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The nonlinear propagation of different types of DANW acoustic dust nonlinear waves has been investigated in a magnetized dusty
plasma consisting of negatively charged dust particles, Maxwellian electrons, and ions. Application of the standard reductive
perturbation theory is used to derive the corresponding three-dimensional nonlinear a complex Ginzburg-Landau (3D-CGLE)
equation which governs the dynamics of the dust-acoustic wave packets. The stationary analytical solutions of the CGLE are
numerically analysed where the effect of the physical parameters of the dusty plasma model on the wave’s propagation is taken into
account. It has been found that there can be a relationship between the appearance of soliton waves and electromagnetic waves, as
well as between shock-like waves and periodic travelling waves. Expression of the importance of these findings is the cornerstone
of explaining the true relationship between the propagation of nonlinear waves in the physics of space, for example, the Earth’s

magnetic field.

1. Introduction

Wave propagation and instability in magnetic dusty plasmas
have been studied extensively in the past few decades since
the presence of charged dust particles is so massive that it
plays a definitive role in understanding and interpreting
electrostatic disturbances in space plasma environments as
well as in laboratory plasmas. One of the main properties of
gases in plasma conditions is the transfer of radiant energy.
This is because it is considered to be an obvious consequence
of the excitation of high-energy states of elementary particles
in the plasma and the way they revert to lower or lower-
energy states, or it can be the ground state, by emitting
radiation over a wide range of the spectrum. Thus, we find
that the presence of the magnetic field in the various

astrophysical plasma environments has a very effective role
in modifying the properties and behavior of nonlinear wave
propagation in these media [1, 2]. Among the exciting
studies conducted in the presence of the magnetic field in
plasma environments, it was observed that when gravita-
tional waves propagate in the various cosmic environments,
they interact with a small magnetic field, and thus, they
produce electromagnetic radiation [3, 4]. With many dif-
ferent types of plasma medium, we found that the magnetic
field exerts a force known as the Lorentz force that affects the
moving charged particles, which penetrates or diverts the
transport path of the charged particles into a spiral, and this,
in turn, affects the properties and the formation of nonlinear
structures in this manner [5-7]. Recently, it has also been
established for the theoretical study, and for dusty plasma
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physics, there is an unstable spectrum of genes in non-
magnetic and self-gravitational dust gases. Therefore, it has
been shown that in dusty nonmagnetic gases, instability of
densities occurs from the presence of ion dust-acoustic
waves or dust-acoustic waves [8-10]. Thus, it happens
that very large dust grains are exposed to other types of
forces that affect them, for example, both electrostatic forces
as well as gravitational forces while the effect on both ions
and electrons is sometimes tested by electrical force only
because their masses are much smaller compared to the mass
of dust. Thus, we find that the instability expressed by jeans
has a very important and effective role in the phenomenon of
the collapse of dusty grains as well as dusty molecular
clouds [11].

Since most astrophysical phenomena contain strong
magnetic fields and inhomogeneous equilibrium densities, it
is important to consider the study of electrostatic waves of
self-gravitational ferromagnetic gases that can be classified
as homogeneous or heterogeneous. In the stable Pinnjjmal
clouds, we find a dusty plasma probe study that can be
described in self-gravitational magnetic fields [12-14].

The propagation phenomenon and properties of ion-
acoustic waves were studied in a nonmagnetic electron-ion
plasma, which is characterized by a non-Maxwellian con-
fined electron distribution, in addition to a kappa distri-
bution function with a Schamel distribution. Where the
reductionist perturbation theory was applied to obtain the
nonlinear and nonplanar Schamel Burgers equation using
the basic field equation. Where they found that the effect of
viscosity, may cause collisions that lead to the emergence of
anomalous dissipation, which usually results in a wave so-
lution of the shock waves. It was found from the in-
vestigation in this study that the effects of both viscosity and
collisions may cause thumping dissipation [15]. In a dusty,
nonmagnetic collisional plasma containing negatively
charged dust grains, positive ions, neutral particles, and
Maxwellian electrons. The solution was obtained, and shocks
were found for the propagation of dust ionic sound waves.
Furthermore, assuming that a conservation law is applied in
the system, they obtain an approximate solution for the
solitary wave, although the existence of the Burgers term
causes an increase in the viscosity effect and thus opposes the
a conservation law in the system. Thus, in this case, the shock
may be a generated wave that occurs due to the strong effect
of anomalous dissipation. Knowing the proof, Hirota’s
simplified bilinear method was used, and the waveform
solution known as shock type was obtained. Again, when the
dissipation was weak, the balance between dispersion and
nonlinearity could result in a singular solution. Taking into
consideration, the case of weak dissipation, the single-wave
solution was explored directly without taking into account
the conservation law by applying a residual weighted
method [16]. The nonlinear analysis of the solitary ion
acoustic solutions as well as the shock wave solutions of the
nonwide earth plasma has been investigated under the
modified Korteweg-de Vries-Burgers equation. The non-
linear analysis of the single ion acoustic solutions as well as
the nonwide ground plasma shock wave solutions was in-
vestigated under the modified Korteweg-de Vries-Burgers
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equation where the different patterned solutions of the
MKdAV equation were derived directly from the corre-
sponding Hamiltonian of the system, using the weighted
residual method. Thus, approximate analytical solutions of
the MKdVB equation are explored using the solution of the
MKdV equation as an initial solution [17]. The propagation
of EA waves in viscous plasmas is described and monitored
taking into account the weak damping (by adding a Burger
term) due to interparticle collisions and viscosity. Particular
attention was paid to studying the effect of the physical
factors present in the plasma system on wave propagation in
the framework of Schamel Burgers medium [18]. The
propagation properties of dust, ions, and acoustic waves in
nonmagnetic dusty plasma, which consist of mobile ions,
negatively charged dust particles, and also trapped non-
Maxwellian electrons, as well as both the kappa distribution
function and the Schamel distribution, were investigated and
studied together. The effect of collisions between particles is
neglected during studies of wave dynamics in a dusty plasma
environment although these effects may have a significant
impact on wave formation. For the first time, a large collision
effect was developed in the nonplanar Schamel framework,
and by using the conservation law, the approximate ana-
Iytical solution of the NDS equation was derived. Also, the
important effect of the damping coefficient has been de-
scribed from the point of view of numerical analysis. This is
in addition to examining the effects of other physical pa-
rameters on the propagation of dust waves in NDS
media [19].

Recently, there has been a great interest in studying ways
to obtain solutions to nonlinear differential equations
(PDEs) that describe the various physical plasma phe-
nomena. For examples of these methods are, the inverse
scattering method and a generalized exponential method of
solution of several physically interesting, nonlinear partial
differential equations (PDEs), such as the nonlinear
Schroéinger equation (NLSE), Korteweg-de Vries equation
(KdV), Kadomtsev-Petviashvili equation, and Sine-Gordon
equation [20-24]. These methods, in fact, are able to express
the solutions of integrable differential equations and obtain
various waves when one of these analytical methods is used
to obtain the solution. The physical phenomena in which the
above fully integrable nonlinear differential equations
(PDEs) arise tend to be very idealistic in dealing with those
equations. Therefore, including influences such as damping,
external forces, and an inhomogeneous medium in a dusty
plasma (e.g., a medium with variable density or depth) may
provide a more realistic model to explain those phenomena
whereas the inclusion of these perturbation effects would
imply that the PDE is no longer fully integrable, and hence, it
is important to define the conditions under which the
perturbed PDE is fully integrable in order to be able to
describe and study different physical phenomena [25, 26].

The complex Ginzburg-Landau (CGLE) equation is
a nonlinear differential equation rich in a number of so-
lutions that contain critical values, so it has an effective and
essential role in understanding nonlinear wave physics in
many nonequilibrium phenomena, especially in dusty
plasma physics. A review of specific physical systems which



Advances in Astronomy

are described by this equation can be found in [27, 28].
However, the physical states are described by the two- and
three-dimensional CGLE emerge frequently. It is therefore
of attention to study the characteristics solutions of the
multidimensional CGLE. In other words, CGLE is the
amplitude equation suitable for describing the slow dy-
namics in the supercritical transition to unidirectional
travelling waves [29-31].

Motivated by these theoretical works are the following:

(1) Investigate the stability of dust sound waves in the
Earth’s magnetic field condition

(2) Determine which condition gives rise to both the
Soliton wave and the periodic wave when the same
solution is used to obtain both waves

(3) Determine which condition gives rise to both the
shock-like wave and the periodical wave, and also
when the same solution is used to obtain them

(4) Describe the magnetosonic waves that may appear in
Earth’s magnetic field

The following is a summary of this work. In Section 2, we
give the relevant dynamical equations, i.e., the equations for
the negatively charged dusty plasma fluid, put it into

a dimensionless form, and give the electrons and ions as-
sociated with them by the equation of neutrality. In Section
3, the standard reductive perturbation theory is used to
derive the nonlinear evolution equation, which describes the
system of dusty plasma. In Section 4, where two analytical
solutions are presented to the evolution equation, and from
these solutions, we obtain solutions for the nonlinear dust
sound waves of CLGE. In Section 5, we investigate the effects
of the plasma parameters in the model, and the role they
play in influencing the behavior of the dust-acoustic waves.
Finally, Section 6, we obtained a summary of the conclusions
about the nonlinear waves describing the dusty plasma
system.

2. Basic Equations and Formulation

We consider three-dimensional nonlinear, self-gravitational,
magnetization, and collision nonlinear electrostatic wave
propagation consisting of three components, namely, dust
grain beam, electrons, and ions following the Boltzmann
distribution. The magnetic field effect is considered in the
z-direction only. The nonlinear dynamic process of such
kind of disturbances is governed by the dust grain beam fluid
equations [32, 33]

ong; 0 0 0

> Tox (naax) + 3y (ngug,) + % (ngug;) =0, (1)

d\[dug, - _ eZ

(1 + Tra>( d? + Vg, — (pac)” " (J x B) + p,' VP, —m—‘:o (1-R)Vo+ V(pg>

; (2)

= pa' o Vg + P&l(‘l’ + %)V (Vouy,).
J =1 (VxB) 7
where ¥ and 7, denote the dust shear viscosity and the bulk CAn ' 2

viscosity coeflicient, respectively. We thus consider the
densities of both electron and ion numbers to be the
Maxwellian distribution, respectively,

e
M, = My eXP<K (,’;1 )’ (3)
B-e

n; = ny exp(I;:?). (4)

The total pressure contains the pressure of the
electron-ion gas and the pressure of thermal radiation
together [32]

o
P, =Pe+Pi+?’(Tj+T?). (5)
The equation for magnetic induction is given by

0B 1
= (u4,-V)B, - FVZBZ ~(B,.V)u; =0,  (6)
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where the current density is

Poisson’s equation of gravitational potential is given by
Vz(pg = 4nGny. (8)

The DA wave potential ¢ is obtained from Poisson’s
equation

V2<p = dme (Zgony — n; +1,). (9)

At the equilibrium state, we have the quasineutrality
condition that can be expressed as n;, = 1,y + Z 4y, Where
Z 4 denotes the average number of electrons present on
a grain of dust, while n,, denotes the number density of
undisturbed dust and finally ¢, denotes the gravitational
potential. Where the three-dimensional Cartesian co-
ordinate system is V = (0/0x, 0/dy, d/0z), n;, and n,, denote
the undisturbed number densities of both ions and electrons,
respectively, B is the magnetic field in the direction of wave
propagation z, i.e., (B = B,z), Ky denotes the Boltzmann
constant, e denotes the magnitude of the electron charge,
and T, and (7)) are the electron and ion temperatures where
a, = (nK%)/(lS(chf) is radiation constant [32, 34].



3. Derivation of the CGL Equation

Let us now consider the system of negative dusty plasma in
three-dimensional nonlinear DAWSs propagating along the z
axis in a Cartesian coordinate system. The dynamics of the
DAWSs can be described by the nonlinear fluid equations
(32]
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Equations (10) and (18) are closed by the 3-D Poisson
equation as
3y ¢ 0
—f+—(€+—¢—nd+6ini -6,n, =0.
ox~ 0

0z (19)

We can normalize the physical quantities in the dusty
plasma model, which are the number densities relative to the
number density of dust grains in the initial state (n;,Z4,), as
follows: where n; = 7,/ (n4,Zy,) refers to the normalized
density of the number of dust grains in the perturbed state,

ox> 9y’ 097

n, = n,/(ngyZy,) refers to the normalized density of the
number density is the normalized number density of hot
electrons in the perturbed state, n; =%,/ (ny,Zy,) is the
normalized perturbed number density of ions, and u; is the
velocity of the negative dusty grains, which is normalized by
the dust-acoustic speed C; = (Apw,y). The electrostatic
potential force ¢ and ¢, the gravitational potential force are
normalized by (KzT,¢)/e. The space coordinates are nor-
malized by the Debye length (Ap = (KgT/
(4ﬂe2Zd0nd0))”2), and the time (#) is normalized by the
inverse of dusty plasma frequency w;;l = (my/dnng,
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72,e*)""* while the quantities without units of measure that
appear in the dusty plasma model after normalization are
0, =TilTee 0, = 070,13, 0, =TTess 0 = 0oa,/3,
0; = ngoZao/Migs 0, = NeglNagZao- P1 = (\P)/(mdndodi)wpd)’
B, is the damping coefficient in the dusty plasma system,
where the shear viscosity is a physical property that depends
on how the plasma responds to shear stress or the damping
process occurs in the plasma. 8, = (4#,/3)/ (mdndodi}wpd) is
also the another coefficient of damping in the dusty plasma
system, where bulk viscosity is a material property that
determines how a plasma responds to compression [15-19]
where d,, <Ay is the dust grains radius.

In order to investigate studying propagation in three-
dimensional envelope dust-acoustic waves, we employ the

standard reductive perturbation technique [23] to reduce the
basic set of the fluid equations (10)-(19) to one an evolution
equation. Consider strongly magnetized plasma and the
wave propagates in the z direction with weak transverse
perturbations.

We can stretch the independent variables in the dusty
plasma model using the following stretched [23]:

&= e(z - Vgt),( =ex,n=eyand 1 = €', (20)

where ¢ is the power of arranging the perturbed and greater
than zero, and V, is the group velocity of the proliferating
dust-acoustic wave. The dependent variables in the dusty
plasma model are expanded as follows:

ne=1+ i " i n{” (& D)exp (i L(kz - wt)),n (s = d, ie), (21)
e R it

Uy, = Ugy + MZ e" Lim(u;’j; (&) exp (il (k z - wt)), (22)
(14400140, = 2 sl im[(u;’;;(g, ,u’) (€ 1)exp (L (kz - 1) . (23)
99 = Pgo + 2 e" Liﬂ oo’ (& Texp (iL (kz - wt)), (24)

9= 2 e Liﬂ 9" (& Dexp (iL (kz — wb)), (25)

B, = By + i " i B (&, 7)exp (iL (kz — wt)), (26)

ml L

where w is the angular frequency, and k is the real variable
wave number. We take the remainder that all functions in
the model satisfy the reality condition. By substituting
equations (21)—(26) into the basic set of equations (10)-(20),
the first order in € gives, namely, the first harmonic mode of
the carrier wave (i.e., m = 1 and L = 1). we get the following
relations:

W _p s®

Ry = 0161
(1) (1)
ug’ =by 7,
(27)
(1) (1)
B; :b31’
(1) (1)
(Pg1=b41’

where by, b,, b;, and b, are given in the appendix. From the
perturbed first order of Poisson’s equation, we obtain
a linear equation, which is the linear dispersion relation in
the dust plasma model under study.

w* = 2kugow + hy = 0, (28)
where

hy = -k* - 8,0, - 8,0,
hy = k2(15r1 +8r, - 9u(210),

h, = 9k* (R, - 1),

29
hohy + hy — 9hop,0, (29)

’ 9h,

Ty = Ol + O3l

Ty = Ogpller + Ojrlhip-

The linear dispersion relation in equation (28) has two
roots for real values of k. The second-order (m = 2), reduced
the equations with harmonic modes (L = 1), we get
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where bs, bg, b;, and by are given in the appendix. An explicit
compatibility (consistency) condition is fulfilled via the
following relation:

v,
Vy=Vy +V,

The compatibility condition in equation (34) is exem-
plified by the group velocity of the dust-acoustic waves
without the vector sign, which is defined in terms of fre-
quency. It is seen that the group velocity is composed of real
(V) and imaginary (V) parts, where V. and V; be in the
appendix where the second harmonic modes (m = L = 2)
arising from the nonlinear self-interaction of the carrier
dust-acoustic waves are obtained in terms of (¢{")? as

2 = (o).

Up = blo(%(l))z’ (35)
B® = by, (p"Y,
8 = bu(o!")’
n3 = bis(o"),
n? = b, (oY, (36)
0" = bis(9"),

where by, ..., and b5 are given in the appendix. The
nonlinear self-interaction of the carrier dust-acoustic wave

9w on’

also leads to the creation of a zeroth-order harmonic where
its strength is determined analytically by taking the L =0
components of the second order and the reduced equations
of thg third order, which can be expressed as a function of
VP2 as

1
”do =by|¢ |

1)
“do = big|p |

(37)
Bz =b19"l’11)|’
= bzo"/’l(l)r’
”eo = 21|‘P |>
$g0 = i (38)
(Po 22|(P |7

where by, . . ., and b,, are given in the appendix. Finally, the
third-harmonic modes (m = 3 and L = 1), with the aid of
equations (27)-(38), give a set of equations. The compati-
bility condition for these equations yields the type of the
3D-CGL equation

;99 g (aq) aq)) 2
+P +P +P +iP, 0 =0,
i P Preaiw 3¢l9] 4P

(39)

where P, is the dispersion coeflicient, P; is the nonlinear
coefficient, P, is the dissipative coefficient, and the co-
efficient P, is given in the appendix and ¢ = ¢!, for
simplicity.
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4. Analytical Solutions of the Dissipative Dust-
Acoustic Waves

In this part, we will apply the modified extended simple
equation technique to get dust-acoustic wave solutions.
Since equation (38) is complex, this equation can be con-
verted into exactly the same form as follows [33, 35, 36]:

2 2
za—+(R0+zR01)a +(R2+1R22)(a 9,09 )
o) ()

+ (R; +iRy3)glol* +iPyp = 0,

where P, = Ry +iR,;, P, = R, +iR,,, and P; = (R; +iR;3).
Assume the solution in a travelling waveform as follows:

& n.( 1)

where Y = L&+ L,n+ L;{, where L, L,, and L, are the
direction cosine in the coordinates &, 7 and { and satisfy the
relation L} = 1 — L3 + L3, and Q is the constant determined
later. By inserting equation (41) into equation (40) and
separating real and imaginary terms, we obtain

= p(V) exp (=iQY + 7)), (41)

d’p dp 3

d—— i 2d,—— 2yt Ryp° —dyp=0, (42)
dZP dp 3

d4ﬁ - 2d5d_Y + R33p + dép =0, (43)

where d, = L2R, + R, (L3 + L3), d, = LRy, + (L, + L;)R,,,
dy = (Ry+2R,)Q%, d, =L?R,, + Ry, (I3 +L%), ds=L,R,
+(L, + L;)R,, and dg=P,—-Q(1+QR;; +2QR,,). By
combining the equal degree in equation (42) and equation
(43) in one equation,

d’p dp
gde + 293dY +(Rs +Rs3)p’ +g1p = 0, (44)

where g, =dg —ds5, g, =d, +d,, and g; = d, — ds.

Apply the homogeneous balance principle between the
nonlinear term and a dispersion term of equation (44) and
assume the solution as [36]

aG(Y)) 1 (45)

p(Y) :c0+c1( G +CZG(Y)’

where ¢, ¢;, and ¢, are the constants determined later, and
G(Y) satisfies the following Riccati equation:

E£GY) dG(Y

dY(2 )+c3 d;' )+c4:0, (46)
where ¢; and ¢, are the arbitrary constants. By inserting
equation (45) into equation (44) and collecting a power of
G(Y), we get a system of algebraic equations, and solving
this system, we get the given constants given the physical
parameters such as

7
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The Riccati equation has solutions in references
[20, 34, 37, 38].

(1) The hyperbolic functions solution
—C , . ,
G(Y)= exp(fY)(cSCOSh [AIY] + cﬁslnh[AlY]),
(51)
with ¢g <cs, (2 —4c2)"* >0, and A, = (¢ - 4cH)"2.
(2) The trigonometric functions solution
—c ) Cr s
G(Y)= exp(T3 Y)(c7 cos [AZY] +cg sm[AzY]),
(52)
. 2 24172 { _ (2 2\1/2 -
with ¢; > ¢g, (¢§ —4c;)'“ <0,and A, = (c5—4cy) "°/i,

(3) The exponential function

G(Y) = exp(%3 Y) (co +c9)> with (3 -



where ¢, ¢4, . . ., and ¢, are the arbitrary constants,
satisfying the above conditions

5. Numerical Results and Discussion

In this section, first, we conduct an analytical study on the
behavior of the wave solution in equation (51) using one of
the constants (47)-(50) and how it is affected by the physical
quantities present in the dusty plasma system.

In our present investigation, we consider the role that
physical quantities present in a dusty plasma system play in
the mode in which the type of solution wave appears. As the
direction of wave propagation L, changes, that is, when the
direction of wave propagation decreases, this leads to the
emergence of another type of wave behavior, which is the
shock-like wave whereas, when the direction of wave
propagation is large, the solitary wave appears, that is, when
the physical values in the system are fixed and the value of
the direction of wave propagation decreases. It also happens
that when the unperturbed number density of electrons
increases, it in turn leads to an increase in the unperturbed
number density of ions through the state of neutralization,
and thus, the shock-like wave appears. While the opposite is
that when the unperturbed number density of electrons n,,
decreases, it in turn leads to the emergence of the
soliton wave.

5.1. Soliton Structures. In this subsection, we are interested
to investigate the impact of different compositional pa-
rameters on the dust-acoustic solitary waves (DASW)
propagated in the considered dusty plasma medium by using
the solution (51). To do so, we have analysed the negative
solitary potential versus the space coordinate Y for the
variation of different physical parameters, and it is discussed
below in brief: the constraint of the soliton structures, when
L, is large where this is the direction of propagation of the
wave, and this leads to L, and L, being smaller.

Figure 1(a) shows the effect of the energy of the electrons
on the amplitude and energy width of the dust soliton
acoustic wave. We find that when the energy of the electron
increases, this leads to an increase in the potential energy of
the dusty soliton acoustic waves and also a slight expansion
in the width of the soliton wave. Figure 1(b) shows that when
the ion energy increases, it significantly affects the amplitude
and energy width of the dust-acoustic soliton wave. We find
that when the energy of the ions increases, this leads to an
increase in the potential energy of the dust-acoustic soliton
waves and also an expansion in the width of the soliton wave
greater than in the case of increasing the energy of the
electrons. Figure 1(c) shows that when the electron energy,
i.e., the temperature ratio o, of the relative electrons in-
creases, it significantly affects the amplitude and energy
width of the dust-acoustic soliton wave. We find that when
this energy increases, this leads to a decrease in the potential
energy of the dusty soliton sound waves and also contract in
the width of the soliton wave. Figure 1(d) shows that when
the wave number k decreases, it greatly affects the amplitude
and power width of the acoustic dust wave. We find that this
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potential energy increases significantly and also leads to an
expansion in the width of the dusty soliton wave. In other
words, when the wave number k increases, this leads to
a decrease in the wavelength and thus increases the radiated
energy, i.e., as the wavelength involved increases, the ra-
diated energy tends to be, the (EMR) values are lower, and
the frequency is also lower.

5.2. Shock-like Structures (Kink Wave). When inserting the
solution (52) in the travelling wave (41), obtaining the kink
wave and taking into account the values of the constants
((47), (47), or (49)). The constraint of the kink wave
structures, when L, is smaller where this is the direction of
propagation of the wave in a very narrow trajectory, leads to
L, and L, being larger or when the unperturbed number
density of electrons is greater than from the first case, i.e.,
o =0.12cm™3. This trajectory is clear that the higher
temperature ratio o, of the electrons increases the wave
energy of kink wave and its width as shown in Figure 2(a).
Figure 2(b) shows the path of the energy of the zigzag wave
and its width. It is clear that the higher temperature ratio of
the ions increases the energy of the dust wave, and its width
is also greater than it is in the case of increasing the energy of
the electrons as shown in Figure 2(a). This indicates that
when the thermal energy of the ions increases, this leads to
an increase in the energy wave. Figure 2(c) shows the path of
the dust wave energy and width, and it is clear that the higher
temperature ratio of the radiating electrons o,, reduces the
energy of the dust wave, and its width is also clearly larger.
Figure 2(d) shows the path of the kink wave energy and
width, and it is clear that increasing the wavenumber k leads
to an increase in the energy of the dust wave, and its width is
also clearly larger.

5.3. Periodic Wave Structures. Introducing the solution (53)
into the travelling wave (41), we obtain another type of
waveform solution, which gives us a type of periodic wave,
given the values of the constants ((47), (47), or (49)). These
waves can be considered the electromagnetic waves, and
these vector fields have a sine waveform, are oriented at right
angles to each other, and oscillate perpendicular to the
direction of dust-acoustic wave travel (Figure 3). It is clear
that when the temperature ratio o, increases in the dusty
plasma system, the nonlinearity in the system decreases, and
this leads to a decrease in the energy of the electromagnetic
wave and a decrease in the width of that wave as shown in
Figure 3(a). Figure 3(b) shows that when the wave number k
increases, that is, when the wavelength decreases, the energy
of the electromagnetic wave decreases because the frequency
decreases.

The dust-acoustic periodic travelling wave, when the
value cosine in the direction of the wave propagation is large,
appears, i.e., L; = 0.72. Figure 4(a) shows the periodic sharp
wave type, and the effect of the electron temperature ratio on
the behavior of the periodic wave. where the electromagnetic
potential energy increases, when the electron temperature
ratio increases. While Figure 4(b) shows the effect of the
electron radiation temperature ratio on the behavior of the
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F1Gure 1: (Color online) (a): Two-dimensional profile of the solitary pulse for different values of ¢,. (b): Two-dimensional profile of the
solitary pulse for different values of ;. (c): Two-dimensional profile of the solitary pulse for different values of o,,. (d): Two-dimensional
profile of the solitary pulse for different values of k, for n, =0.02cm™3, ny; =12x10"%cm™3, Z;5 =500, ny =1, + Z 191405
T,=25x10'K, T;=2x10°K, R, =0.018, uz =0.015, u, =0.01, s, =0.35, a, =0.13, B, =0.013, ,=0.015 L, =0.7,L, =07,
s,, = 0.003, Q = 0.03, By = 0.025, ¢c; = 0.8, ¢, = 0.2, ¢c5 = 1.6, ¢s = (—0.001)"2.

periodic sharp wave, we find that when the electron radi-
ation temperature ratio increases, it leads to a decrease in the
wave amplitude.

6. Summarize

We investigated the properties of physical parameters on
a dust-acoustic wave propagation of electrostatic dust in
magnetized plasma containing isothermal electrons and
hot ions in the presence of a magnetic field. Standard
reductionist perturbation theory is used to derive the
corresponding 3D-CGL equation that governs the dy-
namics. One of the useful results is the link between the
emergence of soliton waves and electromagnetic waves, as
well as between shock-like waves and periodic carrier
waves. This means that when the wave propagation di-
rection is large, which is also the direction of the magnetic

field, the soliton wave appears whereas when the wave
propagation direction is small, that is, the farther it is from
the perpendicular direction of the magnetic field, the
shock-like wave appears.

The advantage of using the method under study over the
standard method is that when we used the harsh method, we
get two waveforms using the same solution [39, 40], but here
we get three waveforms for the same solution.

The present work applies to understanding the propa-
gation and formations of dust waves in the attractive particle
dust cloud when radiation pressure and strong coupling
effects are simultaneously present in the dusty plasma
system. The results can also be useful in understanding the
nonlinear propagation of acoustic waves of dispersed dust in
the viscomagnetic viscosity laboratory that has been used in
the fundamental study of nonlinear dust activities in the dust
cloud and astrophysical consequences.
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F1GURE 2: (Color online): (a): Two-dimensional profile of the shock-like pulse for different values of g,. (b): Two-dimensional profile of the
shock-like pulse for different values of o;. (c): Two-dimensional profile of the shock-like pulse for different values of ¢,,. (d): Two-
dimensional profile of the shock-like pulse for different values of k, for n,y = 10cm™3, nyy = 107*cm™3, Z 4, = 500, nyy = 1,y + Z 91,0,
T,=24x10'K, T,=2x10°K, R, =0.018, ug =0015 pu,=00013, s =035 a, =013, B, =0013, B,=0.015 L,=0.64,
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F1GURE 3: (Color online): (a): Two-dimensional profile of the electromagnetic pulse for different values of g,. (b): Two-dimensional profile of
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Appendix

A: Constants

Ty = Ocle + Oilbi>Ty = Ogrlher + Oirlhir>

- 9k’ (1 -R,)
! k2(15r1 +8r, — 9u30) + 18kugow — 9(ygog + wz) ’
9k (1 - R,) (kug — w)
b, = 2 2\’
k (—151’1 —-8r, + 9ud0) — 18kugow + 9(‘ugag + w )
- 9Byk* (-1 +R,)
’ k2(15r1 +8r, — 9u§0) + 18kugow — 9(ygog + wz) ’
b - 9k (1 - Ry)u,
! kz(—l5r1 - 8r, + 9u§0) — 18kugow + 9(ygorg + wz) ’
162ik(1 - Rl)(kzudng + g0, — k(udo + Vg)w + wz)
(K3 (15r, + 8r, — 9%, + 18Kkugow - (0, + &))"
b, = be, + bg, + bg;
6 — b >
4
b = by + by, + by

T (k”do - “’)bs '
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be, = 9ik (R, — 1)(15K°r\V , + 8K°r,V  + 9K U5,V + 18ugopt g0, = 9V gt 0,);
be, = ~9ik (R, - 1)(15K’r, + 8K°r, + 9k’ ugy + 18K 140V + 9,0, ),
bes = 8likw” (R, = 1)(V,, + 2uyy) — 8liw’ (R, - 1),
b, = 18Byk* (R, — 1)(15k3r15m +8K’rys,, — 9K, 1y + 9ik2udovg — 9ks, 4,0, + 9iud0ygag),
b,, = 162Byk(R, - 1)(2k3udosm — ik’ u, — 2ik2ud0Vg - iygag)w,
byy = —162Bok* (R, — 1)(ks,, — 2itzy — iV, )w” - 162iBykaw’,
by = 18i(Ry = 1)uy (k (157 + 87, + 9uyy (Vg — tgg)) + 90 (Vg — uy),
by, = 2k — 27b3k(4K” + 8,0, + 0,8, ) + kb7 (15r) — 16r,)(4k* + 8,0, + 0,0;)
+27(R, - 1)(8,07 - 8,07 ) + 54b, b, (4k* + 8,0, + 0,5, (kugy — ),
bo, = 3(16k* (157, + 8r, — 914}y ) ) + 288K ugow + 72Ktz (8,0, + 0;6,)w — 9 (8,0, + 0,8;) (A1)

(g0, +40”) + 4> (<R, + (157, + 8r, — Juy) (6,0, + 0,8;) — 9,0, + 40° — 1)),

b — =b1o1 = bina
10 — b >
92
b = by + by,
11 — b >
113
b = b1y
12 — b >
122
b = bys; + b3y
13 — b >
122

by = 3b,b,16k* (157, + 8r,) — 9,0, (8,0, + 0,0,) + 4k*9 — 9R, — 9,0,
+(15r, + 8r,) (8,0, + 0;0;),
by, = 2b; (157, — 161,)(4k” + 8,0, + 0;0; ) (kutgy — w) — 54k (kugg — w)

-(la§(4k2 +0,0, + crié,-) - (R, - 1)(aea§ - 5,0?)),
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byyy = Bok(3b,b,(16k* (157, + 8r,))) = 9,0, (8,0, + 0;0;) + 4k*9 — 9R, — 9,0,
+ (157, +8r,) (8,0, + 0;8;) + 267k (151, — 161’2)(4k2 +08,0, + ai6i) (kugy — w),
by, = 54k (kugy — w)(b5(4k* + 8,0, + 0,8,)) = (R, - 1),

byys = 3 (kugy — w) - 16k* (157 + 8r, — 9u ) — 288k u 0w — 72kuz0w (8,0, + 0;0;)
+9(8,0, + 0;0,)(1y0, + 40’ ) + 4k*9R, —(15r, + 8r, — 913 ) (8,0, + 0,0;)
+(—1 tUgO, T+ 4w2),

, 27b3k(4k* + 8,0, + 0,6;) + k — b (157, — 167,)(4K” + 8,0, + 0,0, )+

270\ (r, - 1)(~8,0% + 8,07) — 54b,b,(4k” + 8,0, + 0,8;) (kugy — @) )’

byy, = 6k(16k* (157, + 8r, — 9uly ) + 288K uggw + 72Kkug (8,0, + 0,6,)w — 9(8,0, + 0,5;)
(g0, +40”) + 4k* (<R, +(157, + 8r, — 913 ) (8,0, + 0,8,)) = 9(1 — 0, + 40*)

bys; = 0,(4b] (157, — 16r,) — 108b,k” + 216b,b,k* g + 36,0,(4k" (157 + 8r, — 9uy) — 9,0, ),

b5 = 30?161{4(15r1 +8r, — 9u§0) = 90,y0,0,+ 4k*9 - 9R18€(15r1 +8r, - 9u§0)ae
+ 1080, (kuyy — (4))(4k2 +08,0,+ 01-81-),

b = by +biy
14 — b >
122
b - b5,
15 — b >
122
—by7,
b17 = >
by7,
b = big
18 — b >
172
b
_ 191
blg - bl

(”do - Vg)b172

by = 4k203(27b§ — 15b3r, + 16b3r, — 54b,b,uy, + 270, + 108k*r,0, — 27R, 0, — 108k2u§006 - 27ygaeag),

bis = 30,288k 1 00,0 + 72k (byby + 90,0, (0; + 0,))w — 98,0, (0; + ae)(ygag + 4w2)
+ 4k (157, + 8r, — 9uy)8,0,(0; + 0,) - 360,0°),

bys, = 108k°b; + 4bk* (—157, + 167,) + 216b, b,k (kuyy — w) + 3(~6,0; + 8,07 )
4k (157, + 8ry = 9143y ) = 9,0, + 72Kkt — 360,

byyy = bi((=157, + 161,) + 27b, (b, + 2b, (V, — ug))) (8,0, + 0,8,)27
+ Seae(ae - R0, + blsag) + Siai(blsag +0;(R, - 1))

byyy = 3(—9 +9R, +<15r1 +8r, = 9(ugy ~V,) (8,0, + 5,6,

big = —by (—157) +167,)(V, = tigo) (6,0, + 0,8;) + 27(ugy = V ;)8,0,(b3 + 0, — R,0,b10,,)
+ 6,»(19% + b16ag)ai + 8,07 (R, — 1) = 6b,b, — 9+ 9R, + (157, + 8r,) (3,0, + 7;3,),

bio, = Byb? (157, — 16r2)(ud0 - Vg) (8,0, +0;0;) + 27(ud0 - Vg) - 6eoe(b§ +0,—Ryo, + bléag)
= 8,(b3 + byg + (R, = 1)8,07 ) + 6b,b, (<9 + 9R, + (157, + 8r,) (8,0, + 0;})),
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by

by =77
b7,
_ by

by = b
172
_ by

by ==,
by,

byg = 0,27b; + by (=157, + 167,) + 54b,b, (~1ig + V) + 39by50,, + 90, (R, - 1)
) (A.2)
157, + 87, —(udo - Vg) 8.0,(0, +0;)
2 2
by, = 0, = 27b; + by (157, — 161,) + 54b,b,(uge — V) = 27(0, - Ry0, + b}60,)
2
+ 3(15r1 +8r, = 9(ug —V,) )6,0,» (0, +0,),

byy = =27b5 + by (157, — 161,) + 54b,b, (1 — V ;) = 27b)0,

—3(15r, — 167, = 9)(ugo ~ V) (8,07 + 078,),

plzi)
Py,
pzzi,
Py
P3=_P31,
P3,
p4:&’
Py

P, = kz(—i(—15r1 - 8r, + 9(u20 +aybguiggVy + albngag)) + (11(151’1 +8r, + 9u§0)w)
-9(i+ alw)(‘ugag - b0, +ibgw + wz) +k—-9bgo,+V, —9bs—a, -9 +15b,1,
+8by7, + R, + 9bytigy — 9B,V + 9b,0, + 9i(2uyy + 2,66V, + a,byo, + 18a,1400°)
+bs —ia,k* (157, + 8r,)Vy + k(15r1 + 87, + 9ud0(Vg - ”do)) (1 -iway)

+ 9(ud0 - Vg)w(l —iway),

Py, = 9ib, (kugy — w) + 9,k (—i + akuyy — 2a,w) + alkz(—9 +15b;7r; + 9R, + 8r 7, + 9b4ag)
+9b, ku 40 — 9b, w?,

Py =(i+ alw)(kz(—ISr1 - 8r29ufio)w +w9b, (157, + 8r,) + 9(—1 + Ry +u,0,+ wz))

- kudo(b1 (157, + 8r,) + 9(—1 + Ry +b,0, + 2w2)),
Py, = w(—k(9ibyugy + ayk(=9 + 15b,r, + 9R, + 8b,7, + 9b,0,)) = b, (—i + aykuy)w

+9a,b,w” + 9b,k (i — a kuyy + 2a,),
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Py =(i+ (/11a))(k2 (=15r, - 8r, + 9ud0)) — 18ku yw + 9(/4g0g + w2)162b10b2k2 +4b7K* (157, — 4r,)

+6b,bok” (~15r) — 4r,) + 6b,bok® (=157, + 161,) - 9(8,0% (2by5 + 0,)) - 2b,58,07 + 6,0,

(K*(15r + 8ry — 9uy) + 18kugow — 9,0, + 0’ )) + 6 (27by5k (kb, + by (@ — kuug,)))

+b,k (by;k (167, — 1511) + 27by (w — kugy) — 3 (9b1;b:k (w — kugy) + 9b,bok (w — kirgg) + by,))

((Seaﬁ - 81401.2)k2(15r1 + 87, — 9u§0) + 18kuyw — 9(ygag + wz),

(A.3)

Py, = 18(k2(ISr1 +8r, — 9u§0) + 18ku 0 — 9(;4g0g + wz))9ib1 (—w + kugy) + 9,k (—i + akuy,)

-20,w + al(kz(15blr1 - 9+9R, +8b,r, +9b,r, + 9b4ag) +9b, kuzow — 9b1w2),

b, = _9ib2k3 By +Bs)s

Py, = 9ib, (—w + kugy) + 9b,k (a kugy — i — 2a,0) + a,(k*(15b,r, — 9 + 9R, + 8b,r, + 9b,0, )

+9b, ki o0 — 9b, @,

B: The solution of the Riccati equation is

C:TI;I+[;(31_Z+“H:0> (B.1)
H = H(x), we suppose that
H = exp(rx), (B.2)
is the solution of equation (B.1) where
H ? 2
o exp (rx), and 2P (rx). (B.3)
The characteristic equation is
r+Br+a=0, (B.4)
where
n=he (B.5)
r, =\,
where
L)
(B.6)
A = %(—ﬁ + B - 4a )
The general solution is
H = ¢, exp(-A,x) + ¢, exp (-A,x). (B.7)

When * - 4« = 0, this tends to 7, = r, = —/2, and the
general solution is

H= exp(%gx) (c; +¢5).

When f* - 4a <0, this tends to 7, #r,, and we define
r=A+iu, r,=A—iy, i=+-1, and

(B.8)

cos(x) = % (exp (ix) + exp (—ix)),
(B.9)
sin(x) = le (exp (ix) — exp (—ix)).

The two solutions of the differential equation are

H, = exp((A +iu)x),

(B.10)
H, =exp((A —ip)x).
The general solution is
H=cH, +c,H,,
H = exp (Ax) (c5 exp (ipx) + ¢, exp (—ipx)),
H = exp (Ax) (c5 (cos (ux) + i sin (ux)) (B.11)

+ ¢4 (cos (px) —isin (ux))),

H = exp (Ax) (c5 (cos (ux)) + ¢, (sin (ux))).

When % - 4a> 0, this tends to 7, #r,, and we define
ry =A+u, ry =1 —p, and the general solution is

H =c¢;H, + c¢¢H,, (B.12)

where
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H, = exp (%),

H, = exp(L,x),

A =Pk
2

y=F =,

H= ( exp( ) + ¢ exp(‘u2x>),
smh - cosh(ﬂzx))+

H= exp >
smh + cosh(%))

H= 7/3 ( cs + c6)s1nh( Zx) +(—cs + chosh(%)),

H= <7ﬁ >( smh( ) + cgcosh(M;)),

(B.13)

where ¢, > cg.
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