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We explore the central con�guration of the rhomboidal restricted six-body problem in Newtonian gravity, which has four
primariesmi (where i � 1, . . . 4) at the vertices of the rhombus (a, 0), (− a, 0), (0, b), and (0, − b), respectively, and a �fthmassm0 is
at the point of intersection of the diagonals of the rhombus, which is placed at the center of the coordinate system (i.e., at the origin
(0, 0)). ­e primaries at the rhombus’s opposite vertices are assumed to be equal, that is, m1 � m2 � m and m3 � m4 � m̃. After
writing equations of motion, we expressm0, m, and m̃ in terms of mass parameters a and b. Finally, we �nd the bounds on a and b
for positive masses. In the second part of this article, we investigate the motion and di�erent features of a test particle (sixth body
m5) with in�nitesimal mass that moves under the gravitational e�ect of the �ve primaries in the rhomboidal con�guration. All
four cases have 16, 12, 20, and 12 equilibrium points, with case-I, case-II, and case-III having stable equilibrium points. A
signi�cant shift in the position and the number of equilibrium points was found in four cases with the variations of mass
parameters a and b. ­e regions for the possible motion of test particles have been discovered. It has also been observed that as the
Jacobian constant C increases, the permissible region of motion expands. We also have numerically veri�ed the linear stability
analysis for di�erent cases, which shows the presence of stable equilibrium points.

1. Introduction

­e system of point masses is considered to be under motion
due to the mutual gravitational force as explained by
Newton’s gravitational law. Dynamical systems with n point
masses have been extensively studied, and various models
have been proposed for research aiming at approximating
the behaviour of real celestial systems. ­ere are many
reasons for studying the n-body problem since it is known
that approximately two-thirds of the stars in our Galaxy exist
as part of multistellar systems.

In celestial mechanics, the central con�guration (CC)
plays an important role in the investigation of n-body
problems. It is the con�guration that can be used to �nd
simple or special solutions of the n-body problem since the
shape of the �gure formed by the arrangement of the bodies
remains constant for all time. ­at is why the CCs lead to
homographic solutions. ­e �rst three collinear

homographic solutions for n � 3 were found by Euler in
1767, and two equilateral triangular homographic solutions
were found by Lagrange [1] in 1772 for n � 3. ­e central
con�guration for n> 3 has been investigated a lot. Xia [2]
used the analytical continuation approach to �nd the exact
number of CCs for an open set of n positive masses in 1991.
Llibre and Mello [3] investigated 7-body problem for the
existence of families of central con�gurations. In 2017, Deng
et al. [4] investigated the central con�guration of four-body
problem with equal masses and showed that for the planar
Newtonian four-body problem having adjacent equal
masses, that is,m1 � m2 ≠m3 � m4, and equal lengths for the
two diagonals, any convex noncollinear central con�gura-
tion must have a symmetry and must be an isosceles
trapezoid. ­ey also showed that when the length between
m1 andm4 equals the length betweenm2 andm3, the central
con�guration is also an isosceles trapezoid. In the same year,
Marchesin [5] explored the stability of rhomboidal

Hindawi
Advances in Astronomy
Volume 2022, Article ID 8100523, 17 pages
https://doi.org/10.1155/2022/8100523

mailto:atique.pathan@hotmail.com
https://orcid.org/0000-0002-6844-1545
https://orcid.org/0000-0002-3709-902X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8100523


configurations with a mass in the center. He considered a
system with five bodies at r0 � (0, 0), r1 � (a, 0),
r2 � (− a, 0), r3 � (0, b), and r4 � (0, − b) with masses m0,
m1 � m2 � m and m3 � m4 � 􏽥m that are moving in a plane.
-ey investigated the effect of altering the mass of the central
body on the stability of such a configuration for several
values of mass parameter λ � m/ 􏽥m. Saari [6] studied the role
and properties of central configuration for n-body problem,
and the other work on central configuration is given in Refs.
[7–15] (for latest publications on CCs, cf. Suraj et al. [16],
Zotos, and Papadakis [17], and Cornelio et al. [18]).-e
three-body problem has been a great challenge for the
scientists as it needed some special assumptions for the third
body. -e ever first problem solved using restriction for the
infinitesimal body is “restricted three-body problem”
(RTBP). -e RTBP originally arose from the work of
Newton, but unfortunately, Newton was unable to solve the
problem throughout his life. Alexis Clairaut [19, 20] in 1747
solved the problem with some approximations, and in 1757,
he calculated the return of “Halley’s Comet.” Ollongren [21]
in 1988 was the first to introduce the restricted five-body
problem. Ollongren investigated the motion of the fifth
infinitesimal mass that moved under the gravitational at-
traction of the other four massive bodies. He discovered nine
equilibrium points, three of which were stable, and the rest
were linearly unstable. In 2007, Papadakis and Kavanos [22]
extended the work of Ollongren and investigated the re-
stricted five-body problem numerically, and they showed
that the counts of equilibrium points depend on the radi-
ation factors as well as on the mass parameter. Marchesin
and Vidal [23] in 2013 studied the stability of five-body
problem by assuming that the central body makes a gen-
eralized force on the other four bodies. In 2018, Aggarwal
et al. [24] investigated the effect of small perturbation in
Coriolis and centrifugal forces on the presence of equilib-
rium points in the restricted four-body problem. -e three
primaries were placed at the vertices of equilateral triangle
and the fourth infinitesimal mass moves under the gravi-
tational effect of the primaries. -ey showed the existence of
8 to 10 equilibrium points and found that all the liberation
points are unstable. Mello et al. [25], in 2009, introduced the
stacked CC for the spatial six-body problem, and they il-
lustrated three novel families of stacked spatial central
configurations for the six-body problem with a regular
tetrahedron model. Recently, in 2020, Idrisi and Ullah [26]
investigated the existence and linear stability of equilibrium
points in a six-body problem with a square CC and a central
mass, and discovered that there are twelve equilibrium
points, four of which are stable for a given value of the mass
parameter μc. Furthermore, in 2020 [27], Ansari et al.
studied six body CC by placing the primary at the vertices of
a square and a fifth mass at the center of a circle, which is
thought to be the orbit of motion for the rest of the pri-
maries. Using the Jeans law and the Mesheherskii space time
transformation, they discovered twelve equilibrium points
for the sixth small body of variable mass, all of which are
unstable. Kulesza et al. [28] in the restricted rhomboidal five-
body problem found that the number of libration points

depends on the semidiagonal ratio λ and they showed that
there can be eleven, thirteen, and even fifteen libration
points. In 2013, Marchesin and Vidal [29] studied the re-
stricted rhomboidal five-body problem and found that no
chaos exists and the behaviour of the fifth mass is quite
predictable. -ey also showed the existence of the periodic
solutions of infinitesimal mass and also studied numerically
their linear horizontal stability.-e rhomboidal six-body CC
was presented by Siddique et al. in 2021 [30] by putting the
four primaries at the corners of the rhombus and the fifth
mass at the intersection of the two diagonals of rhombus.
-ey computed the region of probable motion of the sixth
mass using the first integral of motion and the values of the
Jacobian constant C for various energy intervals and found
the limitation on the region of motion for infinitesimal mass.
-ey demonstrated the existence and uniqueness of equi-
librium solutions on and off the axes using semi-analytic
approaches, and established that there are always twelve
unstable equilibrium points when b ∈ (1/

�
3

√
,

1.1394282249562009) and a � 1. Recently, Ref. [31] exam-
ined the basins of convergence by deploying the well-known
Newton–Raphson iterative scheme, associated with the li-
bration points (indeed, act as attractors), in the restricted
rhomboidal six-body problem.

In this study, we focus on the rhomboidal restricted six-
body problem, which has four primaries at the corners of the
rhombus and a fifth primary where the diagonals of the
rhombus cross, which is in the center of the coordinate
system, that is, (0, 0).-ere is a sixth test massm5 that moves
under the gravitational effect of the five primaries. -e
primaries at the opposite vertices of rhombus are assumed to
be equal, that is, m1 � m2 � m and m3 � m4 � 􏽥m. In section
2, we investigate the continuous families of five primaries
central configurations for different values of the mass pa-
rameters a and b. In section 3, we derived the equation of
motion for infinitesimal mass and discovered the Jacobian
constant C. In section 4, we explore the Hill’s and per-
missible regions of motion of the m5. Sections 5 and 6
analyze the positions and stability of the equilibrium points
for the sixth body, m5. Concluding remarks are given in
section 7.

2. Rhomboidal Central Configurations

-e classical equation of motion for the n-body problem has
the following form:

mi €ri � 􏽐
n

j�0,j≠ i

mimj

rj − ri􏼐 􏼑

rj − ri

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
3, (1)

where the units are chosen so that the gravitational constant
is equal to one. A central configuration is a particular
configuration of the n-bodies where the acceleration vector
of each body is proportional to its position vector, and the
constant of proportionality is the same for the n-bodies.
-erefore, a central configuration is a configuration that
satisfies the following equation:
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− ω2 ri − c( 􏼁 � 􏽘
n

j�0,j≠ i

mimj

rj − ri􏼐 􏼑

rj − ri

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
3, (2)

where ω is an angular speed and

c �
􏽐

n
i�1 miri

􏽐
n
i�1 mi

, (3)

is the center of mass on n-bodies. We choose the coordinates
(for positions, see Figure 1) of five primaries mj, where j �

0 − 4 as

r0 � 0, r1 � ae
iωt

, r2 � − ae
iωt

, r3 � bie
iωt

, r4 � − bie
iωt

. (4)

Expanding equation (2) for (i � 0 − 4) and using
equation (3) and letting m1 � m2 � m and m3 � m4 � 􏽥m, we
get the following equation for central configurations for the
masses m1 and m2:

ω2
�

m0

a
3 +

2 􏽥m

a
2

+ b
2

􏼐 􏼑
3/2 +

m

4a
3, (5)

and for the masses m3 and m4, the equation of motion is

ω2
�

m0

b
3 +

2m

a
2

+ b
2

􏼐 􏼑
3/2 +

􏽥m

4b
3. (6)

-emass m0 is stationery so its equation of motion ends
up zero. We take sum of all primaries is equal to unity that is

m0 + 2(m + 􏽥m) � 1. (7)

Taking ω � 1 and solving equations (5)–(7) give

m(a, b) �
Nm

D(a, b)
, (8)

􏽥m(a, b) �
N􏽥m

D(a, b)
, (9)

D(a, b) � P1 − P2, (10)

where

Nm � A(a, b) 1 + 7a
3

− 8b
3

􏼐 􏼑 − (1 − b),

N􏽥m � B(a, b) 1 − 8a
3

+ 7b
3

􏼐 􏼑 − (1 − a),

A(a, b) �
a
2

+ b
2

􏼐 􏼑
3/2

8a
3 1 + b + b

2
􏼐 􏼑

,

B(a, b) �
a
2

+ b
2

􏼐 􏼑
3/2

8b
3 1 + a + a

2
􏼐 􏼑

,

P1 � 15a
6

+ 45a
4
b
2

+ 64a
3
b
3

+ 45a
2
b
4

+ 15b
6
,

P2 � 64
������

a
2

+ b
2

􏽱

a
5

+ a
3
b
2

+ a
2
b
3

+ b
5

􏼐 􏼑.

(11)

Lemma 1. For any a> 0 and b> 0 , D(a, b) is always
negative.

Proof. Let us define the following:

P(α) �
P1(α)

P2(α)
�
15 + 45α2 + 64α3 + 45α4 + 15α6

64
�����
1 + α2

􏽰
1 + α2 + α3 + α5􏼐 􏼑

, α �
b

a
,

dP(α)

dα
�
2(α − 1) 15α6 + 64α5 + 109α4 + 64α3 + 109α2 + 64α + 15􏼐 􏼑

64 α2 + 1􏼐 􏼑
5/2

α3 + 1􏼐 􏼑
2 .

(12)

To prove D(a, b)< 0, we need to prove P(α)< 1. For this,
differentiateP(α) with respect to α and find the critical points of
P(α) in (0,∞). -ere is only one critical point of P(α) (i.e.,
α � 1) in (0,∞) and P(1) � (23/32

�
2

√
). One can easily see

that P(α) is monotonically increasing function because
(dP(α)/dα) < 0 in (0, 1) and P(α) is monotonically decreasing
function because (dP(α)/dα)> 0 in (1,∞) (see Figure 2).
When α⟶ 0 or∞, P(α)⟶ (15/64). So P(α)< 1 for
α ∈ (0,∞), and hence, D(a, b)< 0 for a> 0 and b> 0.

To prove m(a, b) and 􏽥m(a, b) positive, we need to prove
Nm and N􏽥m must be negative for a> 0 and b> 0. Because Nm

and N􏽥m are nonlinear algebraic functions of a and b, so it is
difficult to solve these inequalities. For this, we draw the region
(shaded region of Figure 3) where both Nm and N􏽥m are
negative. From the graph, we can easily find the approximate
bounds for a> 0 and b> 0 where Nm and N􏽥m are negative.

Using equation (7) to equation (9), one can easily see that
m(a, b) � 􏽥m(b, a) and 0<m(a, b)< 0.5 , 0< 􏽧m(a, b)< 0.5
and m0(a, b)> 0 for 0.5< a< 1 and 0.5< b< 1. In Figure4 we
show the region of central configuration for which
m, 􏽥m, m0 > 0 are positive. Because Figure 4 is symmetric
about the line b � a, we divide here Figure 4 into two parts:
upper region (Ru) and lower region (Lu). Here, we discuss
only the central configuration for the region ofRu.-e upper
CC region is approximately surrounded by the following
three interpolating polynomials:

f1 � a,

f2 � − 220.187a
7

+ 1310.43a
6

− 3257.57a
5

+ 4399.05a
4

− 3494.37a
3

+ 1637.89a
2

− 421.05a + 46.8139,

f3 � 259.785a
6

− 1127.86a
5

+ 2021.17a
4

− 1914.65a
3

+ 1013.31a
2

− 284.941a + 34.1992.

(13)

m2 (-a, 0)

m4 (0, -b)

m0 (0, 0)

m3 (0, b)

m1 (a, 0)

m5 (ξ, )

ξ

η

Figure 1: -e restricted six-body problem.
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Figure 5 shows the changes of masses m0, m, and 􏽥m with
variations of parameter b. We can clearly see that as b varies
in (0.5, 1), the mass m0 is increasing, and other masses are
becoming zeros. □

3. Equation of Motion of Infinitesimal Body

In this section, we derive the equation of motion of the
infinitesimal body, m5, that moves under the gravitational
attraction of the five primaries. -e sixth body has a sig-
nificantly smaller mass as compared to the masses of the
primaries, that is, (m5≪mi) where i � 0 − 4. Due to this
fact, the sixth body acts as an infinitesimal test particle, and
therefore, it does not have any influence on themotion of the
five primaries. In the above scenario, the equation of motion
of the test particle m5 is

€r5 � − 􏽐
4

i�0
mi

r5 − ri

r5 − ri

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (14)

-e dot represents the derivative with reference to time.
We discuss here the dynamics of the infinitesimal mass with

respect to the five primaries. -e equations of motion of the
m5 in synodical coordinates ξ and η [32] are

€ξ − 2 _η � Ωξ ,

€η + 2 _ξ � Ωη,
(15)

where

Ω(ξ, η) �
η2 + ξ2􏼐 􏼑

2
+

m0

r50
+ m

1
r51

+
1

r52
􏼠 􏼡 + 􏽥m

1
r53

+
1

r54
􏼠 􏼡,

(16)

is the effective potential, where the mutual distances are

r50 �

������

ξ2 + η2
􏽱

,

r51 �

����������

(ξ − a)
2

+ η2
􏽱

,

r52 �

����������

(ξ + a)
2

+ η2
􏽱

,

r53 �

����������

ξ2 +(η − b)
2

􏽱

,

r54 �

����������

ξ2 +(η + b)
2

􏽱

.

(17)

-e effective potential is shown in Figure 6 (right) for the
four different cases of rhomboidal restricted six-body
problem. We define the first Jacobian-type integral by

C �
1
2

_ξ
2

+ _η2􏼒 􏼓 − Ω. (18)

By demonstrating that _C(ξ, η) � 0, it is now straight-
forward to establish thatC(ξ, η) is the first integral of motion
of system (18).

Equation (18) shows that C +Ω≥ 0. -en, Ω � − C will
establish a boundary between both the allowed and for-
bidden regions andΩ � − C presents the zero velocity curves
for various values of C.

4. The Spheres of Influence

Spheres of influence or gravitational spheres of influence are
areas surrounding celestial objects where other celestial
objects experience the greatest pull and can become satellites
of the huge celestial object relative to its mass; these regions
are also known as Hill’s regions, after George William Hill.
-e zero velocity curves (ZVC) are the contours of the
Jacobian constant C as mentioned above, and they are
available in Figure 6 on the left, with their corresponding
effective potentials on the right. -e Hill’s regions are tightly
packed circular regions surrounding primaries; in Figure 6
(i), for case-I when b � 0.58 and a � 0.68, the Hill’s region
for m1 stretches between L2 and L4, whereas for m3, it
extends between L5 and L7. Figure 6 (i) also shows that the
spheres of influence shrink as the particle mass decreases,
since m0 has a relatively tiny Hill’s region as compared to the
other primaries. -e pink and green lines in Figures 6 (i),
(iii), (v), and (vii) on the left depict the contours of equations
(19) and (20). -e black dots indicate masses and are rep-
resented by the symbol mi; i � 0, 1, 2, 3, 4, the orange dots

0.0 0.2 0.4 0.6 0.8 1.0
a

0.0

0.2

0.4

0.6

0.8

1.0

b

Figure 3: Nm and N􏽥m both are negative (shaded region).

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20
0 2 4 6 8 10

Figure 2: Graph of P(α).
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represent equilibrium points and are denoted by Li;
i � 1, 2, . . . , 20. Figures 6 (ii), (iv), (vi), and (viii) on right
illustrate the effective potentials for each of the four cases,
where the closely packed circular regions around the po-
tentials of each mass, which resemble chimneys, can be seen
clearly. -e permissible regions of motion for the infini-
tesimal mass m5 are shown in Figures 7–10 for each of the
four cases for different values of mass parameters a and b. Six
figures for each of the four cases show the forbidden
(shaded) and permissible (white) regions of motion of m5 for
various values of C. -e regions of motion that are permitted
have the same behaviour in all four cases; that is, the per-
missible region increases as the value of C decreases. It has
also been numerically confirmed that the permissible re-
gions of motion are connected and are around the primaries
for higher values of C, that is, at C � − 1.66, − 1.97,

− 2.47, − 2.59, and − 3.49. -e permissible motion regions are
mainly around the four primary and are isolated from one
another at C � − 1.78, and for the above values of C, the
motion of m5 will be bounded around any of the four
primaries and will not be able to escape form there normally.
-e permitted regions become totally detached when
C≤ − 1.58, and the infinitesimal mass m5 may freely move
in the gravitational field of the primaries.

5. Equilibrium Solutions

All rates of change should be zero for equilibrium solutions;
hence, the right-hand side of the system in (15) can be set to
zero, that is,Ωξ � 0 andΩη � 0, and the solution of resulting
equations will give the problem’s equilibrium solutions. Ωξ
and Ωη are

Ωξ � ξ −
m0ξ

η2 + ξ2􏼐 􏼑
3/2 − m

ξ − a

(ξ − a)
2

+ η2􏼐 􏼑
3/2 +

a + ξ

(a + ξ)
2

+ η2􏼐 􏼑
3/2

⎛⎜⎝ ⎞⎟⎠

− 􏽥m
ξ

(η − b)
2

+ ξ2􏼐 􏼑
3/2 +

ξ

(b + η)
2

+ ξ2􏼐 􏼑
3/2

⎛⎜⎝ ⎞⎟⎠,

(19)

Ωη � η −
m0η

η2 + ξ2􏼐 􏼑
3/2 − m

η

(ξ − a)
2

+ η2􏼐 􏼑
3/2 +

η

(a + ξ)
2

+ η2􏼐 􏼑
3/2

⎛⎜⎝ ⎞⎟⎠

− 􏽥m
η − b

(η − b)
2

+ ξ2􏼐 􏼑
3/2 +

b + η

(b + η)
2

+ ξ2􏼐 􏼑
3/2

⎛⎜⎝ ⎞⎟⎠.

(20)

0.5 0.6 0.7 0.8 0.9 1.0
a

0.5

0.6

0.7

0.8

0.9

1.0

Ru

b

Rl

(a)

0.5 0.6 0.7 0.8 0.9 1.0
a

0.5

0.6 f3

0.7

0.8

0.9

1.0

f2

b

f1

(b)

Figure 4: (a) Central configuration region (shaded): (b) upper central configuration is surrounded by three interpolating curves (hue color).
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We considered four cases with different values of a and b

that show a significant change in the number and location of
equilibrium points, namely, a � 0.68 and b � 0.58 for case-I;
a � 0.68 and b � 0.60 for case-II, a � 0.78 and b � 0.67 for
case-III; and a � 0.62 and b � 0.80 for case-IV. -e corre-
sponding equilibrium points can be seen in subfigures (i),
(iii), (v), and (vii) of Figure 6.

5.1. Equilibrium Solutions: On the Coordinate Axes. We shall
limit our investigation to the first quadrant, ξ ≥ 0 and η≥ 0,
because the potential given in equation (15) is unchanged
under the symmetry (ξ, − η), (− ξ, η), and (− ξ, − η). To

determine the presence and number of equilibrium solutions
on the y-axis, we set ξ � 0 and then write equations (19) and
(20) as

Ωξ � 0,

Ωη � η −
m0η

η2􏼐 􏼑
3/2 −

2mη

a
2

+ η2􏼐 􏼑
3/2

− 􏽥m
η − b

(η − b)
2

􏼐 􏼑
3/2 +

b + η

(b + η)
2

􏼐 􏼑
3/2

⎛⎜⎝ ⎞⎟⎠.

(21)
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Figure 5: Variations of primary masses m0 (green), 􏽥m (orange), and m (blue) for different values of b.
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Figure 6: Left: zero velocity curves and contour plots with Lagrange points for different values of a and b in 2D, Right: corresponding
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-e η axis is subdivided into 0< η< b and η> b to figure
out Ωη � 0 for equilibrium solutions. η � b means collisions
of m5 with m3 or m4 from inside. We will not discuss
collisions cases here.

5.2. 0< η< b. Equation (21) is rewritten as

f1(η) � η −
m0

η2
−

2mη

a
2

+ η2􏼐 􏼑
3/2 − 􏽥m

1
(η − b)

2 +
1

(b + η)
2􏼠 􏼡. (22)
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Figure 7: -e permitted (white) and prohibited (shaded) regions of motion of m5 for the C ∈ (− 2.59, − 1.54) when b � 0.58 and a � 0.68:
(a)C � − 2.59, (b)C � − 2.47, (c)C � − 1.97, (d)C � − 1.64, (e)C � − 1.57, and (f)C � − 1.54.

8 Advances in Astronomy



For η ∈ (0, b) and b ∈ (0.5, 1), when η ≈ 0, f1(η)< 0
and when η ≈ b, f1(η)> 0; thus, the mean value theorem
implies that f1(η) has at least one zero when η ∈ (0, b). To

verify the existence and uniqueness of equilibrium solu-
tions inside the interval (0, b), we take derivative of
equation (22):
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Figure 8: -e permitted (white) and prohibited (shaded) regions of motion of m5 for the C ∈ (− 1.66, − 1.53) when b � 0.60 and a � 0.68:
(a)C � − 1.66, (b)C � − 1.63, (c)C � − 1.60, (d)C � − 1.58, (e)C � − 1.57, and (f)C � − 1.53.
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Figure 9: -e permitted (white) and prohibited (shaded) regions of motion of m5 for the C ∈ (− 1.78, − 1.54) when b � 0.67 and a � − 0.78:
(a)C � − 1.78, (b)C � − 1.74, (c)C � − 1.66, (d)C � − 1.64, (e)C � − 1.58, and (f)C � − 1.54.
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Figure 10: -e permitted (white) and prohibited (shaded) regions of motion of m5 for the C ∈ (− 3.49, − 0.30) when b � 0.80 and a � 0.62:
(a)C � − 3.49, (b)C � − 2.31, (c)C � − 1.91, (d)C � − 1.80, (e)C � − 1.32, and (f)C � − 0.30.
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f1′(η) � 1 +
2m0

η3
+ 2m

3η2

a
2

+ η2􏼐 􏼑
5/2 −

1

a
2

+ η2􏼐 􏼑
3/2

⎛⎜⎝ ⎞⎟⎠

+ 2 􏽥m
1

(b + η)
3 +

1
(η − b)

3􏼠 􏼡,

(23)

(a2 + η2)3/2 in equation (23) is the only term that can
make the derivative negative for η ∈ (0, b), and as a result,

f1′(η)> 0, which indicates that the equilibrium points in the
interval (0, b) exist and are unique.

5.3. η> b. When η> b, equation (21) is rewritten as

f2(η) � η −
m0

η2
−

2mη

a
2

+ η2􏼐 􏼑
3/2 − 􏽥m

1
(η − b)

2 +
1

(b + η)
2􏼠 􏼡.

(24)
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Figure 11: Condition (i): projection of stability regions (a) b � 0.58 and a � 0.68; (b) b � 0.60, and a � 0.68.
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For η ∈ (b,∞) and b ∈ (0.5, 1), when η ≈ b, f2(η)< 0,
and when η ≈ ∞, f2(η)> 0; thus, the mean value theorem
implies thatf2(η) has at least one zero when η ∈ (b,∞).-e
derivative of equation (24) with respect to η is

f2′(η) � 1 +
2m0

η3
+ 2m

3η2

a
2

+ η2􏼐 􏼑
5/2 −

1

a
2

+ η2􏼐 􏼑
3/2

⎛⎜⎝ ⎞⎟⎠

+ 2 􏽥m
1

(b + η)
3 +

1
(η − b)

3􏼠 􏼡.

(25)

-e equilibrium solution’s uniqueness for y> b can be
easily proved using the same technique as for 0<y< b.

-en, there are total 16 equilibrium points for case-I
and out of which L5,6,7,8 are along η axis, while L1,2,3,4 are on
ξ axis; similarly for case-II, III, and IV, there are four
equilibrium points on each coordinate axis for distinct
values of a and b, but the number of equilibrium points is
different for other cases, which can be seen from the
subfigures (i), (iii), (v), and (vii) of Figure 6.
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Figure 15: Projection of stability regions (a) b � 0.58 and 0.5< a< 1; (b) b � 0.60 and 0.5< a< 1.
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Figure 16: Projection of stability regions (a) b � 0.67 and 0.5< a< 1; (b) b � 0.80 and 0.5< a< 1.
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5.4.EquilibriumSolutions:Off theCoordinateAxes. -emass
parameters a and b, which we have numerically confirmed,
determine the number and location of the equilibrium
points, which is illustrated in subfigures (i), (iii), (v), and
(vii) of Figure 6. For case-I, there are eight off-coordinate
axis equilibrium points; for case-II, there are 12 off-coor-
dinate axis equilibrium points, the majority of which are
clustered around the central mass m0. Cases III and IV
contain 4 equilibrium points that cluster around m and 􏽥m off
the coordinate axis.

6. Stability Analysis

We represent the location of an equilibrium point in our
problem by the coordinates (ξ, η) and consider a small
displacement from the equilibrium point to be (ξ0, η0) in
order to linearize around the equilibrium point, and then,
the new location of the equilibrium points will be
(ξ + ξ0, η + η0). -e system in equations (14) is subjected to
Taylor series expansion, yielding the following set of line-
arized equations:

Table 1: Equilibrium points, eigenvalues, and stability status when b � 0.58 and a � 0.68.

Equilibrium point Eigenvalues Stability
On the coordinate axis
L1,2 � ( ± 1.183771, 0) ± 0.067596, ± 2.670587i Unstable
L3,4 � ( ± 0.183968, 0) ± 7.279086, ± 10.945510i Unstable
L5,6 � (0, ± 1.158556) ± 0.500651, ± 2.791424i Unstable
L7,8 � (0, ± 0.116046) ± 15.176878, ± 21.692684i Unstable
Off the coordinate axis
L9,10,11,12 � (0.347976, ± 0.256131) ± 1.138065i, ± 3.593599i Stable
L13,14,15,16 � ( ± 0.716623, ± 0.684335) ∓0.479573i, ± 2.668968i Stable

Table 2: Equilibrium points, eigenvalues, and stability status when b � 0.60 and a � 0.68.

Equilibrium point Eigenvalues Stability
On the coordinate axis
L1,2 � ( ± 1.183772, 0) ± 0.209362, ± 2.693806i Unstable
L3,4 � ( ± 0.228309, 0) ± 5.091753, ± 8.027477i Unstable
L9,10 � (0, ± 1.169283) ± 0.500956, ± 2.792577i Unstable
L11,12 � (0, ± 0.164938) ± 8.849253, ± 12.907057i Unstable
Off the coordinate axis
L5,6,7,8 � (0.228064, ± 0.058906) ± 4.765442, ± 7.656460i Unstable
L13,14,15,16 � ( ± 0.334768, ± 0.250108) ∓1.088025i, ± 3.645851i Stable
L17,18,19,20 � ( ± 0.716623, ± 0.684335) ∓0.508226i, ± 2.666074i Stable

Table 3: Equilibrium points, eigenvalues, and stability status when b � 0.67 and a � 0.78.

Equilibrium point Eigenvalues Stability
On the coordinate axis
L1,2 � ( ± 1.147893, 0) ± 1.125396, ± 3.220510i Unstable
L3,4 � ( ± 0.465536, 0) ± 1.381845, ± 3.742671i Unstable
L5,6 � (0, ± 1.245704) ± 0.715462, ± 2.911764i Unstable
L7,8 � (0, ± 0.287148) ± 2.273632, ± 4.422842i Unstable
Off the coordinate axis
L9,10,11,12 � ( ± 0.782825, ± 0.505983) ∓0.673476i, ± 2.735112i Stable

Table 4: Equilibrium points, eigenvalues, and stability status when b � 0.80 and a � 0.62.

Equilibrium point Eigenvalues Stability
On the coordinate axis
L1,2 � ( ± 1.239106, 0) ± 0.646502, ± 2.834110i Unstable
L3,4 � ( ± 0.230153, 0) ± 9.177227, ± 13.194850i Unstable
L5,6 � (0, ± 1.108360) ± 3.715368, ± 3.365771i Unstable
L7,8 � (0, ± 0.519657) ± 2.864727, ± 3.088526i Unstable
Off the coordinate axis
L9,10,11,12 � ( ± 0.421763, ± 0.819726) ∓2.317673, ± 3.0801580i Unstable
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€ξ0 − 2 _η0 � ξ0Ωξξ + η0Ωξη,

€η0 + 2 _ξ0 � ξ0Ωξη + η0Ωηη.
(26)

-e linearized equations in the matrix form is

_ξ0
_η0
€ξ0
€η0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

0 0 1 0

0 0 0 1

Ωξξ Ωξη 0 2

Ωξη Ωηη − 2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ0
η0
_ξ0
_η0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

Let

Υ �

ξ0
η0
_ξ0
_η0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

andM �

0 0 1 0

0 0 0 1

Ωξξ Ωξη 0 2

Ωξη Ωηη − 2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

-e equation in (27) can be written as
_Υ � MΥ. (29)

From M, we have

Ψ4 + αΨ2 + β � 0, (30)

where α � 4 − Ωξξ − Ωηη and β � ΩξξΩηη − Ω2ξη.
Let Ψ2 � λ, then equation (30) reduces to

λ2 + αλ + β � 0. (31)

For an equilibrium point to be linearly stable under a slight
disturbance, all four roots of equation (30) must be completely
imaginary. As a result, the two roots of equation (31)

λ± �
− α ±

������

α2 − 4β
􏽱

2
, (32)

must be real and negative. For λ± < 0, we must have

(i)α> 0 and 0< β≤ α2/4,

or (ii)α> 0 and α2 − 4β � 0.
(33)

-e regions of stability when either condition (i) or (ii)
holds true have been determined and presented in
Figures 11–14. -e stability areas corresponding to the four
cases for different values of a and b are shown in Figures 15
and 16, where b is fixed at 0.58, 0.60, 0.67, and 0.80, and the
regions are projected across the whole domain of the mass
parameter a, that is, 0.5< a< 1. We investigated the stability
of the equilibrium points found in the preceding section for
each of the four different cases, and many off-coordinate
stable equilibrium points were discovered; the results are
reported in Tables 1–4.

7. Conclusion

Mass parameters a and b are used to examine the restricted
rhomboidal six-body problem in depth. A point mass, m0, is

put at the intersection of two diagonals of the rhombus, and
the remaining four point masses are arranged in such a way
that they preserve a rhomboidal central configuration during
their two-by-two motion. -e point masses at the opposite
vertices of a rhombus are supposed to be the same, that is,
m1 � m2 � m and m3 � m4 � 􏽥m. In a synodical coordinate
system, the motion of the sixth test mass, m5, which has an
infinitesimal mass relative to the other five masses, that is,
(m5≪m0,1,2,3,4), is investigated for both the equilibrium
points and their linear stability. A significant shift in the
position and number of equilibrium points was found in
four cases with the variations of mass parameters a and b.
Cases-I to IV have 16, 20, 12, and 12 equilibrium points
respectively, with case-I and case-II having eight off-the-
coordinate-axis stable equilibrium points, case-III having
four off-the-coordinate-axis stable equilibrium points, and
case-IV having no on or off-the-coordinate-axis stable
equilibrium points. -e regions for the possible motion of
m5 have been discovered, and it has been observed that as the
Jacobian constant C increases, the permissible region of
motion expands, and the values of C for which the regions of
the possible motion become disconnected or partially dis-
connected have also been discovered. We also have nu-
merically verified the stability regions for different cases,
which shows the presence of stable equilibrium points.
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