii) 1/ep(t, s) = e�p(t, s);
(iv) ep(t, s)(1/ep(s, t)) = e�p(s, t);
(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);
(vii) ep(t, s)/eq(t, s) = ep�q(t, s).

11.3. First-order impulsive dynamic equations on time scales

This section is concerned with the existence of solutions of impulsive dynamic
equations on time scales. We consider the problem

yΔ(t)− p(t)yσ(t) = f
(
t, y(t)

)
, t ∈ J := [a, b],

t �= tk, k = 1, . . . ,m,
(11.9)

y
(
t+k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m, (11.10)

y(a) = η, (11.11)

where T is a time scale, [a, b] ⊂ T, f : T×R→ R is a given function, Ik ∈ C(R, R)
tk ∈ T, a = t0 < t1 < · · · < tm < tm+1 = b, y(t+k ) = limh→0+ y(tk + h) and
y(t−k ) = limh→0+ y(tk − h) represent the right and left limits of y(t) at t = tk (with
y(t+k ) = y(tk) if tk is right-scattered, and y(t−k ) = y(tk) if tk is left-scattered), σ is a
function that will be defined later, and yσ(t) = y(σ(t)).

We will prove our existence result for problem (11.9)–(11.11) by using the
nonlinear alternative of Leray-Schauder type [157].

We will assume for the remainder of the paper that, for each k = 1, . . . ,m,
the points of impulse tk are right-dense. In order to define the solution of (11.9)–
(11.11), we will consider the space

Ω =
{
y : [a, b] �→ R : yk ∈ C

(
Jk, R

)
, k = 0, . . . ,m, and there exist

y
(
t−k
)
, y
(
t+k
)
, k = 1, . . . ,m, with y

(
t−k
) = y

(
tk
)} (11.12)

which is a Banach space with the norm

‖y‖Ω = max
{∥∥yk

∥
∥
Jk

, k = 0, . . . ,m
}

, (11.13)

where yk is the restriction of y to Jk = (tk, tk+1] ⊂ [a, b], k = 1, . . . ,m, and J0 =
[t0, t1]. So let us start by defining what we mean by a solution of problem (11.9)–
(11.11).
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Definition 11.4. A function y ∈ Ω ∩ C1((tk, tk+1), R), k = 0, . . . ,m, is said to be a
solution of (11.9)–(11.11) if y satisfies the differential equation

yΔ(t)− p(t)yσ(t) = f
(
t, y(t)

)
everywhere on J\{tk

}
, k = 1, . . . ,m, (11.14)

and for each k=1, . . . ,m, the function y satisfies the equations y(t+k )=Ik(y(t−k ))=
Ik(y(tk)), and y(a) = η.

We need the following auxiliary result. Its proof is given in [101].

Theorem 11.5. Let p : T → R be rd-continuous and regressive. Suppose f : T → R

is rd-continuous, t0 ∈ T, and y0 ∈ R. Then y is the unique solution of the initial
value problem

yΔ(t)− p(t)yσ(t) = f (t), y
(
t0
) = y0 (11.15)

if and only if

y(t) = e�p
(
t, t0
)
y0 +

∫ t

t0
e�p(t, s) f (s)Δs. (11.16)

Theorem 11.6. Suppose that the following hypotheses are satisfied.
(11.6.1) The function f : [a, b]×R→ R is continuous.
(11.6.2) There exist constants ck such that

∣∣Ik(y)
∣∣ ≤ ck, for each k = 1, . . . ,m, ∀y ∈ R. (11.17)

(11.6.3) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞),
a function h ∈ C([a, b], R+), and for each k = 0, . . . ,m, nonnegative
numbers rk > 0 such that

∥∥ f (t, y)
∥∥ ≤ h(t)ψ

(|y|), for each (t, y) ∈ [a, b]×R,

rk

supt∈Jk e�p
(
t, tk
)
c̃k + ψ

(
rk
)

supt∈Jk
∫ tk+1

tk

∣
∣e�p(t, s)h(s)

∣
∣Δs

> 1,
(11.18)

where c̃0 = |η|, c̃k = ck, k = 1, . . . ,m.
Then the impulsive IVP (11.9)–(11.11) has at least one solution.

Proof. The proof will be given in several steps.
Step 4. Consider problem

yΔ(t)− p(t)yσ(t) = f
(
t, y(t)

)
, t ∈ (a, t1

)
,

y(a) = η.
(11.19)
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Transform problem into a fixed point problem. Consider the operator N :
C([a, t1], R) → C([a, t1], R) defined by

N(y)(t) = e�p(t, a)η +
∫ t

a
e�p(t, s) f

(
s, y(s)

)
Δs. (11.20)

Remark 11.7. From Theorem 11.5, the fixed points of N are solutions to (11.19).

In order to apply the nonlinear alternative of Leray-Schauder type, we first
show that N is completely continuous.
Claim 1. N is continuous.

Let {yn} be a sequence such that yn → y in C([a, t1], R). Then

∣∣N
(
yn
)
(t)−N(y)(t)

∣∣ ≤
∫ t1

a
e�p(t, s)

∣∣ f
(
s, yn(s)

)− f
(
s, y(s)

)∣∣Δs. (11.21)

Then

∥∥N
(
yn
)−N(y)

∥∥∞ ≤
∥∥ f
(·, yn(·))− f

(·, y(·))∥∥∞ sup
t∈[a,t1]

∫ t1

a
e�p(t, s)Δs.

(11.22)

Then

∥
∥N
(
yn
)−N(y)

∥
∥∞ �→ 0 as n �→∞. (11.23)

Claim 2. N maps bounded sets into bounded sets in C([a, t1], R).
Indeed, it is enough to show that there exists a positive constant � such that,

for each y ∈ Bq = {y ∈ C([a, t1], R) : ‖y‖∞ ≤ q}, one has ‖N(y)‖∞ ≤ �. Let
y ∈ Bq. Then, for each t ∈ [a, t1], we have

(Ny)(t) = e�p(t, a)η +
∫ t

a
e�p(t, s) f

(
s, y(s)

)
Δs. (11.24)

By (H3), we have, for each t ∈ [a, t1],

∣
∣(Ny)(t)

∣
∣ ≤ sup

t∈[a,t1]
e�p(t, s)|η| + ψ(q) sup

t∈[a,t1]
h(t) sup

t∈[a,t1]

∫ t1

a
e�p(t, s)Δs := �.

(11.25)

Claim 3. N maps bounded sets into equicontinuous sets of C([a, t1], R).
Let u1, u2 ∈ [a, t1], u1 < u2, and let Bq be a bounded set of C([a, t1], R) as in

Claim 2. Let y ∈ Bq. Then

∣∣(Ny)
(
u2
)− (Ny)

(
u1
)∣∣ ≤ ∣∣e�p

(
u2, a

)− e�p
(
u1, a

)∣∣|η| + ψ(q)

× sup
t∈[a,t1]

h(s)
∫ u2

u1

∣∣e�p
(
u1, s
)− e�p

(
u2, s
)∣∣Δs.

(11.26)
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The right-hand side tends to zero as u2−u1 → 0. As a consequence of Claims 1 to 3,
together with the Arzelá-Ascoli theorem, we can conclude that N : C([a, t1], R) →
C([a, t1], R) is completely continuous.

Let y be such that y = λN y, for some λ ∈ (0, 1). Thus

y(t) = λe�p(t, a)η + λ
∫ t

a
e�p(t, s) f

(
s, y(s)

)
Δs. (11.27)

This implies by (11.6.3) that, for each t ∈ [a, t1], we have

∣∣y(t)
∣∣ ≤ sup

t∈[a,t1]
e�p(t, a)|η| +

∫ t

a
e�p(t, s)h(s)ψ

(∣∣y(s)
∣∣)ds

≤ sup
t∈[a,t1]

e�p(t, a)|η| + ψ
(‖y‖∞

)
sup

t∈[a,t1]

∫ t1

a

∣∣e�p(t, s)h(s)
∣∣Δs.

(11.28)

Consequently,

‖y‖∞
supt∈[a,t1] e�p(t, a)|η| + ψ

(‖y‖∞
)

supt∈[a,t1]

∫ t1
a

∣
∣e�p(t, s)h(s)

∣
∣Δs

≤ 1. (11.29)

Then, by (11.6.3), there exists r0 such that ‖y‖∞ �= r0.
Set

U1 =
{
y ∈ C

(
[a, t1], R

)
: ‖y‖∞ < r0

}
. (11.30)

The operator N : U1 → C([a, t1], R) is completely continuous. From the choice of
U1, there is no y ∈ ∂U1 such that y ∈ λN(y), for some λ ∈ (0, 1). As a consequence
of the nonlinear alternative of Leray-Schauder type [157], we deduce that N has a
fixed point y1 in U1 which is a solution of problem (11.19).
Step 2. Consider now problem

yΔ(t)− p(t)yσ(t) = f
(
t, y(t)

)
, t ∈ (t1, t2

)
,

y
(
t+1
) = I1

(
y1
(
t1
))
.

(11.31)

Transform problem (11.31) into a fixed point problem. Let the operator N1 :
C([t1, t2], R) → C([t1, t2], R) be defined by

N1(y)(t) = e�p
(
t, t1
)
I1
(
y1
(
t1
))

+
∫ t

t1
e�p(t, s) f

(
s, y(s)

)
Δs. (11.32)

Let y be such that y = λN1y, for some λ ∈ (0, 1). Then

y(t) = λe�p
(
t, t1
)
I1
(
y1
(
t1
))

+ λ
∫ t

t1
e�p(t,s) f

(
s, y(s)

)
Δs. (11.33)
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This implies by (H3) that, for each t ∈ [t1, t2], we have

∣
∣y(t)

∣
∣ ≤ sup

t∈[t1,t2]
e�p
(
t, t1
)∣∣I1
(
y1
(
t1
))∣∣ +

∫ t

t1
e�p(t, s)h(s)ψ

(∣∣y(s)
∣
∣)ds

≤ sup
t∈[t1,t2]

e�p
(
t, t1
)
c1 + ψ

(‖y‖∞
)

sup
t∈[t1,t2]

∫ t2

t1

∣
∣e�p(t, s)h(s)

∣
∣Δs.

(11.34)

Hence

‖y‖∞
supt∈[t1,t2] e�p

(
t, t1
)
c1 + ψ

(‖y‖∞
)

supt∈[t1,t2]

∫ t2
t1

∣
∣e�p(t, s)h(s)

∣
∣Δs

≤ 1. (11.35)

By (11.6.3), there exists r1 such that ‖y‖∞ �= r1.
Set

U2 =
{
y ∈ C

([
t1, t2

]
, R
)

: ‖y‖∞ < r1
}
. (11.36)

As in Step 4, we can show that the operator N1 : U2 → C([t1, t2], R) is completely
continuous. From the choice of U2 there is no y ∈ ∂U2 such that y ∈ λN1(y), for
some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-Schauder
type, we deduce that N1 has a fixed point y2 in U2 which is a solution of problem
(11.19).
Step 3. Continue this process and construct solutions yk ∈ C(Jk, R), k = 2, . . . ,
m, to

yΔ(t)− p(t)yσ(t) = f
(
t, y(t)

)
, t ∈ (tk, tk+1

)
,

y
(
t+k
) = Ik

(
y
(
t−k
))
.

(11.37)

Then

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(t), t ∈ [a, t1
]
,

y2(t), t ∈ (t1, t2
]
,

...

ym−1(t), t ∈ (tm−1, tm
]
,

ym(t), t ∈ (tm, b
]
,

(11.38)

is a solution of (11.9)–(11.11). �
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11.4. Impulsive functional dynamic equations on time scales
with infinite delay

This section is concerned with the existence of solutions of impulsive functional
dynamic equations on time scales with infinite delay. First, we consider the impul-
sive problem

yΔ(t) = f
(
t, yt
)
, t ∈ J := [0, b], t �= tk, k = 1, . . . ,m,

y
(
t+k
)− y

(
t−k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m,

y0 = φ ∈ B,

(11.39)

where T is a time scale which has at least finitely many right-dense points, [0, b] ⊂
(−∞, b] ⊂ T, f : T × B → R is a given function, Ik ∈ C(R, R), tk ∈ T, 0 <
t1 < · · · < tm < tm+1 = b, φ ∈ B, and B is called the phase space that will be
defined later. y(t+k ) and y(t−k ) represent right and left limits with respect to the
time scale, and in addition, if tk is right-scattered, then y(t+k ) = y(tk), whereas, if
tk is left-scattered, then y(t−k ) = y(tk),

Next we consider first-order impulsive neutral functional dynamic equations
on time scales of the form

[
y(t)− g(t, yt

)]Δ = f
(
t, yt
)
, t ∈ [0, b], t �= tk, k = 1, . . . ,m, (11.40)

y
(
t+k
)− y

(
t−k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m, (11.41)

y0 = φ ∈ B, (11.42)

where f , φ, Ik are as in problem (11.39) and g : J ×B → R.
The notion of the phase space B plays an important role in the study of both

qualitative and quantitative theories. A usual choice is a seminormed space sat-
isfying suitable axioms, which was introduced by Hale and Kato [161] (see also
Kappel and Schappacher [172]). For a detailed discussion on this topic we refer
the reader to the book by Hino et al. [169]. In the case where the impulses are
absent (i.e., Ik = 0, k = 1, . . . ,m) an extensive theory is developed for problem
(11.39). We refer to the monographs of Hale and Lunel [162], Hino et al. [169],
and Lakshmikantham et al. [185], and the paper of Corduneanu and Lakshmikan-
tham [122].

In order to define the phase space and the solution of (11.39) we will consider
the space

Bb =
{
y : (−∞, b] �→ R

n | ∃ t0 < t1 < · · · < tm < b such that

y
(
t−k
)
, y
(
t+k
)

exist, with y
(
tk
) = y

(
t−k
)
, 0 ≤ k ≤ m,

y(t) = φ(t), t ≤ 0, yk ∈ C
(
Jk, Rn

)}
,

(11.43)
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where yk is the restriction of y to Jk = (tk, tk+1], k = 0, . . . ,m. Let ‖ · ‖b be the
seminorm in Bb defined by

‖y‖b =
∥
∥y0
∥
∥

B + sup
{∣∣y(s)

∣
∣ : 0 ≤ s ≤ b

}
, y ∈ Bb. (11.44)

We will assume that B satisfies the following axioms.
(A) If y : (−∞, b] → R, b > 0 is such that y |[0,b]∈ Bb and y0 ∈ B, then, for

every t in [0, b) the following conditions hold:
(i) yt is in B,

(ii) ‖yt‖B ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B , where H ≥ 0 is
a constant, K : [0,∞) → [0,∞) is continuous, M : [0,∞) → [0,∞)
is locally bounded, and H , K , M are independent of y(·).

(A-1) For the function y(·) in (A), yt is a B-valued continuous function on
[0, b).

(A-2) The space B is complete.

Definition 11.8. A function y ∈ Bb, is said to be a solution of (11.39) if y satisfies
the dynamic equation

yΔ(t) = f
(
t, yt
)

everywhere on J\{tk
}

, k = 1, . . . ,m, (11.45)

and for each k = 1, . . . ,m, the function y satisfies the equations y(t+k ) − y(t−k ) =
Ik(y(tk)), and y0 = φ ∈ B.

Theorem 11.9. Suppose that the following hypotheses are satisfied.
(11.9.1) The function f : [0, b]×B → R is continuous.
(11.9.2) There exist constants ck such that

∣
∣Ik(y)

∣
∣ ≤ ck, for each k = 1, . . . ,m, ∀y ∈ R. (11.46)

(11.9.3) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞),
a function p ∈ L1([0, b], R+), and a constant M > 0 such that

∣
∣ f (t,u)

∣
∣ ≤ p(t)ψ

(|u|B
)
, for each (t,u) ∈ [0, b]×B,

M

Kb
[ ∫ b

0 p(s)ψ(M)Δs +
∑m

k=1 ck
]

+ Kb
∣
∣φ(0)

∣
∣ +Mb‖φ‖B

> 1,
(11.47)

where Kb = sup{K(t) : t ∈ [0, b]} and Mb = sup{M(t) : t ∈ [0, b]}.
Then the impulsive IVP (11.39) has at least one solution.

Proof. Transform problem (11.39) into a fixed point problem. We consider the
operator N : Bb → Bb defined by

(Ny)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(t) if t ∈ (−∞, 0],

φ(0) +
∫ t

0
f
(
s, ys
)
Δs +

∑

0<tk<t

Ik
(
y
(
tk
))

if t ∈ [0, b].
(11.48)
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Clearly the fixed points of N are solutions to (11.39). So we will prove that N has
a fixed point.

Let x(·) : (−∞, b) → R be the function defined by

x(t) =
⎧
⎨

⎩
φ(0) if t ∈ [0, b],

φ(t) if t ∈ (−∞, 0].
(11.49)

Then x0 = φ. For each z ∈ C([0, b],E) with z0 = 0, we denote by z̄ the function
defined by

z̄(t) =
⎧
⎨

⎩
z(t) if t ∈ [0, b],

0 if t ∈ (−∞, 0].
(11.50)

If y(·) satisfies

y(t) = φ(0) +
∫ t

0
f
(
s, ys
)
Δs +

∑

0<tk<t

Ik
(
y
(
t−k
))

, (11.51)

we can decompose it as y(t) = z̄(t) + x(t), 0 ≤ t ≤ b, which implies yt = z̄t + xt,
for every 0 ≤ t ≤ b, and the function z(·) satisfies

z(t) =
∫ t

0
f
(
s, z̄s + xs

)
Δs +

∑

0<tk<t

Ik
(
z
(
t−k
)

+ x
(
t−k
))
. (11.52)

Set

B0
b =
{
z ∈ Bb : z0 = 0

}
. (11.53)

For any z ∈ B0
b , we have

‖z‖B0
b
= ∥∥z0

∥
∥

B + sup
{|z(s)| : 0 ≤ s ≤ b

} = sup
{|z(s)| : 0 ≤ s ≤ b

}
. (11.54)

Thus (B0
b‖ · ‖B0

b
) is a Banach space. Let the operator P : B0

b → B0
b be defined by

(Pz)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, t ≤ 0,
∫ t

0
f
(
s, z̄s + xs

)
Δs +

∑

0<tk<t

Ik
(
x
(
t−k
)

+ z
(
t−k
))

, t ∈ [0, b].
(11.55)

Obviously that the operator N has a fixed point is equivalent to that P has one, so
we turn to prove that P has a fixed point. We will use the Leray-Schauder alterna-
tive to prove that P has fixed point.
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Step 1. P is continuous.
Let {zn} be a sequence such that zn → z in B0

b . Then

∣
∣P
(
zn
)
(t)− P(z)(t)

∣
∣ ≤
∫ b

0

∣
∣ f
(
s, z̄ns + xs

)− f
(
s, z̄s + xs

)∣∣Δs

+
m∑

k=1

∣∣Ik
(
zn
(
tk
)

+ x
(
tk
))− Ik

(
z
(
tk
)

+ x
(
tk
))∣∣.

(11.56)

Hence

∥
∥P
(
zn
)− P(z)

∥
∥

B0
b
≤ ∥∥ f (·, z̄n(·) + x(·))− f

(·, z̄(·) + x(·))∥∥L1

+
m∑

k=1

∣
∣Ik
(
zn
(
tk
)

+ x
(
tk
))− Ik

(
z
(
tk
)

+ x
(
tk
))∣∣.

(11.57)

Thus

∥
∥P
(
zn
)− P(z)

∥
∥

B0
b
�→ 0 as n �→∞. (11.58)

Step 2. P sends bounded sets into bounded sets.
We will show that for any q > 0 there exists a positive constant � such that, for

each z ∈ Bq = {z ∈ B0
b : ‖z‖Bb ≤ q}, one has ‖P‖Bb ≤ �. For every x ∈ Bq, we

have

∥
∥xt + z̄t

∥
∥

B ≤
∥
∥xt
∥
∥

B +
∥
∥z̄t
∥
∥

B

≤ K(t) sup
{|x(s)

∣∣ : 0 ≤ s ≤ t
}

+M(t)
∥∥x0
∥∥

B

+ K(t) sup
{∣∣z̄(s)

∣
∣ : 0 ≤ s ≤ t

}
+M(t)

∥
∥z0
∥
∥

B

≤ Kbq + Kb
∣
∣φ(0)

∣
∣ +Mb‖φ‖B := q∗.

(11.59)

By (11.9.1)–(11.9.3), for each t ∈ J , we have that

∣∣(Pz)(t)
∣∣ ≤

∫ t

0
p(s)ψ

(∥∥xs + z̄s
∥∥

B

)
Δs +

m∑

k=1

ck

≤ ψ
(
q∗
)
∫ b

0
p(s)Δs +

m∑

k=1

ck.

(11.60)

Then we have

‖P‖Bb ≤ ψ
(
q∗
)
∫ b

0
p(s)Δs +

m∑

k=1

ck := �. (11.61)
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Step 3. P sends bounded sets into equicontinuous sets.
Let τ1, τ2 ∈ J , 0 < τ1 < τ2. Then we have

∣
∣(Pz)

(
τ2
)− (Pz)

(
τ1
)∣∣ ≤ ψ

(
r∗
)
∫ τ2

τ1

p(s)Δs +
∑

τ1≤tk<τ2

ck. (11.62)

The right-hand side tends to zero as τ2 → τ1.
As a consequence of Steps 2-3 together with the Arzelá-Ascoli theorem, it suf-

fices to show that P maps Bq into precompact sets.
Step 4. A priori bounds on solutions.

Let z be a solution of the integral equation

z(t) =
∫ t

0
f
(
s, z̄s + xs

)
Δs +

∑

0<tk<t

Ik
(
x
(
t−k
)

+ z
(
t−k
))
. (11.63)

By (11.9.2), we have that

∣
∣z(t)

∣
∣ ≤

∫ t

0
p(s)ψ

(∥∥xs + z̄s
∥
∥

B

)
Δs +

∑

0<tk<t

ck. (11.64)

But

∥∥xt + z̄t
∥∥

B ≤
∥∥xt
∥∥

B +
∥∥z̄t
∥∥

B

≤ K(t) sup
{∣∣x(s)

∣∣ : 0 ≤ s ≤ t
}

+M(t)
∥∥x0
∥∥

B

+ K(t) sup
{∣∣z(s)

∣∣ : 0 ≤ s ≤ t
}

+M(t)
∥∥z̄0
∥∥

B

≤ Kb sup
{∣∣z(s)

∣∣ : 0 ≤ s ≤ t
}

+ Kb
∣∣φ(0)

∣∣ +Mb‖φ‖B .

(11.65)

If we name w(t) the right-hand side of the above inequality, we have that

∥
∥xt + z̄t

∥
∥

B ≤ w(t), (11.66)

and therefore (11.64) becomes

∣
∣z(t)

∣
∣ ≤
∫ t

0
p(s)ψ

(
w(s)

)
Δs +

∑

0<tk<t

ck. (11.67)

Using (11.67) in the definition of w, we have that

w(t) ≤ Kb

[∫ t

0
p(s)ψ

(
w(s)

)
Δs +

∑

0<tk<t

ck

]

+ Kb
∣∣φ(0)

∣∣ +Mb‖φ‖B . (11.68)
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Consequently,

‖w‖∞
Kb
[ ∫ b

0 p(s)ψ
(‖w‖∞

)
Δs +

∑
0<tk<t ck

]
+ Kb

∣
∣φ(0)

∣
∣ +Mb‖φ‖B

≤ 1. (11.69)

Then by (11.9.3), there exists M such that ‖w‖∞ �=M.
Set

U = {z ∈ B0
b : ‖z‖B0

b
< M + 1

}
. (11.70)

The operator P : U → B0
b is completely continuous. From the choice of U , there

is no z ∈ ∂U such that z = λP(z), for some λ ∈ (0, 1). As a consequence of the
nonlinear alternative of Leray-Schauder type [157], we deduce that P has a fixed
point z in U . Then problem (11.39) has at least one solution. �

We consider now neutral functional differential equations.

Definition 11.10. A function y ∈ Bb is said to be a solution of (11.40)–(11.42) if
y satisfies the dynamic equation

[
y(t)− g(t, yt

)]Δ = f
(
t, yt
)

everywhere on J\{tk
}

, k = 1, . . . ,m, (11.71)

and for each k = 1, . . . ,m, the function y satisfies the equations y(t+k ) − y(t−k ) =
Ik(y(tk)), and y0 = φ ∈ B.

Theorem 11.11. Let f : J ×B → R be a continuous function. Assume (11.9.2) and
the following conditions are satisfied.

(11.11.1) The function g is continuous and completely continuous, and for any
bounded set Q ⊆ C((−∞, b], R), the set {t → g(t, xt) : x ∈ Q} is
equicontinuous in C([0, b], Rn), and there exist constants 0 ≤ c1 < 1,
c2 ≥ 0 such that

∣
∣g(t,u)

∣
∣ ≤ c1‖u‖B + c2, t ∈ [0, b], u ∈ B. (11.72)

(11.11.2) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and p ∈ L1(J , R+) such that

∣
∣ f (t, x)

∣
∣ ≤ p(t)ψ

(‖u‖B
)
, for a.e. t ∈ [0, b] and each u ∈ B, (11.73)

and there exists M∗ > 0 such that

M∗
(
1/
(
1− c1Kb

))[
Kb
∣∣g
(
0,φ(0)

)∣∣ + c2Kb + α + Kbψ
(
M∗
) ∫ b

0 p(s)Δs
] > 1,

(11.74)

where α = Kb|φ(0)| +Mb‖φ‖B.
Then the IVP (11.40)–(11.42) has at least one solution.
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Proof. In analogy to Theorem 11.9, we consider the operator P∗ : B0
b → B0

b de-
fined by

(
P∗z
)
(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, t ≤ 0,

g
(
0,φ(0)

)− g(t, zt + xt
)

+
∫ t

0
f
(
s, zs + xs

)
Δs, t ∈ [0, b].

(11.75)

As in Theorem 11.9 we can prove that the operator P∗ is completely continuous.
In order to use the Leray-Schauder alternative, we will obtain a priori estimates for
the solutions of the integral equation

z(t) = λ
[
g
(
0,φ(0)

)− g(t, zt + xt
)

+
∫ t

0
f
(
s, zs + xs

)
Δs
]

, (11.76)

where z0 = λφ, for some λ ∈ (0, 1). Then

∣
∣z(t)

∣
∣ ≤ ∣∣g(0,φ(0)

)∣∣ +
∣
∣g
(
t, z̄t + xt

)∣∣ +
∫ t

0
p(s)ψ

(∥∥z̄s + xs
∥
∥
B

)
ds

≤ ∣∣g(0,φ(0)
)∣∣ + c1

∥∥z̄t + xt
∥∥
B + c2 +

∫ t

0
p(s)ψ

(∥∥zs + xs
∥∥
B

)
ds.

(11.77)

If we put α = Kb|φ(0)| +Mb‖φ‖B, then

∥
∥z̄t + xt

∥
∥
B ≤ Kb sup

s∈[0,t]

∣
∣z(s)

∣
∣ + α := w(t),

∣
∣z(t)

∣
∣ ≤ ∣∣g(0,φ(0)

)∣∣ + c1w(t) + c2 +
∫ t

0
p(s)ψ

(
w(s)

)
Δs.

(11.78)

But

w(t) ≤ Kb
∣
∣g
(
0,φ(0)

)∣∣ + c1Kbw(t) + c2Kb + Kb

∫ t

0
p(s)ψ

(
w(s)

)
Δs + α, (11.79)

or

w(t) ≤ 1
1− c1Kb

[
Kb
∣
∣g
(
0,φ(0)

)∣∣ + c2Kb + α + Kb

∫ b

0
p(s)ψ

(
w(s)

)
Δs
]

,

(11.80)

for t ∈ [0, b]. Hence

‖w‖∞
(
1/
(
1− c1Kb

))[
Kb
∣∣g(0,φ)

∣∣ + c2Kb + α + Kb
∫ b

0 p(s)ψ
(‖w‖∞

)
Δs
] ≤ 1.

(11.81)

Then, by (11.11.2), there exists M∗ such that ‖w‖∞ �=M∗.
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Set

U∗ =
{
z ∈ B0

b : ‖z‖B0
b
< M∗ + 1

}
. (11.82)

The operator P∗ : U∗ → B0
b is completely continuous. From the choice of U∗,

there is no z ∈ ∂U∗ such that z = λP∗(z), for some λ ∈ (0, 1). As a consequence
of the nonlinear alternative of Leray-Schauder type, we deduce that P∗ has a fixed
point z in U∗. Then problem (11.40)–(11.42) has at least one solution. �

11.5. Second-order impulsive dynamic equations on time scales

This section is concerned with the existence of solutions for initial value problems
for second-order impulsive dynamic equations on time scales. We consider the
problem

yΔΔ(t) = f
(
t, y(t)

)
, t ∈ J := [0, b], t �= tk, k = 1, . . . ,m, (11.83)

y
(
t+k
)− y

(
tk
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m, (11.84)

yΔ
(
t+k
)− yΔ

(
tk
) = Īk

(
y
(
t−k
))

, k = 1, . . . ,m, (11.85)

y(0) = y0, yΔ(0) = y1, (11.86)

where T is time scale, [0, b] ⊂ T, f : T×R→ R is a given function, Ik, Īk ∈ C(R, R)
y0, y1 ∈ R, tk ∈ T, 0 = t0 < t1 < · · · < tm < tm+1 = b, y(t+k ) = limh→0+ y(tk + h)
and y(t−k ) = limh→0+ y(tk − h) represent the right and left limits of y(t) at t = tk.

Definition 11.12. A function y ∈ Ω∩⋃m
k=0 C

2((tk, tk+1), R) is said to be a solution
of (11.83)–(11.86) if it satisfies the dynamic equation

yΔΔ(t) = f
(
t, y(t)

)
everywhere on J\{tk

}
, k = 1, . . . ,m, (11.87)

and for each k = 1, . . . ,m the function y satisfies the conditions y(t+k ) − y(tk) =
Ik(y(t−k )), yΔ(t+k ) − yΔ(tk) = Īk(y(t−k )) and the initial conditions y(0) = y0, and
yΔ(0) = y1.

We need the following auxiliary result.

Lemma 11.13. Let y0, y1 ∈ R and let f : T → R be rd-continuous and regressive.
Then y is the unique solution of the initial value problem

yΔΔ(t) = f (t),

y
(
t+k
)− y

(
tk
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m,

yΔ
(
t+k
)− yΔ

(
tk
) = Īk

(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y0, yΔ(0) = y1,

(11.88)
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if and only if

y(t) = y0 + ty1 +
∫ t

0
(t − s) f (s)Δs−

∫ t

0
μ(s) f (s)Δs

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]

.
(11.89)

Proof. Let y be a solution of problem (11.88). Then

yΔΔ(t) = f (t), for t ∈ [0, t1
] ⊂ T. (11.90)

An integration from 0 to t (here t ∈ (0, t1]) of both sides of the above equality
yields

∫ t

0
yΔΔ(s)Δs =

∫ t

0
f (s)Δs, yΔ(t)− yΔ(0) =

∫ t

0
f (s)Δs. (11.91)

Thus, for t ∈ [0, t1], we have

yΔ(t) = yΔ(0) +
∫ t

0
f (s)Δs. (11.92)

We integrate both sides of the above equality to get

y(t)− y(0) = ty1 +
∫ t

0

∫ s

0
f (u)ΔuΔs

= ty1 +
∫ t

0
(t − s) f (s)Δs−

∫ t

0
μ(s) f (s)Δs.

(11.93)

Then, for t ∈ [0, t1], we have

y(t) = y0 + ty1 +
∫ t

0
(t − s) f (s)Δs−

∫ t

0
μ(s) f (s)Δs. (11.94)

If t ∈ (t1, t2], then we have

∫ t

0
yΔΔ(s)Δs =

∫ t

0
f (s)Δs,

∫ t1

0
yΔΔ(s)Δs +

∫ t

t1
yΔΔ(s)Δs =

∫ t

0
f (s)Δs,

yΔ
(
t1
)− yΔ(0) + yΔ(t)− yΔ

(
t+1
) =
∫ t

0
f (s)Δs,

yΔ(t)− Ī1
(
y
(
t1
))− y1 =

∫ t

0
f (s)Δs.

(11.95)
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An integration from t1 to t of both sides of the above equality yields

∫ t

t1

[
yΔ(s)− Ī1

(
y
(
t1
))− y1

]
Δs =

∫ t

t1

∫ s

0
f (u)ΔuΔs,

y(t)− y
(
t+1
)− (t − t1

)
Ī1
(
y
(
t1
))− (t − t1

)
y1 =

∫ t

t1

∫ s

0
f (u)ΔuΔs,

y(t)− y
(
t+1
)− (t − t1

)
Ī1
(
y
(
t1
))− (t − t1

)
y1

=
∫ t

0
t f (s)Δs−

∫ t1

0
t1 f (s)Δs−

∫ t

t1
σ(s) f (s)Δs.

(11.96)

Thus, for t ∈ (t1, t2], we have

y(t) = y
(
t+1
)

+
(
t − t1

)
Ī1
(
y
(
t1
))

+
(
t − t1

)
y1

+
∫ t

0
t f (s)Δs−

∫ t1

0
t1 f (s)Δs−

∫ t

t1
μ(s) f (s)Δs−

∫ t

t1
s f (s)Δs

= y
(
t1
)

+ I1
(
y
(
t1
))

+
(
t − t1

)
Ī1
(
y
(
t1
))

+
(
t − t1

)
y1

+
∫ t

0
t f (s)Δs−

∫ t1

0
t1 f (s)Δs−

∫ t

t1
s f (s)Δs−

∫ t

t1
μ(s) f (s)Δs

= y0 + t1y1 +
∫ t1

0

(
t1 − s

)
f (s)Δs−

∫ t1

0
μ(s) f (s)Δs

+
∫ t

0
t f (s)Δs−

∫ t1

0
t1 f (s)Δs−

∫ t

t1
s f (s)Δs−

∫ t

t1
μ(s) f (s)Δs

+ I1
(
y
(
t1
))

+
(
t − t1

)
Ī1
(
y
(
t1
))

+
(
t − t1

)
y1.

(11.97)

Hence, for t ∈ [t1, t2], we have

y(t) = y0 + ty1 +
∫ t

0
(t − s) f (s)Δs−

∫ t

0
μ(s) f (s)Δs + I1

(
y
(
t1
))

+
(
t − t1

)
Ī1
(
y
(
t1
))
.

(11.98)

Continue to obtain, for t ∈ [0, b], that

y(t) = y0 + ty1 +
∫ t

0
(t − s) f (s)Δs−

∫ t

0
μ(s) f (s)Δs

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]

.
(11.99)
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Conversely, we prove that if y satisfies the integral equation (11.89), then y is so-
lution of problem (11.86). Firstly y(0) = y0. Let t ∈ [0, b]\{t1, . . . , tm} and

y(t) = y0 + ty1 +
∫ t

0
(t − s) f (s)Δs−

∫ t

0
μ(s) f (s)Δs

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]

.
(11.100)

Then

yΔ(t) =
[
y0 + ty1 +

∫ t

0
(t − s) f (s)Δs−

∫ t

0
μ(s) f (s)Δs

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]
]Δ

= [y0 + ty1
]Δ

+
[∫ t

0
(t − s) f (s)Δs

]Δ
−
[∫ t

0
μ(s) f (s)Δs

]Δ

+

[
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]
]Δ

= y1 +
∫ t

0
f (s)Δs + σ(t) f (t)− t f (t)− μ(t) f (t) +

∑

0<tk<t

Īk
(
y
(
tk
))

= y1 +
∫ t

0
f (s)Δs +

∑

0<tk<t

Īk
(
y
(
tk
))
.

(11.101)

Thus

yΔΔ(t) =
[

y1 +
∫ t

0
f (s)Δs +

∑

0<tk<t

Īk
(
y
(
tk
))
]Δ

= f (t). (11.102)

Clearly, we have yΔ(0) = y1 and

yΔ
(
t+k
)− yΔ

(
t−k
) = Īk

(
y
(
tk
))

, for k = 1, . . . ,m. (11.103)

From the definition of y we can prove that

y
(
t+k
)− y

(
t−k
) = Ik

(
y
(
tk
))

, for k = 1, . . . ,m. (11.104)

In the proof of our main theorem, we use the following time scale version of the
well-known Gronwall inequality. �
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Lemma 11.14 (see [4]). Let y, f : T → R be rd-continuous and p ∈ R+ regressive.
Then

y(t) ≤ f (t) +
∫ t

a
y(s)p(s)Δs, ∀ t ∈ T (11.105)

implies

y(t) ≤ f (t) +
∫ t

a
ep
(
t, σ(s)

)
f (s)p(s)Δs, ∀ t ∈ T, (11.106)

where R+ is the set of all rd-continuous functions and p satisfies 1 + μ(t)p(t) > 0.

Theorem 11.15. Suppose that the following hypotheses are satisfied.
(11.15.1) The function f : [0, b]×R→ R is continuous.
(11.15.2) There exist constants ck, c̄k such that

∣
∣Ik(y)

∣
∣ ≤ ck,

∣
∣Īk(y)

∣
∣ ≤ c̄k, (11.107)

for each k = 1, . . . ,m, and for all y ∈ R.
(11.15.3) There exist continuous p, q̄ ∈ C([0, b], R+) such that

∣
∣ f (t, y)

∣
∣ ≤ p(t)|y| + q̄(t), for each (t, y) ∈ [0, b]×R. (11.108)

Then, if |σ(b)| <∞, the impulsive IVP (11.83)–(11.85) has at least one solution.

Proof. Transform problem (11.83)–(11.85) into a fixed point problem. Consider
the operator G : Ω→ Ω defined by

(Gy)(t) = y0 + ty1 +
∫ t

0
(t − s) f (s, y(s)

)
Δs−

∫ t

0
μ(s) f

(
s, y(s)

)
Δs

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]

.
(11.109)

We will show that G satisfies the assumptions of Schaefer’s fixed point theo-
rem. The proof will be given in several steps. We show first that G is continuous
and completely continuous.
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Step 1. G is continuous.
Let {yn} be a sequence such that yn → y in Ω. Then

∣
∣G
(
yn
)
(t)−G(y)(t)

∣
∣

≤ (b +
∣
∣σ(b)

∣
∣)
∫ b

0

∣
∣ f
(
s, yn(s)

)− f
(
s, y(s)

)∣∣Δs

+
∑

0<tk<t

[∣∣Ik
(
yn
(
tk
))− Ik

(
y
(
tk
))∣∣ +

(
b − tk

)∣∣Īk
(
yn
(
tk
))− Īk

(
y
(
tk
))∣∣].

(11.110)

Since f , Ik, Īk are continuous functions, then we have

∥∥G
(
yn
)−G(y)

∥∥
Ω

≤ (b +
∣
∣σ(b)

∣
∣)
∥
∥ f
(·, yn(·))− f

(·, y(·))∥∥∞
+
∑

0<tk<t

[∣∣Ik
(
yn
(
tk
))− Ik

(
y
(
tk
))∣∣ + b

∣∣Īk
(
yn
(
tk
))− Īk

(
y
(
tk
))∣∣].

(11.111)

Thus

∥
∥G
(
yn
)−G(y)

∥
∥
Ω �→ 0 as n �→∞. (11.112)

Step 2. G maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant � such that,

for each y ∈ Bq = {y ∈ Ω : ‖y‖Ω ≤ q}, one has ‖Gy‖Ω ≤ �.
By (H2), (H3), we have

∣
∣(Gy)(t)

∣
∣ =
∣∣
∣
∣y0 + ty1 +

∫ t

0
(t − s) f (s, y(s)

)
Δs−

∫ t

0
μ(s) f

(
s, y(s)

)
Δs

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]
∣
∣
∣∣

≤ ∣∣y0
∣
∣ + b

∣
∣y1
∣
∣ +
∫ b

0
b
∣
∣ f
(
s, y(s)

)∣∣Δs +
∫ t

0
μ(s)
∣
∣ f
(
s, y(s)

)∣∣Δs

+
m∑

k=0

[∣∣Ik
(
y
(
tk
))| +

(
b − tk

)∣∣Īk
(
y
(
tk
))∣∣]

≤ (b +
∣∣σ(b)

∣∣)q
∫ b

0
p(s)Δs +

(
b +
∣∣σ(b)

∣∣)
∫ b

0
q̄(s)Δs

+
∣
∣y0
∣
∣ + b

∣
∣y1
∣
∣ +

m∑

k=0

[
ck +

(
b − tk

)
c̄k
]
.

(11.113)
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Thus

‖Gy‖Ω ≤ q
(
b +
∣∣σ(b)

∣∣) sup
t∈[0,b]

p(t) + b
(
b +
∣∣σ(b)

∣∣) sup
t∈[0,b]

q̄(t)

+
∣
∣y0
∣
∣ + b

∣
∣y1
∣
∣ +

m∑

k=0

[
ck +

(
b − tk

)
c̄k
]

:= �.
(11.114)

Step 3. G maps bounded sets into equicontinuous sets of Ω.
Let r1, r2 ∈ J , r1 < r2, and Bq be a bounded set of Ω as in Step 2. Let y ∈ Bq.

Then

∣
∣(Gy)

(
r2
)− (Gy)

(
r1
)∣∣ ≤ ∣∣r2 − r1

∣
∣
∣
∣y1
∣
∣ +
∫ r1

0

(
r2 − r1

)∣∣ f
(
s, y(s)

)∣∣Δs

+
∫ r2

r1

r2
∣
∣ f
(
s, y(s)

)∣∣Δs +
∫ r2

r1

∣
∣μ(s)

∣
∣
∣
∣ f
(
s, y(s)

)∣∣Δs

+
∑

0<tk<r2−r1

[
ck +

(
r2 − r1

)
c̄k
]
.

≤ [∣∣y1
∣
∣ +
(
r1q + r2q

)
sup
t∈[0,b]

p(t)

+
(
r1 + r2

)
sup
t∈[0,b]

q̄(t)
]∣∣r2 − r1

∣
∣

+
[∣∣σ(b)

∣
∣q sup

t∈[0,b]
p(t) +

∣
∣σ(b)

∣
∣ sup
t∈[0,b]

q̄(t)
]∣∣r2 − r1

∣
∣

+
∑

0<tk<r2−r1

[
ck +

(
r2 − r1

)
c̄k
]
.

(11.115)

The right-hand side tends to zero as r2 − r1 → 0. As a consequence of Steps 1 to
3 together with the Arzelá-Ascoli theorem, we can conclude that G : Ω → Ω is
continuous and completely continuous.
Step 4. Now it remains to show that the set

E(G) := {y ∈ Ω : y = λG(y), for some 0 < λ < 1
}

(11.116)

is bounded. Let y ∈ E(G). Then there exists 0 < λ < 1 such that y = λG(y), and
so

(Gy)(t) = y0 + ty1 +
∫ t

0
(t − s) f (s, y(s)

)
Δs−

∫ t

0
μ(s) f

(
s, y(s)

)
Δs

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]

.
(11.117)
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By (H2), (H3), we have

∣
∣y(t)

∣
∣ =
∣
∣
∣∣y0 + ty1 +

∫ t

0
(t − s) f (s, y(s)

)
Δs−

∫ t

0
μ(s) f

(
s, y(s)

)
Δs

+
∑

0<tk<t

[
Ik
(
y
(
tk
))

+
(
t − tk

)
Īk
(
y
(
tk
))]
∣
∣
∣∣

≤ b
∫ t

0

[
p(s)
∣
∣y(s)

∣
∣ + q̄(s)

]
Δs

+
∫ t

0

∣∣σ(b)
∣∣[p(s)

∣∣y(s)
∣∣ + q̄(s)

]
Δs

+
∣
∣y0
∣
∣ + b

∣
∣y1
∣
∣ +

m∑

k=0

[
ck + bc̄k

]

≤ (b +
∣∣σ(b)

∣∣) sup
t∈[0,b]

p(t)
∫ t

0

∣∣y(s)
∣∣Δs

+ b
(
b +
∣
∣σ(b)

∣
∣) sup

t∈[0,b]
q̄(t)

+
∣
∣y0
∣
∣ + b

∣
∣y1
∣
∣ +

m∑

k=0

[
ck + bc̄k

]
.

(11.118)

Put p0 = (b + |σ(b)|) supt∈[0,b] p(t). Then p0 ∈ R+. Let ep0 (t, 0) be the unique
solution of problem

yΔ(t) = p0(t)y(t), y(0) = 1. (11.119)

Then, from the Gronwall’s inequality, we have

∣
∣y(t)

∣
∣ ≤
(
∣
∣y0
∣
∣ + b

∣
∣y1
∣
∣ + b

(
b +
∣
∣σ(b)

∣
∣) sup

t∈[0,b]
q̄(t)

+
m∑

k=0

[
ck + bc̄k

]
)
(
b +
∣
∣σ(b)

∣
∣) sup

t∈[0,b]
p(t)

∫ t

0
ep0

(
t, σ(s)

)
Δs

+
∣
∣y0
∣
∣ + b

∣
∣y1
∣
∣ + b

(
b +
∣
∣σ(b)

∣
∣) sup

t∈[0,b]
q̄(t) +

m∑

k=0

[
ck + bc̄k

]
.

(11.120)
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Thus

‖y‖Ω ≤
(
∣
∣y0
∣
∣ + b

∣
∣y1
∣
∣ + b

(
b +
∣
∣σ(b)

∣
∣) sup

t∈[0,b]
q̄(t)

+
m∑

k=0

[
ck + bc̄k

]
)
(
b +
∣∣σ(b)

∣∣) sup
t∈[0,b]

p(t) sup
t∈[0,b]

∫ b

0
ep0

(
t, σ(s)

)
Δs

+
∣
∣y0
∣
∣ + b

∣
∣y1
∣
∣ + b

(
b +
∣
∣σ(b)

∣
∣) sup

t∈[0,b]
q̄(t) +

m∑

k=0

[
ck + bc̄k

]
.

(11.121)

This shows that E(G) is bounded.
Set X := Ω. As a consequence of Schaefer’s theorem, we deduce that G has a

fixed point y which is a solution to problem (11.83)–(11.85). �

Remark 11.16. A slight modification of the proof (i.e., in Step 4 use the usual
Leray-Schauder alternative) guarantees that (11.15.3) could be replaced by

(11.15.3)∗ there exists a continuous nondecreasing function ψ : [0,∞) →
(0,∞) and p̄ ∈ C([0, b], R+) such that

∣
∣ f (t, y)

∣
∣ ≤ p̄(t)ψ

(|y|), for each (t, y) ∈ [0, b]×R, (11.122)

and there exists a constant M > 0 with

M
∣∣y0
∣∣ + b

∣∣y1
∣∣ + ψ(M)

∫ b
0

(
b + σ(b)

)
p̄(s)Δs +

∑m
k=0

[
ck +

(
b− tk

)
c̄k
] > 1.

(11.123)

11.6. Existence results for second-order boundary value problems of
impulsive dynamic equations on time scales

This section is concerned with the existence of solutions of boundary value prob-
lems for impulsive dynamic equations on time scales. We consider the boundary
value problem

−yΔΔ(t) = f
(
t, y(t)

)
, t ∈ J := [0, 1], t �= tk, k = 1, . . . ,m,

y
(
t+k
)− y

(
t−k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m,

yΔ
(
t+k
)− yΔ

(
t−k
) = Īk

(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y(1) = 0,

(11.124)

where T is a time scale, 0, 1 ∈ T, [0, 1] ⊂ T, f : T × R → R, is a given function,
Ik, Īk ∈ C(R, R), tk ∈ T, 0 = t0 < t1 < · · · < tm < tm+1 = 1, y(t+k ) = limh→0+ y(tk +
h) and y(t−k ) = limh→0+ y(tk−h) represent the right and left limits of y(t) at t = tk.



334 Impulsive dynamic equations on time scales

We will assume for the remainder of the section that, for each k = 1, . . . ,m,
the points of impulse tk are right-dense. In order to define the solution of (11.124)
we will consider the notations of Section 11.3, with 0, 1 replacing a, b, respectively.

Definition 11.17. A function y ∈ Ω∩C2((tk, tk+1), R), k = 0, . . . ,m, is said to be a
solution of (11.124) if it satisfies the dynamic equation

−yΔΔ(t) = f
(
t, y(t)

)
everywhere on J\{tk

}
, k = 1, . . . ,m, (11.125)

and for each k = 1, . . . ,m, the function y satisfies the conditions y(t+k ) − y(tk) =
Ik(y(t−k )), yΔ(t+k ) − yΔ(tk) = Īk(y(t−k )), and the boundary conditions y(0) =
y(1) = 0.

Lemma 11.18. Let f : T→ R be rd-continuous. If y is a solution of the equation

y(t) =
∫ 1

0
G(t, s) f (s)Δs +

m∑

k=1

Wk
(
t, y
(
tk
))

, (11.126)

where

G(t, s) =
⎧
⎪⎨

⎪⎩

(1− t)σ(s) if 0 ≤ s ≤ t,
(
1− σ(s)

)
t if t ≤ s ≤ 1,

Wk
(
t, y
(
tk
)) =

⎧
⎪⎨

⎪⎩

t
[− Ik

(
y
(
tk
))− (1− tk

)
Īk
(
y
(
tk
))]

if 0 ≤ t ≤ tk,

(1− t)[Ik
(
y
(
tk
))− tkĪk

(
y
(
tk
))]

if tk < t ≤ 1,

(11.127)

then y is a solution of the boundary value problem

−yΔΔ(t) = f (t),

y
(
t+k
)− y

(
t−k
) = Ik

(
y
(
t−k
))

, k = 1, . . . ,m,

yΔ
(
t+k
)− yΔ

(
t−k
) = Īk

(
y
(
t−k
))

, k = 1, . . . ,m,

y(0) = y(1) = 0.

(11.128)

Proof. Let y satisfy the integral equation (11.126). Then y is solution of problem
(11.128). Firstly y(0) = y(1) = 0. Let t ∈ [0, 1]\{t1, . . . , tm}. Then, we have

y(t) =
∫ 1

0
G(t, s) f (s)Δs +

m∑

k=1

Wk
(
t, y
(
tk
))
. (11.129)
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Hence

yΔ(t) =
[∫ 1

0
G(t, s) f (s)Δs +

m∑

k=1

Wk
(
tk, y
(
tk
))
]Δ

=
[∫ 1

0
G(t, s) f (s)Δs

]Δ
+

[ m∑

k=1

Wk
(
t, y
(
tk
))
]Δ

=
[∫ t

0
(1− t)σ(s) f (s)Δs

]Δ
+
[∫ 1

t

(
1− σ(s)

)
t f (s)Δs

]Δ
+

m∑

k=1

WΔ
k (t, y)

= −
∫ t

0
σ(s) f (s)Δs +

∫ 1

t

(
1− σ(s)

)
f (s)Δs +

m∑

k=1

WΔ
k (t, y),

(11.130)

where

WΔ
k (t, y) =

⎧
⎪⎨

⎪⎩

[− Ik
(
y
(
tk
))− (1− tk

)
Īk
(
y
(
tk
))]

if 0 ≤ t ≤ tk,

−[Ik
(
y
(
tk
))− tkĪk

(
y
(
tk
))]

if tk < t ≤ 1,

WΔΔ
k (t, y) = 0, for k = 1, . . . ,m.

(11.131)

Thus

yΔΔ(t) =
[

−
∫ t

0
σ(s) f (s)Δs +

∫ 1

t

(
1− σ(s)

)
f (s)Δs +

m∑

k=1

WΔ
k (t, y)

]Δ

=
[
−
∫ t

0
σ(s) f (s)Δs

]Δ
+
[∫ 1

t

(
1− σ(s)

)
f (s)Δs

]Δ

= f (t).

(11.132)

Clearly, we have

yΔ
(
t+k
)− yΔ

(
t−k
) = Īk

(
y
(
tk
))

, for k = 1, . . . ,m. (11.133)

From the definition of y we can prove that

y
(
t+k
)− y

(
t−k
) = Ik

(
y
(
tk
))

, for k = 1, . . . ,m. (11.134)
�

Theorem 11.19. Assume the following hold.
(11.19.1) The function f : [0, 1]×R→ R is continuous.
(11.19.2) There exist constants ck, c̄k such that

∣
∣Ik(y)

∣
∣ ≤ ck,

∣
∣Īk(y)

∣
∣ ≤ c̄k, (11.135)

for each k = 1, . . . ,m, and for all y ∈ R.
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(11.19.3) There exists a function p ∈ C([0, 1], R+) such that

∣
∣ f (t, y)

∣
∣ ≤ p(t), for each (t, y) ∈ [0, 1]×R. (11.136)

Then the impulsive BVP (11.124) has at least one solution.

Proof. Transform the BVP (11.124) into a fixed point problem. Consider the op-
erator N : Ω→ Ω defined by

(Ny)(t) =
∫ 1

0
G(t, s) f

(
s, y(s)

)
Δs +

m∑

k=1

Wk
(
t, y
(
tk
))
. (11.137)

We will show that N satisfies the assumptions of Schaefer’s fixed point theo-
rem. The proof will be given in several steps. We show first that N is continuous
and completely continuous.
Step 1. N is continuous.

Let {yn} be a sequence such that yn → y in Ω. Then

∣
∣N
(
yn
)
(t)−N(y)(t)

∣
∣ ≤ sup

(t,s)∈J×J

∣
∣G(t, s)

∣
∣
∫ 1

0

∣
∣ f
(
s, yn(s)

)− f
(
s, y(s)

)∣∣Δs

+
m∑

k=1

∣∣Wk
(
t, yn
(
tk
))−Wk

(
t, y
(
tk
))∣∣.

(11.138)

Since f , Ik, Īk are continuous, we have

∥∥N
(
yn
)−N(y)

∥∥
Ω ≤ sup

(t,s)∈J×J

∣∣G(t, s)
∣∣∥∥ f
(·, yn(·))− f

(·, y(·))∥∥∞

+ 2
m∑

k=1

[∣∣Ik
(
yn
(
tk
))− Ik

(
y
(
tk
))∣∣

+
∣
∣Īk
(
yn
(
tk
))− Īk

(
y
(
tk
))∣∣].

(11.139)

Thus

∥
∥N
(
yn
)−N(y)

∥
∥∞ �→ 0 as n �→∞. (11.140)

Step 2. N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant � such that,

for each y ∈ Bq = {y ∈ Ω : ‖y‖Ω ≤ q}, one has ‖Ny‖Ω ≤ �. For each t ∈ [0, 1],
we have

(Ny)(t) =
∫ 1

0
G(t, s) f

(
s, y(s)

)
Δs +

m∑

k=1

Wk
(
t, y
(
tk
))
. (11.141)
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From (11.19.2), (11.19.3), we have

∣
∣(Ny)(t)

∣
∣ =
∣∣
∣
∣
∣

∫ 1

0
G(t, s) f

(
s, y(s)

)
Δs +

m∑

k=1

Wk
(
t, y
(
tk
))
∣∣
∣
∣
∣

≤ sup
(t,s)∈J×J

∣∣G(t, s)
∣∣
∫ 1

0

∣∣ f
(
s, y(s)

)∣∣Δs +
m∑

k=0

∣∣Wk
(
t, y
(
tk
))∣∣

≤ sup
(t,s)∈J×J

∣
∣G(t, s)

∣
∣
∫ 1

0
p(s)Δs + 2

m∑

k=0

[
ck + c̄k

]
.

(11.142)

Thus

‖Ny‖Ω ≤ p∗ + 2
m∑

k=0

[
ck + c̄k

]
:= �, (11.143)

where

p∗ = sup
(t,s)∈J×J

∣
∣G(t, s)

∣
∣ sup
t∈[0,1]

p(t). (11.144)

Step 3. N maps bounded sets into equicontinuous sets of Ω.
Let r1, r2 ∈ J , r1 < r2, and let Bq be a bounded set of Ω as in Step 2. Let y ∈ Bq.

Then

∣∣(Ny)
(
r2
)− (Ny)

(
r1)
∣∣ ≤

∫ 1

0

∣∣G
(
r2, s
)−G(r1, s

)∣∣∣∣ f
(
s, y(s)

)∣∣Δs

+
m∑

k=1

∣
∣Wk

(
r2, y
(
tk
))−Wk

(
r1, y
(
tk
))∣∣

≤
∫ 1

0

∣
∣G
(
r2, s
)−G(r1, s

)∣∣p(s)Δs

+
m∑

k=1

∣
∣Wk

(
r2, y
(
tk
))−Wk

(
r1, y
(
tk
))∣∣.

(11.145)

The right-hand side tends to zero as r2 − r1 → 0. As a consequence of Steps 1 to
3 together with the Arzelá-Ascoli theorem, we can conclude that N : Ω → Ω is
continuous and completely continuous.
Step 4. Now it remains to show that the set

E(N) := {y ∈ Ω : y = λN(y), for some 0 < λ < 1
}

(11.146)

is bounded. As in Step 2 we can prove that E(N) is bounded.
Set X := Ω. As a consequence of Schaefer’s fixed point theorem, we deduce

that N has a fixed point y which is a solution to BVP problem (11.124). �
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We present now a result for the BVP problem (11.124) in the spirit of the
nonlinear alternative of Leray-Schauder type [157].

Theorem 11.20. Suppose that hypotheses (11.19.1)–(11.19.2) and the following con-
dition are satisfied.

(11.20.1) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞),
p̄ ∈ C([0, 1], R+) and a nonnegative number r > 0 such that

∣
∣F(t, y)

∣
∣ ≤ p̄(t)ψ

(|y|), for each y ∈ R,

r

sup(t,s)∈[0,1]×[0,1]

∣∣G(t, s)
∣∣ψ(r)

∫ 1
0 p̄(s)Δs + 2

∑m
k=0

[
ck + c̄k

] > 1.
(11.147)

Then the impulsive BVP (11.124) has at least one solution.

Proof. Transform the BVP (11.124) into a fixed point problem. Consider the op-
erator N defined in the proof of Theorem 11.19. We will show that N satisfies the
assumptions of the nonlinear alternative of Leray-Schauder type. Let y be such
that y = λN y, for some λ ∈ (0, 1). Thus

(Ny)(t) =
∫ 1

0
G(t, s) f

(
s, y(s)

)
Δs +

m∑

k=1

Wk
(
t, y
(
tk
))
. (11.148)

From (11.6.2), (11.20.1), we have

∣∣y(t)
∣∣ = λ

∣
∣∣
∣

∫ 1

0
G(t, s) f

(
s, y(s)

)
Δs +

m∑

k=1

Wk
(
t, y
(
tk
))
∣
∣∣
∣

≤ sup
(t,s)∈[0,1]×[0,1]

∣
∣G(t, s)

∣
∣
∫ 1

0
p(s)ψ

(∣∣y(s)
∣
∣)Δs + 2

m∑

k=0

[
ck + c̄k

]

≤ sup
(t,s)∈[0,1]×[0,1]

∣
∣G(t, s)

∣
∣
∫ 1

0
p(s)ψ

(‖y‖Ω
)
Δs + 2

m∑

k=0

[
ck + c̄k

]
.

(11.149)

Consequently,

‖y‖Ω
sup(t,s)∈[0,1]×[0,1]

∣
∣G(t, s)

∣
∣
∫ 1

0 p(s)ψ
(‖y‖Ω

)
Δs + 2

∑m
k=0

[
ck + c̄k

] ≤ 1. (11.150)

Then, by (A1), there exists r such that ‖y‖Ω �= r.
Set

U = {y ∈ C
(
[0, 1], R

)
: ‖y‖Ω < r

}
. (11.151)

As in Theorem 11.19 the operator N : U → C([0, 1)], R) is continuous and com-
pletely continuous. By the choice ofU there is no y ∈ ∂U such that y = λN(y), for
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some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-Schauder
type, we deduce that N has a fixed point y in U , which is a solution of the BVP
(11.124). �

11.7. Double positive solutions of impulsive dynamic boundary
value problems

Let T be a time scale such that 0, 1 ∈ T. Throughout the section, all t-intervals
[a, b] should be interpreted as [a, b]∩ T. Also throughout, let τ ∈ (0, 1) be fixed,
and assume that τ is right-dense. In this section, we apply a double fixed point
theorem, Theorem 1.16, to obtain at least two positive solutions of the nonlinear
impulsive dynamic equation

yΔΔ(t) + f
(
y
(
σ(t)
)) = 0, t ∈ [0, 1] \ {τ}, (11.152)

subject to the underdetermined impulse condition

y
(
τ+)− y

(
τ−
) = I

(
y(τ)
)
, (11.153)

and satisfying the right focal boundary conditions

y(0) = yΔ
(
σ(1)

) = 0, (11.154)

where f : R → [0,∞) is continuous and I : [0,∞) → [0,∞) is continuous. By a
positive solution, we will mean positive with respect to a suitable cone.

We note that, from the nonnegativity of f and I , a solution y of (11.152)–
(11.154) is nonnegative and concave on each of [0, τ] and (τ, 1]. We will apply
Theorem 1.16 to a completely continuous integral operator whose kernel, G(t, s),
is Green’s function for

−yΔΔ = 0, (11.155)

satisfying (11.154). In this instance,

G(t, s) =
⎧
⎨

⎩
t, 0 ≤ t ≤ s ≤ σ(1),

σ(s), 0 ≤ σ(s) ≤ t ≤ σ2(1).
(11.156)

Properties of G(t, s) of which we will make use include

G(t, s) ≤ G
(
σ(s), s

) = σ(s), t ∈ [0, σ2(1)
]
, s ∈ [0, σ(1)

]
, (11.157)

and for each 0 < p < 1,

G(t, s) ≥ p

σ2(1)
σ(s), t ∈ [p, σ2(1)

]
, s ∈ [0, σ(1)

]
. (11.158)
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To apply Theorem 1.16, we must define a suitable Banach space, B, a cone, P , and
an operator A. In that direction, let

B = {y :
[
0, σ2(1)

]
�→ R | y ∈ C[0, τ], y ∈ C

(
τ, σ2(1)

]
, y
(
τ+) ∈ R

}
,

(11.159)

equipped with norm

‖y‖ = max

{

sup
t∈[0,τ]

∣
∣y(t)

∣
∣, sup

t∈(τ,σ2(1)]

∣
∣y(t)

∣
∣
}

. (11.160)

Of course, for y ∈ B, we will consider in a piecewise manner that y ∈ C[0, τ] and
y ∈ C[τ, σ2(1)]. Moreover, we note that if y ∈ B, then y(τ−) = limt→τ− y(t) =
y(τ). Next, let the cone P ⊂ B be defined by

P = {y ∈ B | y is concave, nondecreasing, and nonnegative on each of

[0, τ],
[
τ, σ2(1)

]
, y
(
τ+)− y

(
τ−
) ≥ 0

}
.

(11.161)

We note that, for each y ∈ P , I(y(τ)) ≥ 0. It follows that, for y ∈ P ,

‖y‖ = max
{
y(τ), y

(
σ2(1)

)} = y
(
σ2(1)

)
. (11.162)

For the remainder, assume there exists

η = inf
[
τ + σ2(1)

2
, 1
)
∈ T, (11.163)

and assume there exists r ∈ T with

η < r < 1, (11.164)

which we fix. If y ∈ P , then

y(t) ≥ 1
2

sup
s∈[τ/2,τ]

y(s) = 1
2
y(τ), t ∈

[
τ

2
, τ
]

,

y(t) ≥ 1
2

sup
s∈[η,σ2(1)]

y(s) = 1
2
y
(
σ2(1)

)
, t ∈ [η, σ2(1)

]
.

(11.165)

Now define nonnegative, increasing, continuous functionals γ, θ, and α on P by

γ(y) = min
t∈[η,r]

y(t) = y(η),

θ(y) = max
t∈[τ,η]

y(t) = y(η),

α(y) = max
t∈[τ,r]

y(t) = y(r).

(11.166)
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Then, for each y ∈ P ,

γ(y) = θ(y) ≤ α(y), (11.167)

and γ(y) = y(η) ≥ (1/2)y(σ2(1)) = (1/2)‖y‖. So,

‖y‖ ≤ 2γ(y), ∀y ∈ P . (11.168)

Moreover, we note that

θ(λy) = λθ(y), 0 ≤ λ ≤ 1, y ∈ ∂P (θ, b). (11.169)

For convenience, let

N =
∫ σ(1)

0
σ(s)Δs, M =

∫ η

0
σ(s)Δs. (11.170)

We now state growth conditions on f and I so that (11.152)–(11.154) has at
least two positive solutions.

Theorem 11.21. Let 0 < a < Mb/2N < min{Mc/4N ,Mc/η(σ(1)− η)} = Mc/4N ,
and suppose that f and I satisfy the following conditions:

(A) f (w) > c/η(σ(1)− η), if c ≤ w ≤ 2c,
(B) f (w) < b/2N , if 0 ≤ w ≤ 2b,
(C) f (w) > a/M, if 0 ≤ w ≤ a,
(D) I(w) ≤ b/2, if 0 ≤ w ≤ b.

Then the impulsive dynamic boundary value problem (11.152)–(11.154) has at least
two positive solutions, x1 and x2 such that

a < max
t∈[τ,r]

x1(t), with max
t∈[τ,η]

x1(t) < b,

b < max
t∈[τ,η]

x2(t), with min
t∈[η,r]

x2(t) < c.
(11.171)

Proof. We begin by defining the completely continuous integral operator A : B →
B by

Ax(t) = I
(
x(τ)

)
χ(τ,σ2(1)](t) +

∫ σ(1)

0
G(t, s) f

(
x
(
σ(s)
))
Δs, x ∈ B, t ∈ [0, σ2(1)

]
,

(11.172)

where χ(τ,σ2(1)](t) is the characteristic function. Solutions of (11.152)–(11.154) are
fixed points ofA and conversely. We now show that the conditions of Theorem 1.16
are satisfied.
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Let x ∈ P (γ, c). By the nonnegativity of I , f , and G, for t ∈ [0, σ2(1)],
Ax(t) ≥ 0. Moreover, (Ax)ΔΔ(t) = − f (x(σ(t))) ≤ 0 on [0, 1] \ {τ}, which im-
plies that (Ax)(t) is concave on each of [0, τ] and [τ, σ2(1)]. In addition,

(Ax)Δ(t) =
∫ σ(1)

0
GΔ(t, s) f

(
x
(
σ(s)
))
Δs ≥ 0 on

[
0, σ(1)

] \ {τ}, (11.173)

so that (Ax)(t) is nondecreasing on each of [0, τ] and [τ, σ2(1)]. Since (Ax)(0) = 0,
we have (Ax)(t) ≥ 0 on [0, τ]. Also, since x ∈ P (γ, c),

(Ax)
(
τ+)− (Ax)(τ) = I

(
x(τ)

) ≥ 0. (11.174)

This yields (Ax)(τ+) ≥ (Ax)(τ) ≥ 0, and consequently (Ax)(t) ≥ 0, t ∈ [τ, σ2(1)],
as well. Ultimately, we have Ax ∈ P , and in particular, A : P (γ, c) → P .

We now verify that property (i) of Theorem 1.16 is satisfied. We choose x ∈
∂P (γ, c). Then γ(x) = mint∈[η,r] x(t) = x(η) = c. Since x ∈ P , x(t) ≥ c, t ∈
[η, σ2(1)]. Recalling that ‖x‖ ≤ 2γ(x) = 2c, we have

c ≤ x(t) ≤ 2c, t ∈ [η, σ2(1)
]
. (11.175)

Then, by hypothesis (A),

f
(
x
(
σ(s)
))
>

c

η
(
σ(1)− η) , s ∈ [η, σ(1)

]
. (11.176)

By the above, Ax ∈ P , and so

γ(Ax) = (Ax)(η) = I
(
x(τ)

)
χ(τ,σ2(1)]T (η) +

∫ σ(1)

0
G(η, s) f

(
x
(
σ(s)
))
Δs

=
∫ σ(1)

0
G(η, s) f

(
x
(
σ(s)
))
Δs ≥

∫ σ(1)

η
G(η, s) f

(
x
(
σ(s)
))
Δs

= η
∫ σ(1)

η
f
(
x
(
σ(s)
))
Δs > η

(
c

η
(
σ(1)− η)

)∫ σ(1)

η
Δs

= c.

(11.177)

We conclude that Theorem 1.16(i) is satisfied.
We now turn to Theorem 1.16(ii). We choose x ∈ ∂P (θ, b). Then θ(x) =

maxt∈[τ,η] x(t) = x(η) = b. Thus, 0 ≤ x(t) ≤ b, t ∈ (τ,η]. Since x ∈ P implies
that x(τ) ≤ x(τ+), and also x(t) is nondecreasing on [0, τ], we have

x(t) ≤ b, t ∈ [0, τ], (11.178)

and so by hypothesis (D),

I
(
x(τ)

) ≤ b

2
. (11.179)
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If we recall that ‖x‖ ≤ 2γ(x) ≤ 2θ(x) = 2b, then we have

0 ≤ x(t) ≤ 2b, t ∈ [0, σ2(1)
]
, (11.180)

and by (B),

f
(
x
(
σ(s)
))
<

b

2N
, s ∈ [0, σ(1)

]
. (11.181)

Then

θ(Ax) = (Ax)(η) = I
(
x(τ)

)
χ(τ,σ2(1)]T (η) +

∫ σ(1)

0
G(η, s) f

(
x
(
σ(s)
))
Δs

≤ b

2
+
∫ σ(1)

0
σ(s) f

(
x
(
σ(s)
))
Δs <

b

2
+

b

2N

∫ σ(1)

0
σ(s)Δs

= b.

(11.182)

In particular, Theorem 1.16(ii) holds.
We finally consider Theorem 1.16(iii). The function y(t) = a/2 ∈ P (α, a),

and so P (α, a) �= ∅.
Now choose x ∈ ∂P (α, a). Then α(x) = maxt∈[τ,r] x(t) = x(r) = a. This

implies 0 ≤ x(t) ≤ a, t ∈ [τ, r]. Since x is nondecreasing and x(τ+) ≥ x(τ),

0 ≤ x(t) ≤ a, t ∈ [0, r]. (11.183)

By assumption (C),

f
(
x
(
σ(s)
))
>
a

M
, s ∈ [0,η]. (11.184)

Then

α(Ax) = (Ax)(r) = I
(
x(τ)

)
χ(τ,σ2(1)]T (r) +

∫ σ(1)

0
G(r, s) f

(
x
(
σ(s)
))
Δs

≥
∫ σ(1)

0
G(r, s) f

(
x
(
σ(s)
))
Δs ≥

∫ η

0
G(r, s) f

(
x
(
σ(s)
))
Δs

=
∫ η

0
σ(s) f

(
x
(
σ(s)
))
Δs >

(
a

M

)∫ η

0
σ(s)Δs

= a.

(11.185)

Thus Theorem 1.16(iii) is satisfied. Hence there exist at least two fixed points of
A which are solutions x1 and x2, belonging to P (γ, c), of the impulsive dynamic
boundary value problem (11.152)–(11.154) such that

a < α
(
x1
)

with θ
(
x1
)
< b,

b < θ
(
x2
)

with γ
(
x2
)
< c.

(11.186)

The proof is complete. �
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Example 11.22. Let T be a measure chain with 0, τ,η, r, 1 ∈ T, where 0 < τ < η <
r < 1 are fixed and η = inf[(τ + σ2(1))/2, 1). For 0 < a < Mb/2N < Mc/4N , where

N = ∫ σ(1)
0 σ(s)Δs andM = ∫ η0 σ(s)Δs, define f : R→ [0,∞) and I : [0,∞) → [0,∞)

by

f (w) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mb + 2Na
4NM

, w ≤ 2b,

�(w), 2b ≤ w ≤ c,

c + 1
η
(
σ(1)− η) , c ≤ w,

I(w) =

⎧
⎪⎪⎨

⎪⎪⎩

b

2
, 0 ≤ w ≤ b,

w − b

2
, b ≤ w,

(11.187)

where �(w) satisfies �′′ = 0, �(2b) = (Mb + 2Na)/4NM, and �(c) = (c + 1)/
η(σ(1)− η). Then, by Theorem 11.21, the impulsive dynamic boundary value
problem (11.152)–(11.154) has at least two solutions belonging to P (γ, c).

11.8. Notes and remarks

The study of dynamic equations on time scales is a fairly new area in mathematics,
having only been in practice for about 15 years. Still largely theoretical, time scales
serve as a binding force between continuous and discrete analysis. The results of
Section 11.3 are adapted from Benchohra et al. [72], the results of Section 11.4
from Benchohra et al. [1], the results of Section 11.5 from Benchohra et al. [74],
while the results of Section 11.6 from Benchohra et al. [88], and finally the source
of Section 11.7 from Henderson [165]. The techniques in this chapter have been
adapted from [3, 7, 101], where the nonimpulsive case was discussed.



12
On periodic boundary value
problems of first-order
perturbed impulsive
differential inclusions

12.1. Introduction

In this chapter, we study the existence of solutions to periodic nonlinear boundary
value problems for first-order Carathéodory impulsive ordinary differential inclu-
sions with convex multifunctions. Given a closed and bounded interval J := [0,T]
in R, and given the impulsive moments t1, t2, . . . , tp with 0 = t0 < t1 < t2 < · · · <
tp < tp+1 = T , J ′ = J \{t1, t2, . . . , tp}, J j = (t j , t j+1), consider the following periodic
boundary value problem for impulsive differential inclusions (IDI):

x′(t) ∈ F
(
t, x(t)

)
+G
(
t, x(t)

)
a.e. t ∈ J ′, (12.1)

x
(
t+j
) = x

(
t−j
)

+ I j
(
x
(
t−j
))

, (12.2)

x(0) = x(T), (12.3)

where F,G : J × R → P (R) are impulsive multifunctions, I j : R → R, j =
1, 2, . . . , p, are the impulse functions, and x(t+j ) and x(t−j ) are, respectively, the
right and the left limits of x at t = t j .

Let C(J , R) and L1(J , R) denote the space of continuous and Lebesgue inte-
grable real-valued functions on J . Consider the Banach space

X : ={x : J �→ R :x∈C(J ′, R), x
(
t+j
)
, x
(
t−j
)

exist, x
(
t−j
)=x(t j

)
, j=1, 2, . . . , p

}
,

(12.4)

equipped with the norm ‖x‖ = max{|x(t)| : t ∈ J}, and the space

Y := {x ∈ X : x is differentiable a.e. on (0,T), x′ ∈ L1(J , R)
}
. (12.5)

By a solution of (12.1)–(12.3), we mean a function x in YT := {v ∈ Y : v(0) =
v(T)} that satisfies the differential inclusion (12.1) and the impulsive conditions
(12.2).

Our aim is to provide sufficient conditions to the multifunctions F, G and
the impulsive functions I j that insure the existence of solutions of problem IDI
(12.1)–(12.3).
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The following form of a fixed point theorem of Dhage [127] will be used while
proving our main existence result.

Theorem 12.1. Let B(0, r) and B[0, r] denote, respectively, the open and closed balls
in a Banach space E centered at the origin and of radius r, and letA : E → Pcl,cv,bd(E)
and B : B[0, r] → Pcp,cv(E) be two multivalued operators satisfying that

(i) A is a multivalued contraction,
(ii) B is completely continuous.

Then either
(a) the operator inclusion x ∈ Ax + Bx has a solution in B[0, r], or
(b) there exists a u ∈ E with ‖u‖ = r such that λu ∈ Au + Bu for some λ > 1.

12.2. Existence results

Consider the linear periodic problem with some given impulses, θj ∈ R, j =
1, 2, . . . , p,

x′(t) + kx(t) = σ(t), a.e. t ∈ J ′,

x
(
t+j
)− x(t−j

) = θj , j = 1, 2, . . . , p,

x(0) = x(T),

(12.6)

where k > 0, and σ ∈ L1(J). The solution of (12.6) is given by (see [199, Lemma
2.1])

x(t) =
∫ T

0
gk(t, s)σ(s)ds +

p∑

j=1

gk
(
t, t j
)
θj , (12.7)

where

gk(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−k(t−s)

1− e−kT , 0 ≤ s ≤ t ≤ T ,

e−k(T+t−s)

1− e−kT , 0 ≤ t < s ≤ T.

(12.8)

Clearly the function gk(t, s) is discontinuous and nonnegative on J × J and has a
jump at t = s.

Let

Mk := max
{∣∣gk(t, s)

∣
∣ : t, s ∈ [0,T]

} = 1
1− e−kT . (12.9)

Now x ∈ YT is a solution of (12.1)–(12.3) if and only if

x(t) ∈ B1
kx(t) + B2

kx(t), t ∈ J , (12.10)
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where the multivalued operators B1
k and B2

k are defined by

B1
k x(t) =

∫ T

0
gk(t, s)F(s, x(s))ds, (12.11)

B2
k x(t) =

∫ T

0
gk(t, s)

[
kx(s) +G

(
s, x(s)

)]
ds +

p∑

j=1

g
(
t, t j
)
I j
(
x
(
t−j
))
. (12.12)

Definition 12.2. A multifunction β : J×R→P (R) is called impulsive Carathéodory
if

(i) β(·, x) is measurable for every x ∈ R,
(ii) β(t, ·) is upper semicontinuous a.e. on J .

Further the impulsive Carathéodory multifunction β is called impulsive L1-
Carathéodory if

(iii) for every r > 0, there exists a function hr ∈ L1(J) such that

∥
∥β(t, x)

∥
∥ = sup

{|u| : u ∈ β(t, x)
} ≤ hr(t) a.e. t ∈ J , (12.13)

for all x ∈ R with |x| ≤ r.

Denote

S1
β(x) = {v ∈ L1(J , R) : v(t) ∈ β(t, x) a.e. t ∈ J

}
. (12.14)

It is known (see Lasota and Opial [186]) that if E is a Banach space with
dim(E) < ∞ and β : J × E → Pb,cl(E) is L1-Carathéodory, then S1

β(x) �= ∅ for
each x ∈ E.

Definition 12.3. A measurable multivalued function F : J → Pcp(R) is said to be
integrably bounded if there exists a function h ∈ L1(J , R) such that |v| ≤ h(t) a.e.
t ∈ J for all v ∈ F(t).

Remark 12.4. It is known that if F : J → R is an integrably bounded multifunction,
then the set S1

F of all Lebesgue integrable selections of F is closed and nonempty,
see Covitz and Nadler [123].

We now introduce some assumptions.
(H1) The functions I j : R→ R, j = 1, 2, . . . , p, are continuous, and there exist

cj ∈ R, j = 1, 2, . . . , p, such that |I j(x)| ≤ cj , j = 1, 2, . . . , p, for every
x ∈ R.

(H2) G : J ×R→ Pcp,cv(R) is an impulsive Carathéodory multifunction.
(H3) There exist a real number k > 0 and a Carathéodory function ω : J ×

R+ → R+ which is nondecreasing with respect to its second argument
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such that

∥∥G(t, x) + kx
∥∥ = sup

{|v| : v ∈ G(t, x) + kx
} ≤ ω

(
t, |x|) (12.15)

a.e. t ∈ J ′, x ∈ R.
(H4) The multifunction t �→ F(t, x) is measurable and integrally bounded for

each x ∈ R.
(H5) The multifunction F(t, x) is F : J × R → Pcl,cv,bd(R), and there exists a

function � ∈ L1(J , R) such that

H
(
F(t, x),F(t, y)

) ≤ �(t)|x − y| a.e. t ∈ J , (12.16)

for all x, y ∈ R.

Lemma 12.5. Assume that (H2)-(H3) hold. Then the operator S1
k+G : YT → P (L1(J ,

R)) defined by

S1
k+G(x) := {v ∈ L1(J , R) : v(t) ∈ kx(t) +G

(
t, x(t)

)
a.e. t ∈ J

}
(12.17)

is well defined, u.s.c., closed and convex-valued, and sends bounded subsets of YT into
bounded subsets of L1(J , R).

Proof. Since (H2) holds, S1
k+G(x) �= ∅ for each x ∈ YT . Below, we show that S1

k+G

has the desired properties on YT .
Step 1. First we show that S1

k+G has closed values on YT . Let x ∈ YT be arbitrary
and let {ωn} be a sequence in S1

k+G(x) ⊂ L1(J , R) such that ωn → ω. Then ωn → ω
in measure. So there exists a subset S of positive integers such that ωn → ω a.e. n→
∞ through S. Since the hypothesis (H2) holds, we have ω ∈ S1

k+G(x). Therefore
S1
k+G(x) is a closed set in L1(J , R). Thus, for each x ∈ YT , S1

k+G(x) is a nonempty,
closed subset of L1(J , R), and consequently S1

k+G has nonempty and closed values
on YT .
Step 2. Next we show that S1

k+G(x) is a convex subset of L1(J , R) for each x ∈ YT .
Let v1, v2 ∈ S1

k+G(x) and let λ ∈ [0, 1]. Then there exist functions f1, f2 ∈ S1
k+G(x)

such that

v1(t) = kx(t) + f1(t), v2(t) = kx(t) + f2(t) (12.18)

for t ∈ J . Therefore we have

λv1(t) + (1− λ)v2(t) = λ
[
kx(t) + f1(t)

]
+ (1− λ)

[
kx(t) + f2(t)

]

= λkx(t) + (1− λ)kx(t) + λ f1(t) + (1− λ) f2(t)

= kx(t) + f3(t),

(12.19)

where f3(t) = λ f1(t) + (1 − λ) f2(t) for all t ∈ J . Since G(t, x) is convex for each
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x ∈ R, one has f3(t) ∈ G(t, x(t)) for all t ∈ J . Therefore

λv1(t) + (1− λ)v2(t) ∈ kx(t) +G
(
t, x(t)

)
(12.20)

for all t ∈ J , and consequently λv1 + (1 − λ)v2 ∈ S1
k+G(x). As a result, S1

k+G(x) is a
convex subset of L1(J , R).
Step 3. Next we show that S1

k+G is a u.s.c. multivalued operator on YT . Let {xn}
be a sequence in YT such that xn → x∗, and let {yn} be a sequence such that
yn ∈ S1

k+G(xn) and yn → y∗. To finish, it suffices to show that y∗ ∈ S1
k+G(x∗). Since

yn ∈ S1
k+G(xn), there is a function fn ∈ S1

k+G(xn) such that yn(t) = kxn(t) + fn(t)
for all t ∈ J and that y∗(t) = kx∗(t) + f∗(t), where fn → f∗ as n → ∞. Now
the multifunction G(t, x) is upper semicontinuous in x for all t ∈ J , and one has
f∗(t) ∈ G(t, x∗(t)) for all t ∈ J . Hence it follows that y∗ ∈ S1

k+G(x∗).
Step 4. Finally we show that S1

k+G maps bounded sets of YT into bounded sets of
L1(J , R). Let M be a bounded subset of YT . Then there is a real number r > 0 such
that ‖x‖ ≤ r for all x ∈ M. Let y ∈ S1

k+G(S) be arbitrary. Then there is an x ∈ M
such that y ∈ S1

k+G(x), and therefore y(t) ∈ kx(t) + G(t, x(t)) a.e. t ∈ J . Now, by
(H3),

‖y‖L1 =
∫ T

0

∣
∣y(t)

∣
∣dt ≤

∫ T

0

∥
∥kx(t) +G

(
t, x(t)

)∥∥dt

≤
∫ T

0
ω
(
t,
∣∣x
(
t
)∣∣)dt ≤

∫ T

0
ω(t, r)dt.

(12.21)

Hence S1
k+G(S) is a bounded set in L1(J , R).

Thus the multivalued operator S1
k+G is upper semicontinuous and has closed,

convex values on YT . The proof is complete. �

Lemma 12.6. Assume that (H1)–(H3) hold. The multivalued operator B2
k defined by

(12.12) is completely continuous and has convex, compact values on YT .

Proof. Since S1
k+G is upper semicontinuous and has closed and convex values and

since (H1) holds, B2
k is u.s.c. and has closed convex values on YT . To show that B2

k

is relatively compact, we use the Arzelá-Ascoli theorem. Let M ⊂ B[0, r] be any
set. Then ‖x‖ ≤ r for all x ∈M. First, we show that B2

k (M) is uniformly bounded.
Now, for any x ∈M and for any y ∈ B2

k (x), one has

∣
∣y(t)

∣
∣ ≤
∫ T

0

∣
∣gk(t, s)

∣
∣
∥
∥[kx(s) +G

(
s, x(s)

)]∥∥ds +
p∑

j=1

∣
∣gk
(
t, t j
)∣∣
∣
∣I j
(
x
(
t−j
))∣∣

≤
∫ T

0
Mkω

(
s,
∣
∣x(s)

∣
∣)ds +Mk

p∑

j=1

cj

≤Mk

∫ T

0
ω(s, r)ds +Mk

p∑

j=1

cj ,

(12.22)
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where Mk is the bound of gk on [0,T]× [0,T]. Taking the supremum over t,

∥∥B2
k x
∥∥ ≤Mk

[∫ T

0
ω(s, r)ds +

p∑

j=1

cj

]

(12.23)

for all x ∈M. Hence B2
k (M) is a uniformly bounded set in YT . Next we prove the

equicontinuity of the set B2
k (M) in YT . Let y ∈ B2

k(M) be arbitrary. Then there is
a v ∈ Sk+G(x) such that

y(t) =
∫ T

0
gk(t, s)v(s)ds +

p∑

j=1

gk
(
t, t j
)
I j
(
x
(
t−j
))

, t ∈ J , (12.24)

for some x ∈M.
To finish, it is sufficient to show that y′ is bounded on [0,T]. Now, for any

t ∈ [0,T],

∣
∣y′(t)

∣
∣ ≤
∣
∣∣
∣
∣

∫ T

0

∂

∂t
gk(t, s)v(s)ds +

p∑

j=1

∂

∂t
gk
(
t, tk
)
I j
(
yj
(
t−j
))
∣
∣∣
∣
∣

=
∣
∣
∣
∣∣

∫ T

0
(−k)gk(t, s)v(s)ds +

p∑

j=1

(−k)gk
(
t, tk
)
I j
(
yj
(
t−j
))
∣
∣
∣
∣∣

≤ kMk

∫ T

0
ω(s, r)ds + kMk

p∑

j=1

cj := c.

(12.25)

Hence, for any t, τ ∈ [0,T] and for all y ∈ B2
k(M), one has

∣∣y(t)− y(τ)
∣∣ ≤ c|t − τ| �→ 0 as t �→ τ. (12.26)

This shows that B2
k (M) is an equicontinuous set and consequently relatively

compact in view of Arzelá-Ascoli theorem. Obviously, B2
k (x) ⊂ B2

k (B[0, r]) for
each x ∈ B[0, r]. Since B2

k (B[0, r]) is relatively compact, B2
k (x) is relatively com-

pact, and hence is compact in view of hypothesis (H2). Hence B2
k is a completely

continuous multivalued operator on YT . The proof of the lemma is complete. �

Lemma 12.7. Assume that the hypotheses (H4)-(H5) hold. Then the operator B1
k

defined by (12.11) is a multivalued contraction operator on YT , provided that Mk

‖�‖L1 < 1.

Proof. Define a mapping B1
k : YT → YT by (12.11). We show that B1

k is a multi-
valued contraction on YT . Let x, y ∈ YT be arbitrary and let u1 ∈ B1

k (x). Then
u1 ∈ YT and

u1(t) =
∫ T

0
gk(t, s)v1(s)ds, (12.27)
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for some v1 ∈ S1
F(x). SinceH(F(t, x(t)),F(t, y(t))) ≤ �(t)|x(t)− y(t)|, one obtains

that there exists a w ∈ F(t, y(t)) such that

∣
∣v1(t)−w∣∣ ≤ �(t)

∣
∣x(t)− y(t)

∣
∣. (12.28)

Thus the multivalued operator U defined by U(t) = S1
F(y)(t)∩ K(t), where

K(t) = {w | ∣∣v1(t)−w∣∣ ≤ �(t)
∣
∣x(t)− y(t)

∣
∣}, (12.29)

has nonempty values and is measurable. Let v2 be a measurable selection for U
(which exists by Kuratowski-Ryll-Nardzewski’s selection theorem [2]). Then v2 ∈
F(t, y(t)) and

∣
∣v1(t)− v2(t)

∣
∣ ≤ �(t)

∣
∣x(t)− y(t)

∣
∣ a.e. t ∈ J. (12.30)

Define

u2(t) =
∫ T

0
gk(t, s)v2(s)ds. (12.31)

It follows that u2 ∈ B1
k (y) and

∣
∣u1(t)− u2(t)

∣
∣ ≤

∣∣
∣
∣

∫ T

0
gk(t, s)v1(s)ds−

∫ T

0
gk(t, s)v2(s)ds

∣∣
∣
∣

≤
∫ T

0
Mk

∣∣v1(s)− v2(s)
∣∣ds

≤
∫ T

0
Mk�(s)

∣
∣x(s)− y(s)

∣
∣ds

≤Mk‖�‖L1‖x − y‖.

(12.32)

Taking the supremum over t, we obtain

∥
∥u1 − u2

∥
∥ ≤Mk‖�‖L1‖x − y‖. (12.33)

By this and the analogous inequality obtained by interchanging the roles of x and
y, we get that

H
(
B1
k (x), B1

k (y)
) ≤ μ‖x − y‖, (12.34)

for all x, y ∈ YT . This shows that B1
k is a multivalued contraction, since μ =

Mk‖�‖L1 < 1. �
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Theorem 12.8. Assume that (H1)–(H5) are satisfied. Further if there exists a real
number r > 0 such that

r >
Mk

∫ T
0 ω(s, r)ds +MkF0 +Mk

∑p
j=1 cj

1−Mk‖�‖L1
, (12.35)

where Mk‖�‖L1 < 1 and F0 =
∫ T

0 ‖F(s, 0)‖ds, then the problem IDI (12.1)–(12.3)
has at least one solution on J .

Proof. Define an open ball B(0, r) in YT , where the real number r satisfies the
inequality given in condition (12.35). Define the multivalued operators B1

k and
B2
k on YT by (12.11) and (12.12). We will show that the operators B1

k and B2
k

satisfy all the conditions of Theorem 12.1.
Step 1. The assumptions (H2)-(H3) imply by Lemma 12.6 that B2

k is a completely
continuous multivalued operator on B[0, r]. Again since (H4)-(H5) hold, by
Lemma 12.7, B1

k is a multivalued contraction on YT with a contraction constant
μ = Mk‖�‖L1 . Now an application of Theorem 12.1 yields that either the operator
inclusion x ∈ B1

k x + B2
k x has a solution in B[0, r], or there exists a u ∈ YT with

‖u‖ = r satisfying that λu ∈ B1
ku + B2

ku for some λ > 1.
Step 2. Now we show that the second assertion of Theorem 12.1 is not true. Let
u ∈ YT be a possible solution of λu ∈ B1

ku + B2
ku for some real number λ > 1 with

‖u‖ = r. Then we have

u(t) ∈ λ−1
∫ T

0
gk(t, s)F

(
s,u(s)

)
ds + λ−1

∫ T

0
gk(t, s)

[
ku(s) +G

(
s,u(s)

)]
ds

+ λ−1
p∑

j=1

gk
(
t, t j
)
I j
(
u
(
t−j
))
.

(12.36)

Hence, by (H3)–(H5),

∣
∣u(t)

∣
∣ ≤
∫ T

0

∣
∣gk(t, s)

∣
∣ω
(
s,
∣
∣u(s)

∣
∣)ds +

∫ T

0

∣
∣gk(t, s)

∣
∣
∣
∣�(s)

∣
∣
∣
∣u(s)

∣
∣ds

+
∫ T

0

∣∣gk(t, s)
∣∣∥∥F(s, 0)

∥∥ds +
p∑

j=1

∣∣gk(t, s)
∣∣∣∣I j

(
u
(
t−j
))∣∣

≤Mk

∫ T

0
ω
(
s,‖u‖)ds +Mk

∫ T

0

∣
∣�(s)

∣
∣‖u‖ds +MkF0 +Mk

p∑

j=1

cj

≤Mk

∫ T

0
ω
(
s,‖u‖)ds +Mk‖�‖L1‖u‖ +MkF0 +Mk

p∑

j=1

cj .

(12.37)
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Taking the supremum over t, we get

‖u‖ ≤Mk

∫ T

0
ω
(
s,‖u‖)ds +Mk‖�‖L1‖u‖ +MkF0 +Mk

p∑

j=1

cj . (12.38)

Substituting ‖u‖ = r in the above inequality yields

r ≤ Mk

∫ T
0 ω(s, r)ds +MkF0 +Mk

∑p
j=1 cj

1−Mk‖�‖L1
, (12.39)

which is a contradiction to (12.35). Hence the operator inclusion x ∈ B1
k x + B2

k x
has a solution in B[0, r]. This further implies that the IDI (12.1)–(12.3) has a so-
lution on J . The proof is complete. �

12.3. Notes and remarks

The results of Chapter 12 are adapted from [128].
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[199] J. J. Nieto, Basic theory for nonresonance impulsive periodic problems of first order, Journal of
Mathematical Analysis and Applications 205 (1997), no. 2, 423–433.

[200] , Impulsive resonance periodic problems of first order, Applied Mathematics Letters 15
(2002), no. 4, 489–493.

[201] , Periodic boundary value problems for first-order impulsive ordinary differential equations,
Nonlinear Analysis 51 (2002), no. 7, 1223–1232.

[202] S. Ntouyas, Initial and boundary value problems for functional-differential equations via the topo-
logical transversality method: a survey, Bulletin of the Greek Mathematical Society 40 (1998),
3–41.

[203] S. Ntouyas and P. Ch. Tsamatos, Global existence for second order functional semilinear equations,
Periodica Mathematica Hungarica 31 (1995), no. 3, 223–228.

[204] , Global existence for second order semilinear ordinary and delay integrodifferential equa-
tions with nonlocal conditions, Applicable Analysis 67 (1997), no. 3-4, 245–257.

[205] , Global existence for semilinear evolution equations with nonlocal conditions, Journal of
Mathematical Analysis and Applications 210 (1997), no. 2, 679–687.

[206] , Global existence for semilinear evolution integrodifferential equations with delay and non-
local conditions, Applicable Analysis 64 (1997), no. 1-2, 99–105.

[207] , Global existence for second order functional semilinear integrodifferential equations,
Mathematica Slovaca 50 (2000), no. 1, 95–109.

[208] N. S. Papageorgiou, Existence of solutions for hyperbolic differential inclusions in Banach spaces,
Archivum Mathematicum 28 (1992), no. 3-4, 205–213.

[209] S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible
beam equation, Journal of Differential Equations 135 (1997), no. 2, 299–314.

[210] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied
Mathematical Sciences, vol. 44, Springer, New York, 1983.

[211] G. Pianigiani, On the fundamental theory of multivalued differential equations, Journal of Differ-
ential Equations 25 (1977), no. 1, 30–38.
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