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This work deals with the nonlinear stability of the elliptical restricted three-body problem with oblate and radiating primaries
and the oblate infinitesimal. The stability has been analyzed for the resonance cases around 𝜔1 = 2𝜔2 and 𝜔1 = 3𝜔2 and also the
nonresonance cases. It was observed that the motion of the infinitesimal in this system shows instable behavior when considered
in the third order resonance. However, for the fourth order resonance the stability is shown for some mass parameters.Themotion
in the case of nonresonance was found to be unstable. The problem has been numerically applied to study the movement of the
infinitesimal around two binary systems, Luyten-726 and Sirius.

1. Introduction

The study of equilibrium points and their stability in
restricted three-body problems has attracted the attention
of many researchers in the past century, as the stable and
unstable resonant motions explain many of the celestial
phenomena. The nonlinear stability in circular and ellipti-
cal restricted three-body problem was studied in detail by
many authors. Markeev [1] employed numerical and analytic
methods to study the stability of equilibrium points and
periodic motions of nonlinear Hamiltonian systems in cases
of resonance. Gyorgyey [2] studied the nonlinear stability
of motions around the triangular equilibrium point 𝐿5. The
work was further elaborately studied by various authors
([3–6], et al.) taking into account various other perturbing
forces. Ferraz-Mello [7] used the averaging of the elliptic
asteroidal problem to study the first order resonance.Henrard
& Caranicolas [8] and Henrard [9] used the perturbation
method to study the resonance. Further [10–16] and many
others extended the work and explored various aspects of the
problem.

In order to investigate the stability of the triangular
liberation points the Hamiltonian is simplified by apply-
ing Birkhoff ’s transformation. The normalization method
adopted is outlined as follows:

(i) The quadratic form 𝐻2 should be reduced so that it
corresponds to the normal oscillations modes. This
transformation is performed by means of real, linear,
and canonical changes of variables.

(ii) After the quadratic part 𝐻2 has been reduced to
normal form, a nonlinear 2𝜋 periodic Birkhoff trans-
formation is required to suppress the third-degree
term𝐻3.

(iii) The final step is obtaining a Hamiltonian function
normalized to fourth order terms obtained by simpli-
fying 𝐻4 by means of a canonical Birkhoff transfor-
mation.

If 𝐻2 is a function of definite sign, then by the virtue of
Liapunov’s theorem the equilibrium is stable. Otherwise, if𝐻2 is not a function of definite sign, then the stability is
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investigated by means of Arnold’s theorem given by the
following.

Let the Hamiltonian satisfy the three conditions:

(1) The characteristic equation of the linearized system
has pure imaginary roots are ±𝜄𝜔1, ±𝜄𝜔2.

(2) The frequencies 𝜔1, 𝜔2 satisfy the inequalities 𝑘1𝜔1 +𝑘2𝜔2 ̸= 0 for 0 < |𝑘1| + |𝑘2| ≤ 4, where 𝑘1 and 𝑘2 are
integers.

(3) The inequality𝐶20𝜔21+𝐶11𝜔1𝜔2+𝐶02𝜔21 ̸= 0 is fulfilled.
If the above three conditions are satisfied, then the equilib-
rium points are stable.

The above-mentioned methodology has been used to
investigate the nonlinear stability of the elliptic restricted
three-body problem with bigger and smaller primaries and
infinitesimal as oblate spheroid and also both the primaries
as source of radiation. The paper is divided into following
sections. Section 1 gives general introduction. The equations
of motion are presented in Section 2, and also the triangular
equilibrium points are obtained. Existence of resonance in
circular case is briefly discussed in Section 3. The normaliza-
tion of theHamiltonian is done in Section 4.The second order
terms are normalized retaining the third and fourth order
terms by using a linear canonical transformation of variables.
The stability in third and fourth order resonances is analyzed
in Sections 5 and 6, respectively.The stability in nonresonance
case is dealt in Section 7 of this paper. The stability of
the system has been analyzed using the KAM theorem.
The equations used in the intermediate calculation in the
sections are given in the Appendix. Numerical applications
are presented in Section 8.The discussion and conclusion are
drawn in Section 9.

2. Equation of Motion and Existence of
Triangular Points

The differential equation governing the motion of the oblate
infinitesimal mass under the radiation and oblateness of the
primaries is represented as follows [17]:

𝑥" − 2𝑦󸀠 = 𝜙 (e, f) 𝜕𝑈𝜕𝑥
𝑦" + 2𝑥󸀠 = 𝜙 (e, f) 𝜕𝑈𝜕𝑦

(1)

where

U = 𝑥2 + 𝑦22 + 1𝑛2 {𝑞1 (1 − 𝜇)( 1𝑟1 +
𝐴12𝑟31 )

+ 𝑞2𝜇( 1𝑟2 +
𝐴12𝑟32 ) + 𝐴32 (1 − 𝜇

𝑟31 + 𝜇
𝑟32 )}

(2)

r21 = (𝑥 + 𝜇)2 + 𝑦2
r22 = (𝑥 + 𝜇 − 1)2 + 𝑦2 (3)

𝜙 (e, f) = 11 + 𝑒 cos𝑓 (4)

𝑛2 = 1𝑎3 (1 + 32 (𝐴1 + 𝐴2 + 𝑒2)) (5)

Here prime ( 󸀠) denotes the differentiation with respect to
the true anomaly 𝑓. 𝑈𝑥 and 𝑈𝑦 denote the partial differen-
tiation of 𝑈 with respect to 𝑥 and 𝑦, respectively. 𝑎 and 𝑒
represent the semimajor axis and eccentricity of the elliptic
path followed by the two primaries. 𝐴1, 𝐴2, and 𝐴3 are
the oblateness parameter of the primaries and infinitesimal,
respectively. 𝑞1, 𝑞2 are the radiation factors of the primaries,
respectively.

The coordinates of the triangular equilibrium points
(𝑢, V) in linear terms of the perturbing forces are given as
follows:

𝑢 = 12–𝜇 + (12 − 2𝛿)𝐴2 − 𝐴3 + (−13 + 2𝛿3 )𝛽1
+ (13 − 2𝛿3 )𝛽2

V = √32 (1 − 53𝛿 + 23𝑒2 (−1 + 2𝛿) − 𝐴13 + 𝐴23
+ (−13 + 109 𝛿)𝛽1 + (−29 + 49𝛿)𝛽2

(6)

Here 𝛿 = 1 − 𝑎, 𝛽𝑖 = 1 − 𝑞𝑖, 𝑖 = 1, 2.
The Lagrangian equation of motion of the problem is

written as follows:

𝐿 = 12 (𝑥̇2 + 𝑦̇2) + 𝑦̇𝑥 − 𝑥̇𝑦 + 11 + 𝑒 cos𝑓 [(1 − 𝜇)
⋅ {𝑟212 + 1𝑛2 (𝑞1𝑟1 +

𝑞1𝐴1 + 𝐴32𝑟31 )}
+ 𝜇{𝑟222 + 1𝑛2 (𝑞2𝑟2 +

𝑞2𝐴2 + 𝐴32𝑟32 )}]
(7)

Hence, the perturbedHamiltonian function of the problem is
given by

𝐻 = −𝑝𝑥2 + 𝑝𝑦22 − 𝑝𝑦𝑥 + 𝑝𝑥𝑦 + 𝑥2 + 𝑦22
− 11 + 𝑒 cos𝑓 [(1 − 𝜇)
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⋅ {𝑟212 + 1𝑛2 (𝑞1𝑟1 +
𝑞1𝐴1 + 𝐴32𝑟31 )}

+ 𝜇{𝑟222 + 1𝑛2 (𝑞2𝑟2 +
𝑞2𝐴2 + 𝐴32𝑟32 )}]

(8)

where 𝑝𝑥 and 𝑝𝑦 are the generalized components of momen-
tum. The nature of motion near the two equilibrium points
will be the same as the two triangular equilibrium solutions
are symmetrical to each other. Hence, we consider themotion
near the equilibrium point 𝐿4 for further calculations. To
study the stability near this equilibrium point, we shift the
origin to 𝐿4 by the change of variables given by

𝑥 = 𝑢 + 𝑞1;𝑦 = V + 𝑞2;𝑝𝑥 = 𝑝𝑢 + 𝑝1
and 𝑝𝑦 = 𝑝V + 𝑝2

(9)

where (𝑢, V) denotes the triangular equilibrium point 𝐿4 and
𝑝𝑢 = −V,
𝑝V = 𝑢 (10)

3. Characteristic Roots and Existence of
Resonance in Circular Case

Restricting the Hamiltonian to 𝐻2 alone, the characteristic
equation is obtained as [18]

𝜆4 + (4 − 𝐴∗ − 𝐶∗) 𝜆2 + 𝐴∗𝐶∗ − 𝐵∗2 = 0, (11)

where

𝐴∗ = 34 − 2(7𝑒28 (1 − 2𝜇) + 𝛽14 (1 − 3𝜇)
− 𝛽24 (2 − 3𝜇) − 3𝐴14 (1 − 74𝜇) + 3𝐴24 (1 − 74𝜇)
+ 𝛿32 − 140 + 9𝐴38 (1 − 73𝜇)) ,

𝐵∗ = 3√34 (1 − 2𝜇) − √3 [−114 𝑒2 (1 − 2011𝜇)
+ 𝛽16 (1 + 𝜇) − 𝛽26 (2 − 𝜇) − 5𝛿3 (1 − 2𝜇)
− 𝐴12 (7 − 594 𝜇) − 𝐴2 (2 − 298 𝜇)
− 9𝐴34 (1 − 53𝜇) − 29𝛿16 (1 − 3829𝜇)]

𝐶∗ = 94 + 2(𝑒28 (23 − 22𝜇) + 𝛽14 (1 − 3𝜇)
− 𝛽24 (2 − 3𝜇) + 3𝐴14 (3 + 114 𝜇)
+ 3𝐴24 (3 − 114 𝜇) − 𝛿32 (95 − 220𝜇)
− 33𝐴38 (1 − 𝜇)) .

(12)

Assume the frequencies 𝜔1 and 𝜔2, are given by the relation𝜔21 = −{𝜆(0)1,2}2 and 𝜔22 = −{𝜆(0)3,4}2, where 𝜆(0)1,2,3,4 are the roots
of the characteristic equation (11), when 𝑒 = 0. The values are
obtained as

(𝜔1,2)2 = 12 [1 ± {1 − 27𝜇 (1 − 𝜇) (1 + 29𝛽1 + 29𝛽2 + 949 𝛿 + 1196 𝐴1 + 616 𝐴2 + 17𝐴3)}1/2

× (1 − 134 𝛿 − 6𝐴1 − 3𝐴2 − 6𝐴3)] .
(13)

Figures 1–3 show the correlation between 𝜔 and 𝜇 for varying
values of the oblateness of the infinitesimal. For the figures,
the following values of the perturbing factors are taken: 𝛽1 =𝛽2 = 0.01, 𝐴1 = 𝐴2 = 0.0001, and 𝛿 = 0.001.

In order to discuss the existence of resonance, firstly we
consider the case when 𝜔1 = 𝜔2. Solving (13) for the case, we
obtain

1 − 27𝜇 (1 − 𝜇) (1 + 29𝛽1 + 29𝛽2 + 949 𝛿 + 1196 𝐴1
+ 616 𝐴2 + 17𝐴3) = 0

(14)

Solving the above equation for value of 𝜇 < 1/2, we get
that the region of stability defined by first approximation
is

0 < 𝜇 < 12 − √6918 (1 + 49𝛽1 + 49𝛽2 + 1889 𝛿 + 1193 𝐴1
+ 613 𝐴2 + 34𝐴3)

(15)

Thus, the value of 𝜇 admisible for stable equilibrium
point for the case 𝜔1 = 𝜔2, when 𝑒 = 0, is given
as
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Figure 1: Correlation between frequency and mass ratio for A3 = 0.
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Figure 2: Correlation between frequency and mass ratio for A3 = 0.0001.
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Figure 3: Correlation between frequency and mass ratio for A3 = 0.01.

𝜇(0) = 0.0385209 − 0.419121𝛿 − 0.795884𝐴1
− 0.407974𝐴2 − 0.682187𝐴3 − 0.00891747𝛽1
− 0.00891747𝛽2

(16)

Following the similar procedure, we obtain the critical value
of 𝜇 when 𝜔1 = 2𝜔2 and 𝜔1 = 3𝜔2 as follows:

𝜇(02) = 0.0242939 + 0.4941323A1 − 0.2532947A2
− 0.4235419A3 − 0.2602153𝛿
− 0.0055365𝛽1 + 0.0055365𝛽2

(17)

𝜇(03) = 0.013516 + 0.2717915A1 − 0.1393217A2
− 0.23296416A3 − 0.1431283𝛿
− 0.0030453𝛽1 + 0.0030453𝛽2

(18)

4. Normalization of the Hamiltonian

The Hamiltonian given by (8) is expanded about the
Lagrangian point given by (6). Neglecting the terms inde-
pendent of 𝑝𝑖 and 𝑞𝑖, we get the following representation of
Hamiltonian:
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𝐻 = 𝑞21 + 𝑞222 − 𝑝2𝑞1 + 𝑝1𝑞2 + 𝑝21 + 𝑝222
− 11 + 𝑒 cos𝑓 [(1 − 𝜇)

⋅ {𝑟212 + 1𝑛2 (𝑞1𝑟1 +
𝑞1𝐴1 + 𝐴32𝑟31 )}

+ 𝜇{𝑟222 + 1𝑛2 (𝑞2𝑟2 +
𝑞2𝐴2 + 𝐴32𝑟32 )}]

(19)

Now, expanding the Hamiltonian function given by (8) in the
powers of 𝑝𝑖 and 𝑞𝑖 1 ≤ 𝑖 ≤ 2, we obtain

𝐻 = ∞∑
𝑘=0

𝐻𝐾
𝐻 = 𝐻0 + 𝐻1 + 𝐻2 + 𝐻4 + 𝐻5 + ⋅ ⋅ ⋅ .

(20)

Here,𝐻0 = 𝑓(𝑢, V, 𝑝𝑢, 𝑝V)= constant, 𝐻1 = 0.𝐻2,𝐻3, and 𝐻4
are expression in second, third, and forth order terms of 𝑝𝑖
and 𝑞𝑖.

Now, consider the canonical transformation [𝑞1, 𝑞2,𝑝1,𝑝2] which transform into [𝑞󸀠1, 𝑞󸀠2, 𝑝󸀠1, 𝑝󸀠2].
That is,

[𝑞1, 𝑞2, 𝑝1,𝑝2] = [𝑞󸀠1, 𝑞󸀠2, 𝑝󸀠1, 𝑝󸀠2]𝑁 (21)

𝑁 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎1 𝑎1𝑐1 −𝑎1𝑐1 𝑎1 (1 − 𝜔21𝑏1)
𝑎2 𝑎2𝑐2 −𝑎2𝑐2 𝑎1 (1 − 𝜔22𝑏2)0 𝑎1𝑏1 𝑎1 (1 − 𝑏1) 𝑎1𝑐1
0 −𝑎2𝑏2 −𝑎2 (1 − 𝑏2) −𝑎2𝑐2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(22)

Using the canonical transformation, the Hamiltonian in the
variables will be of the following form:

𝐻 = 12 (𝑝󸀠21 + 𝜔21𝑞󸀠21 ) − 12 (𝑝󸀠21 + 𝜔22𝑞󸀠22 )
+ 𝑒 cos𝑓1 + 𝑒 cos𝑓 [𝑎𝑞󸀠22 + 𝑏𝑝󸀠22 + 𝑐𝑝󸀠2𝑞󸀠2 + ⋅ ⋅ ⋅]

or 𝐻 = 12 (𝑝󸀠21 + 𝜔21𝑞󸀠21 ) − 12 (𝑝󸀠21 + 𝜔22𝑞󸀠22 )
+ ∞∑
𝛼+𝛾=3

ℎ𝛼1𝛼2𝛾1𝛾2𝑞󸀠𝛼22 𝑞󸀠𝛼11 𝑝󸀠𝛾22 𝑝󸀠𝛾11

(23)

where 𝛼 = 𝛼1 + 𝛼2,𝛾 = 𝛾1 + 𝛾2.

Here 𝜔21 = −{𝜆(0)1,2}2 and 𝜔22 = −{𝜆(0)3,4}2 are the frequencies
of the linear system with Hamiltonian 𝐻2 and given by the
relation:

𝜆4 − 𝜆2 (−1 − 𝛼4 (13 − 20𝜇) + 6𝐴1 + 3𝜇𝐴12 + 3𝐴2
− 3𝜇𝐴22 + 6𝐴3 − 3𝜇𝐴3) + 274 𝜇 (1 − 𝜇) [1 + 29𝛽1
+ 29𝛽2 + 7118𝛼 + 476 𝐴1 + 256 𝐴2 + 153 𝐴3
− 1𝜇 (2618𝛼 + 86𝐴1 + 86𝐴2 + 43𝐴3)]

(24)

Equating the similar coefficients of ℎ𝛼1𝛼2𝛾1𝛾2 and𝐻𝛼1𝛼2𝛾1𝛾2 upto
the third order terms, the value can be evaluated in terms of𝑝𝑖󸀠, 𝑞𝑖󸀠, which are given in the Appendix.

The next transformation is obtained by making the
substitution of variables:

𝑞󸀠1 = 12𝑞"1 + 𝜄𝜔1𝑝
"
1

𝑝󸀠1 = 12𝜔1𝑞"1 + 𝑝"
1

𝑞󸀠2 = 12𝑞"2 + 𝜄𝜔2𝑝
"
2

𝑝󸀠2 = 12𝜔2𝑞"2 + 𝑖𝑝"
2

(25)

So that the Hamiltonian of (23) got converted to the form:

𝐻 = 𝜄𝜔1𝑞"1𝑝"
1 + 𝜄𝜔2𝑞"2𝑝"

2

+ ∞∑
𝛼+𝛽=3

ℎ󸀠𝛼1𝛼2𝛾1𝛾2𝑞"𝛼11 𝑞"𝛼22 𝑝"𝛾1
1 𝑝"𝛾2
2

(26)

where the coefficient of third order terms of ℎ󸀠 𝛼1𝛼2𝛾1𝛾2 depends
on 𝜄𝜔1, (𝑖 = 1, 2) and ℎ𝛼1𝛼2𝛾1𝛾2 which are given in the
Appendix. Finally, we apply the Birkhoff ’s transformation of
the form (𝑞𝑗󸀠󸀠, 𝑝𝑗󸀠󸀠) to (𝑄𝑗, 𝑃𝑗) and nullify all the third-degree
terms except those giving rise to resonance of the form 𝜔1 =2𝜔2. For this, take the generating function of the form:

𝑆 = 𝑞"1𝑃1 + 𝑞"2𝑃2 + 𝜀𝑆3 + 𝜀2𝑆4 + ⋅ ⋅ ⋅ . (27)

Choose 𝑆3 in such a way so that

𝐻3 = 𝐻3 +∑
𝑗

( 𝜕𝑆3𝜕𝑄𝑗
𝜕𝐻2𝜕𝑃𝑗 − 𝜕𝑆3𝜕𝑃𝑗

𝜕𝐻2𝜕𝑄𝑗 ) = 0 (28)

𝐻2 (𝑄𝑗, 𝑃𝑗) = 𝜄𝜔1𝑄1𝑃1 + 𝜄𝜔2𝑄2𝑃2 (29)

Let

𝑆3 = ∑
𝛼+𝛾=3

𝑔𝛼1𝛼2𝛾1𝛾2𝑄𝛼11 𝑄𝛼22 𝑃𝛾11 𝑃𝛾22 (30)

where 𝑔𝛼1𝛼2𝛾1𝛾2 , (𝛼+𝛾 = 3), 𝛼 = 𝛼1 +𝛼2, 𝛾 = 𝛾1 +𝛾2 are to be
determined satisfying (28).
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Let

𝐻3 = ∑
𝛼+𝛾=3

ℎ󸀠𝛼1𝛼2𝛾1𝛾2𝑞"𝛼11 𝑞"𝛼22 𝑝"𝛾1
1 𝑝"𝛾2
2 (31)

Now substituting the values of 𝐻2, 𝐻3 in (28) and (29) and
equating the coefficients of like powers of the powers of the
variable we obtain

𝑔𝛼1𝛼2𝛾1𝛾2 = 𝜄ℎ󸀠𝛼1𝛼2𝛾1𝛾2(𝛼1 − 𝛾1) 𝜔1 + (𝛼2 − 𝛾2) 𝜔2 (32)

5. Stability in Third Order Resonance

From (32), it can be observed that substituting different values
of 𝛼𝑖, 𝛾𝑖 (𝑖 = 1, 2), where 𝛼 + 𝛾 = 3 and 𝜔1 = 2𝜔2,
the denomination of R.H.S. of (32) vanishes giving rise to
resonances for two set of values of 𝛼 and 𝛾 rendering 𝑆3 in
determinate. Let

𝐷𝑟 = (𝛼1 − 𝛾1) 𝜔1 + (𝛼2 − 𝛾2) 𝜔2 then for 𝜔1 = 2𝜔2 (33)

Case 1. When 𝛼1 = 1, 𝛼2 = 0, 𝛾1 = 0, 𝛾2 = 2, we have 𝐷𝑟 = 0.
Case 2. When 𝛼1 = 0, 𝛼2 = 2, 𝛾1 = 1, 𝛾2 = 0, again we have𝐷𝑟 = 0.

Thus, in resonant case𝜔1 = 2𝜔2 using Birkhoff ’s transfor-
mation, it is not possible to cancel 𝐻3 of the Hamiltonian. In
this case𝐻3 retain two resonant terms with coefficients ℎ󸀠1002
and ℎ󸀠0210. Thus, Hamiltonian reduces to the following form:

𝐻 = 𝜄𝜔1𝑄1𝑃1 + 𝜄𝜔2𝑄2𝑃2 + ℎ󸀠1002𝑄1𝑃22 + ℎ󸀠0210𝑃1𝑄22, (34)

where ℎ󸀠1002 = 𝑥1002 + 𝜄𝑦1002 and ℎ󸀠0210 = (−𝜔22/2𝜔1)(𝑦1002 +𝜄𝑥1002)
Applying canonical change of variables

𝑄1 = 1
(𝜔1)1/2 (𝑄

0
1 − 𝜄𝑃01 )

𝑄2 = 1
(𝜔2)1/2 (𝑄

0
2 − 𝜄𝑃02 )

𝑃1 = (𝜔1)1/22 (−𝜄𝑄01 − 𝑃01 )
𝑃2 = (𝜔2)1/22 (𝑄02 − 𝜄𝑃02 )

(35)

the Hamiltonian equation (34) becomes

𝐻0 = 𝜔12 (𝑄021 + 𝑃021 ) − 𝜔22 (𝑄022 + 𝑃022 )
+ [ 𝜔22 (𝜔2)1/2 {𝑥1002 (𝑄

0
1𝑄022 − 𝑄01𝑃022 − 2𝑃02𝑄02)

+ 𝑦1002 (2𝑃02𝑄02𝑄01 + 𝑃01𝑄022 − 𝑃01𝑃022 )}]
(36)

If𝑥21002+𝑦21002 ̸= 0, then the canonical transformation in polar
coordinates is given by

𝑄01 = (2𝑟1)1/2 sin (𝜙1 − 𝜃1) ;
𝑃01 = (2𝑟1)1/2 cos (𝜙1 − 𝜃1) ;
𝑄02 = (2𝑟1)1/2 sin (𝜙2) ;
𝑃02 = (2𝑟1)1/2 cos (𝜙2) ,

(37)

where 𝜃1 is given as

sin 𝜃1 = 𝑦1002
(𝑥21002 + 𝑦21002)1/2 ;

sin 𝜃1 = 𝑥1002
(𝑥21002 + 𝑦21002)1/2 .

(38)

Thus, the Hamiltonian will of the form

𝐻
= 2𝜔2𝑟1 − 𝜔2𝑟2

− [𝜔2 (𝑥21002 + 𝑦21002)1/2 𝑟2 (𝑟1)1/2 sin (𝜙1 + 2𝜙2)]
+ 𝐻04 (𝑟𝑗, 𝜙𝑗) + ⋅ ⋅ ⋅

(39)

Now, to find the value of 𝐻4, let us assume 𝑥21002 + 𝑦21002 = 0.
Then the normalized form of𝐻4 is given as

𝐻4 = 𝐶20 (𝑄1, 𝑃1)2 + 𝐶11 (𝑄1, 𝑃1) (𝑄2, 𝑃2)
− 𝐶02 (𝑄2, 𝑃2)2

(40)

with the help of generating function 𝑆4 chosen, so that it
satisfies

∑
𝑗

( 𝜕𝑆4𝜕𝑄𝑗
𝜕𝐻2𝜕𝑃𝑗 − 𝜕𝑆4𝜕𝑃𝑗

𝜕𝐻2𝜕𝑄𝑗 ) + 𝐾4 = 0 (41)

where𝐾4 is the nonhomogenous part of (40):

𝐻4 (𝑄𝑖, 𝑃𝑖) +∑
𝑖,𝑗

𝜕𝑆3𝜕𝑃𝑖
𝜕𝑆3𝜕𝑄𝑗

𝜕2𝐻2𝜕𝑃𝑖𝜕𝑄𝑗
+∑
𝑖,𝑗

𝜕𝑆3𝜕𝑄𝑗
𝜕2𝑆3𝜕𝑃𝑖𝜕𝑃𝑗

𝜕𝐻2𝜕𝑄𝑖 −∑
𝑖,𝑗

𝜕𝑆3𝜕𝑄𝑗
𝜕2𝑆3𝜕𝑄𝑖𝜕𝑃𝑗

𝜕𝐻2𝜕𝑃𝑖
(42)

The coefficients 𝐶20, 𝐶11, and 𝐶02 are given as
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𝐶20 = 32𝜔21𝑎41𝑏41𝐻0400 +
3𝑎412𝜔21 (𝐻4000 + 𝑐1𝐻3100

+ 𝑐21𝐻2200 + 𝑐31𝐻1300 + 6𝑐41𝐻0400) + 𝑎41𝑏212 (𝐻2200
+ 3𝑐1𝐻1300 + 6𝑐21𝐻0400) − 38𝜔21 (𝑦20030 + 𝑥20030)
− 32 (𝑦21020 + 𝑥21020) − 𝜔218 (2𝜔1 − 𝜔2) (𝑦20120 + 𝑥20120)

+ 12 (𝑦21011 + 𝑥21011) + 𝜔2𝜔218 (2𝜔1 + 𝜔2) (𝑦20021 + 𝑥20021)

𝐶11 = 6𝜔1𝜔2𝑎21𝑎22𝑏21𝑏22𝐻0400 + 𝑎21𝑎22𝜔1𝜔2 {6𝐻4000 + 3 (𝑐1
+ 𝑐2)𝐻3100 + (𝑐21 + 4𝑐1𝑐2 + 𝑐22)𝐻2200 + 3𝑐1𝑐2 (𝑐1+𝑐2)
⋅ 𝐻1300 + 6𝑐21 𝑐22𝐻0400) + 𝜔1𝑎21𝑎22𝑏21𝜔2 (𝐻2200

+ 3𝑐2𝐻1300 + 6𝑐22𝐻0400) + 𝜔2𝑎21𝑎22𝑏22𝜔1 (𝐻2200
+ 3𝑐1𝐻1300 + 6𝑐21𝐻0400) − 2𝜔22(𝜔1 − 2𝜔2) (𝑥21002
+ 𝑦21002) + 𝜔1𝜔222 (𝜔1 + 2𝜔2) (𝑥20012 + 𝑦20012)

− 𝜔2𝜔212 (2𝜔1 + 𝜔2) (𝑥20021 + 𝑦20021)

− 2𝜔21(2𝜔1 − 𝜔2) (𝑥
2
0120 + 𝑦20120) + 2 (𝑥0111𝑥1020

+ 𝑦0111𝑦1020) − 4𝜔2 (𝑥0201𝑦1011 + 𝑥1011𝑦0201)
𝐶02 = 32𝜔22𝑎42𝑏42𝐻0400 +

3𝑎422𝜔22 (𝐻4000 + 𝑐2𝐻3100

+ 𝑐22𝐻2200 + 𝑐32𝐻1300 + 𝑐42𝐻0400) + 𝑎42𝑏222 (𝐻2200
+ 3𝑐2𝐻1300 + 6𝑐22𝐻0400) + 38𝜔22 (𝑦20003 + 𝑥20003)
+ 6𝜔22 (𝑥

2
0201 + 𝑦20201) − 𝜔222𝜔1 (𝜔1 − 2𝜔2) (𝑦21002

+ 𝑥21002) − 12 (𝑥20111 + 𝑦20111)
− 𝜔1𝜔228 (𝜔1 + 2𝜔2) (𝑥20012 + 𝑦20012)

(43)

Consequently, the Hamiltonian of the dynamical system
reduces to the form as

𝐻 = 𝜄𝜔1𝑄1𝑃1 + 𝜄𝜔2𝑄2𝑃2 − 𝐶20 (𝑄1𝑃1)2
+ 𝐶11 (𝑄1𝑃1) (𝑄2𝑃2) − 𝐶02 (𝑄2𝑃2)2 + 𝑂 |𝑄|5 (44)

If 𝑥21002 +𝑦21002 = 0 and𝐶20+2𝐶11+4𝐶02 ̸= 0 then by virtue of
Markeev’s theorem (Markeev 1967) the equilibrium is stable.

6. Stability in Fourth Order Resonance

TheHamiltonian H in this case will be written as

𝐻 = 𝜄𝜔1𝑞"1𝑝"
1 + 𝜄𝜔2𝑞"2𝑝"

2

+ ∑
𝛼+𝛾=4

ℎ󸀠𝛼1𝛼2𝛾1𝛾2𝑞"𝛼11 𝑞"𝛼22 𝑝"𝛾1
1 𝑝"𝛾2
2 + 𝑂 󵄨󵄨󵄨󵄨𝑞"󵄨󵄨󵄨󵄨5 (45)

where |𝑞"| = (𝑞"1 +𝑞"2 +𝑝"
1 +𝑝"
2)1/2 and ℎ󸀠𝛼1𝛼2𝛾1𝛾2 depend on 𝜔𝑖

and ℎ𝛼1𝛼2𝛾1𝛾2 . Now, using Birkhoff ’s transformation by means
of generating function S where 𝑆 = 𝑆2 + 𝑆3 + 𝑆4 . . ., choose𝑆4 such that 𝐻4 takes the normalized form which is given as
follows:

𝐻4 = −𝐶20 (𝑄1, 𝑃1)2 + 𝐶11 (𝑄1, 𝑃1) (𝑄2, 𝑃2)
− 𝐶02 (𝑄2, 𝑃2)2

(46)

where

𝐻4 = 𝐻4 +∑
𝑗

( 𝜕𝑆4𝜕𝑄𝑗
𝜕𝐻2𝜕𝑃𝑗 − 𝜕𝑆4𝜕𝑃𝑗

𝜕𝐻2𝜕𝑄𝑗 )

+ ∑
𝑖,𝑗

𝜕𝑆3𝜕𝑃𝑖
𝜕2𝐻2𝜕𝑃𝑖𝜕𝑄𝑗

𝜕𝑆3𝜕𝑄𝑗 +∑
𝑖,𝑗

𝜕𝑆3𝜕𝑄𝑗
𝜕2𝑆3𝜕𝑃𝑖𝜕𝑃𝑗

𝜕𝐻2𝜕𝑄𝑖
− ∑
𝑖,𝑗

𝜕𝑆3𝜕𝑄𝑗
𝜕2𝑆3𝜕𝑄𝑖𝜕𝑃𝑗

𝜕𝐻2𝜕𝑃𝑖

(47)

That is,

∑
𝑗

( 𝜕𝑆4𝜕𝑄𝑗
𝜕𝐻2𝜕𝑃𝑗 − 𝜕𝑆4𝜕𝑃𝑗

𝜕𝐻2𝜕𝑄𝑗 ) + 𝐾4 = 0 (48)

where𝐾4 is the nonhomogeneous part of (45), where homo-
geneity is considered in terms of product𝑄𝑖𝑃𝑖.

Here,

𝑆3 = ∑
𝛼+𝛾=3

𝑔𝛼1𝛼2𝛾1𝛾2𝑄𝛼11 𝑄𝛼22 𝑃𝛾11 𝑃𝛾22
𝐻2 = 𝐻2 = 𝜄𝜔1𝑄1𝑃1 + 𝜄𝜔2𝑄2𝑃2
𝐻3 = 0

(49)

Let 𝐻4 = ∑𝛼+𝛾=4 ℎ𝛼1𝛼2𝛾1𝛾2𝑄𝛼11 𝑄𝛼22 𝑃𝛾11 𝑃𝛾22 and 𝑆4 =∑𝛼+𝛾=4 𝑔𝛼1𝛼2𝛾1𝛾2𝑄𝛼11 𝑄𝛼22 𝑃𝛾11 𝑃𝛾22 where 𝑔𝛼1𝛼2𝛾1𝛾2 are to be deter-
mined satisfying (48). Substituting the values in (48) and
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equating the coefficient of similar powers and different
nonhomogeneous terms to zero, we have

𝑔𝛼1𝛼2𝛾1𝛾2 = 𝜄 (𝑐𝑜𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐾4)(𝛼1 − 𝛾1) 𝜔1 + (𝛼2 − 𝛾2) 𝜔2 (50)

In the above equation, when substituting different values(𝛼𝑖, 𝛾𝑖), 𝑖 = 1, 2 and 𝜔1 = 3𝜔2 the denominator of
(50) vanishes for two sets of values of 𝛼 and 𝛾 giving rise
to resonant terms 𝑙1003𝑄1𝑃32 and 𝑙0310𝑃1𝑄32. Thus, the new
Hamiltonian is obtained as

𝐻 = 𝜄𝜔1𝑄1𝑃1 + 𝜄𝜔2𝑄2𝑃2 + {𝑙1003𝑄1𝑃32 + 𝑙0310𝑃1𝑄22
− 𝐶20 (𝑄1𝑃1)2 + 𝐶11 (𝑄1𝑃1) (𝑄2𝑃2)
− 𝐶02 (𝑄2𝑃2)2}

(51)

where 𝑙1003 and 𝑙0310 are given by

𝑙1003 = {𝜔12 ℎ0013 + ℎ13002𝜔32 − ℎ11022𝜔2 − 𝜔1ℎ02112𝜔22 }
− 2ℎ󸀠2001ℎ󸀠0012𝜄 (2𝜔1 − 𝜔2) − 3ℎ󸀠0003ℎ󸀠1101𝜄𝜔1
+ 2ℎ󸀠1002ℎ󸀠0102𝜄𝜔2 − ℎ󸀠1011ℎ󸀠1002𝜄 (𝜔1 − 2𝜔2)

𝑙0310 = {−𝜔1ℎ01122𝜔2 − ℎ10032 + ℎ12012𝜔22 − 𝜔1ℎ03102𝜔32 }
− 2ℎ󸀠0120ℎ󸀠1200𝜄 (𝜔1 + 2𝜔2) − ℎ󸀠1110ℎ󸀠0210𝜄𝜔2
+ 2ℎ󸀠0210ℎ󸀠0201𝜄 (𝜔1 − 2𝜔2) − ℎ󸀠0300ℎ󸀠0111𝜄𝜔2

(52)

where the values ℎ𝛼1𝛼2𝛾1𝛾2 are given in the Appendix. Let𝑙1003 = 𝑥1003 + 𝜄 𝑦1003 , and

𝑙1003 = −𝜔2112 (𝑥1003 − 𝜄 𝑦1003) (53)

in which

𝑥1003 = −6𝜔2𝑎1𝑎32𝑎1𝑎32𝐻0400 + 𝑎1𝑎322𝜔32 {4𝐻4000
+ (𝑐1 + 3𝑐2)𝐻0400 + 2𝑐2 (𝑐1 + 𝑐2)𝐻2200
+ 𝑐22 (3𝑐1 + 𝑐2)𝐻1300} − 𝑎1𝑏22𝑎322𝜔2 {2𝐻2200
+ (𝑐1 + 𝑐2)𝐻1300 + 12𝑐1𝑐2𝐻0400}

+ 3𝑎1𝑏21𝑏22𝑎322𝜔2 {𝐻2200 + 3𝑐2𝐻1300 + 6𝑐22𝐻0400}
− 95 (𝑥0120𝑥0012 + 𝑦0120𝑦0012) − 1𝜔2 (𝑥1002𝑦1011
+ 𝑥1011𝑦1002) + 4𝜔22 (𝑥1002𝑥0201 + 𝑦1002𝑦0201)
+ 32 (𝑥0003𝑥0111 + 𝑦0003𝑦0111)

𝑦1003 = −92𝑎1𝑎32𝑏1𝑏22 (𝐻1300 + 4𝑐2𝐻0400)
+ 𝑏32𝑎1𝑎322 (𝐻1300 + 4𝑐1𝐻0400) − 𝑎1𝑏2𝑎322𝜔2 {3𝐻3100
+ 2 (𝑐1 + 2𝑐2)𝐻2200 + 3𝑐2 (2𝑐1 + 𝑐2)𝐻1300
+ 12𝑐1𝑐22𝐻0400} + 3𝑎1𝑏1𝑎322𝜔22 {𝐻3100 + 2𝑐2𝐻2200
+ 3𝑐22𝐻1300 + 4𝑐32𝐻0400} − 95 (𝑥0120𝑦0012
+ 𝑥0012𝑦0120) − 1𝜔2 (𝑦1011𝑦1002 − 𝑥1011𝑦1002)
+ 4𝜔22 (𝑥0201𝑦1002 − 𝑥1002𝑦0201) + 32 (𝑥0111𝑦0003
− 𝑥0003𝑦0111)

(54)

Now, using the transformation (35) and assuming that𝑥21003 + 𝑦21003 ̸= 0, the Hamiltonian reduces to the form

𝐻 = 32𝜔2 (𝑄021 + 𝑃021 ) − 𝜔22 (𝑄022 + 𝑃022 ){14𝐶02 (𝑄021
+ 𝑃021 ) + 𝑐114 (𝑄021 + 𝑃021 ) (𝑄022 + 𝑃022 )
+ 𝜔2√312 {𝑃02 (𝑃022 − 3𝑄022 ) (𝑥1003𝑃01 − 𝑦1003𝑄01)
+ 𝑄02 (𝑄022 − 3𝑃022 ) (𝑦1003𝑃01 + 𝑥0003𝑄01)
+ 𝑂 |𝑄|5)}

(55)

Applying transformation in polar coordinates given by (39)
where 𝜃2 = 0 and 𝜃1 is given by the relations:

sin 𝜃1 = 𝑥1003
(𝑥21003 + 𝑦21003)1/2 ,

cos 𝜃1 = −𝑦1003
(𝑥21003 + 𝑦21003)1/2 .

(56)
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Hence, the normalizedHamiltonian in the polar form is given
by

𝐻 = 3𝜔2𝑟1 − 𝜔2𝑟2 + [𝐶20𝑟21 + 𝐶11𝑟1𝑟2𝐶02𝑟22
⋅ 𝜔23 {3 (𝑥21003 + 𝑦21003)}1/2

⋅ 𝑟2 (𝑟1𝑟2)1/2 . sin (01 + 302) + 𝑂{(𝑟1 + 𝑟2)5/2}]
(57)

Assume

𝑎 = 󵄨󵄨󵄨󵄨𝐶20 + 3𝐶11 + 9𝐶02󵄨󵄨󵄨󵄨
and 𝑑 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨3𝜔2 (𝑥21003 + 𝑦21003)1/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(58)

Now, for the Hamiltonian of the form equation (63), the
stability is decided based on the following theorem:

(1) If for aHamiltonian of perturbedmotion, the inequal-
ity

(𝑥21003 + 𝑦21003)1/2 ̸= 0, and d > 𝑎 (59)

is simultaneously satisfied, then the equilibrium point
is unstable.

If the inequality signs in (59) change its position and the
Hamiltonian contains no terms of the order higher than the
fourth, then the equilibrium point is stable.

(2) If the conditions (𝑥21003 + 𝑦21003)1/2 = 0, 𝐶20 + 3𝐶11 +9𝐶02 = 0 are simultaneously satisfied, then the
equilibrium point is stable. But if (𝑥21003 + 𝑦21003)1/2 =0, 𝐶20 + 3𝐶11 + 9𝐶02 ̸= 0, then the stability will
be decided by higher order terms than the fourth
involving further resonances. It needs separate inves-
tigation.

The values of 𝐶20, 𝐶11, and 𝐶02 for 𝜔1 = 3𝜔2 are given as

𝐶20 = 272 𝜔22𝑎41𝑏41𝐻0400 + 16𝜔22 {𝑎
4
1 (𝐻4000 + 𝑐1𝐻3100

+ 𝑐21𝐻2200 + 𝑐31𝐻1300 + 𝑐41𝐻0400)} + 12 {𝑎41𝑏21 (𝐻2200
+ 3𝑐1𝐻1300 + 6𝑐21𝐻0400)} − 278 𝜔22 (𝑥20030 + 𝑦20030)
− 32 (𝑥21020 + 𝑦21020) − 910 (𝑥20120 + 𝑦20120)
+ 12 (𝑥21011 + 𝑦21011) + 9𝜔2210 (𝑥20021 + 𝑦20201) ,

𝐶11 = 18𝜔22𝑎21𝑏21𝐻0400 + 𝑎21𝑎223𝜔2 {6𝐻4000 + 3 (𝑐1 + 𝑐2)
⋅ 𝐻3100 + (𝑐21 + 4𝑐1𝑐2 + 𝑐22)𝐻2200 + 3𝑐1𝑐2 (𝑐1 + 𝑐2)
⋅ 𝐻1300 + 6𝑐21 𝑐22𝐻0400} 3𝑎22𝑎21𝑏21 (𝐻2200 + 3𝑐2𝐻1300
+ 6𝑐22𝐻0400) + 𝑎22𝑎21𝑏223 {𝐻2200 + 3𝑐1𝐻1300
+ 6𝑐21𝐻0400} − 23 (𝑥21002 + 𝑦21002) + 3𝜔2210 (𝑥20012
+ 𝑦20012) − 9𝜔214 (𝑥20021 + 𝑦20021) − 185 (𝑥20120
+ 𝑦20120) + 2 (𝑥0111𝑥1020 + 𝑦0111𝑦1020)
− 4𝜔2 (𝑥0111𝑥1020 + 𝑦0111𝑦1020) ,

𝐶02 = 32𝜔22𝑎22𝑏22𝐻0400 +
3𝑎223𝜔22 (𝐻4000 + 𝑐2𝐻3100

+ 𝑐22𝐻2200 + 𝑐32𝐻1300 + 𝑐42𝐻0400) + 𝑎42𝑏222 (𝐻2200
+ 3𝑐2𝐻1300 + 6𝑐22𝐻0400) + 3𝜔228 (𝑥20003 + 𝑦21002)
+ 6𝜔2 (𝑥

2
0201 + 𝑦20201) − (𝑥21002 + 𝑦21002)6

− (𝑥20111 + 𝑦20111)2 − 3𝜔2240 (𝑥20012 + 𝑦20012) .
(60)

7. Stability in Nonresonance Case

Equation (30) gives the coefficient of 𝑆3 in terms of coeffi-
cients of 𝐻3 reducing 𝐻3 = 0. Also 𝑆4 in (42) and (44) is
chosen, so that 𝐻4 retains only terms in normal form (34).
Now 𝑆3 can be expanded as

𝑆3 = 𝑔0003𝑃32 + 𝑔0030𝑃31 + 𝑔0300𝑄32 + 𝑔3000𝑄31
+ 𝑞2100𝑄21𝑄2 + 𝑔2010𝑄21𝑃1 + 𝑔2001𝑄22𝑃2
+ 𝑔1200𝑄22𝑄1 + 𝑔0210𝑄22𝑃1 + 𝑔0201𝑄22𝑃2
+ 𝑔1020𝑃21𝑄1 + 𝑔0120𝑃21𝑄2 + 𝑔0021𝑃21𝑃2
+ 𝑔1002𝑃22𝑄1 + 𝑔0102𝑃22𝑄2 + 𝑔0021𝑃22𝑃1
+ 𝑔1110𝑄1𝑄2𝑃1 + 𝑔1101𝑄1𝑄2𝑃2 + 𝑔1011𝑄1𝑃1𝑃2
+ 𝑔0111𝑄2𝑃1𝑃2.

(61)
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Substituting the required values in (42), the Hamiltonian in
the nonresonant case reduces to the form (57), where the
coefficients 𝐶20, 𝐶11, 𝐶02 are given as

𝐶20 = ℎ∗2020 − 3𝜄𝜔1 ℎ
󸀠
3000ℎ󸀠0030 − 3𝜄𝜔1 ℎ

󸀠
2010ℎ󸀠1020

+ 1𝜄 (2𝜔1 − 𝜔2)ℎ
󸀠
0120ℎ󸀠2001 − 1𝜄𝜔2 ℎ

󸀠
1110ℎ󸀠1011

− 1𝜄 (2𝜔1 + 𝜔2)ℎ
󸀠
2100ℎ󸀠0021,

𝐶11 = ℎ∗1111 + 4𝜄 (𝜔1 − 2𝜔2)ℎ
󸀠
0210ℎ󸀠1002

− 4𝜄 (𝜔1 + 2𝜔2)ℎ
󸀠
1200ℎ󸀠0012

− 4𝜄 (𝜔1 − 2𝜔2)ℎ
󸀠
2100ℎ󸀠0021

− 4𝜄 (2𝜔1 − 𝜔2)ℎ
󸀠
2001ℎ󸀠0120 − 2𝜄𝜔1 ℎ

󸀠
2010ℎ󸀠0111

− 2𝜄𝜔1 ℎ
󸀠
1101ℎ󸀠1020 − 2𝜄𝜔2 ℎ

󸀠
0201ℎ󸀠1011

− 2𝜄𝜔2 ℎ
󸀠
1110ℎ󸀠0102,

𝐶02 = ℎ∗0202 − 3𝜄𝜔2 ℎ
󸀠
0300ℎ󸀠0003 − 3𝜄𝜔2 ℎ

󸀠
0102ℎ󸀠0201

− 1𝜄𝜔1 − 2𝜔2 ℎ
󸀠
1002ℎ󸀠0210 − 1𝜄𝜔1 ℎ

󸀠
1101ℎ󸀠0111

− 1𝜄𝜔1 ℎ
󸀠
1200ℎ󸀠0012.

(62)

Here,

ℎ∗2020 = −12ℎ󸀠2020 − 32𝜔21 ℎ
󸀠
4000 − 32𝜔21ℎ󸀠0040,

ℎ∗1111 = 𝜔1𝜔2ℎ󸀠0022 + 1𝜔1𝜔2 ℎ
󸀠
2200 + 𝜔1𝜔2 ℎ

󸀠
0220 + 𝜔1𝜔2 ℎ

󸀠
2002,

ℎ∗0202 = − 32𝜔22 ℎ
󸀠
0004 − 32𝜔22 ℎ

󸀠
0400 − 12ℎ󸀠0202.

(63)

The values of ℎ󸀠𝛼1𝛼2𝛾1𝛾2 are defined in the Appendix. Now if we
define

𝐷 = 𝐶20𝜔22 + 𝐶11𝜔1𝜔2 + 𝐶02𝜔21 (64)

the stability in this case is analyzed by applying the KAM for
the normalizedHamiltonian (32).Thefirst two conditions are
satisfied except for the resonance cases, which is dealt with in
a separate section.

8. Numerical Exploration

To numerically investigate the results obtained in the study in
the previous three sections, the values (𝑥21002 + 𝑦21002) for the
system with different values of 𝜇 is tabulated in Table 1. But it
is observed that the value of 𝑦21002 + 𝑥21002 ̸= 0 for the various
values of perturbing factors considered. Hence, the motion
is unstable for small values of eccentricity 𝑒 in third order
resonance. Similarly, for studying the fourth order resonance
case, the values of 𝑎 and 𝑑 are presented in Table 2. It is found
that the inequalities 𝑑 < 𝑎 and 𝑑 > 𝑎 are satisfied giving
rise to unstable and stable motion depending on the values of𝜇 and for small values of 𝑒. For verifying the third condition
obtaining the values of𝐷. It is clear fromTable 3 that the value
of𝐷 ̸= 0 for all values of 𝑞1, 𝑞2, 𝐴1, 𝐴2, 𝐴2 and 𝐴3 and 𝐷 < 0
consistently; that is, any possibility that within the assumed
values 𝐷 will vanish at any point does not arise. Hence, the
equilibrium points are stable.

Motion of an infinitesimal of assumed oblateness around
two binary systems, Luyten 726 and Sirius, has also been
explored numerically, by evaluating the deciding factors
discussed in the previous sections. The data related to the
two binary systems used in the calculation are presented in
Table 4.

For both the binary systems the oblateness of both the
primaries are assumed to be 0.001, whereas radiation pressure𝑞1 = 0.99 and 𝑞2 = 0.98 and values of all the deciding factors
are given in Table 5.

9. Discussion and Conclusion

The nonlinear stability of the elliptical restricted three-body
problem with radiating and oblate primaries and infinites-
imal satellite has been analyzed. The character of motion
is analyzed in the presence as well as in the absence of
resonance. If𝑥21002+𝑦21002 = 0 and𝐶20+𝐶11+4𝐶02 ̸= 0 then, by
virtue ofMarkeev’s theorem (Markeev, 1967), the equilibrium
is stable for third order resonance corresponding to𝜔1 = 2𝜔2.
But, it is observed that for no value of 𝑞1, 𝑞2, 𝐴1, 𝐴2, and 𝐴3,
the value of 𝑥21002 + 𝑦21002 = 0, which is clear from Table 2.
Hence, the motion is unstable for small values of eccentricity
“e” in third order resonance.

In the resonance cases of fourth order corresponding to𝜔1 = 3𝜔2, for different values of 𝑞1, 𝑞2, 𝐴1, 𝐴2, and 𝐴3, the
values of a and d defined by (58) have been calculated. It is
found that the inequality 𝑑 < 𝑎 is satisfied giving rise to stable
motion depending on the values of 𝑞1, 𝑞2,𝐴1, 𝐴2, and𝐴3 and
for small values if e is as given in Table 3.

On the other hand, when resonance is not present the
values of term D, defined by (64),𝐷 ̸= 0, which is clear from
Table 1. Thus, it can be concluded that the motion is stable in
nonresonance case by the use of KAM theorem.

It is observed that for both the binary systems the
movement of infinitesimal in 1:2 resonance shows instable
characteristic. However, system Luyten-726 shows stable
behavior for 1:3 resonance whereas the values of 𝑎 and 𝑑 in
the case of binary system Sirius suggest that the system will
be instable even in the fourth order resonance. In case of
nonresonant movement, it was found that on changing the
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Table 1: Values of 𝑥21002 + 𝑦21002 for third order resonance case.
𝜇 e 𝐴1 𝐴2 𝐴3 𝛽1 𝛽2 𝛼 𝑥1002 𝑦1002 𝑥21002 + 𝑦21002
0.01 0.02 0.001 0.001 0.001 0.0002 0.0001 0.0001 -0.41720 -6.19915 38.6035
0.02 0.02 0.001 0.001 0.001 0.0002 0.0002 0.0001 -0.69421 -4.84432 23.9494
0.03 0.02 0.0001 0.0001 0.0001 0.002 0.001 0.001 -1.1825 -3.96232 17.0983
0.0001 0.016 0.001 0.001 0.001 0.0002 0.0001 0.001 -200.227 -975.62 991925
0.000004 0.04 0.001 0.001 0.001 0.0002 0.00001 0.0001 -2665.54 -10322.6 1.13661×108

Table 2: Values of 𝑎 and 𝑑 for fourth order resonance case.

𝜇 e 𝐴1 𝐴2 𝐴3 𝛽1 𝛽2 𝛼 𝑎 𝑑 Nature
0.01 0.02 0.001 0.001 0.001 0.0002 0.0001 0.0001 1.15522×104 2.86723×103 Stable
0.02 0.02 0.001 0.001 0.001 0.0002 0.0002 0.0001 2.15443×106 2.22344×105 Stable
0.03 0.02 0.0001 0.0001 0.0001 0.002 0.001 0.001 2.33605×106 1.01561×106 Stable
0.0001 0.016 0.001 0.001 0.001 0.0002 0.0001 0.001 2.53384×103 1.26845×103 Stable

Table 3: Values of D for nonresonance case.

𝜇 e 𝐴1 𝐴2 𝐴3 𝛽1 𝛽2 𝛼 𝜔1 𝜔2 D
0.01 0.02 0.001 0.001 0.001 0.0002 0.0001 0.0001 0.697033 0.208148 -109.123
0.02 0.02 0.001 0.001 0.001 0.0002 0.0002 0.0001 0.68135 0.205552 -49.9179
0.03 0.02 0.0001 0.0001 0.0001 0.002 0.001 0.001 0.568721 0.39769 -169.405
0.0001 0.016 0.001 0.001 0.001 0.0002 0.0001 0.001 0.664444 0.020441 -30022.702
0.000004 0.04 0.001 0.001 0.001 0.0002 0.00001 0.0001 0.677762 0.003967 -2.27342×104

Table 4: Data related to binary systems.

Binary System 𝑀1(𝑀⨀) 𝑀2(𝑀⨀) 𝑎(𝐴𝑈) e
Luyten-726 0.101 0.99 1.95 0.62
Sirius 2.15 1.05 7.5 0.59

Table 5

Binary System 𝐴3 𝑥21002 + 𝑦21002 𝑎 𝑑 𝐷
Luyten-726

0 1.33 × 108 4.30 × 1010 1.80 × 1010 1.05 × 108
0.001 1.33 × 107 4.01 × 1010 2.00 × 1010 −8.48 × 1010
0.01 6.11 × 107 3.46 × 1010 2.12 × 1010 9.28 × 108

Sirius
0 5.03 × 108 4.67 × 108 1.81 × 1010 −1.83 × 1010

0.001 6.45 × 1010 3.34 × 108 2.00 × 1010 1.04 × 109
0.01 4.88 × 108 5.20 × 108 2.12 × 1010 −1.94 × 1010

value of 𝐴3, there is a sign change for both the systems, so
there may exist certain values of 𝐴3 for which 𝐷 vanishes.
Other than those values, the system shows stable behavior in
nonresonant case.

Appendix

The values of ℎ𝛼1𝛼2𝛾1𝛾2 in terms of (𝑞𝑖, 𝑝𝑖) are given as

ℎ0030 = 𝑎31𝑏31𝐻0300,
ℎ3000 = 𝑎31 (𝐻3000 + 𝑐1𝐻2100 + 𝑐21𝐻1200 + 𝑐31𝐻0300) ,
ℎ1020 = 𝑎31𝑏21 (𝐻1200 + 3𝑐1𝐻0300) ,

ℎ2010 = 𝑎31𝑏1 (𝐻2100 + 2𝑐1𝐻1200 + 3𝑐21𝐻0300) ,
ℎ2001 = −𝑎21𝑎2𝑏2 (𝐻2100 + 2𝑐1𝐻1200 + 3𝑐21𝐻0300) ,
ℎ1011 = −2𝑎21𝑎2𝑏1𝑏2 (𝐻1200 + 3𝑐1𝐻0300) ,
ℎ1110 = 2𝑎21𝑎2𝑏1 {𝐻2100 + (𝑐1 + 𝑐2)𝐻1200

+ 3𝑐1𝑐2𝐻0300} ,
ℎ0021 = −3𝑎21𝑏21𝑎2𝑏2𝐻0300,
ℎ2100 = 𝑎21𝑎2 {3𝐻3000 + (2𝑐1 + 𝑐2)𝐻2100

+ 𝑐1 (𝑐1 + 𝑐2)𝐻1200 + 3𝑐21 𝑐2𝐻0300} ,
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ℎ1002 = 𝑎1𝑎22𝑏22 (𝐻1200 + 3𝑐1𝐻0300) ,
ℎ0210 = 𝑎1𝑎22𝑏1 {𝐻2100 + 2𝑐2𝐻1200 + 3𝑐22𝐻0300} ,
ℎ0012 = 3𝑎1𝑎22𝑏1𝑏22𝐻0300,
ℎ1200 = 𝑎1𝑎22 {3𝐻3000 + (𝑐1 + 2𝑐2)𝐻2100

+ 𝑐2 (2𝑐1 + 2𝑐2)𝐻1200 + 3𝑐1𝑐22𝐻0300} ,
ℎ0120 = 𝑎2𝑎21𝑏21 (𝐻1200 + 3𝑐2𝐻0300)
ℎ0111 = −2𝑎22𝑎1𝑏1𝑏2 (𝐻1200 + 3𝑐2𝐻0300) ,
ℎ1101 = −2𝑎22𝑎1𝑏2 {𝐻2100 + (𝑐1 + 𝑐2)𝐻1200

+ 3𝑐1𝑐2𝐻0300} ,
ℎ0201 = −𝑎32𝑏2 (𝐻2100 + 2𝑐2𝐻1200 + 3𝑐22𝐻0300) ,
ℎ0102 = 𝑎32𝑏22 (𝐻1200 + 3𝑐2𝐻0300)
ℎ0003 = −𝑎32𝑏32𝐻0300,
ℎ0300 = 𝑎32 (𝐻3000 + 𝑐2𝐻2100 + 𝑐22𝐻1200 + 𝑐32𝐻0300) ,
ℎ0040 = 𝑎41𝑏41𝐻0400,
ℎ4000 = 𝑎41 (𝐻4000 + 𝑐1𝐻3100 + 𝑐21𝐻2200 + 𝑐31𝐻1300

+ 𝑐41𝐻0400) ,
ℎ2020 = 𝑎41𝑏21 (𝐻2200 + 3𝑐1𝐻1300 + 6𝑐21𝐻0400) ,
ℎ0022 = 6𝑎21𝑏21𝑎22𝑏22𝐻0400
ℎ2200 = 𝑎21𝑎22 {6𝐻4000 + 3 (𝑐1 + 𝑐2)𝐻3100

+ (𝑐21 + 4𝑐1𝑐2 + 𝑐22)𝐻2200 + 3𝑐1𝑐2 (𝑐1 + 𝑐2)𝐻1300
+ 6𝑐21 𝑐22𝐻0400} ,

ℎ0220 = 𝑎21𝑎22𝑏21 (𝐻2200 + 3𝑐2𝐻1300 + 6𝑐22𝐻0400) ,
ℎ2002 = 𝑎21𝑎22𝑏22 (𝐻2200 + 3𝑐1𝐻1300 + 6𝑐21𝐻0400) ,
ℎ0004 = 𝑎42𝑏42𝐻0400,
ℎ0400 = 𝑎42 (𝐻4000 + 𝑐2𝐻3100 + 𝑐22𝐻2200 + 𝑐32𝐻1300

+ 𝑐42𝐻0400) ,
ℎ0202 = 𝑎42𝑏22 (𝐻2200 + 3𝑐2𝐻3100 + 6𝑐22𝐻0400) ,
ℎ0013 = −4𝑎1𝑎32𝑏1𝑏32𝐻0400,
ℎ1300 = 𝑎1𝑎32 {4𝐻4000 + (𝑐1 + 3𝑐2)𝐻3100 + 4𝑐1𝑐32𝐻0400

+ 2𝑐2 (𝑐1 + 𝑐2)𝐻2200 + 𝑐22 (3𝑐1 + 𝑐2)𝐻1300} ,

ℎ1102 = 𝑎1𝑎32𝑏22 {2𝐻2200 + 3 (𝑐1 + 𝑐2)𝐻1300
+ 12𝑐1𝑐2𝐻0400} ,

ℎ0211 = −2𝑎1𝑎32𝑏1𝑏2 (𝐻2200 + 3𝑐2𝐻3100 + 6𝑐22𝐻0400) ,
ℎ0112 = 3𝑎1𝑎32𝑏1𝑏22 (𝐻1300 + 4𝑐2𝐻0400)
ℎ1003 = −𝑎1𝑎32𝑏32 (𝐻1300 + 4𝑐1𝐻0400) ,
ℎ1102 = −𝑎1𝑎32𝑏2 {3𝐻3100 + 2 (𝑐1 + 𝑐2)𝐻2200

+ 3𝑐2 (2𝑐1 + 𝑐2)𝐻1300 + 12𝑐1𝑐22𝐻0400} ,
ℎ0310 = 𝑎1𝑎32𝑏1 {𝐻3100 + 2𝑐2𝐻2200 + 3𝑐22𝐻1300

+ 4𝑐32𝐻0400} ,
(A.1)

The coefficients of ℎ󸀠𝛼1𝛼2𝛾1𝛾2 are given as

ℎ󸀠0030 = (ℎ0030 − ℎ2010𝜔21 ) + 𝑖(ℎ1020𝜔1 − ℎ3000𝜔31 ) ,
= 𝑥0030 + 𝑖𝑦0030,
ℎ󸀠1020 = (−13 (ℎ1020 − 32 ℎ3000𝜔21 )

+ 𝑖 (3𝜔12 ℎ0030 − 12𝜔1 ℎ2011) ,
= 𝑥1020 + 𝑖𝑦1020,
ℎ󸀠1020 = (−13 (ℎ1020 − 32 ℎ3000𝜔21 )

+ 𝑖 (3𝜔12 ℎ0030 − 12𝜔1 ℎ2011) ,
= 𝑥1020 + 𝑖𝑦1020,
ℎ󸀠0120 = (−𝜔22 (ℎ0021 + ℎ11102𝜔1 + 𝜔22𝜔21 ℎ2001)

+ 𝑖 (−12ℎ0120 − 𝜔22𝜔1 ℎ1011 +
ℎ2100𝜔1𝜔2) ,

= 𝑥1011 + 𝑖𝑦1011,
ℎ󸀠0120 = (−𝜔22 (ℎ0021 + ℎ11102𝜔1 + 𝜔22𝜔21 ℎ2001)

+ 𝑖 (−12ℎ0120 − 𝜔22𝜔1 ℎ1011 +
ℎ2100𝜔1𝜔2)

= 𝑥0120 + 𝑖𝑦0120,
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ℎ󸀠1110 = (−𝜔1ℎ0021 − ℎ2001𝜔1 ) + 𝑖 (𝜔1 ℎ0120𝜔2 + ℎ2100𝜔1𝜔2)
= 𝑥1011 + 𝑖𝑦1011,
ℎ󸀠0021 = (ℎ0120𝜔2 − ℎ1011𝜔1 − ℎ2100𝜔21𝜔2) + 𝑖(ℎ0021 + ℎ1110𝜔1𝜔2

− ℎ2001𝜔21 )
= 𝑥0021 + 𝑖𝑦0021,
ℎ󸀠1002 = (− 𝜔12𝜔2 (ℎ1011 − ℎ10022 + ℎ12002𝜔22 )

+ 𝑖 (−𝜔1 ℎ00122 − 𝜔12𝜔22 ℎ0210 +
ℎ11012𝜔2 )

= 𝑥1002 + 𝑖𝑦1002,
ℎ󸀠0012 = (−ℎ0012 + ℎ0210𝜔22 − ℎ1101𝜔1𝜔2) + 𝑖 (ℎ0111𝜔2

− ℎ1002𝜔1 + ℎ1200𝜔1𝜔22)
= 𝑥0012 + 𝑖𝑦0012
ℎ󸀠0111 = (−𝜔2𝜔1 (ℎ1002 +

ℎ1200𝜔1𝜔2) + 𝑖 (−𝜔2ℎ0012
− ℎ0210𝜔2 )

= 𝑥0111 + 𝑖𝑦0111,
ℎ󸀠0210 = (−𝜔24 (ℎ0120 − 34𝜔2 ℎ0300) + 𝑖 (34𝜔22ℎ0003

+ ℎ02014 )
= 𝑥0201 + 𝑖𝑦0201
ℎ󸀠0003 = (−ℎ0120𝜔2 + ℎ0300𝜔32 ) + 𝑖 (−ℎ0003 + ℎ0201𝜔22 )
= 𝑥0003 + 𝑖𝑦0003
ℎ󸀠3000 = −𝜔318 [(ℎ1020𝜔1 − ℎ3000𝜔31 )

+ 𝑖 (ℎ0030 − ℎ2010𝜔21 )]

= −𝜔318 [𝑦0030 + 𝑖𝑥0030]
ℎ󸀠0300 = −𝜔328 [(ℎ0201𝜔22 − ℎ0003)

+ 𝑖 (ℎ0300𝜔32 − ℎ0102𝜔2 )]

= −𝜔328 [𝑦0003 + 𝑖𝑥0003]
ℎ󸀠2010 = −𝜔12 [(3𝜔12 ℎ0030 + ℎ02102𝜔1 )

+ 𝑖 (−ℎ10203 − 3ℎ30002𝜔21 )]
= 𝜔12 [𝑦1020 + 𝑖𝑥1020]
ℎ󸀠2001 = − 𝜔212𝜔2 [(−ℎ01202 − 𝜔22𝜔1 ℎ1011 +

12𝜔21 ℎ2100)
+ 𝑖 (−𝜔22 ℎ0021 + ℎ11102𝜔1 + 𝜔22𝜔21 ℎ2001)]

= 𝜔212𝜔2 [𝑦0120 + 𝑖𝑥0120]
ℎ󸀠2100 = −𝜔21𝜔28 [(−ℎ0021 + ℎ1110𝜔1𝜔2 −

ℎ2001𝜔21 )
+ 𝑖 (ℎ0120𝜔2 − ℎ1011𝜔1 − ℎ2100𝜔21𝜔2)]

= 𝜔21𝜔28 [𝑦0021 + 𝑖𝑥0021]
ℎ󸀠0210 = − 𝜔222𝜔1 [(−𝜔12 ℎ0012 + 𝜔12𝜔22 ℎ0210 +

ℎ11012𝜔2 )
+ 𝑖 (− 𝜔12𝜔2 ℎ0111 −

ℎ10022 + ℎ12002𝜔22 )]

= − 𝜔222𝜔1 [𝑦0021 + 𝑖𝑥0021]
ℎ󸀠1200 = −𝜔1𝜔228 [(ℎ0111𝜔2 − ℎ1002𝜔1 + ℎ1200𝜔1𝜔22)

+ 𝑖 (−ℎ0012 + ℎ0210𝜔22 − ℎ1101𝜔1𝜔2)]

= −𝜔1𝜔228 [𝑦0012 + 𝑖𝑥0012]
ℎ󸀠1101 = −𝜔12 [(−𝜔2ℎ0012 − ℎ0210𝜔2 )

+ 𝑖 (𝜔2𝜔1 ℎ1002 +
ℎ1200𝜔1𝜔2)]

= 𝜔12 [𝑦0111 + 𝑖𝑥0111]
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ℎ󸀠1110 = 𝜔22 [(𝜔1𝜔2 ℎ0120 +
ℎ2100𝜔1𝜔2)

+ 𝑖 (−𝜔1ℎ0021 − ℎ2001𝜔1 )]
= 𝜔22 [𝑦1011 + 𝑖𝑥1011]
ℎ󸀠0120 = 2𝜔2 [(

34𝜔22ℎ0003 + ℎ02014 )
+ 𝑖 (𝜔2 ℎ01024 − 𝜔2ℎ0300)]

= 2𝜔2 [𝑦0201 + 𝑖𝑥0201]
(A.2)
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