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The cosmological constant problem is principally concerned with trying to understand how the zero-point energy of quantum
fields contributes to gravity. Here we take the approach that by addressing a fundamental unresolved issue in quantum theory,
we can gain a better understanding of the problem. Our starting point is the observation that the notion of classical time is
external to quantum mechanics. Hence there must exist an equivalent reformulation of quantum mechanics which does not refer
to an external classical time. Such a reformulation is a limiting case of a more general quantum theory which becomes nonlinear
on the Planck mass/energy scale. The nonlinearity gives rise to a quantum-classical duality which maps a “strongly quantum,
weakly gravitational” dynamics to a “weakly quantum, strongly gravitational” dynamics. This duality predicts the existence of a
tiny nonzero cosmological constant of the order of the square of the Hubble constant, which could be a possible source for the
observed cosmic acceleration. Such a nonlinearity could also be responsible for the collapse of the wave function during a quantum
measurement.
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1. Introduction

The observed notion of time, with which we are so familiar, is
external to quantum mechanics. It is part of a classical space-
time geometry, which comprises of a spacetime manifold and
the metric. The metric is determined by classical matter fields
via the field equations of general relativity. In principle, the
Universe could be in a state in which there are no classical
matter fields, but only quantum fields. In such a situation, the
metric of the Universe will in general no longer be classical,
but will undergo quantum fluctuations. It is known from
the Einstein hole argument that in order for the spacetime
manifold to have a physically meaningful point structure,
a well-determined classical metric (which is a solution of
the Einstein equations) must reside on the manifold. When
the metric is undergoing quantum fluctuations, the point
structure of the spacetime manifold is destroyed, and one no
longer has a classical notion of time [1].

Nonetheless, one should be able to describe the dynamics
of a quantum system, even if an external classical time is not
available. Such a description should become equivalent to
standard quantum mechanics as and when a dominant part

of the Universe becomes classical, so that a classical time now
exists. In arguing for the existence of such a reformulation,
one is led to conclude that standard linear quantum theory
is a limiting case of a more general quantum theory which
is nonlinear on the Planck mass/energy scale [2]. This con-
clusion is independent of any specific mathematical structure
which one would like to use to develop the reformulation.
What is our most reliable guideline towards the con-
struction of such a reformulation of quantum mechanics?
A natural mathematical structure which forgoes the point
structure of spacetime is a noncommutative spacetime. We
construct the reformulation by pursuing the following pro-
posal: in the reformulation, relativistic quantum mechanics
is the same theory as noncommutative special relativity,
with a specific set of commutation relations imposed on
noncommuting coordinates and momenta. The physical
principle is that the basic laws are invariant under “inertial”
coordinate transformations of noncommuting coordinates.
One is naturally led to attach an antisymmetric part to
the Minkowski metric. The theory is supposed to describe
dynamics when gravity can be neglected (like in special
relativity). In the present context, this amounts to the



requirement that the total mass/energy in the system be
much smaller than Planck mass/Planck energy. As and
when an external time becomes available, this reformulation
should become equivalent to standard quantum mechanics.
These aspects will be described in Section 2.

The nonlinear generalization of this reformulation, a
hitherto unnoticed feature which arises naturally, describes
the dynamics of the system when its energy becomes
comparable to Planck energy. The Schrodinger equation
becomes nonlinear and the gravitational dynamics is now
a noncommutative general relativity. The physical principle
now is that basic laws are invariant under general coordinate
transformations of noncommuting coordinates. This is
supposed to generalize general covariance to the noncom-
mutative case. When the mass/energy becomes much larger
than the Planck scale, the dynamics is assumed to reduce
to classical general relativity, and classical mechanics. This is
discussed in Section 3.

The presence of the nonlinearity has two important
consequences. Firstly, the antisymmetric part of the gravi-
tational field associated with this nonlinearity suggests the
existence of a quantum-classical duality, as a consequence of
which one can match a dominantly quantum sector of the
theory to a dominantly classical sector. This is the subject
matter of Section 4. In turn this helps us understand why the
cosmological constant should be nonzero and yet have the
very small value it does. This is the main part of the paper,
and it will be presented in Section 5.

The second important consequence of the nonlinearity
has to do with the nonlinearity in the Schrodinger equation,
which becomes relevant in the vicinity of the Planck mass
scale. This can lead to a breakdown of quantum superposi-
tion, and it could lead to the collapse of the wave-function
during a quantum measurement. What is important for us
here is that the parameters influencing the collapse of the
wave-function are in principle measurable in the laboratory.
These are the same parameters which are responsible for
the existence of the quantum-classical duality, and for the
nonzero value of the cosmological constant. Thus our expla-
nation for the origin of the dark energy is in principle testable
experimentally, via the quantum measurement process. This
aspect is investigated in Section 6.

The arguments of this paper suggest that a dynami-
cally evolving “cosmological constant-like” term is present
throughout the history of the Universe. At any given epoch,
such a term is supposedly of the order of the square of the
Hubble constant at that epoch. The cosmological viability of
such a scenario will be discussed in Section 7.

In this paper we have attempted to keep the discussion
compact, so as to provide an essential overview of the
arguments. More detailed discussions can be found in [1-3].

2. Quantum Mechanics as a Noncommutative
Special Relativity

The quantum dynamics of a relativistic particle of mass
m < mp is described here as a noncommutative special
relativity. Gravity is neglected in this small mass limit since
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this approximation is equivalent to setting G — 0. We
outline here a proposal for the desired reformulation, using
the illustrative case of a two-dimensional noncommutative
spacetime described by coordinates (%,7). It should be
said at the outset that our treatment is heuristic, and a
rigorous mathematical description remains to be developed.
We assume that associated with the 2d noncommutative
spacetime, there is a line element:

ds* = 7, dx*d%’ = dt* — dx* + dtdx — dxdt, (1)

which has an antisymmetric component. We call such
a spacetime a quantum Minkowski spacetime, and the
noncommuting coordinates 7, X are assumed to obey the
commutation relations

[B2] = F1 356, (855" 1= F(3LPY). ()

We will comment on the function f shortly.

We assume that a suitable differential calculus can be
defined on this spacetime. Then, in analogy with special
relativity, we introduce a velocity #' = dx'/ds and a
momentum p’ = mi'. It is evident from the form of the line
element (1) that the following Casimir relation holds

(B = (B +p'p* — P = m” (3)

The specific structure of the commutation relations
above is such that the momenta, as well as the coordinates,
do not commute with each other. Moreover, while f appears
in one of the relations, it is f~! which appears in the other
relation. This is motivated by the expectation that one should
be able to derive the uncertainty relations of quantum theory,
and the quantum commutation relation [q, p] = ih from
these underlying relations [2].

The function f in (2) has to be chosen so that the
momenta commute with the Casimir relation. It is easy to
show that in fact there is no nontrivial solution in two
dimensions; the only solution is f = 0, which is clearly not
of interest. However, in dimensions three or higher, there
appears to be no constraint that f = 0, although the exact
form of f remains to be found. Our subsequent discussion
here does not depend on the form of f, and it suffices to use
the 2d example to illustrate our ideas.

Dynamics is defined by assuming that the momenta are
gradients of a complex action S. This converts the Casimir
relation into a noncommutative Hamilton-Jacobi equation,
which is the equation of motion. This is the theory we call a
noncommutative special relativity.

As and when an external classical spacetime (x,t)
becomes available, the Klein-Gordon equation of standard
linear quantum mechanics can be recovered from this
reformulation by the correspondence rule

~ ~ Ay A A ., Op#

(B) = (B + 55 = BB = () = (p) + oy, @)
The justification for this rule has been discussed in [2]. On
the right hand side of this equation, the momenta are again
defined as the gradients of a complex action S, and the wave-

function defined as y = e™". Substituting for the wave
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function on the right-hand side of (4) and equating this
expression to m? lead to the Klein-Gordon equation. In this
sense one can recover standard quantum mechanics from
an underlying formulation as a noncommutative special
relativity.

3. A Noncommutative General Relativity

When the mass of the particle becomes comparable to
Planck mass, its self-gravity can no longer be neglected.The
noncommutative line element (1) is modified to the curved
noncommutative line element

ds? = by dRHdR" = gudf> — §od + 0| didz — ddi]. (5)
Correspondingly, the Casimir relation (3) is generalized to
gu(p) =8PV + 6P ) =’ (©)
and the correspondence rule is generalized (4) to

A

G (P)) = 8 (PY)7 + 0(p'P* — PP

_ 2 2 0Pt
=gu(p")” — gu(p¥) +zﬁ6w.

(7)

It is important now to note that if one rewrites this
Hamilton-Jacobi equation in terms of the wave-function,
one no longer gets the linear Klein-Gordon equation. This is
because the metric appears in the equation. In the simplest
case, where 0 is a function of m/mpj, and the diagonal
components of the metric are approximated to unity, we get
the equation of motion

2 2 2 2
() - () () 35-32) -
ot ox mp/ \ 02 0x?
which is equivalent to a nonlinear Klein-Gordon equation
[2].

The noncommutative metric is assumed to obey a
noncommutative generalization of Einstein equations, with
the property that 0(m/mp) goes to one for m < mp;, and
to zero for m > mpy. Also, as 8(m/mp;) — 0, one recovers
classical mechanics, and in the limit & — 1, standard linear
quantum mechanics is recovered.

In the mesoscopic domain, where 0 is away from these
limits and the mass m is comparable to Planck mass,
both quantum and gravitational features can be defined
simultaneously, and new physics arises. The antisymmetric
component 6 of the gravitational field plays a crucial role in
what follows.

4. A Proposed Quantum-Classical Duality

4.1. Motivation for the Duality. In general relativity, the
Schwarzschild radius Rs = 2Gm/c? of a particle of mass m
can be written in Planck units as Rsp = Rs/Lp; = 2m/mpy,
where Ly is Planck length and mp; ~ 107> gm is the Planck
mass. If the same particle was to be treated, not according
to general relativity, but according to relativistic quantum

mechanics, then one half of the Compton wavelength Rc
h/mc of the particle can be written in Planck units as Rcp
Rc/2Lpy = mpi/2m. The fact that the product RspRcp =
is a universal constant cannot be a coincidence; however, it
cannot be explained in the existing theoretical framework
of general relativity (because herein # = 0) and quantum
mechanics (because herein G = 0).

One could attempt to trivialize this observation by saying
that in general relativity, the only length scale that can be
constructed is proportional to mass, and in relativistic quan-
tum theory, the only length scale that can be constructed is
inversely proportional to mass. However, what is non-trivial
is that these both length scales have a fundamental physical
meaning attached to them. Hence their inverse relation to
each other does call for an explanation and is a signal that
both general relativity and relativistic quantum theory must
be limiting cases of a deeper underlying theory. In fact we
have argued for the existence of such a theory in the previous
section for entirely different reasons.

The only plausible way to explain this inverse relation
is to propose a duality between a pair of solutions of the
theory—a duality which maps the Schwarzschild radius
for the first solution to the Compton wavelength for the
second solution. Hence we propose and justify the following
quantum-classical duality: the weakly quantum, strongly
gravitational dynamics of a particle of mass m. > mpj is dual
to the strongly quantum, weakly gravitational dynamics of a
particle of mass my = mf,l/mc < mpl.

It follows that the dimensionless Schwarzschild radius
Rsp of m, is four times the dimensionless Compton-
wavelength Rcp of m,.

The origin of this duality lies in the requirement that
there be a reformulation of quantum mechanics which does
not refer to an external classical spacetime manifold. The
implied nonlinearity leads to a quantum gravity theory of
which general relativity and quantum theory are natural
approximations, and the duality is inevitable. Its existence
does not depend on the use of noncommutative geometry
for the mathematical formulation of the theory. The use of
noncommutativity serves to illustrate and justify the duality.

The Planck mass demarcates the dominantly quantum
domain m < mp from the dominantly classical domain m >
mp) and is responsible for the quantum-classical duality. As is
evident from (8), the effective Planck constant is 26(m/mp;),
going to zero for large masses, and to % for small masses,
as expected. Similarly, the effective Newton gravitational
constant is expected to be G(1 — 6(m/mpy)), going to zero
for small masses, and to G for large masses.

Thus the parameter space 8 ~ 1 is strongly quantum and
weakly gravitational, whereas 6 ~ 0 is weakly quantum and
strongly gravitational. The Compton wavelength Rcp for a
particle of mass m, gets modified to Rcg = Rcp0(my/mpy),
and the Schwarzschild radius Rsp for a mass m,. gets modified
to Rsg = Rsp(1 — O(m¢/mpy)). We propose that the dynamics
of a mass my; < mpj is dual to the dynamics of a mass m, >
mpy if Rse(m.) = 4Rcg(myg). This holds if m, = m%l/mq and

9(£E)+9(%%):1. )
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If (9) holds, the solution for the dynamics for a particle of
mass m, can be obtained by first finding the solutions of (8)
for mass my, then replacing 6(m,/mp) by 1 — 6(mpi/mg), and
finally writing m. instead of m,, wherever m, appears.

We can deduce the functional form of 0(m/mp) by
noting that the contribution of the symmetric part of the
metric, gi, to the curvature, grows as m, whereas the
contribution of the antisymmetric part 6 must fall with
growing m. This suggests that 1/6 grows linearly with m; thus

m =a(ﬂ)+b, (10)

and 6(0) = 1 implies b = 1; and we set a = 1 since
this simply defines mp; as the scaling mass. Hence we get
O(m/mp)) = 1/(1 + m/mp;), which satisfies (9) and thus
establishes the duality. The mapping m — 1/m interchanges
the two fundamental length scales in the two solutions:
Compton wavelength and Schwarzschild radius.

The duality we observe is holographic, by virtue of the
abovementioned relation Rsg(m.) = 4Rcg(mg). Thus, the
number of degrees of freedom N that a quantum field
associated with the particle m, possesses (bulk property)
should be of the order of the area of the horizon of the
dual black hole in Planck units (boundary property), that
is, N ~ mp/m2. This value of N could be interpreted as
follows: the infinite number of degrees of freedom associated
with a quantum field in the flat spacetime continuum limit
(when no artificial high-energy cutoff has been imposed) has
been replaced by this finite value. More correctly however,
the effective number of degrees of freedom is actually of the
order mpi/my, because we have m, < mp and so the highest
energy associated with a mode of the quantum field cannot
be more than Planck mass.

In summary, we see here a new picture for the dynamics
of a particle. A particle need not be either quantum or
classical, but there is a third possible kind of dynamics,
mesoscopic dynamics, which interpolates between quantum
and classical. This dynamics is described by a nonlinear
Schrodinger equation (see (13) below). The nonlinear term
depends on the newly introduced parameter 6(m/mp;), and
its nature is such that the nonlinearity vanishes in the small
mass limit, m < mp;, @ — 1. On the other hand, the nonlin-
ear Schrodinger equation reduces to Newton’s classical laws
of motion in the limit m > mp;, 6 — 0. This interpolating
behaviour, where one makes a transition from quantum to
classical mechanics via an intermediate nonlinear quantum
mechanics, is not ruled out by experiment. Its verification or
otherwise in the laboratory will constitute a crucial test of
these ideas.

5. The Cosmological Constant Problem

The quantum-classical duality helps understand why there
should be a cosmological constant of the order of the
observed matter density, a possible explanation for the
observed cosmic acceleration. If there is a nonzero cosmo-
logical constant term A in the Einstein equations, of the
standard form Agi, it follows from symmetry arguments
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that in the noncommutative generalization of gravity, a
corresponding term of the form ABj should also be present.
This latter term vanishes in the macroscopic limit m > mp
but is present in the microscopic limit m < mp.

However, when m < mypj, the effective gravitational
constant goes to zero, so A cannot be sourced by ordinary
matter. Its only possible source is the zero-point energy
associated with the quantum particle m < mp;. Since
this zero-point energy is necessarily nonzero, it follows that
A is necessarily nonzero. This same A manifests itself on
cosmological scales, where Agj is nonvanishing, because
gik is non-vanishing, even though A6 goes to zero on
cosmological scales, because 6 goes to zero. Essentially we are
saying that we have to examine the two limits of A(gi + 0i):
the microscopic limit and the macroscopic limit; the value of
A arising at one of the limits will clearly be the same as its
value at the other limit.

This solves the vexing problem of the cancellation of
(i) a bare A coming from general relativity and (ii) a A
coming from the zero-point energy of quantum fields. This
problem arises in the first place because we have allowed
ourselves to treat general relativity and quantum theory
as completely disconnected theories. The nonlinearity of
the theory suggested here, the consequent duality, and the
introduction of the antisymmetric component of the metric
compel us to treat the two theories as limiting cases of an
underlying theory, and to conclude that the so-called bare
A and the “quantum A” are one and the same thing. The
question of their mutual cancellation does not arise any
longer.

The value of A can be estimated by appealing to the
deduced quantum-classical duality. The total mass in the
observable Universe is m. ~ ¢*(GHp) ', where Hy is the
present value of the Hubble constant. The mass dual to this
me is my = mp/me ~ hHy/c?, and mgc? is roughly the
magnitude of the zero-point energy in the ground state. In
a higher mode, the energy is a multiple of the ground state
energy, and we write it as nmqc*0(nmqc?/mpy), recalling that
the effective Planck constant runs with energy. To obtain a
rough estimate, we take 6 to be one for energies up to mp
and zero for energies beyond mp;. We then see that the total
contribution to the zero-point energy is

c°Hy'!
G

(11)

2
mpiC
Eiwoit =hHyp|1+2+3+---+ ~
tot = I 0[ 3 hH0:|

It is remarkable that Planck’s constant drops out of the
sum! The vacuum energy density, and hence the value of
the cosmological constant, is CSHO_I/G((:HO_I)3 ~ (cHp)*/G
which is of the order of the observed value of A.

We note that the ground state energy hH, is being
mapped to a total energy Eix = (mpic?)*/hH,, which is an
instance of a UV-IR mixing, or equivalently, a quantum-
classical duality. As Hy goes to zero, the IR limit goes to zero,
whereas the UV limit diverges.

Clearly, nothing in this argument singles out today’s
epoch; hence, it follows that there is an ever-present A, of
the order (cH)*/G, at any epoch, with H being the Hubble
constant at that epoch. This solves the cosmic coincidence
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and fine-tuning problems. However, issues related to an ever-
present A will have to be addressed—we will return to this
aspect in the last section.

5.1. Understanding A. The standard quantum field theoretic
cosmological constant problem does not arise here because
we have brought in a new scale, the Hubble constant. In
effect, we are proposing that since H' is the age of the
Universe, there is a fundamental minimum frequency, that
is, Hy. All allowed frequencies are discrete multiples of Hy,
with the maximum being at Planck frequency. As a result,
the net zero-point energy comes out to be Hy !. By itself, this
is higher than mpj, but we must recall that duality demands
this much to be the classical contribution to the cosmological
constant. Hence the energy density is found by dividing
the total energy by the volume of the observed Universe,
giving a value for A that matches with observations. Thus
although the argument for obtaining the magnitude of A
given here draws input from quantum theory, our argument
is completely different in concept of what is suggested by
quantum field theory. For us, duality is playing a crucial role.

6. Testing for Dark Energy Through
Quantum Measurement

We would now like to suggest that the above proposal for the
origin of the cosmological constant can in principle be tested
in the laboratory by examining the quantum mechanics of
mesoscopic systems, because the latter is also affected by the
nonlinearity of the underlying theory.

Firstly, as discussed above, the effective Planck constant
is h0, and using the form of 0 that we have, we can write

hest = hO = f

- 1+m/mp (12)

Thus a measurement of the Planck constant for a “meso-
scopic particle” with mass approaching of the Planck mass
will show a deviation from the standard value. By particle, we
mean a composite object in the required mass range whose
internal degrees of freedom can be neglected.

Secondly, the nonlinearity can result in a breakdown
of quantum superposition during a quantum measurement,
leading to collapse of the wave-function and a finite lifetime
for superpositions. A great deal has been written about
the physics of quantum measurement over the last century
or so. It is fair to say that there are essentially only two
possibilities: either the wave function collapses during a
quantum measurement, or it does not. If it does not, then
the many worlds interpretation holds, and the different
worlds do not interfere because of decoherence. If the
wave function does collapse, then a modification of the
Schrodinger equation in the mesoscopic domain is indicated.
We have argued that the nonlinearity resulting from removal
of external time favors the collapse picture [1].

As we discussed above, on the Planck mass/energy
scale, the Klein-Gordon equation becomes nonlinear. In the

nonrelativistic limit, it results in the following nonlinear
Schrodinger equation:

oy h? oy
ﬁg = —Tﬁ + V(X)

2 (13)
+(1_9)( v [aaanxw} v/)-

This equation can be rewritten as

oy h? Py d*(InR) 4 ¢

- _ . 14
o = “amae T VWG v aay (1)
where g = (h2/2m)(1—0) and y = Re'#". Norm is preserved

during evolution, provided the probability density is defined
asp = W/‘Z/G‘

Since nonlinearity is negligible for the quantum system,
prior to the onset of a quantum measurement, evolution is

described by

oy
- _ 15
ih—— o 2 9 + V(x)y, (15)

thus preserving superposition. The onset of measurement

corresponds to mapping the state | y,) to the state | y), of
the final system as

- ’1//>F =Dan| V)5

=S alyd 4, (6)

where | A,) is the state the measuring apparatus would be in,
had the initial system been in the state | y,,) .
Evolution is now described by the equation

o aZ(lnRF)

q > or
o (17)

Ve Ve

= le//p +q

where q = (h2/2mp)(1 — 0) and y = Re*". mp is the total
mass of the final system, which includes the quantum system
as well as the measuring apparatus. The states yp, cannot
evolve as a superposition because the evolution is now non-
linear. However, the initial state at the onset of measurement
is a superposition of the yg,. This superposition must thus
break down during further evolution, according to the law

aan .qn az(,bF
=2 18
o~ h oo s

ih

Note that the g,,’s have been set to be different for different
states. This is to be expected because 0 will be determined by
the quantum state, and setting it as a function only of m/mp
to begin with was a leading order approximation, applied for
simplicity. We thus get

a;) i (19)

d
27 Zt -
h dtl aj <ql



and only the state with the largest g survives [1]. In this man-
ner, the inclusion of a nonlinear term breaks superposition.

In order to recover the Born probability rule, it is essential
that the g,,’s be random variables, with a suitable probability
distribution. Only further development in theory can deter-
mine wherether the g,’s are indeed random, and if so, what
their probability distribution is. A highly plausible candidate
for a random variable is the phase of the quantum state at
the onset of measurement. Although the phase evolves in a
deterministic manner, it is effectively random, because the
time at which the measurement begins is arbitrary.

From (18) we can define the lifetime 7y, of a superposi-
tion

m
Tsup = (1_79)% (20)

Since 6 is strictly equal to one in standard linear quantum
mechanics, quantum superposition has an infinite lifetime
in the linear theory. However, the situation begins to change
in an interesting manner as the value of the mass m
approaches and exceeds mpj. Since we know that in this limit
0 approaches zero, we can neglect 0, and the superposition
lifetime will then essentially be given by

LoommL? (1)
BT ¢

We can get a numerical estimate by noting that we are
close to the classical limit, where the phase coincides with the
classical action in the Hamilton-Jacobi equation. To leading
order, the magnitude of the classical action is given by Sq =
mc*t, where ¢ is the time over which we observe the classical
trajectory; approximately, this could be taken to be the value
of the phase ¢, and 7y, is then roughly given by

Toup ~ 1(5)2. (22)

t\c

For a measuring apparatus, if we take the linear dimension
to be, say, 1 cm, and the time of observation to be, say,
1072 seconds, we get the superposition lifetime to be 10718
seconds. We can get a very rough estimate of 7y, for a
mesoscopic system using (22), and taking L ~ 1072 cm, m ~
10~% gm, and ¢ ~ Ni with N ~ 10'°. This gives 7q ~ 1077
seconds. Thus an experimental detection of dependence of
superposition lifetime on the mass (equivalently number of
degrees of freedom) of the system could be indicative of the
nonlinearity.

The third possible way in which a nonlinearity of
this nature can be detected is through rapid successive
measurements of a quantum observable. Suppose a certain
outcome O; for an observable results from the random
variable being in a certain range 8. Suppose now that a
second measurement is made sufficiently quickly with the
eigenbasis slightly rotated. Because the random variable will
not have changed to a value sufficiently different from the
original one, the result of the second measurement will
show a correlation with the result of the first measurement,
contrary to what standard quantum mechanics predicts.
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A more detailed discussion of the physics of measure-
ment described here will be presented elsewhere [4].

7. Can There Be an Ever Present A?

A positive cosmological “constant” which is of the order of
H? at every epoch is obviously not a constant and does not
satisfy the standard equation of state p = —p. Furthermore,
by increasing the rate of expansion in the early Universe, it
spoils the consistency between theory and observation with
regard to the abundance of light elements. It also makes
galaxy formation more difficult later during the evolution
of the Universe. It is thus evident that although the cosmic
coincidence problem can be solved by an ever-present A,
one has to ascertain that the resulting cosmological model
must be consistent with observation. A way out, as has been
suggested by Sorkin, is to have a cosmological constant whose
mean value is zero, but which has fluctuations with a typical
magnitude of the order of H? [5]. As a starting point, this
seems like a reasonable possibility for us also, considering
that in our model, the origin of A lies in the zero-point
energy contribution coming from quantum theory. However,
the development of a cosmological model in the context of
our scenario is an issue we have not yet addressed, and we
leave this for future investigation.

A phenomenological model for an ever-present A has
been partially developed in the context of the causal set
approach to quantum gravity [6]. In this approach, a fluc-
tuating A of the order H? is predicted because A is conjugate
to the spacetime four volume, and this volume itself is subject
to quantum fluctuations. The phenomenological model is
specified by choosing a suitable equation of state for A and
expressing A as a stochastic function of the four volume.
A numerical study by the authors shows tracking behavior
in A, as well as fluctuations. For a suitable choice of a
free parameter, a A consistent with the present observed
value is reproduced. It has however been pointed out by
Barrow [7] that the model is very strongly constrained
by the magnitude of the CMB anisotropy on the last
scattering surface. It remains to be seen whether a way can
be found out to overcome this constraint, by constructing
an inhomogeneous version of the phenomenological model,
or otherwise. An alternative investigation on the origin of
A based on quantum gravitational fluctuations has been
carried out by Padmanabhan [8, 9].

On a more general note, we observe that the theoretical
prediction of an ever-present nonzero cosmological “con-
stant” of the order of H? is independent of the details of
the cosmological model. Essentially, all we have assumed is a
homogeneous and isotropic cosmology, but we have placed
no a priori restrictions on the evolutionary history of the
scale factor. Thus although we originally set out to seek
an explanation for the observed cosmic acceleration in the
framework of the standard Big Bang cosmology, we could
turn things around and ask the following question: given
an ever-present A, does it admit a nonstandard cosmology
consistent with observations? To us, the answer to this
question is not obvious, and in our view the question merits
further careful examination.
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8. Concluding Remarks

Our use of noncommutative spacetime has a conceptually
different origin as compared to applications based on
the seminal work of Doplicher, Fredenhagen, and Roberts
[10]. In the latter, spacetime noncommutation relations
are deduced as a consequence of the joint application of
quantum uncertainty relations and the rules of general
relativity on the Planck length scale. One then envisages
that quantum field theories exhibit effects induced by these
spacetime commutation relations, on the Planck length scale.
Also, on these scales general relativity could be assumed to be
replaced by a noncommutative gravity theory which should
eventually be quantized.

For us, the starting point has been that there should be
a reformulation of quantum mechanics which does not refer
to a classical time. This leads to the conclusion that linear
quantum theory is a limiting case of an underlying theory
which becomes nonlinear on the Planck energy scale. This
is the principle difference from the theories referred to in
the previous paragraph—the latter assume a strict validity of
linear quantum theory at all scales. For us, this nonlinearity is
responsible for the explanation of the tiny observed cosmo-
logical constant, and possibly also the collapse of the wave-
function during a quantum measurement. In order to arrive
at the proposed reformulation of quantum mechanics, we
are led to suggest noncommutativity not only in spacetime,
but also in momentum space. While the detailed theory
remains to be developed, some consequences of the heuristic
discussions given here can be tested in the laboratory.
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