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Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not
amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the
size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms
and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific
visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some
of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics
and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results
pertaining to these problems are mostly to be found in publications outside of astronomy. Here we offer brief overviews of a
number of concepts, techniques and developments that are vital to the analysis and visualization of complex datasets and images.
One of the goals of this paper is to help bridge the gap between applied mathematics and artificial intelligence on the one side and

astronomy on the other.

1. Introduction

Astronomy is undergoing a rapid, unprecedented and
accelerating growth in both the amount and the intrinsic
complexity of data. This results partly from past and future
large sky surveys: the Sloan Digital Sky Survey [1], the Large
Synoptic Survey Telescope (LSST) [2, 3], ESA’s GAIA mission
[4], Pan-STARRS [5, 6], the Palomar Transient Factory [7],
LAMOST [8], and the Palomar-Quest Survey [9]. Smaller
surveys and catalogs comprised of ~103~10*objects appear
annually. The increasing availability of multiple-object spec-
trographs deployed at ground-based observatories enables
observers to obtain spectra of hundreds of objects in a
single exposure [10-16]. Million-object spectrographs have
been proposed and are undergoing design studies (e.g.,
[17, 18]). All together, and sometimes individually, such
projects are creating for astronomy massive multitemporal

and multispectral data sets comprised of images spanning
multiple wavebands and including billions of objects. Fur-
thermore, the Virtual Observatory (VO) is undertaking
to combine existing historical data from all wavelengths
into what will be, from the user’s perspective, a single
data set of gigantic size and unprecedented complexity
(http://www.ivoa.net/).

In addition, mathematically new (for astronomy) forms
of data are starting to appear, such as those of the ESA Planck
mission in which the cosmic microwave background (CMB)
is characterized by a 2 X2 matrix at each point in the sky [19].

Other great challenges arise from the so-called three-
dimensional (3D) reconstructions. For example, a very
important and difficult problem of solar astrophysics is
3D reconstruction of coronal mass ejections [20]. The
resulting reconstruction problem cannot be solved via
classical methods and must be addressed by more modern



image processing methods like compressed sensing (see
Section 5). Another example of tomographic reconstruction
is coming from the neutral hydrogen mapping using the
redshifted 21 cm line that has recently emerged as a promis-
ing cosmological probe. A number of radio telescopes are
currently being proposed, planned or constructed to observe
the redshifted 21 ¢cm hydrogen line from the Epoch of
Reionization (e.g., Fast Fourier Transform Telescope, [21]).

The richness and complexity of new data sets will provide
astronomy with a wealth of information and most of the
research progress expected from such sets inherently rests in
their enormity and complexity. In order to take full advan-
tage of immense multispectral, multitemporal data sets, their
analysis should be automated, or at least semi-automated, and
should consist of the following steps: detection, characteriza-
tion and classification of various features of interest, followed,
if necessary, by automated decision-making and possibly by
intelligent automatic alerts (e.g. for follow-up observations
or data quality problems). Moreover, a real-time processing
may be required. Complex data also call for scientific
visualization rather than ordinary illustrative visualization.
By scientific visualization we mean visualization that does
not simply reproduce visible things, but makes the things
visible, thus enabling extraction of meaningful patterns from
multiparametric data sets and ultimately facilitating analysis.
All this requires the development and adaption of modern
methods for data representation, analysis and visualization.
Methods now standard in astronomy are often ineffective
because the data sets are too large and too complex for
existing tools to be scaled in a straightforward way from
handling several parameters up to dozens or more. There
are also important limitations inherent in the mathematical
algorithms familiar to astronomers. Scientific visualization,
dimensionality reduction, and non-parametric methods in
general are among the least-advanced categories of tools in
astronomy because until this century there have not been
data sets requiring new approaches related to those aspects
of the data. All this not only creates a critical need for
new sophisticated tools, but moreover urgently calls for new
paradigms for the analysis, visualization and organization
of heterogeneous, multiresolution data across application
domains.

The astronomical community is becoming increasingly
aware of the fact that new and advanced methods of applied
mathematics, statistics and information technology should
be developed and utilized. Three of the State of the Profession
Position Papers submitted to the Astronomy and Astro-
physics Decadal Survey strongly emphasized astronomy’s
need for new computational and mathematical tools in the
coming decade [22-24] (see: http://sites.nationalacademies
.org/bpa/BPA_049492). A variety of individual and organiza-
tional initiatives and research projects have been proposed or
are underway to at least partially address this looming chal-
lenge by developing or implementing a new generation of
methods of data representation, processing and visualization.

However, there is a large communication gap between
astronomy and other fields where adequate solutions exist
or are being developed: applied mathematics, statistics and
artificial intelligence.
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The principal objectives of this paper are twofold. First,
we wish to bring attention to some specific needs for new
data analysis techniques. Second, we describe some innova-
tive approaches and solutions to some of these problems and
give examples of novel tools that permit effective analysis,
representation, and visualization of the new multispec-
tral/multitemporal data sets that offer enormous richness
if they are mined with the appropriate tools. The extensive
amount of relevant work already accomplished in disciplines
outside of astronomy does not allow us to offer a complete
review of all aspects of these complex topics and problems,
but we have selected a number of important examples.

The structure of the paper is as follows. In Section 2
we discuss challenges related to semi-automated processing
of low-dimensional images and describe briefly our frame-
work for advanced astronomical image processing. Section 3
describes problems posed by complex astronomical data sets;
Section 4 addresses some of these problems and presents
some innovative methods for nonlinear dimension reduc-
tion, sampling on graphs and manifolds; it also describes
briefly a new unifying method for image segmentation and
information visualization that is based on physical intuition
derived from synchronization of nonlinear oscillations;
Section 5 reviews some recent approaches to the challenges
posed by high-dimensional, complex data sets and their
importance for cosmological and astrophysical problems; in
particular, we briefly discuss in this part a new tool called
needlets for processing data that is laying on the sphere,
applications of needlets to the analysis of CMB data, and a
generalization of the wavelet-like transforms to Riemannian
manifolds. The paper ends with a conclusion.

2. Framework for Processing and Visualizing
Astronomical Images

Vast data sets demand automated or semi-automated image
processing and quality assessment of the processed images.
Indeed, the sheer number of observed objects awaiting
analysis makes obvious the need for sophisticated automa-
tion of object detection, characterization and classification.
Adapting recent advances of computer vision and image
processing for astronomy and designing and implementing
an image processing framework (see below) that would
utilize these continuing achievements, remains, however, a
major challenge.

Developers and users alike have realized that there is
more to creating an application than simple programming.
The objective of creating a flexible (see below) application
is customarily achieved by exploiting the object-oriented
paradigm [25, 26]. In computer science such systems are
called frameworks [27]. Frameworks are flexible, and users
can extend frameworks’ capabilities by installing plug-ins
without having to rewrite the basic code. An application
framework consists of computational (processing) modules,
data, and an interactive interface. Frameworks are extendable
(i.e., they can easily adopt software products to changes of
specification) and reusable (the software elements are able to
serve for construction of many different new applications).
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FiGure 1: ESO-La Silla; courtesy of A. Grado, INAF-Osservatorio Astronomico di Capodimonte. (a) overlaid pre- and post-processed images;
the red cross shows approximately the edge of the diffuse halo. (b) Flux-cut through the overlaid pre- and post-processed images (red and
green, resp.); the vertical grey line (close to the center of the plot) corresponds to the red cross in the plot on the left; after the preprocessing
the average level “outside” of the halo is lower than the average level “inside”, thus enabling a better automated separation of the diffuse halo

from the background.

(a)

FIGURE 2: Morphology unveiling [28]. (a) IC 405, Spitzer IRAC camera 8.0 ym image (France et al. [29]); filaments and a bow shock
near HD34078 (see the red cross “x” in Figure 3(a)). The brightness is proportional to the flux (logarithmic scale). (b) Brightness is
proportional to the module of the gradient of flux (logarithmic scale); this way of looking at astronomical images facilitates analysis of
nebular morphology, outflows, jets, embedded sources, and shock fronts.

The keystone elements of a system that unifies a
wide range of methods for astronomical image processing
should be computational and visualization modules. Such a
platform-independent framework with an integrated envi-
ronment was described in Pesenson et al. [28]. It provides
many common visualization features plus the ability to
combine these images (overlays, etc.) in new and unique
ways. The framework has a very intuitive GUI that allows
the user to set up a custom pipeline interactively and
to process images singly or in a batch mode. The final
products, as well as the results of each step, are viewable
with the framework. It also provides access to different
data archives and can easily incorporate custom modules
written in any programming language. Figures 1-4 give a
few self-explanatory examples that demonstrate some of the
framework’s functionality.

The framework deals primarily with image regularization
and segmentation. These are fundamental first steps for the
detection and characterization of image elements or objects
and as such they play principal roles in the realization

of automated computer vision applications. Image seg-
mentation can roughly be described as the process that
subdivides an image into its constituent parts (objects) and
extracts those parts of interest. Since the inception of image
segmentation in the 1960s, a large number of techniques and
algorithms for image segmentation have been developed.

However, due to revolutionary advances in instrumen-
tation, the complexity of images has changed significantly:
the extension of grey level images to multi- and hyperspectral
images, from 2D images to 3D, from still images to sequences
of images, tensor-valued images (polarization data), and so
forth. Some modern, cutting-edge methods for image pro-
cessing have been developed lately, and are being developed
today, by information scientists outside of astronomy. The
substantial progress in this direction made by the image
processing and computer vision communities [30, 31], has
found multiple applications in physics, technology, and bio-
medical sciences. Unfortunately, for the most part these
advances have not yet been utilized by the astronomical
community.
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F1GURE 3: Overlaid pre- and postprocessed images [28]. (a) Three overlaid images of IC 405: Spitzer IRAC camera 8.0 ym image, the module
of its gradient, and the angle of its gradient (red, green, and blue, resp.). The line through the red cross “x” indicates the crosscut. (b) Three
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profiles for the crosscut through “x”.
the different scales on the left and right vertical axes.
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The crosshair goes through the ridge point and a local minimum of the module of the gradient. Note

FIGURE 4: Three different visualizations of the bow shock structure [28]. (a) IC 405, Spitzer IRAC camera 8.0 ym image, the bow shock
(red crosses) near HD 34078. The brightness is proportional to the flux (logarithmic scale). (b) The bow shock area where the brightness
is proportional to the module of the gradient of flux (logarithmic scale). (c) The bow shock area where the front of the bow shock is
immediately apparent as a curve of 1 pixel width (red crosses); the brightness is proportional to the angle of the gradient of flux (logarithmic

scale).

Multiscale image representation and enhancement are
such approaches. They have become important parts of
computer vision systems and modern image processing.
The multiscale approach has proven to be especially useful
for image segmentation for feature, and artifact detection.
It enables a reliable search for objects of widely different
morphologies, such as faint point sources, diffuse supernova
remnants, clusters of galaxies, undesired data artifacts, as
well as unusual objects needing detailed inspection by a
scientist. It is well known that in astronomical images one
often sees both point sources and extended objects such as
galaxies embedded in extended emission (see, e.g., Figures 2,
6 and 7). Because of the issue of robustness with respect to
noise (Section 4), a careful preprocessing is required before
one can safely apply image segmentation or dimension
reduction. So, an adequate way of preprocessing is what
needs to be addressed first.

One effective approach to denoising is based on par-
tial differential equations and may be seen as the local
adaptive smoothing of an image along defined directions
that depend on local intensities. One wants to smooth
an image while preserving its features by performing a
local smoothing mostly along directions of the edges while
avoiding smoothing orthogonally to these edges. Many regu-
larization schemes have been developed so far for the case of

simple two-dimensional scalar images. An extension of these
algorithms to vector-valued images is not straightforward.
For a gray-scale image, the gradient is always perpendicular
to the level set objects of the image; however, in the multi-
channel case, this quality does not hold. Applying nonlinear
diffusion to each channel or spectral band separately is one
possible way of processing multi- and hyperspectral cubes;
however, it does not take advantage of the richness of the
multi/hyperspectral data. Moreover, if the edge detector acts
only on one channel, it may lead to an undesirable effect,
such as color blurring, where edges in color images are
blurred due to the different local geometry in each channel.
Hence, a coupling between image channels should appear
in the equations through the local vector geometry. We
achieve this by implementing a nonlinear diffusion on a
weighted graph, thus generalizing the approach adopted by
Pesenson et al. [28]. The governing equation is linear, but the
nonlinearity enters through the weights assigned to the graph
edges. This algorithm respects the local smoothing geometry
and thus serves well as a preprocessing step required for
dimension reduction (Section 4).

Our framework handles two-dimensional scalar images
and paves the way to the semi- and automated image
processing and image quality assessment. However, the
ability to extract useful knowledge from high-dimensional
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data sets is becoming more and more important (Section 3).
It is closely related to finding complicated structural patterns
of interrelated connections and heavily depends on the
ability to reduce dimensions of the raw data. This problem
constitutes a big challenge for the scientific and technology
communities. To extend the framework’s functionality to
high-dimensional images and data sets we have been devel-
oping novel, practical algorithms for dimension reduction.
In the next section we describe some of the challenges
presented by modern, high-dimensional data sets.

3. Complex, Massive Data Sets

Astronomy has long found the use of multiple data dimen-
sions to be crucial aids to progress. For example, surveys
of H-alpha sources when cross-correlated with spectral
types guided astronomy to discover interesting new types of
objects such as Herbig AeBe stars [32]. Cross-comparison
of brightnesses, redshifts, and optical object morphologies
led to the discovery of quasars. X-ray emission proved to be
a highly efficient method of identifying pre-main sequence
objects in a large field of view (e.g., review [33]). The fact
that the same object (SS 433) was noticed to exhibit H-
alpha emission and strong radio and optical variability led
astronomers to investigate further and thus discover the
existence of microquasars [34-36]. Other discoveries from
the use of multidimensional data using just a few dimensions
include such things as Be X-ray binaries and soft gamma ray
repeaters.

Simple color-magnitude diagrams are another tradi-
tional tool taking advantage of multiple data dimensions
(e.g., cataloging YSO candidates from Spitzer survey data,
Whitney et al. [37]). In addition, it is well known that simple
color-color plots using four colors provide ways to efficiently
and fairly reliably classify into physical types a large number
of objects (IRAS data, e.g., [38, 39]; 2MASS data, e.g., [40]
MSX data, e.g., [41, 42]; Spitzer data, e.g., [43]) as well as to
discover interesting new objects as outliers (e.g., Luminous
Red Novae, [44, 45]). The meaning and usefulness of
more complicated multiwavelength cross-correlations across
widely-separated wavelength domains remain a nontrivial
but fruitful challenge still being explored (e.g., microquasars
identified by comparing radio, IR, and X-ray properties
[46]).

As multiwavelength data have become available for huge
numbers of objects in the past few decades, the number of
data dimensions for a typical object has grown beyond what
can be visualized and studied using classical color-color plots
and correlations using only a few dimensions. For example,
Egan et al. [41] write “six-dimensional data are difficult to
represent; in addition, it is not clear that all of the colors yield
completely independent information” (see Figure 5).

While Figure 5 successfully permits one to identify
meaningful patterns, it is easily imagined that attempting to
display a much larger number of data dimensions by simply
using many more colors and symbols overlaid on the same
plot and same region of parameter space would not be a
useful form of scientific visualization. Also, two-dimensional
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Ficure 5: Color-color plots are a familiar form of scientific
visualization. This example (from [41]) shows, simultaneously,
infrared color-color information for several different categories of
objects. Different object classes are represented by different symbols
or different hues. Thus several data dimensions (the four IR colors
and the several classes of object) are represented.

plots are obviously not useful for expressing relationships
among more than four colors. Effective scientific visualiza-
tion of a large number of data dimensions requires new
techniques.

The catalog information available for a great many
objects already includes such information as magnitude,
several optical and IR colors, metallicities, spectral types,
and so on. A galaxy catalog would of course include other
parameters such as morphology and redshift. When spectra
are considered and compared in detail, the huge number
of emission and absorption features obviously compounds
the problem vastly. Still more complexity is added when one
attempts to correlate a large grid of models with a large data
set having many dimensions (e.g., the YSO analysis [37])
in order to create feedback for models based on statistically
significant samples rather than on a few putative prototypes.

Other examples of high-dimensional data include, but
are not limited to, multiparametric data sets (e.g., the
manifold of galaxies, [47, 48]), multitemporal, multispectral
and hyperspectral data sets and images, and high-resolution
simulations on massively parallel computers. The magnitude
of the computational challenge for pattern recognition and
classification algorithms is suggested by the fact that the VO
will contain billions of data points each having hundreds of
dimensions [49].

All these examples clearly demonstrate that the auto-
mated and semiautomated processing required by the
unprecedented and accelerating growth in both the amount
and the complexity of astronomical data demands new
ways of information representation. In the next section we
discuss such approaches and describe some of the original
algorithms we have developed in the course of this ongoing
work.



4. Dimensionality Reduction and Sampling
for Complex and Large Data Sets

Because approaches to complex data require advanced
mathematics, astronomers who wish to take advantage of
them will need at least some basic knowledge of new,
unfamiliar mathematical concepts and terminology. The full
practical adoption of such methods requires interdisciplinary
scientists who understand the new approaches in depth and
are interested in working with astronomers to adapt and
apply the methods to astronomical data sets. This is already
happening as part of some research. The first step for a
“neophyte” astronomer, however, is to learn “what is out
there” as a basis for further investigation and consideration
of the utility of various methods. The goal of this section is
to offer a very basic introduction and explanation of some of
these unfamiliar concepts.

Machine learning [50] is becoming increasingly impor-
tant in astronomy (see extensive reviews [51, 52]). The main
objectives of machine learning are clustering (automatic
identification of groups of similar objects), and classification
(assigning labels to instances). However, high dimensionality
complicates machine learning and can easily thwart the
entire effort. It also becomes a formidable obstacle in
computing numerical solutions in Bayesian statistics for
models with more than a few parameters.

Bellman [53] coined the term “curse of dimensionality”,
to describe how difficult it was to perform high-dimensional
numerical integration. For example, 100 evenly-spaced sam-
ple points suffice to sample a unit interval with no more than
0.01 distance between points; an equivalent sampling of a
10-dimensional unit hypercube with a lattice with a spacing
of 0.01 between adjacent points would require 10%° sample
points. Thus, in some sense, the 10-dimensional hypercube
can be said to be a factor of 10'® “larger” than the unit
interval. Obviously, this will make many computational tasks
intractable for high-dimensional data sets.

Euclidian spaces are usually used as models for tradi-
tional astronomical data types (scalars, arrays of scalars).
Another general manifestation of high dimensionality is the
fact that in a high-dimensional Euclidean space, volume
expands far more rapidly with increasing diameter than
it expands in lower-dimensional spaces. Indeed, if one
compares the size of the unit ball with the unit cube as
the dimension of the space increases, it turns out that
the unit ball becomes an insignificant volume relative to
that of the unit cube. Thus, in some sense, nearly all of
the high-dimensional space is “far away” from the center.
This is called the “empty space phenomenon” [54, 55]:
the high-dimensional unit space can be said to consist
almost entirely of the “corners” of the hypercube, with
almost no “middle”. One more important example of the
unexpected properties of high-dimensional Euclidean spaces
is the following behavior of the Gaussian distribution in
high dimensions: the radius of a hypersphere that con-
tains 95% of the distribution grows as the dimensionality
increases.

These sorts of problems demonstrate that in order
to make practical the extraction of meaningful structures
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from multiparametric, high-dimensional data sets, a low-
dimensional representation of data points is required.
Dimension reduction (DR) is motivated by the fact that the
more we are able to reduce the dimensionality of a data set,
the more regularities (correlations) we have found in it and
therefore, the more we have learned from the data. Data
dimension reduction is an active branch of applied mathe-
matics and statistics [50]. It consists of methods for finding
lower-dimensional representation of high-dimensional data,
without losing a significant amount of information, by
constructing a set of basis functions that capture patterns
intrinsic to a particular state space. DR methods greatly
increase computational efficiency of machine learning algo-
rithms, improve statistical inference and enables effective
scientific visualization and classification. From a large set
of images obtained at multiple wavebands, effective dimen-
sion reduction provides a comprehensible, information-rich
single image with minimal information loss and statistical
details, unlike a simple coadding with arbitrary, empirical
weights (see a simple four-wavelength example in Figures 6
and 7).

Classical approaches to dimension reduction not unfa-
miliar to astronomy are principal components analysis
(PCA) [56] and multidimensional scaling [57]. Although
first applied to astronomy by Bijaoui [56] in 1974, PCA
was not commonly used until the 1990’s [58, 59]; see also
a general introduction to PCA in [60]. It has been used for
such things as classification of galaxies and quasars [59, 61],
photometric and spectroscopic redshift estimation (e.g., [62,
63], sky subtraction [64] and optical spectral indicators [65].
PCA has been used for the simultaneous analysis of dozens
of data parameters for each member of a sample of 44 active
galactic nuclei [66], which appears to be the largest number
of parameters yet analyzed using PCA in an astronomical
study.

PCA has a serious drawback in that it does not explicitly
consider the structure of the manifold on which the data may
possibly reside. In differential geometry an n-dimensional
manifold is a metric space that on a small scale resembles
the n-dimensional Euclidean space; thus a circle is a one-
dimensional manifold, while a sphere is a two-dimensional
manifold. PCA is intrinsically linear, so if data points form
a nonlinear manifold, then obviously, there is no rotation
& shift of the axis (this is what a linear transform like PCA
provides) that can “unfold” such manifold. In other words,
if the data are mainly confined to an almost linear low-
dimensional subspace, then simple linear methods such as
PCA can be used to discover the subspace and estimate its
dimensionality. If, on the other hand, the data lie on (or near)
a highly nonlinear low-dimensional submanifold, then linear
methods are not effective in capturing the fine meaningful
structures in the data. A blind application of linear methods
may result in a complete misrepresentation of the data.

We have recently developed some advanced, original
methods for performing nonlinear DR, which do not suffer
from the limitations of PCA. In what follows, we briefly
describe these methods. First, we introduce some more
concepts and methods that have proved to be effective in the
area of machine learning.
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especially useful for dealing with large numbers of images.

4.1. Graphs. In the context of data retrieval and processing,
dimensionality reduction methods based on graph theory
have proved to be very powerful. In mathematics and
computer science, graph theory is the study of mathematical
structures to model relations between objects [67]. Graph
theory has been successfully applied to a wide range of
very different disciplines, from biology to social science,
computing and physics. Among many applications, graphs
and manifolds have been used to address mining databases,
Internet search engines, computer graphics, computation
reordering, image processing, and so forth. In what follows

we discuss various data structure and algorithms that we have
already developed and are developing.

The graph representation of structured data provides a
fruitful model for the relational data mining process. A graph
is a collection of nodes and links between them; the nodes
represent data points and the weights of the links or edges
indicate the strength of relationships. A graph in which each
graph edge is replaced by a directed graph edge is called
a directed graph, or diagraph [67]. Diagraphs are used for
context-sensitive browsing engines and for ranking hyper-
linked documents for a given query.



The modern approach to multidimensional images or
data sets is to approximate them by graphs or Riemannian
manifolds. The first important, and very challenging, step is
to convert such a data cloud to a weighted finite graph. The
next important problem is the choice of “right” weights that
should be assigned to edges of the constructed graph. The
weight function describes a notion of “similarity” between
the data points and as such strongly affects the analysis
of the data. The weights should entirely be determined by
application domain. The most obvious way to assign weights
is to use a positive kernel like an exponential function
whose exponent depends on the local Euclidean distance
between data points and a subjectively chosen parameter
called “bandwidth” (There are also other ways of assigning
weights, which depend on more complex mathematics than
we discuss in this article.)

Next, after constructing a weighted graph, one can
introduce the corresponding combinatorial Laplace operator
[67, 68]. In machine learning, methods based on graph
Laplacians have proved to be very powerful [50]. The
eigenfunctions and eigenvalues of the Laplacian form a basis,
thus allowing one to develop a harmonic or Fourier analysis
on graphs. By further developing harmonic analysis on
graphs and manifolds [69-81], we have devised innovative
algorithms for data compression and nonlinear data dimen-
sion reduction. These results enable one to overcome PCA’s
limitations for handling nonlinear data manifolds and also
allow one to deal effectively with incomplete data (such as
missing observations or partial sky coverage).

4.2. Hypergraphs. Most existing data mining and network
analysis methods are limited to pairwise interactions. How-
ever, sets of astronomical objects usually exhibit multiple
relationships, so restricting analysis to the dyadic (pairwise)
relations leads to loss of important information and to
missing discoveries. Triadic, tetradic or higher interactions
offer great practical potential. This has led to the approach
based on hypergraphs (e.g., [82]). Hypergraphs constitute an
important extension of graphs that allow edges to connect
more than two vertices simultaneously. Thus hypergraphs
provide a more comprehensive description of feature rela-
tions and structures. Hypergraphs furnish a much more
adequate approach to real world data sets and allow one to
deal with clustering and classifications using higher order
relations. It has been shown that, in general, there does
not exist a graph model that correctly represents the cut
properties of the corresponding hypergraph (Ihler et al.
[83]). Thus new mathematical methods are required to
take advantage of the richness of information available
in hypergraphs. In order to provide means for analysis
of databases with multiple relationships, we are currently
developing extensions of the original methods described in
the previous subsection.

4.3. Fractals. Data sets having fractional dimensions (“frac-
tals”: Mabdelbrot [84]; Schroeder [85]; Faloutsos [86]) have
been suggested to represent many phenomena in astronomy.
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Examples include star formation on galactic scales [87],
the stellar initial mass function [88], galaxy distributions in
space [89, 90], cloud distributions in active galactic nuclei
[91], the cosmic microwave background [92], thermonuclear
flame velocities in Type Ia supernovae [93], and the mass
spectrum of interstellar clouds [94]. Such data sets exhibit
a dimensionality which is often much lower than the
dimension of the Euclidian space they are embedded into.
For example, the distribution of galaxies in the universe
has dimension D ~ 1.23. The difference between the two
dimensions occurs because the fractal dimensionality is
intrinsic. The intrinsic dimension of a graph reflects the
intrinsic dimension of the sampled manifold.

Obviously, an important first step in practical dimen-
sionality reduction is a good estimate of the intrinsic
dimension of the data. Otherwise, DR is no more than
a risky guess since one does not know to what extent
the dimensionality can be reduced. To enable analysis of
astronomical data sets that exhibit a fractal nature, we
are currently developing a practical concept of spectral
dimensionality, as well as original algorithms for sampling,
compression and embedding fractal data.

4.4. The Petascale Connection. The approaches described
above dealt with compact manifolds and finite graphs.
However, massive data sets are more adequately described
by noncompact manifolds and infinite graphs. In order to
deal with extremely large data sets we extended dimension
reduction to non-compact manifolds and infinite graphs. We
are also working on generalizing the Fourier analysis to
non-compact Riemannian manifolds and infinite quantum
and combinatorial graphs, directed graphs, hypergraphs
and some fractals. Implementation of these algorithms, and
incorporation of them into the framework described in
Section 2, will enable a more adequate analysis of massive
data sets.

4.5. Robustness of Dimension Reduction Algorithms with
Respect to Noise. Despite the important and appealing
properties of the above mentioned dimension reduction
algorithms, both linear and nonlinear approaches are sensi-
tive to noise, outliers, and missing measurements (bad pixels,
missing data values). Because noise and data imperfections
may change the local structure of a manifold, locality
preservation means that existing algorithms are topologically
unstable and not robust against noise and outliers [95].

This is obviously a serious drawback because astronom-
ical data are always corrupted by noise. Budavari et al.
[96] presented a robust version of PCA and applied it to
astronomical spectra. Their approach addressed the issues of
outliers, missing information, large number of dimensions
and the vast amount of data by combining elements of robust
statistics and recursive algorithms that provide improved
eigensystem estimates step by step. However, as it was
mentioned earlier, the PCA method is intrinsically linear and
cannot be applied to data points residing on a nonlinear
manifold.
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Thus the practical usage of dimension reduction
demands careful improvement of signal-to-noise ratio with-
out smearing essential features. Implementing a nonlinear
diffusion on weighted graphs (Section 2) enables us to apply
dimension reduction to noisy data sets as well.

4.6. Image Segmentation, Unsupervised Learning and Infor-
mation Visualization. In what follows we briefly describe a
new, original unifying approach to segmentation of images
in particular and pattern recognition and information visu-
alization in general. Image segmentation (see Section 2) plays
a principal role in the realization of automated computer
processing, as a previous stage for the recognition of different
image elements or objects.

Solutions to the manifold learning problem can be based
on intuition derived from physics. A good example of this
is the approach of Horn and Gottlieb [97] that is based
on the Schrodinger operator, where they constructed an
approximate eigenfunction, and computed its corresponding
potential. The clusters were then defined by the minima of
the potential.

We developed [98] an alternative that is also based on
physical intuition, this one being derived from synchro-
nization of nonlinear oscillations [99, 100]. Approximat-
ing a multidimensional image or a data set by a graph
and associating a nonlinear dynamical system with each
node enables us to unify the three seemingly unrelated
tasks: image segmentation, unsupervised learning and data
visualization. Pattern recognition may benefit significantly
from new methods of visualization and representation of
data, since they may uncover important relationships in
multidimensional data sets. Bringing out patterns by setting
data points into oscillatory motion is a very effective way
of visualizing data [101]. Our method is a feature-based,
multilevel algorithm that finds patterns by employing a non-
linear oscillatory motion. At the same time, the oscillatory
motion reveals to the eye patterns by making them oscillate
coherently with a frequency different from the rest of the
graph. Patterns are detected recursively inside the graph, and
the found features are either collapsed into single nodes,
forming a hierarchy of patterns or can be zoomed in and
studied individually. This method can be described as a
precomputed animation and it enables both qualitative (by
eye) and quantitative discovery of correlations (see Figure 8).

The approaches presented in this section enable inter-
polation, smoothing and immersions of various complex
(dozens or hundreds of useful parameters associated with
each astronomical object) and large data sets into lower-
dimension Euclidean spaces. Classification in lower dimen-
sional space can be done more reliably than in high
dimensions. Thus, DR can be significantly beneficial as a
pre-processing step for many existing astronomical packages,
such as for example, the popular source extractor SExtractor
[102]. Incorporating into our framework (Section 2) the
graph/manifold-based tools described in this section, will
allow to address multiple pattern recognition (clustering)
tasks as well as visualization of multidimensional data. Alto-
gether, these approaches provide important generalizations

of the tools for spectral clustering and dimensionality reduc-
tion, and enable more adequate representation, effective data
retrieval and analysis of complex, modern astronomical data
sets.

5. Some Recent Approaches to the Challenges of
Data Intensive Astronomy

Data intensive astrophysics requires an interdisciplinary
approach that will include elements of applied mathematics
[67, 103], modern statistical methods [104, 105], machine
learning [50], computer vision [31] and image processing
[30]. The breadth and complexity of the work relevant to
modern astronomical data challenges is large, and does not
permit a full treatment here. However, it is valuable to briefly
mention a number of important problems, approaches and
efforts that have been pursued.

The problem of processing data that lay on a manifold is
very important for cosmological data analysis. The standard,
powerful data analysis package HealPix [106] processes
data on a two-dimensional manifold—the sphere. The
concept of needlets (second generation spherical wavelets)
has recently attracted a lot of attention in the cosmological
literature. The first application of needlets to cosmological
data was provided by Pietrobon et al. [107]. They ana-
lyzed cross-correlation of Wilkinson Microwave Anisotropy
Probe (WMAP) CMB data with NRAO VLA Sky Survey
(NVSS) radio galaxy data. The approach based on needlets
enabled more accurate statistical results related to the dark
energy component. The investigation of needlets from the
probabilistic viewpoint and their relevance for the statistical
analysis of random fields on the sphere was done for the
first time by Baldi et al. [108]. A thorough presentation
of the spherical needlets for CMB data analysis is given by
Marinucci et al. [109]. Various issues related to CMB, such as
spectrum estimation, detection of features and anisotropies,
mapmaking were addressed by Fay et al. [110], Pietrobon
et al. [111] (see also references there). The CMB models are
best analyzed in the frequency domain, where the behavior
at different multipoles can be investigated separately; on the
other hand, such problems as missing observations or partial
sky coverage make impossible the evaluation of spherical
harmonic transforms. The needlets allow for a very efficient
simple reconstruction formula that enables one to perform
frequency analysis by using only partial information about
data and providing means for handling masked data. Besides,
needlets exemplify other important properties that are not
generally shared by other spherical wavelet constructions:
they do not rely on any kind of tangent plane approximation;
they have good localization properties in both pixel and
harmonic space; and needlet coefficients are asymptotically
uncorrelated at any fixed angular distance (which makes
their use in statistical procedures very promising). All these
unique properties make needlets a very valuable tool in
various areas of CMB data analysis. Recently, Geller and
Marinucci [112] introduced spin needlets as a tool for the
analysis of spin random fields. Geller et al. [113] adopted the
spin needlet approach for the analysis of CMB polarization
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FiGure 8: Testing the algorithm on synthetic data. A simulated three-dimensional set of a thousand uniformly distributed random points
with a double-diamond pattern created by assigning large weights to the edges connecting the points in the pattern (while the rest of the
weights are negligible). (a) and (b): two screen shots from a running animation—each point in the set oscillates (in this case in three
dimensions) with its own, random frequency. (c) Synchronization of the points that are connected with high-weight edges allows to reveal
the pattern visually (to avoid extra clutter, the edges are not displayed in the animation), or automatically, by selecting synchronized points

and highlighting them.

measurements. Lately Geller and Mayeli [114] constructed
continuous wavelets and nearly tight frames (needlets) on
compact manifolds.

The essential part of the general analysis based on
the wavelet-like constructions is sampling of bandlimited
functions. The mathematical foundations of sampling on
arbitrary Riemannian manifolds of bounded geometry were
laid down by Pesenson [115, 116]. Recently Geller and Pesen-
son [117], constructed bandlimited and highly concentrated
tight frames on compact homogeneous manifolds. These
results can be considered as an extension of the wavelet-like
transforms to Riemannian manifolds, thus enabling one to
reconstruct information from incomplete data defined on an
arbitrary manifold.

Multiscale data analysis has proved to be a very powerful
tool in many fields. Applications of multiscale image analysis
to astronomy were pioneered by Starck et al. [118] and Starck
and Murtagh [119].

Spectral methods and diffusion maps have recently
emerged as effective approaches to nonlinear dimensionality
reduction [120-122]. The diffusion maps approach has

successfully been applied to analysis of astronomical spectra
by Richards et al. [123].

Manifold learning may be seen as a DR procedure aiming
at capturing the degrees of freedom and structures (clusters,
patterns) within high-dimensional data. Manifold learning
nonlinear algorithms such as isometric mapping (ISOMAP)
by Tenenbaum et al. [124] and local linear embedding (LLE)
by Roweis and Saul [125] project high-dimensional manifold
data into a low-dimensional space by preserving the local
geometric features. Ball and Brunner [51] provide a very
broad review of the current state of machine learning and
data mining in astronomy.

The AstroNeural collaboration group [52] implemented
tools based on neural networks, fuzzy-C sets and genetic
algorithms, and applied them to perform complex tasks such
as unsupervised and supervised clustering and time series
analysis. D’Abrusco et al. [126] present a supervised neural
network approach to the determination of photometric
redshifts. D’Abrusco et al. [127] describe a method for the
photometric selection of candidate quasars in multiband
surveys based on the probabilistic principal surfaces. Pasian
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TasLE 1: Examples of complex data types and some of the methods for their representation and processing.

Traditional Approaches to

Advanced Approaches to Data

Data Types Some Astronomical Applications Data Re.presentatlon & Representation & Processing
Processing
(1) Linear dimension . [
(1) Multiwavelength observations. reduction: PCA and its (1) Spectral methods, eigenmaps, diffusion
. . maps, LLE, ISOMAP.
modifications.
(2) Multitemporal observations. (2) Sampling on graphs.
Vector Data (3) VO. (3) Methods based on nonlinear dynamics.

(4) Spectra.

(4) Neural networks, fuzzy-C sets.
(5) Genetic algorithms.
(6) Scientific visualization.

(7) Compressed sensing.

(1) Polarization measurements (CMB).
Manifold-Valued

and/or Manifold-
Defined

(2) Gravitational lensing.

(3) Solar astrophysics.

(1) Various sampling
distributions on the sphere.

(1) Healpix (data on 2D sphere).

(2) Needlets.
(3) Sampling on manifolds.

(4) Scientific visualization.

et al. [128] give a general review of the development of tools
to be subsequently used within the international VO.

Comparato et al. [129] show how advanced visualization
tools can help the researcher in investigating and extracting
information from data. Their focus is on VisIVO, a new
open-source graphics application that blends high perfor-
mance multidimensional visualization techniques and up-
to-date technologies to cooperate with other applications
and to access remote, distributed data archives.

Draper et al. [130] discuss the GAIA application for
analyzing astronomical image and show how the PLASTIC
protocol has been used to inter-operate with VO enabled
applications.

The Center for Astrostatistics (CASt) at Pennsylvania
State University provides a wealth of resources (codes, data,
tutorials, programs, etc.) related to challenges in statis-
tical treatments of astrophysical data: http://astrostatistics
.psu.edu/.

A large amount of practical and up-to-date information
(texts, tutorials, preprints, software, etc.) related to Bayesian
inference in astronomy and other fields is provided by T.
Loredo on the website Bayesian Inference for the Physical
Sciences (BIPS) at http://www.astro.cornell.edu/staff/loredo/
bayes/index.html.

The International Computational Astrostatistics (InCA)
Group at Carnegie Mellon University develops and applies
new statistical methods to inference problems in astronomy
and cosmology, with an emphasis on computational non-
parametric approaches (see for details http://www.stat.cmu
.edu/~inca/index.html).

The AstroMed project at Harvard University’s IIC is
dedicated to the application of medical image visualization
to 3D astronomical data [131].

Compressed sensing and the use of sparse representations
offer another promising new approach. Traditionally it
has been considered unavoidable that any signal must be
sampled at a rate of at least twice its highest frequency in

order to be represented without errors. However, a technique
called compressed sensing that permits error-free sampling
at a lower rate has been the subject of much recent research.
It has great promise for new ways to compress imaging
without significant loss of information, thus ameliorating
analysis limitations deriving from limitations of computing
resources. The power of compressed sensing was strikingly
illustrated when an object was successfully imaged in some
detail by a camera composed of a single pixel [132]. Bobin
et al. [133] discuss recent advances in signal processing that
use sparse representations. Relatively nontechnical introduc-
tions to compressed sensing may be found in Candes and
Wakin [134] and Romberg [135]. The first astronomical
results in the literature based on the use of compressed
sensing are that of Wiaux et al. [136].

Various data types together with methods used for their
representation are briefly summarized in Table 1. The table is
not comprehensive, but it provides a quick overview of what
was discussed above.

6. Conclusion

Extremely large data sets, as well as the analysis of hundreds
of objects each having a large number of data dimensions,
present astronomy with unprecedented challenges. The
challenges are not only about database sizes in themselves,
but about how intelligently one organizes, analyzes, and
navigates through the databases, and about the limitations
of existing data analysis approaches familiar to astronomy.
The answers to these challenges are not trivial, and for the
most part lie in complex fields of research well outside the
training and expertise of almost all astronomers. Fortunately,
other disciplines such as imaging science and earth sciences
have for many years been grappling with the same sorts of
problems. Fruitful interdisciplinary work has already become
a regular feature of research in those other disciplines, and
has resulted in applications of crucial value to other sciences
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seeking to take advantage of complex, giant data sets in their
respective fields. This work has brought about many helpful
applications and promising paths for further progress that
potentially have significant value to astronomy.

Multidimensional image processing, image fusion (com-
bining information from multiple sensors in order to create a
composite enhanced image) and dimension reduction (find-
ing lower-dimensional representation of high-dimensional
data) are effective approaches to tasks that are crucial to mul-
titemporal, multiwavelength astronomy: study of transients,
large-scale digital sky surveys, archival research, and so forth.
These methods greatly increase computational efficiency
of machine learning algorithms and improve statistical
inference, thus facilitating automated feature selection, data
segmentation, classification and effective scientific visualiza-
tion (as opposed to illustrative visualization). Dimensionally
reduced images also offer an enormous savings in storage
space and database-transmission bandwidth for the user,
without significant loss of information, if appropriate meth-
ods are used.

To effectively use the large, complex data sets being cre-
ated in 21st Century astronomy, significant interdisciplinary
communication and collaboration between astronomers and
experts in the disciplines of applied mathematics, statistics,
computer science and artificial intelligence will be essential.
The concepts and approaches described in this paper are
among the first steps in such a broad, long-term interdisci-
plinary effort that will help bridge the communication gap
between astronomy and other disciplines. These concepts,
and the approaches derived from them, will help to provide
practical ways of analysis and visualization of the increasingly
large and complex data sets. Such sophisticated new methods
will also help to pave the way for effective automated analysis
and processing of giant, complex data sets.
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