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In this article, we analyze Bianchi type–II, VIII, and IX spatially homogeneous and anisotropic space-times in the background of
the Brans–Dicke theory of gravity within the framework of viscous holographic dark energy. To solve the feld equations, we have
used the relation between themetric potentials asR � Sn and the relation between the scalar feld ϕ and the scale factor a as ϕ � am.
Also, we have discussed some of the dynamical parameters of the obtainedmodels, such as the deceleration parameter (q), the jerk
parameter ( j), the EoS parameter (ωvhde), the density parameter (Ωvhde), Om-diagnostic, squared speed of sound (v2s ), EoS plane
(ωvhde − ωvhde

′), and statefnder plane (r − s) through graphical representation, which are signifcant in the discussion of
cosmology. Furthermore, all the models obtained and graphically presented shown an expanding and accelerating Universe,
which is in better agreement with the latest experimental data. Te viscous holographic dark energy models are compatible with
explaining the present cosmic accelerated expansion.

1. Introduction

In 1905, the theory of Special Relativity (SR) [1–3] was put
forward by A. Einstein, which shown the genesis of ab-
solute space and absolute time by surpassing the single 4D
space-time, which had only an absolute meaning [4]. Te
perception that the gravitational feld in a small neigh-
borhood of space-time is incomprehensible from a proper
acceleration in the frame of reference (principle of
equivalence), has taken an upturn from Special Relativity
(SR) to General Relativity (GR), where the gravitation has
been adjoined to SR (holds true only in the absence of
gravitation), which eventually gives a curved space-time, as
the SR is generalized for the accelerating observers. As an
outcome of Mach’s limitation of absolute space, as Einstein
had anticipated, the idea of general covariance (the absence
of an advantaged frame of reference) develops [5] and by
default obeysMach’s principle. Apparently, this was not the
case, since various anti-Machian elements were discovered
in GR.

Although GR is undeniably an appealing theory [6–10],
it fails to ofer the ultimate interpretation of gravity (a
paradigm of a perfect theory), disregarding all the advan-
tages. Te theory has several conceptual issues, most of
which are often overlooked, in addition to its much-dis-
cussed incompatibility with quantummechanics. If in space,
consistent with the same old epitome, where 95% of the
overall constituent material continues to be missing, its
miles an intimidating sign for us to doubt back to the very
foundations of the theory. A signifcant perspective with a
prominent context of alternative theories of gravitation
develops from a critical study of Mach’s principle, the
equivalence principle, dark energy (DE) and dark matter
(DM), and so on. Over the years, alternative theories of
gravity have continued to draw considerable interest, leading
to the discussion of numerous theories. Tese theories of-
fered the frst potentially feasible alternatives to the con-
ventional general relativistic theory of gravity as proposed by
Einstein. One of them is scalar-tensor theories of gravitation,
where the dynamical DE component is introduced in the
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right-hand side of the Einstein feld equations, and the other
is modifed theories of gravitation, where the left-hand side
of the Einstein feld equations are modifed. Scalar-tensor
theories have emerged as some of the most well-established
and well-studied alternatives to conservative gravity theories
in the literature.

Te Brans–Dicke theory (BDT) [11] is the most natural
choice as the scalar-tensor generalization of GR, which can
be considered as a pioneer in the study of scalar-tensor
theories, and the inclusion of Mach’s Principle led to the
advent of this theory. Tis can be called the frst-ever theory
of gravity, where the metric tensor represents the dynamics
of space-time and the scalar feld describes the dynamics of
gravity. Te BDTalso gives a fair description of the early era,
as well as the present phases of cosmic evolution that gives a
proper explanation for the Universe’s accelerated expansion
[12], as this theory justifes the experiments in the Solar
System domain [13]. Te gravitational constant G in this
theory is to be replaced with 1/ϕ , where ϕ purely depends on
the time and is coupled to gravity with a coupling parameter
ω. It is evident in the literature that GR can be retrieved from
the BDT if ϕ is a constant and ω⟶∞ [14, 15]. As and
when the coupling constant ω takes huge values greater than
500, GR can be deduced from BDT [16], accounting for the
recent Universe’s expansion and accommodating the ob-
servational data as well [17–19]. Tere is a prominent po-
sition for BDT among theories of gravitation because it is
capable of accounting for the properties of cosmic expansion
since the early phases of infation [20]. A generalized (or
modifed) version of BDT [21–23] supports the notion that
the parameter ω depends on the scalar feld ϕ. Several
models, based on the BDT, have been perfectly able to
explain the properties of the expanding Universe with the
help of various cosmological parameters [24–27]. Te
models based on the generalized BDT have an extremely low
value for the coupling parameter, unaccommodating the
fndings during the implementation of the previous versions
of the theory [20, 28–30]. A recent study in the BDT [31] has
been made in the FRW models with a varying Λ-term and a
dynamic deceleration parameter. Also, it has been recently
justifed that for huge values of ω, the generalization of BDT
can explain the Universe’s accelerated expansion with the
interaction between matter and a scalar feld [32].

Te anisotropy and the spatial homogeneity are the two
major characterizations for the Bianchi type (BT) cosmo-
logical models. Tere are nine diferent models altogether,
and these have been classifed into two classes [33]. Te
class-A represents the BTmodels I, II, VII, VIII, and IX, and
class-B consists of BTmodels III, IV, V, VI, and VII. Tese
models are known to describe the evolution of the Universe’s
early stages in the presence of various physical distributions
of matter, thereby explaining the structure and space
properties of all the Einstein feld conditions along with
cosmological arrangements, and thus, rewriting the Einstein
equations in the Hamiltonian form. In this regard, Misner
[34, 35] and other authors have focused much of their eforts
on fabricating a fne Hamiltonian system. In spite of this,
these Hamiltonian forms could not be utilized to prove the
collapse speculations by Lin and Wald [36, 37]. Tese BT

models uncover the magnitude of anisotropy in the back-
ground radiation and provide a pragmatic picture of the past
eras in the history of the cosmos. Furthermore, the cos-
mological problem of Einstein feld equations from a the-
oretical perspective can be addressed well through the
anisotropic models, as they tend to have greater generality
when compared with isotropic solutions. In particular, we
are involved in studying the BT-II, VIII, and IX cosmological
models in the presence of viscous holographic dark energy
(VHDE) in BDT. Diverse aspects of the BT-II, VIII, and IX
cosmological models have been explored by many authors
[38–41].

Present-time experimental and theoretical supernovae
type Ia (SNeIa) observations [42, 43], cosmic microwave
background radiation (CMBR) [44, 45], and large-scale
structures [45, 46] provide the most enthralling evidence for
the same. Many models of the Universe have been studied
assuming the existence of a mysterious component, so-called
DE, which generates huge negative pressure, imparting the
mechanism for the accelerated cosmic expansion. Planck’s
current measurements indicate that 68.3% of the Universe’s
total energy content is in the form of DE. In spite of the
success of standard cosmology, it is known that there are a
few unsolvable problems that include the search for ac-
commodating DE candidates, in which researches found the
cosmological constant as a primary candidate for DE that
not only describes the phenomenon of DE but also the ``fne
tuning” and “cosmic coincidence”. For this reason, various
dynamical DE models, which include a family of scalar felds
such as quintessence [47–50], phantom [51–54], quintom
[55, 56], tachyon [57–59], K-essence [60], and various
Chaplygin gas models like generalized Chaplygin gas, ex-
tended Chaplygin gas, and modifed Chaplygin gas [61–75],
have been developed.

Way back then, viscosity played an infuential role in the
study of cosmology, which has been extended in recent years
to include the study of an accelerating Universe and has
acquired an immense interest in present times for numerous
reasons. Te idea of perfect fuid in the study of cosmic
models has shown no dissipation and helps in the study of
cosmic evolution. In the existent scenario, the study of
imperfect fuid models has been suggested by introducing
the concept of viscosity. In particular, the bulk viscous fuids
that are included in the discourse of infation are competent
for explaining late-time cosmic acceleration. Te increase in
the viscosity is attributed to a Universe that is expanding at a
rapid rate and can be understood as an accumulation of
states that are out of thermal equilibrium in a small fraction
of time. For these obvious reasons, the concept of viscosity
has gained popularity in the study of space.

Te holographic dark energy (HDE) models have seen
success in recent years, with many considering them as the
appropriate candidates to explain the problems of modern
cosmology. Te concept of HDE was initially introduced by
Li [76] in 2004 with respect to the holographic principle
[77–83] to elucidate the late-time Universe’s accelerated
expansion.Te holographic principle, as stated by black hole
thermodynamics [84, 85], says that a hologram can be
completely represented as a volume of space, which agrees

2 Advances in Astronomy



with a theory related to the boundary of that space [86] and
the AdS/CFT (anti-de Sitter/Conformal feld theory) cor-
respondence, as it can be observed in the seminal reference
[87]. In [76], a holographic principle-based cosmic accel-
eration model was developed for the frst time. As such, the
reduced Plankmass and a cosmological length scale, taken as
the future event horizon of the Universe, are the two physical
quantities of the boundary of the Universe on which a DE
model relies on. As a consequence of an ultraviolet cutof
(Λ) for a region of size L, where the mass of a black hole of
the similar size is not exceeded by the total energy, HDE
density can be stated as ρΛ � 3C2MPl/L2, with C being a
constant, MPl � 1/

����
8πG

√
being the reduced Planck mass,

and G being the Newtonian gravitational constant. Te
holographic principle is considered as a central principle of
quantum gravity because of its applications in various felds
of physics, viz. cosmology [88] and nuclear physics [89] in
the present era. All the generalized HDEmodels known as of
now are the suggested ones by [90], which came only after Li.
Moreover, the Nojiri–Odintsov HDE gives a detailed de-
scription of covariant theories diferent from Li’s HDE [91].
A more dynamical scenario for HDE in the BDT along with
matter creation has been suggested instead of Einstein
gravity because of the fact that a dynamical frame is nec-
essary to accommodate the HDE density that belongs to a
dynamical cosmological constant. Considering various IR
cut-ofs in the framework of the BDT, a number of authors
[92–99] have explained the rapid expansion of the cosmos
and have shown a solution to alleviate the cosmic coinci-
dence problem. With the help of cosmic observational data,
Xu et al. [100] have constructed the HDE model in BDT.

Motivated by the above discussions and investigations in
the Bianchi space-times, we investigate the anisotropic
BT–II, VIII, and IX space-times in the presence of VHDE.
Tis paper is planned as, in Section 2, we explain the metric
and feld equations. In Section 3, we obtain the solutions of
the feld equations, along with some important properties of
the Universe in Section 4. Lastly, the interpretations of our
models are presented in the last section.

2. Metric and Field Equations

Te spatially homogeneous BTmetrics II, VIII, and IX of the
form,

ds
2

� dt
2

− R
2

dθ2 + f
2
(θ)dφ2

􏽨 􏽩 − S
2
[dψ + h(θ)dφ]

2
, (1)

have been considered, where the Eulerian angles are rep-
resented as (θ,φ,ψ), R and S are a function of t only. It
represents the following:

BT II if f(θ) � 1 and h(θ) � θ;
BT VIII if f(θ) � coshθ and h(θ) � sinhθ;
BT IX if f(θ) � sinθ and h(θ) � cosθ.

Te action of BDT in the presence of matter with La-
grangian Lm in the canonical form (Jordan frame) is given by

S � 􏽚 d
4
x

���
− g

√
− ϕR +

ω
ϕ
□μϕ□μϕ + Lm􏼠 􏼡, (2)

where ϕ is the Brans–Dicke scalar feld representing the
inverse of Newton’s constant, which is allowed to vary with
space and time, R is the scalar curvature, and ω is the
Brans–Dicke constant. Varying the action in (2) with respect
to the metric tensor gij and the scalar feld ϕ, the feld
equations are obtained as

Gij � − 8πϕ− 1
Tij − ωϕ− 2 ϕ,iϕ,j −

1
2
gijϕ,κϕ

,κ
􏼒 􏼓

− ϕ− 1 ϕi;j − gijϕ
,κ
;κ􏼐 􏼑,

(3)

ϕ,κ
;κ � 8π(3 + 2ω)

− 1
T, (4)

where Gij � Rij − 1/2Rgij is an Einstein tensor, Tij is the
stress-energy tensor of the matter, and Rij is the Ricci
curvature tensor.

Te conservation equation

T
ij

;j � 0, (5)

is a consequence of the feld equations (3) and (4).
Te energy momentum tensor for the VHDE is taken as

Tij � T
m
ij + T

h
ij. (6)

Here, Tm
ij and Th

ij represent matter and VHDE tensors,
which are given as

T
h
ij � Pvhde + ρvhde( 􏼁 U

h
i U

h
j − Pvhdegij,

T
m
ij � ρmU

m
i U

m
j ,

(7)

where ρm is the energy density of the matter, Pvhde and ρvhde,
respectively, represent the pressure and energy density of the
VHDE; Ui denotes the comoving velocity vector of the
matter and VHDE, satisfying UiU

i � 1. Te VHDE pressure
satisfes the relation Pvhde � Pvhde − 3ζH, where ζ is the bulk
viscosity coefcient. Equation of state parameters for VHDE
and HDE, respectively, are defned as ωvhde � Pvhde/ρvhde and
ωhde � Phde/ρhde. Te unifcation of viscosity and HDE is a
mathematical attempt in the light of the holographic
principle. Moreover, it is hypothesized that DE is pervading
the whole Universe, with bulk viscosity giving the
accelerated expansion of phantom types in the late time
evolution of the Universe. Here, we have assumed pressure
less DM and that the efective pressure of VHDE is a sum of
the pressure of HDE and bulk viscosity. Eckart [101] has
proposed a type of efective pressure in the context of general
relativity. Recently, Singh and Srivastava [102] have con-
sidered VHDE for FRW space-time.

Now, with the help of equation (6), the feld equations
(3) and (4) for the metric in equation (1) can be written as
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€R

R
+

€S

S
+

_R _S

RS
+

S
2

4R
4 +

ω _ϕ2

2ϕ2
+

_ϕ
ϕ

_R

R
+

_S

S
􏼠 􏼡 +

€ϕ
ϕ

�
− 8π Pvhde − 3ζH( 􏼁

ϕ
, (8)

2 €R

R
+

_R
2

R
2 +

δ
R
2 −

3S
2

4R
4 +

ω _ϕ
2

2ϕ2
+
2 _R _ϕ
Rϕ

+
€ϕ
ϕ

�
− 8π Pvhde − 3ζH( 􏼁

ϕ
, (9)

_R
2

R
2 +

δ
R
2 +

2 _R _S

RS
−

S
2

4R
4 −

ω _ϕ2

2ϕ2
+

_ϕ
ϕ

2 _R

R
+

_S

S
􏼠 􏼡 �

8π ρm + ρvhde( 􏼁

ϕ
, (10)

&
_S

S
+
2 _R

R
􏼠 􏼡 _ϕ + €ϕ �

8π ρm( + ρvhde − 3 Pvhde − 3ζ( 􏼁H

3 + 2ω
, (11)

and the energy conservation equation becomes

_ρm + _ρvhde +
_S

S
+
2 _R

R
􏼠 􏼡 ρm + ρvhde + Pvhde − 3ζH( 􏼁 � 0. (12)

Here, the over-head “dot” denotes diferentiation with
respect to ‘t‘. When δ � 0, − 1,& + 1, the feld equations
(8)–(11) correspond to the BT-II, VIII, and IX Universes,
respectively. Now, by using the transformation dt � R2SdT,
the feld equations (8)–(11) can be written as

R
’′

R
+

S
’′
S

−
2R

’2

R
2 −

S
’2

S
2 −

2R′S′
RS

+
S
4

4
+
ωϕ’2

2ϕ2
+
ϕ’′
ϕ

−
R′ϕ′
Rϕ

�
− 8π Pvhde − 3ζH( 􏼁R

4
S
2

ϕ
, (13)

2R
’′

R
−
2R′S′

RS
−
3R

’2

R
2 + δR

2
S
2

−
3S

4

4
+
ωϕ’

2

2ϕ2
−
ϕ′S′
ϕS

+
ϕ’′
ϕ

�
− 8π Pvhde − 3ζH( 􏼁R

4
S
2

ϕ
, (14)

R
2

R
2 + δR

2
S
2

+
2R′S′

RS
−

S
4

4
−
ωϕ’

2

2ϕ2
+
ϕ′
ϕ

S′
S

+
2R′
R

􏼠 􏼡 �
8π ρm + ρvhde( 􏼁R

4
S
2

ϕ
, (15)

ϕ″

R
4
S
2 �

8π ρm + ρvhde − 3 Pvhde − 3ζH( 􏼁( 􏼁

ϕ
. (16)

Also, the energy conservation equation leads to

ρ′m + ρ′vhde +
S′
S

+
2R′
R

􏼠 􏼡 ρm + ρvhde + Pvhde − 3ζH( 􏼁 � 0.

(17)

Te conservation equation of the matter is

ρ′m +
S′
S

+
2R′
R

􏼠 􏼡ρm � 0, (18)

and for VHDE, the conservation equation is

ρ′vhde +
S′
S

+
2R′
R

􏼠 􏼡 ρvhde + Pvhde − 3ζH( 􏼁 � 0. (19)

Here, the over-head dash denotes diferentiation with
respect to “T.”

3. Solutions of the Field Equations

Now, the set of equations (13)–(16) forms a system of four
independent equations with seven unknowns: R, S, ϕ, ρm,

ρvhde, Pvhde, and ζ. Hence, to fnd a determinate solution to
these highly nonlinear diferential equations, we need at least
three physically viable conditions:

We assume that the relation between the metric po-
tentials (Collins et al., [103]) as

R � S
n
, (20)

where n> 1.
We consider the relation between scale factor a and
scalar feld ϕ (Tripathy et al., [104]) as

ϕ � a
m

, (21)

where m is a positive constant.
We take the bulk viscosity coefcient in the following
form (Ren and Meng [105]; Meng et al., [106])

ζ � ζ0 + ζ1H, (22)

where ζ0 and ζ1 are positive constants and H is the Hubble
parameter.
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Now, using conditions (20) and (21) in feld equations
(13) and (14), we get

S″
S

+
m(2n + 1) − 3

3
􏼠 􏼡

S
’2

S
2 �

δS
2n+2

− S
4

1 − n
. (23)

3.1. Bianchi Type- II (δ � 0) Cosmological Model. If δ � 0,
equation (23) can be written as

S″
S

+
m(2n + 1) − 3

3
􏼠 􏼡

S′
2

S
2 �

− S
4

1 − n
. (24)

On solving equation (24), we get

S � 2β1 − 2c1T􏼂 􏼃
− 1/2

,

R � 2β1 − 2c1T􏼂 􏼃
− n/2

.
(25)

where, c1 � (2/(n − 1)(6 + 2k1))
1/2, with

k1 � m(2n + 1) − 3/3, whereas β1 is an integration constant
and n> 1.

Te spatial volume and average scale factor are given by

V � R
2
Sf(θ) � 2β1 − 2Tc1( 􏼁

− 2n− 1/2
, (26)

a � R
2
Sf(θ)􏼐 􏼑

1/3
� 2β1 − 2Tc1( 􏼁

− 2n− 1/6
. (27)

From equations (27) and (21), the scalar feld ϕ is given
by

ϕ � 2β1 − 2c1T􏼂 􏼃
− m(2n+1)/6

. (28)

Te pressure of the VHDE is

Pvhde �
Υ1

576π Tc1 − β1( 􏼁
2, (29)

where

Υ1 � (64 3 + n +
1
2

􏼒 􏼓m􏼒 􏼓 Tc1 − β1( 􏼁
3
c
2
1 n +

1
2

􏼒 􏼓m 2β1 − 2Tc1( 􏼁
(− 2n− 1)m+12n− 12/6

􏼒

− 144n
2
c
2
1 Tc1 − β1( 􏼁

2 2β1 − 2Tc1( 􏼁
(− 2n− 1)m+12n− 6/6

+ 8 Tc1 − β1( 􏼁
− 27
8

+ n +
1
2

􏼒 􏼓
2
ωm

2
+ − 3n −

3
2

􏼒 􏼓m −
27n

2

2
+ 9n􏼠 􏼡c

2
1􏼠 􏼡 2β1 − 2Tc1( 􏼁

(− 2n− 1)m+12n/6

− 576 Tζ0 −
ζ1n
3

−
ζ1
6

􏼠 􏼡c1 − β1ζ0􏼠 􏼡πc1 n +
1
2

􏼒 􏼓􏼡􏼩,

(30)

Te energy density of the matter is

ρm � β2 2β1 − 2c1T( 􏼁
2n+1/2

, (31)

where β2 is the constant of integration.
Te energy density of the VHDE is

ρvhde �
Υ2

576π Tc1 − β1( 􏼁
, (32)

where

Υ2 � 9 + 8ω n +
1
2

􏼒 􏼓
2
m

2
− 48 n +

1
2

􏼒 􏼓
2
m − 36n

2
− 72n􏼠 􏼡c

2
1􏼠 􏼡 2β1 − 2Tc1( 􏼁

(− 2n− 1)m+12n/6
− 576πβ2 2β1 − 2Tc1( 􏼁

n+1/2
Tc1 − β1( 􏼁􏼠 􏼡􏼩􏼩.

(33)

Te viscosity coefcient is given by

ζ � ζ0 +
ζ1c1(2n + 1)

3 2β1 − 2c1T( 􏼁
. (34)

Now the metric (1) can be written as

ds
2

� dt
2

− 2β1 − 2c1􏼂 􏼃
− n

dθ2 + dφ2
􏽨 􏽩

− 2β1 − 2c1􏼂 􏼃
− 1

[dψ + θdφ]
2
.

(35)

3.2. Bianchi Type-VIII (δ � − 1) Cosmological Model. If δ �

− 1, equation (23) can be written as

S″
S

+
m(2n + 1) − 3

3
􏼠 􏼡

S’2

S
2 �

− S
2n+2

− S
4

1 − n
. (36)

We can solve the above equation and get the deter-
ministic solution only for n � − 1.

Tus, from the equation (36), we get
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S′
2

� β23S
6

+ c
2
2S

2
, (37)

where β23 � 1/2k2 − 6 and c2
2 � 1/2k2 − 2 with k2 � m + 3/3.

From the equation (37), we get

S �
c2

β3
cosech 2c2T( 􏼁􏼢 􏼣

1/2

,

R �
c2

β3
cosech 2c2T( 􏼁􏼢 􏼣

− 1/2

.

(38)

Te spatial volume and an average scale factor are given
by

V � coshθ
c2

β3
cosech 2c2T( 􏼁􏼢 􏼣

− 1/2

, (39)

a � (coshθ)

1
3 c2

β3
cosech 2c2T( 􏼁􏼢 􏼣

− 1/6

. (40)

From equations (40) and (21), the scalar feld ϕ is given
by

ϕ �
c2

β3
cosech 2c2T( 􏼁􏼢 􏼣

− m/6

(coshθ)
m/3

. (41)

Te pressure of the VHDE is

Pvhde �
Υ3

− 144πβ33sinh
3 2c2T( 􏼁

, (42)

where

Υ3 � cosh
m

3 (θ)
c2

β3
cosech 2c2T( 􏼁􏼠 􏼡

− m

6
− 18 + 18 +(ω + 2)m

2
+ 6m􏼐 􏼑c

2
2􏼐 􏼑β23cosh

2 2c2T( 􏼁 + 18 +(− 12m − 72)c
2
2􏼐 􏼑β23 −

27c
2
2

2
􏼠 􏼡,

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎝

− 144β33 cosh 2c2T( 􏼁sinh 2c2T( 􏼁
ζ1c2
3

+ cosh2 2c2T( 􏼁ζ0 − ζ0􏼠 􏼡cosh 2c2T( 􏼁π􏼡c2􏼡􏼩.

(43)

Te energy density of the matter has the following
expression:

ρm � β4
c2

β3
cosech 2c2T( 􏼁􏼢 􏼣

1/2

, (44)

where β4 is an integration constant.

Te energy density of the VHDE is obtained as

ρvhde �
Υ4

288πβ33sinh
3 2c2T( 􏼁

, (45)

where

Υ4 � − 2c2cosh
m/3

(θ) 18 + m
2ω − 6m + 18􏼐 􏼑c

2
2􏼐 􏼑β23cosh

2 2c2T( 􏼁 − 18β23 +
9c

2
2

2
􏼠 􏼡

c2

β3
cosech 2c2T( 􏼁􏼠 􏼡

− m/6

,⎛⎝

− 288β4
c2

β3
cosech 2c2T( 􏼁􏼠 􏼡

1/2

sinh 2c2T( 􏼁πβ33 cosh2 2c2T( 􏼁 − 1􏼐 􏼑⎞⎠
⎫⎬

⎭.

(46)

Te viscosity coefcient is given by

ζ � ζ0 +
ζ1c2coth 2c2T( 􏼁

3
. (47)

Hence, the metric (1) takes the following form:

ds
2

� dt
2

−
c2

β3
cosech 2c2T( 􏼁􏼢 􏼣

− 1

dθ2 + coshθdφ2
􏽨 􏽩 −

c2

β3
cosech 2c2T( 􏼁􏼢 􏼣[dψ + sinhθdφ]

2
. (48)
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3.3. Bianchi Type-IX (δ � 1) Cosmological Model. If δ � 1,
equation (23) can be written as

S″
S

+
m(2n + 1) − 3

3
􏼠 􏼡

S′
2

S
2 �

S
2n+2

− S
4

1 − n
. (49)

We can solve the above equation and get the deter-
ministic solution only for n � − 1.

So, from equation (49), we get

S′
2

� c
2
3S

2
− β25S

6
, (50)

where, β25 � 1/6 − 2k3 and c2
3 � 1/2 − 2k3 with k3 � m + 3/3.

From equation (49), we get

S �
c3

β5
sech 2c3T( 􏼁􏼢 􏼣

1/2

,

R �
c3

β5
sech 2c3T( 􏼁􏼢 􏼣

− 1/2

.

(51)

Te spatial volume and average scale factor are given by

V � sinθ
c3

β5
sech 2c3T( 􏼁􏼢 􏼣

− 1/2

, (52)

a � (sinθ)
1/3 c3

β5
sech 2c3T( 􏼁􏼢 􏼣

− 1/6

. (53)

From equations (21) and (53), the scalar feld ϕ is given
by

ϕ �
c3

β5
sech 2c3T( 􏼁􏼢 􏼣

− m/6

(sinθ)
m/3

. (54)

Te pressure of the VHDE is as follows:

Pvhde �
Υ5

− 144πβ35cosh
3 2c3T( 􏼁

, (55)

where

Υ5 � − 18 + 18 +(ω + 2)m
2

+ 6m􏼐 􏼑c
2
3􏼐 􏼑β25cosh

2 2c3T( 􏼁 − c
2
3
27
2

+ − 54 +(ω + 2)m
2

− 6m􏼐 􏼑β25􏼒 􏼓c
2
3􏼒 􏼓sinm/3

(θ)
c3

β5
sech 2c3T( 􏼁􏼠 􏼡

− m/6

,⎛⎝⎛⎝

− 48cosh 2c3T( 􏼁πβ35 cosh2 2c3T( 􏼁ζ1c3 + 3sinh 2c3T( 􏼁ζ0cosh 2c3T( 􏼁 − ζ1c3􏼐 􏼑􏼑c3􏼑.

(56)

Te energy density of the matter is obtained as

ρm � β6
c3

β5
sech 2c3T( 􏼁􏼢 􏼣

1/2

, (57)

the energy density of the VHDE has the following
expression:

ρvhde �
Υ6

288πβ35cosh
3 2c3T( 􏼁

, (58)

where

Υ6 � − 2sinm/3
(θ)c3 − 18 + m

2
􏼐 ω − 6m + 18􏼐 􏼑c

2
3􏼐 􏼑β25tcosh

2
n 2c3T( 􏼁q − hc

2
3

− 9
2

+ m
2ω − 6m + 18􏼐 􏼑β25􏼒􏼒 􏼓c3

c3

β5
sech 2c3T( 􏼁􏼠 􏼡

− m/6

,⎛⎝

− 288β6
c3

β5
sech 2c3T( 􏼁􏼢 􏼣

1/2

πβ35cosh
3 2c3T( 􏼁⎞⎠.

(59)

Te viscosity coefcient is

ζ � ζ0 +
ζ1c3tanh 2c3T( 􏼁

3
. (60)

Hence, the metric (1) can be written as

ds
2

� dt
2

−
c3

β5
sech 2c3T( 􏼁􏼢 􏼣

− 1

dθ2 + sinθdφ2
􏽨 􏽩 −

c3

β5
sech 2c3T( 􏼁􏼢 􏼣[dψ + cosθdφ]

2
. (61)

Tus, equations (35), (48), and (61) represent spatially
homogeneous and anisotropic BT-II, VIII, and IX VHDE
cosmological models, respectively, in the Brans–Dicke scalar

theory of gravitation. For graphical representation we
consider the following vales: n � 1.9, m � 0.97 for BT-II,
m � 0.011 for BT-VIII, m � 3.999 for BT-IX, c1 � − 0.099,
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β1 � 0.145, β2 � − 1045, ω � 958899, ζ1 � 9.15, 018.3, ζ0 �

0.35, 02, c2 � 0.099, β3 � 0.045, β4 � − 9995, c3 � 0.095, β5 �

0.011, β6 � − 999, a0 � 1.5, H0 � 85. Te plots of VHDE
pressure (Pvhde) against redshift respectively for BT-II, VIII,
and IX models have been represented in Figures 1–3for
diferent values of ζ0 & ζ1. Here, we observe that the behavior
of Pvhde for three diferent values of ζ0 & ζ1 is the increasing
with redshift and varies in the negative region, which in-
dicates the cosmic expansion. Moreover, as increasing the
values of ζ0 & ζ1, we get more acceleration of the Universe.
Also, we have depicted the energy density of VHDE (ρvhde)

versus redshift in Figures 4–6 for BT–II, VIII. and IX
models, respectively, and we observe that the trajectory
varies in the positive region, which indicates an accelerated
expansion of the cosmos. Te bulk viscous coefcient has
been plotted against redshift with various values of ζ0 and ζ1
in Figures 7–9 for BT-II, VIII, and IX models, respectively.
Te trajectories vary in positive regions throughout the
evolution of all the three models for various values of ζ0 and
ζ1, which indicates an accelerated expansion of the Universe.

Some of the cosmological properties of the models are
discussed as follows:

Te mean Hubble parameter H is given by

H �
H1 + H2 + H3

3
, (62)

where H1 � H2 � _R/R, H3 � _S/S are directional Hub-
ble’s parameters, which express the expansion rates of
the Universe in the directions of x, y, and z, respectively.
Te mean Hubble’s parameter of BT-II, VIII, and IX
VHDE cosmological models are, respectively, given by

H �
c1(2n + 1)

3 2β1 − 2c1T( 􏼁
,

H �
c2coth 2c2T( 􏼁

3
,

H �
c3tanh 2c3T( 􏼁

3
.

(63)

Te anisotropic parameter of the BT-II VHDEmodel is
given by

Ah �
1
3

􏽘

3

i�1

Hi − H

H
􏼒 􏼓

2
�
2(n − 1)

2

(2n + 1)
2, (64)

and for the BT-VIII and IX VHDE cosmological
models, we get

Ah � 8. (65)

From equations (64) and (65), we can observe that
Ah ≠ 0, which indicates that the BT-II, VIII, and IX
models are always anisotropic throughout the evolu-
tion of the Universe with respect to VHDE.
Te expansion scalar (ϑ) has been defned as

ϑ �
2 _R

R
+

_S

S
, (66)

whose expressions for the BT-II, VIII, and IX VHDE
models are, respectively, given as

ϑ �
c1(2n + 1)

2β1 − 2c1T( 􏼁
,

ϑ � c2coth 2c2T( 􏼁,

& ϑ � c3tanh 2c3T( 􏼁.

(67)

Te shear scalar (σ2) is defned by the following equation
and is followed by the expressions of σ2 for BT–II, VIII,
and IX VHDE models, respectively, as

σ2 �
1
2
σijσij �

1
2

􏽘

3

i�1
H

2
i −

ϑ2

3
⎛⎝ ⎞⎠, (68)

σ2 �
c
2
1 2β1 − 2c1T( 􏼁

− 2
(n − 1)

2

3
, (69)

σ2 �
4c

2
2coth

2 2c2T( 􏼁

3
, (70)

&σ2 �
4c

2
3tanh

2 2c3T( 􏼁

3
. (71)
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Figure 1: Pressure of VHDE (Pvhde) versus redshift (z) for BT-II.
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4. Some Other Important Properties of
the Models

Now we compute the following dynamical parameters,
which are signifcant in the physical discussion of the cos-
mological models presented in equations (35), (48), and (61).

4.1. Deceleration Parameter (q). Te parameter is defned as

q � −
a€a

_a
2 , (72)

that depends upon the scale factor and its derivatives. It is
considered to describe the transition phase of the Universe
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and basically computes the expansion rate of the cosmos.
Whenever the deceleration parameter shows a positive
curve, it indicates the decelerated expansion of the Universe.
Whereas, the negative curve implies that there is an
accelerated expansion of the cosmos and at q � 0 there exists
the marginal infation. Te deceleration parameters of the
BT-II, VIII, and IX models are, respectively, given by

q �
− 6

2n + 1
− 1,

q � 6sech2 2c2T( 􏼁 − 1,

q � − 6cosech2 2c3T( 􏼁 − 1.

(73)
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Figure 6: Te energy density of VHDE (ρvhde) versus redshift (z)
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Te behavior of the deceleration parameter(q) for BT-
VIII and IX models has been depicted against the redshift
(z) in Figures 10 and 11, respectively. From Figure 10, it is
observed that the path of the BT-VIII curve travels from the
deceleration to the acceleration phase while passing through
the transition line. Whereas, from Figure 11, it is clear that
the curve for BT-IX varies in an accelerated phase. However,
the deceleration parameter of BT-II is independent of time.
Some of the authors, namely, Berman [107], Bishi et al. [108],
Santhi et al. [109], Santhi and Naidu [110], Samanta [111],
Kumar and Singh [112], have attained a constant q in their
research.

4.2. Jerk Parameter (j)
Te cosmic jerk,

j �
1

aH
3

d
3
a

dt
3 , (74)

can be accounted for by the transition of the Universe from
the decelerating to the accelerating phase. For various
models of the cosmos, there is a variation in the transition of
the Universe whenever the jerk parameter lies in the positive
region and the deceleration parameter lies in the negative
region (Visser [113]). Rapetti et al. [114] showed that for the
fat ΛCDM model, the value of jerk becomes unity.

Te Jerk parameter of the BT-II, VIII, and IX models is,
respectively, given by

j �
4n + 40n + 91

(2n + 1)
2 ,

j � 54sech2 2c2T( 􏼁 + 1,

j � 1 − 54cosech2 2c3T( 􏼁.

(75)

Figures 12 and 13 represent the variations of the jerk
parameter plotted against redshift (z) for the models BT-
VIII and IX, respectively. Te trajectory of the jerk pa-
rameter for the BT-VIII model in Figure 12 varies in the
positive region, whereas for the BT-IX model in Figure 13,
the trajectory varies in the negative region, both of which
approach unity in late times. However, the jerk parameter
for BT-II is independent of time. Santhi and Naidu [115],
Rao et al. [116], Santhi et al. [117], Rao and Prasanthi [118],
and Shaikh et al. [119] are some of the researchers who have
acquired a constant jerk parameter in their work.

4.3. StatefnderPair (r, s). Asmentioned earlier, a mysterious
force, the DE, may be responsible for the cosmos to undergo
an accelerated expansion int the current era. But as of now,
there is no adequate information about DE. Hence, it be-
comes necessary to identify and understand the various
properties of DE and its importance in various kinds of
cosmographic models. Ratra and Peebles [47], Kamenschik
et al. [61], Armendariz Picon et al. [60] Dvali et al. [120] have
proposed various studies to realize that diferent DE forms,

such as quintessence, Chaplygin gas, k-essence, and brane
world models, give several families of curves for scale factor
a(t). As a way of categorizing the various types of DE, Sahni
et al. [121] have proposed a diagnostic pair known as the
“statefnder diagnostic,” defned as

r �
a
ṫ

aH
3 & s �

r − 1
3(q − 1/2)

, (76)

that is based upon the derivatives of the scale factor a(t) and
the deceleration parameter q. We have obtained expressions
for the statefnder diagnostic pair (r, s) for the models BT-II,
VIII, and IX, which are respectively given by

r �
(2n + 7)(2n + 13)

(2n + 1)
2 & s �

− 4
(2n + 1)

,

r � 54sech2 2c2T( 􏼁 + 1& s �
− 12

cosh2 2c2T( 􏼁 − 4
,

& r � 1 − 54cosech2 2c3T( 􏼁& s �
12

cosh2 2c3T( 􏼁 + 3
.

(77)

Te interpretation of the statefnder pair from Figures 14
and 15 says that the (r, s) plane for BT–VIII and IX models
starts its evolution from the quintessence and phantom
regions and reaches the ΛCDM model(for r� 1, s� 0). Also,
for the BT-II Universe, the statefnder plane is independent
of time. Shanti et al. [122], Samanta andMishra [123], Katore
and Gore [124], and Shaikh et al. [119] are some of the
authors who have obtained the statefnder parameters in-
dependent of time.

4.4. EoS Parameter (ωvhde). To classify the phases of the
infating Universe, viz., the transition from decelerated to
accelerated phases containing DE and radiation dominated
eras, the EoS parameter (ωvhde) can be broadly used, whose
expression is given by ωvhde � Pvhde/ρvhde.

It categorizes various epochs as follows:
Decelerated phase:

(i) stif fuid (ωvhde � 1),
(ii) the radiation dominated phase (0<ωvhde < 1/3) and
(iii) dust fuid phase or cold dark matter (ωvhde � 0).

Accelerated phase:

(i) the quintessence phase (− 1<ωvhde < − 1/3),
(ii) cosmological constant/vacuum phase (ωvhde � − 1)
(iii) quintom era and phantom era (ωvhde < − 1)

Te EoS Parameter for the BT-II VHDE cosmological
model is given by

ωvhde �
Υ7
Υ8

, (78)

where

Advances in Astronomy 11



–0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

D
ec

el
er

at
io

n 
pa

ra
m

et
er

 (q
)

Transaction Line

Decelerated Phase

Accelerated Phase

–0.4 –0.2 0 0.2 0.4 0.6 0.8

redshif (z)

γ2=0.099;β3=0.045

Figure 10: Deceleration parameter (q) versus redshift (z) for BT-VIII.

–160

–140

–120

–100

–80

–60

–40

–20

D
ec

el
er

at
io

n 
pa

ra
m

et
er

 (q
)

Accelerated Phase

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3

redshif (z)

γ3=0.095;β5=0.011;

Figure 11: Deceleration parameter (q) versus redshift (z) for BT-IX.

5

10

15

20

25

30

35

40

45

50

Je
rk

 p
ar

am
et

er
 (j

)

–0.4 –0.2 0 0.2 0.4 0.6 0.8

redshif (z)

γ2=0.099;β3=0.045

Figure 12: Jerk (j) versus redshift (z) for BT-VIII.

12 Advances in Astronomy



Je
rk

 p
ar

am
et

er
 (j

)

–1400

–1200

–1000

–800

–600

–400

–200

0

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3

redshif (z)

γ3=0.095;β5=0.011;

Figure 13: Jerk (j) versus redshift (z) for BT-IX.
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Υ7 �
1
576

− 64 3 + n +
1
2

􏼒 􏼓m􏼒 􏼓 Tc1 − β1( 􏼁
3
c
2
1m n +

1
2

􏼒 􏼓 − 2Tc1 + 2β1( 􏼁

(− 2n − 1)m + 6n − 12
6 ,⎛⎜⎜⎜⎜⎝

+ 144c
2
1n

2
Tc1 − β1( 􏼁

2
− 2Tc1 + 2β1( 􏼁

(− 2n − 1)m + 6n − 6
6 ,

− 8 Tc1 − β1( 􏼁
− 27
8

+ n +
1
2

􏼒 􏼓
2
ωm

2
+ − 3n −

3
2

􏼒 􏼓m −
27n

2

2
+ 9n􏼠 􏼡c

2
1􏼠 􏼡 − 2Tc1 + 2β1( 􏼁

(− 2n − 1)m + 6n

6 ,

+ 576 − 2Tc1 + 2β1( 􏼁
− nπc1 Tζ0 −

ζ1n
3

−
ζ1
6

􏼠 􏼡c1 − ζ0β1􏼠 􏼡 n +
1
2

􏼒 􏼓􏼡􏼩,

Υ8 � Tc1 − β1( 􏼁
− 1
64

+
− 1
72

n +
1
2

􏼒 􏼓
2
ωm

2
+

1
12

n +
1
2

􏼒 􏼓
2
m +

n
2

16
+

n

8
􏼠 􏼡c

2
1􏼠 􏼡 − 2Tc1 + 2β1( 􏼁

(− 2n − 1)m + 6n

6 ,⎛⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎝

+ − 2Tc1 + 2β1( 􏼁
1/2πβ2 Tc1 − β1( 􏼁􏼑􏼑􏽯.

(79)

Te EoS parameter for the BT-VIII VHDE cosmological
model is given by
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(81)

Te EoS parameter for the BT-IX VHDE cosmological
model is given by

ωvhde �
Υ11
Υ12

, (82)

where
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(83)

Figures 16–18 show the behavior of the EoS parameter
(ωvhde) taken against redshift (z) with diferent values of ζ0
and ζ1 for all the three models of BT-II, VIII, and IX, re-
spectively. Here, we notice that the curves of ωvhde for BT-II
and IX models for diferent values of ζ0 and ζ1 begin from
the quintessence region (− 1<ωvhde < − 1/3) and cross the
nonrelativistic matter (ωvhde � − 1) then reaching the
phantom region (ωvhde < − 1), whereas for BT-VIII, in the
presence of null viscosity (i.e., ζ0 � 0 and ζ1 � 0), the curve
of ωvhde varies in the quintessence region and as the values of
ζ0 and ζ1 are increased, we get the quintessence to the
phantom region by crossing the phantom divided line,
varying more in the phantom region, which indicates
accelerated expansion of the Universe. According to the
obtained models, the observed EoS parameters match the
2018 Planck data [125], where the EoS parameter limits are
as follows:

ωvhde �

− 1.56+0.60
− 0.48(Planck + TT + loE),

− 1.58+0.52
− 0.41(Planck + TT,EE + loE),

− 1.57+0.50
− 0.40(Planck + TT,TE,EE + loE + lensing),

− 1.04+0.10
− 0.10(Planck + TT,TE,EE + loE + lensing + BAO).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(84)

4.5. ωvhde − ωvhde
′ plane. Cadwell and Linder [126] have

suggested ωvhde − ωvhde
′ plane (where ’ signifes diferentia-

tion w.r.t ln a) to interpret the accelerated expansion regions
of the cosmos and to analyze the quintessence scalar feld for
the frst time. For various values of ωvhde and ωvhde

′, the plane
describes two distinct areas. Te plane is described as the
thawing zone for ωvhde

′ > 0 when ωvhde < 0 and the freezing
region for ωvhde

′ < 0 when ωvhde < 0.
For the BT-II VHDE cosmological model,

ω′ �
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, (85)
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(86)

For the BT-VIII VHDE cosmological model,

ω′vhde �
Υ15
Υ16

, (87)

where
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Figure 16: EoS parameter (ωvhde) versus redshift (z) for BT-II.
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Figure 17: EoS parameter (ωvhde)(ωvhde) versus redshift (z) for BT-VIII.
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For the BT-IX VHDE cosmological model,
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Figure 18: EoS parameter versus redshift (z) for BT-IX.
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Te evolutionary trajectories of ωvhde − ωvhde
′ plane for

the BT–II, VIII, and IX models are plotted with diferent
values of ζ0 and ζ1 in Figures 19–21, respectively and we
notice that the ωvhde − ωvhde

′ plane for the BT-II and IX
models vary in the freezing region (i.e.,ωvhde < 0 and
ωvhde
′ < 0) whereas, the ωvhde − ωvhde

′ plane of the BT-VIII
model varies in thawing region (i.e.,ωvhde < 0 and ωvhde

′ > 0)
for small values of ζ0 and ζ1. However, by increasing the
values of ζ0 and ζ1 we get the freezing region for the BT-VIII
model. Hence, the ωvhde − ωvhde

′ plane of our obtained
models is in accordance with the present observational data
[127, 128] as follows:

ωvhde � − 1.17+0.13
− 0.12,
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′ � 0.85+0.50

− 0.49 WMAP + eCAMB + BAO + H0 + SNe( 􏼁,
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ωvhde
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ωvhde � − 1.34+0.18
− 0.18,
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(91)

4.6. Stability of theModel. To examine the stability of any DE
model, we utilize the squared speed of sound (v2s ). Te
models with v2s < 0 shows instability where as models with
v2s > 0 shows stability. Hence, the v2s is determined as follows
[129]:

v
2
s �

Pvhde
′

ρvhde
′

, (92)

where Pvhde
′ and ρvhde

′ are the diferentiation of pressure and
density of VHDE w.r.t cosmic time ‘T’, respectively.

Te squared speed of the sound for the BT-II VHDE
model is given by
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For the BT-VIII VHDE cosmological model,
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For the BT-IX VHDE cosmological model,
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Figure 21: EoS plane (ωvhde − ωvhde
′) for BT-IX.
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We have plotted the squared speed of the sound (v2s )

versus redshift for three diferent values of ζ0 and ζ1 for BT-
II, VIII, and IX models in Figures 22–24.Te v2s of BT-II and
VIII models show the unstable behavior for three values of
ζ0 and ζ1. Whereas, v2s of BT-IX gives the stable to unstable
behavior. Also, by increasing the values of ζ0 and ζ1, i.e.,

increasing bulk viscosity, the models indicate the unstable
behavior of the Universe.

4.7. Density Parameter (Ωvhde). Te dimensionless density
parameter of DE (Ωvhde) is defned as

Ωvhde �
ρvhde

3H
2 . (99)

We were able to obtain the density parameter for our
VHDEmodel by substituting the expressions for the Hubble
parameter (H) and the energy density (ρvhde) in the above
equation, and we used a graphical representation to analyze
its behavior. Te density parameter of BT-II, VIII, and IX
models, respectively are given by
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Te density parameter Ωvhde for BT–II, VIII, and IX
VHDE models against redshift (z) is seen in Figures 25–27,
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respectively. It can be seen that the trajectories of Ωvhde are
decreasing against redshift (z) for all the three models and
are varying in the positive region.

4.8. Om-Diagnostic (Om(z)). To discriminate diferent
phases of the Universe, Sahni et al., [130] have introduced
another tool called the Om-diagnostic. It is also used to
distinguish the ΛCDM for the nonminimally coupled scalar
feld, quintessence model, and phantom feld through the
trajectories of the curves. Te phantom DE era corresponds
to the positive trajectory, whereas the negative trajectory
indicates that the DE constitutes quintessence. Te om-
diagnostic function is defned as

Om(z) �
H

2
(z) − H

2
0

H
2
0 z

3
− 1􏼐 􏼑

. (106)

Te Om-diagnostic for models which are in Equations
(35), (48), and (61) are, respectively, given by
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Te plots of the Om-diagnostic against redshift (z) are
represented for the BT–II, VIII, and IX models in
Figures 28–30, respectively, which depict the quintessence

behavior of the DE, as the trajectories for the three models
vary in the negative region.

5. Interpretations of the Models

To understand the cosmological mysteries of accelerated
expansion, we have constructed the feld equations of BDT
for BT-II, VIII, and IXUniverse in the context of VHDE.Te
exact solutions of the Brans–Dicke feld equations are ob-
tained by considering the relations between the metric
potentials, the relation between scalar feld and scale factor,
and by taking bulk viscosity as proposed by Ren and Meng
[105] andMeng et al., [106]. Furthermore, we have discussed
the evolution of the Universe by studying various
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geometrical and physical parameters. We have plotted
VHDE pressure, EoS parameter, EoS plane, and the squared
speed of the sound by taking various values of ζ0 & ζ1. Also, a
comparison study has been conducted by considering some
isotropic and homogeneous cosmological models. Now, we
summarize the results of the obtained models as follows:

For the Bianchi type-II cosmological model, we observe
that the Universe shows a rapid expansion, as the VHDE
pressure and energy density vary in negative and positive
regions, respectively. Tis is further justifed by the bulk
viscosity coefcient (ζ) as, it is varying in the positive region
throughout the cosmic evolution. We have constructed plots
for various parameters and have observed that the decel-
eration parameter (q), the jerk parameter ( j), and the
statefnder plane (r − s) behave independently of time. Te

Universe shows a quintom-like nature, which is interpreted
with the help of the EoS parameter; and the EoS plane varies
in the freezing region. Tis behaviors of the EoS parameter
and the EoS plane represents the accelerated expansion of
the cosmos. Te squared speed of sound (v2s ) varies in the
negative region, depicting an unstable Universe model. Also,
the density parameter (Ωvhde) is decreasing and varying in
the positive region and the Om(z) difers in the negative
region, depicting the quintessence behavior of the Universe.

Te Bianchi type-VIII cosmological model has an
accelerated cosmic expansion as the VHDE pressure and
energy density vary in the negative and positive regions,
respectively. Also, ζ is varying in the positive region, indi-
cating an accelerated expansion of the Universe. Te de-
celeration parameter (q) shows a transition from an early
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Figure 27: Density parameter of VHDE (Ωvhde) versus redshift (z)
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decelerating phase to a late accelerating phase, and the jerk
parameter difers in a positive region approaching to one as
z⟶ 0. Moreover, the statefnder pair (r, s) starts its
evolution from the quintessence and phantom regions and
reaches theΛ CDMmodel (for r� 1, s� 0).Temodel shows
an unstable behavior, as v2s is varying in the negative region.
Te plot of the EoS parameter states that the model varies in
the phantom region and the EoS plane difers in the freezing
region. Te density parameter is decreasing and varying in
the positive region and the Om(z) varies in the negative
region depicting, the quintessence behavior of the Universe.

For the Bianchi type-IX cosmological model, the plots
for VHDE pressure, energy density, and viscosity coefcients
indicate an accelerated cosmic expansion as they vary in
negative, positive, and positive regions respectively. Te
curve of deceleration parameter (q) varies in the accelerated
phase, whereas the jerk parameter ( j) vary in the negative
region, approaching to one in the near future as z⟶ 0.
Te squared speed of sound varies in positive to negative
region, depicting the stable to an unstable behavior of the
Universe. Also, the statefnder pair starts its evolution from
the quintessence and phantom regions and reaches the Λ
CDM model (for r� 1, s� 0). Te Universe shows the
quintom region and is distinguished in the freezing region as
the EoS parameter and EoS plane are varying in the negative
region, respectively. Te density parameter (Ωvhde) and
Om(z) have the same behavior as the other two models.

Now, it will be interesting to compare our BT–II, VIII,
and IX VHDE models in BDT along with the other dark
energy models in the literature with regard to the energy
density of the VHDE (ρvhde) EoS parameter (ωvhde)r − s

plane, the deceleration parameter (q), the density parameter
of the VHDE (Ωvhde) Om diagnostic, and bulk viscosity (ζ).
We have considered some isotropic and homogeneous
models for comparison study. Singh and Srivastava [102]
have studied a fat FRW Universe flled with DM and viscous
new HDE and they present four possible solutions for the
model depending on the choice of the viscous term. Also, they
have discussed the evolution of the cosmological quantities
such as scale factor, deceleration parameter, and transition
redshift to observe the efect of viscosity in the evolution.
Srivastava and Singh [131] have investigated the new HDE
model in modifed f(R, T) gravity theory within the
framework of a fat FRW model with bulk viscous matter
content and found the solution for nonviscous and viscous
new HDE models. Also, they have analyzed a new HDE
model with constant bulk viscosity (i.e.,ζ1 � ζ0 � constant)
to explain the present accelerated the expansion of the
Universe. Singh and Kumar [132] have examined Ricci dark
energy model with bulk viscosity to observe the cosmic ac-
celerating expansion phenomena, and they analyzed the
model with deceleration parameter (q), EoS parameter
(ωvhde), bulk viscosity (ζ), and Om(z). Singh and Kaur [133]
have explored a matter-dominated model with a bulk vis-
cosity in BDT to interpret the observed cosmic accelerating
expansion phenomena with fat FRW line element. Kumar
and Beesham [134] have studied the concept of HDE in the

frame work of BDT in the formalism of the fat FRW metric,
and they have shown that the VHDE can play the role of an
interacting HDE as it is able to explain the phase transition of
the Universe. Rahman and Ansari [135] have studied the
interacting generalized ghost polytropic gas model of DEwith
a specifc Hubble parameter in the spatially homogeneous
and anisotropic LRS BT-II Universe in GR and also discuss
the physical and geometrical properties of the Universe,
which are found to be consistent with recent observations.
Maurya et al., [136] have studied DE models in LRS BT-II
space-time in a new perspective of time-dependent decel-
eration parameters in GR where various parameters of DE
models are also calculated, and it is found that these are
consistent with the recent observations. Naidu [137] has
investigated the spatially homogeneous and totally aniso-
tropic BT-II cosmological model flled with pressure less
matter and anisotropic modifed Ricci dark energy in the
presence of an attractive massive scalar feld in GR. It seems
that the deceleration parameter(q) of our BT-VIII model
coincides with the results of Singh and Srivastava [102], Singh
and Kumar [132], Singh and Kaur [133], Kumar and Beesham
[134], Rahman and Ansari [135], and Maurya et al. [136].
Also, the deceleration parameter(q) of our BT-IX model
coincides with the results of Kumar and Beesham [134] and
Maurya et al., [136]. Te state fnder parameters (r − s) of the
BT-VIII & IX models coincide with the results of Singh and
Srivastava [102], Srivastava and Singh [131], Singh and
Kumar [132], Singh and Kaur [133], Kumar and Beesham
[134], Rahman and Ansari [135], and Naidu [137]. Te EoS
parameters of our BT-II, VIII, and IX VHDEmodels coincide
with the results of Maurya et al., [136] and Naidu [137].
Whereas, at null viscosity, the EoS parameter of our BT-VIII
model agrees with the results of Singh and Kumar [132],
Singh and Kaur [133], and Rahman and Ansari [135]. Te
density parameter of our BT-II, VIII, and IX VHDE models
agrees with the results of Rahman and Ansari [135] and
Naidu [137]. Te Om-diagnostics of our BT-II, VIII, and IX
VHDE models correspond with the results of Singh and
Srivastava [102], Srivastava and Singh [131], Singh and
Kumar [132], and Singh and Kaur [133]. Te energy density
of the VHDE of our BT-II, VIII, and IXmodels agree with the
results of Rahman and Ansari [135] and Maurya et al., [136].
Te bulk viscosity of our models coincides with the results of
Singh and Kumar [132]. Te above results lead to the con-
clusion that our BT-II, VIII, and IXVHDEmodels in BDTare
in good agreement with the observational data. Also, we hope
that the above investigations will help to have a deep insight
into the behavior of bulk viscosity with VHDE Universes.
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