Noncollinear Equilibrium Points in CRTBP with Yukawa-Like Corrections to Newtonian Potential under an Oblate Primary Model

M. Javed Idrisi ${ }_{(D)}{ }^{1}$ Sunusi Haruna ${ }^{(1)}{ }^{\mathbf{2}}$ and Teklehaimanot Eshetie ${ }^{(\mathbb{D}}{ }^{1}$
${ }^{1}$ Department of Mathematics, College of Natural and Computational Science, Mizan-Tepi University, Tepi Campus, Tepi, Ethiopia
${ }^{2}$ Department of Arts and Humanities, School of General Studies, Kano State Polytechnic, Kano, Nigeria
Correspondence should be addressed to Sunusi Haruna; webhost@kanopoly.edu.ng and Teklehaimanot Eshetie; teklehaimanot@mtu.edu.et

Received 27 February 2023; Revised 5 June 2023; Accepted 7 June 2023; Published 15 June 2023
Academic Editor: Yue Wang
Copyright © 2023 M. Javed Idrisi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study is about the effects of Yukawa-like corrections to Newtonian potential on the existence and stability of noncollinear equilibrium points in a circular restricted three-body problem when bigger primary is an oblate spheroid. It is observed that $\partial x_{0} /$ $\partial \lambda=0=\partial y_{0} / \partial \lambda$ at $\lambda_{0}=1 / 2$, so we have a critical point $\lambda_{0}=1 / 2$ at which the maximum and minimum values of x_{0} and y_{0} can be obtained, where $\lambda \in(0, \infty)$ is the range of Yukawa force and $\left(x_{0}, y_{0}\right)$ are the coordinates of noncollinear equilibrium points. It is found that x_{0} and y_{0} are increasing functions in λ in the interval $0<\lambda<\lambda_{0}$ and decreasing functions in λ in the interval $\lambda_{0}<\lambda<\infty$ for all $\alpha \in \alpha^{+}$. On the other hand, x_{0} and y_{0} are decreasing functions in λ in the interval $0<\lambda<\lambda_{0}$ and increasing functions in λ in the interval $\lambda_{0}<\lambda<\infty$ for all $\alpha \in \alpha^{-}$, where $\alpha \in(-1,1)$ is the coupling constant of Yukawa force to gravitational force. The noncollinear equilibrium points are found linearly stable for the critical mass parameter β_{0}, and it is noticed that $\partial \beta_{0} / \partial \lambda=0$ at $\lambda^{*}=1 / 3$; thus, we got another critical point which gives the maximum and minimum values of β_{0}. Also, $\partial \beta_{0} / \partial \lambda>0$ if $0<\lambda<\lambda^{*}$ and $\partial \beta_{0} / \partial \lambda<0$ if $\lambda^{*}<\lambda<\infty$ for all $\alpha \in \alpha^{-}$, and $\partial \beta_{0} / \partial \lambda<0$ if $0<\lambda<\lambda^{*}$ and $\partial \beta_{0} / \partial \lambda>0$ if $\lambda^{*}<\lambda<\infty$ for all $\alpha \in \alpha^{+}$. Thus, the local minima for β_{0} in the interval $0<\lambda<\lambda^{*}$ can also be obtained.

1. Introduction

The general three-body problem deals with the motion of three arbitrary spherically symmetric bodies considered as a point mass. The motions of these bodies are related to the Newtonian force of gravity, which are superimposed on each other and have no specific path. The closed form of analytical solution to the general three-body problem is yet to be determined.

The restricted three-body problem (R3BP) is an approximation of the general three-body problem in which one body is treated as having an infinitesimal mass compared to the other two bodies. The bigger bodies are called primaries which revolve around their common center of mass in circular or elliptical orbits in a rotating coordinate system in which the infinitesimal mass also moves without disturbing the motion of
the primaries. The restricted three-body problem has five equilibrium points, three collinear, and two noncollinear or triangular. The collinear equilibria are unstable for all values of mass parameter but triangular equilibria are stable for a critical mass parameter $\mu_{0}=0.03852$ [1].

The restricted three-body problem has been studied by many researchers in last two decades in different aspects. In the classical restricted three-body problem, the primaries are assumed as spherical in shape, but in real situation, several heavenly bodies such as Earth, Saturn, and Jupiter are sufficiently oblate. The oblateness effect in the restricted three-body problem has been investigated by El-Shaboury [2]; Khanna and Bhatnagar [3]; Raheem and Singh [4]; Ammar et al. [5]; Idrisi and Taqvi [6, 7], Singh and Umar [8]; Bury and McMahon [9]; Saeed and Zotos [10]; Alrebdi et al. [11] etc.

New theories in the contemporary world predict improvements to the theory of gravity. The Yukawa potential was first proposed by Yukawa [12] to modify the Newtonian potential. The strong interactions between particles are well described by the Yukawa potential, a nonrelativistic
potential. In a two-body problem, the modified potential energy may be used to express the gravity effects on the secondary primary m in the presence of the Yukawa correction [13] as

$$
\begin{equation*}
V(r)=-\frac{G M m}{r}\left(1+\alpha e^{-(r / \lambda)}\right)=-\frac{G M m}{r}-\frac{G M m}{r} \alpha e^{-(r / \lambda)}=V_{N}(r)+V_{Y}(r), \tag{1}
\end{equation*}
$$

where $V_{N}(r)$ is the Newtonian potential between the two bodies m and $M, V_{Y}(r)$ is the Yukawa correction to the Newtonian potential, r is the distance between m and M, G is the Newtonian gravitational constant, $\alpha \epsilon(-1,1)$ is the coupling constant of the Yukawa force to the Gravitational force, and $\lambda \epsilon(0, \infty)$ is the range of the Yukawa force [14]. Therefore, the corresponding force between m and M can be expressed as

$$
\begin{equation*}
\vec{F}(r)=-\frac{G M m}{r^{2}}\left\{1+\alpha\left(1+\frac{r}{\lambda}\right) e^{-(r / \lambda)}\right\} \vec{r} \tag{2}
\end{equation*}
$$

As $\alpha \longrightarrow 0$, the Newtonian gravitational force can be obtained.

In the restricted three-body problem, Kokubun [14] has included Yukawa-like corrections to Newtonian potential. His findings differed significantly from the purely Newtonian case. Reference [15] provides the minimal values of the Yukawa coupling constant for the artificial satellites LAGEOS and LAGEOS II. Massa [16] investigated Mach's principle and Yukawa potential within the Sciama linear approach framework. Haranas and Ragos [17] investigated satellite dynamics while taking Yukawa-like corrections into account. Pricopi [18] has investigated the stability of celestial
orbits under the effect of the Yukawa potential in the twobody problem. Reference [19] has analyzed the elliptical and circular orbits of the Earth while taking into account the Yukawa potential and Poynting-Robertson effect. The dynamics and stability of the two-body problem were examined by Cavan et al. [20] while taking the Yukawa corrections to Newtonian potential into account. Idrisi et al. [21] have investigated the triangular equilibria in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem.

The dynamics surrounding noncollinear equilibrium points in a circular restricted three-body problem with a Yukawa-like adjustment to Newtonian potential under an oblate primary model piqued our attention. The existence and linear stability of noncollinear equilibrium points under an oblate primary model with Yukawa like-corrections to Newtonian potential have been examined in this study.

2. Yukawa Correction to Newtonian Potential

The modified potential between two bodies M and m can be described as follows:

$$
\begin{equation*}
V(r)=-\frac{G M m}{r}\left(1+\alpha e^{-(r / \lambda)}\right)=-\frac{G M m}{r}-\frac{G M m}{r} \alpha e^{-(r / \lambda)}=V_{N}(r)+V_{Y}(r) \tag{3}
\end{equation*}
$$

where $V_{N}(r)=$ Newtonian potential between the two bodies M and $m, V_{Y}(r)=$ Yukawa correction to the Newtonian potential, $r=$ distance between m and $M, G=$ Newtonian gravitational constant, $\alpha \in(-1,1)$ is the coupling constant of

Yukawa force to the gravitational force, and $\lambda \in(0, \infty)$ is the range of Yukawa force [14].

Therefore, the corresponding force between M and m can be expressed as

$$
\begin{equation*}
F(r)=\frac{G M m}{r^{2}}\left\{1+\alpha\left(1+\frac{r}{\lambda}\right) e^{-(r / \lambda)}\right\}=\frac{G M m}{r^{2}}+\frac{G M m}{r^{2}} \alpha\left(1+\frac{r}{\lambda}\right) e^{-(r / \lambda)}=F_{N}(r)+F_{Y}(r) \tag{4}
\end{equation*}
$$

where $F_{N}(r)=$ Newtonian gravitational force between M and m and $F_{Y}(r)=$ Yukawa correction to Newtonian gravitational force between M and m.

From (4), as $\alpha \longrightarrow 0$ or $\lambda \longrightarrow 0$, the term $F_{Y}(r)$ vanishes and $F(r)=F_{N}(r)$. If $\alpha<0, F(r)<F_{N}(r)$ and for $\alpha>0, F(r)$ $>F_{N}(r)$, Figure 1 . Thus, as α increases in the interval $(-1,1)$, the force between m and M also increases and vice-versa.

But as $\lambda \longrightarrow \infty$ the force between M and m is given by

$$
\begin{equation*}
F_{\infty}(r)=\frac{G M m}{r^{2}}(1+\alpha) . \tag{5}
\end{equation*}
$$

From (5), it is clear that as $\alpha \longrightarrow-1, F_{\infty}(r) \longrightarrow 0$, i.e., the force between m and M reduces as α reduces. For $\alpha \longrightarrow 0$, $F_{\infty}(r) \longrightarrow F_{N}(r)$ and the Newtonian gravitational force can

Figure 1: The force function $F(r)$ with respect to λ.

3. Model Description and Equations of Motion

Let us consider two primaries P_{1} and P_{2} having masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ moving around their common center of mass in circular orbits. The more massive primary m_{1} is considered to be an oblate body while less massive primary m_{2} is spherical in shape. The equations of motion of the infinitesimal mass in a barycentric synodic co-ordinate system (x, y) and dimensionless variables are

$$
\begin{equation*}
\ddot{x}-2 n \dot{y}=U_{x}, \ddot{y}+2 n \dot{x}=U_{y}, \tag{6}
\end{equation*}
$$

and the potential function U can be expressed as
be obtained. But as $\alpha \longrightarrow 1, F_{\infty}(r) \longrightarrow 2 F_{N}(r)$, i.e., the force acting between m and M is twice of the Newtonian gravitational force, as shown in Figure 2.

$$
\begin{equation*}
U=\frac{n^{2}}{2}\left(x^{2}+y^{2}\right)+\frac{m_{1}}{r_{1}}\left(1+\frac{\sigma}{2 r_{1}^{2}}\right)\left(1+\alpha e^{-r_{1} / \lambda}\right)+\frac{m_{2}}{r_{2}}\left(1+\alpha e^{-r_{2} / \lambda}\right) \tag{7}
\end{equation*}
$$

$\sigma=\left(r_{\mathrm{e}}^{2}-r_{\mathrm{p}}^{2}\right) / 5 r^{2}$ is the oblateness factor due to bigger primary m_{1}, r_{e} and r_{p} are the equatorial and polar radii respectively of m_{1}, r is the distance between m_{1} and m_{2} considered as unity, n is the mean-motion of the primaries, and defined as

$$
\begin{equation*}
n^{2}=\left(1+\frac{3 \sigma}{2}\right)\left[1+\alpha\left(1+\frac{1}{\lambda}\right) e^{-1 / \lambda}\right] \tag{8}
\end{equation*}
$$

$|\alpha|<1$ is the coupling constant of Yukawa force to gravitational force, $\lambda \in(0, \infty)$ is the range of Yukawa force.

We can define a mass parameter $\beta>0$ as

$$
\begin{equation*}
\beta=\frac{m_{2}}{m_{1}+m_{2}}<\frac{1}{2} \Rightarrow m_{1}=1-\beta ; \quad m_{2}=\beta . \tag{9}
\end{equation*}
$$

Therefore, the distances of infinitesimal mass from the primaries P_{1} and P_{2}, are given by

$$
\begin{equation*}
r_{1}=\left|(x-\beta)^{2}+y^{2}\right| \text { and } r_{2}=\left|(x+1-\beta)^{2}+y^{2}\right| \tag{10}
\end{equation*}
$$

The Jacobi integral associated to the problem is given by

$$
\begin{equation*}
v^{2}=2 U-C \tag{11}
\end{equation*}
$$

where v is the velocity of infinitesimal mass and C is Jacobi constant.

4. Noncollinear Equilibrium Points

The noncollinear equilibrium points are the solution of the equations $U_{x}=0$ and $U_{y}=0, y \neq 0$, i.e.,

$$
\begin{gather*}
n^{2} x-\frac{(1-\beta)(x-\beta)}{r_{1}^{3}}\left(1+\frac{3 \sigma}{2 r_{1}^{2}}\right)\left[1+\alpha\left(1+\frac{r_{1}}{\lambda}\right) e^{-\left(r_{1} / \lambda\right)}\right]-\frac{\beta(x+1-\beta)}{r_{2}^{3}}\left[1+\alpha\left(1+\frac{r_{2}}{\lambda}\right) e^{-\left(r_{2} / \lambda\right)}\right]=0 \tag{12}\\
n^{2}-\frac{(1-\beta)}{r_{1}^{3}}\left(1+\frac{3 \sigma}{2 r_{1}^{2}}\right)\left[1+\alpha\left(1+\frac{r_{1}}{\lambda}\right) e^{-r_{1} / \lambda}\right]-\frac{\beta}{r_{2}^{3}}\left[1+\alpha\left(1+\frac{r_{2}}{\lambda}\right) e^{-r_{2} / \lambda}\right]=0 \tag{13}
\end{gather*}
$$

Figure 2: The force function $F_{\infty}(r)$ with respect to α.

On eliminating r_{1} and r_{2} from the (12) and (13), respectively, we have

$$
\begin{align*}
& r_{2}^{3}=\frac{1}{n^{2}}\left[1+\alpha\left(1+\frac{r_{2}}{\lambda}\right) e^{-r_{2} / \lambda}\right] \tag{14}\\
& r_{1}^{3}=\frac{1}{n^{2}}\left(1+\frac{3 \sigma}{2 r_{1}^{2}}\right)\left[1+\alpha\left(1+\frac{r_{1}}{\lambda}\right) e^{-r_{1} / \lambda}\right] \tag{15}
\end{align*}
$$

The solution of (15) is $r_{1}=1$. To solve (14), we assume that $r_{2}=1+\delta, \delta \ll 1$. On substituting $r_{2}=1+\delta$ in (14) and considering only linear terms in α and δ and then solving it for δ, we obtain

$$
\begin{equation*}
\delta=-\frac{\sigma}{2} f(\alpha, \lambda) ; f(\alpha, \lambda)=1-\frac{\alpha}{3} \frac{e^{-1 / \lambda}}{\lambda^{2}} \tag{16}
\end{equation*}
$$

$$
\text { Thus } r_{2}=1-\frac{\sigma}{2} f(\alpha, \lambda)
$$

Now, solving $r_{1}=1$ and (17), we have the coordinates of noncollinear equilibrium points $E_{4,5}\left(x_{0}, y_{0}\right)$, i.e.,

$$
\begin{equation*}
x_{0}=\beta-\frac{1}{2}-\frac{\sigma}{2} f(\alpha, \lambda), y_{0}= \pm \frac{\sqrt{3}}{2}\left(1-\frac{\sigma}{3} f(\alpha, \lambda)\right) \tag{17}
\end{equation*}
$$

For a nonoblate case, i.e., $\sigma=0$ we obtain $r_{i}=1$ which is the classic case of restricted three-body problem [1], and hence in the nonoblate case, the noncollinear equilibrium points are not affected by the Yukawa force [21]. For $\alpha=0$, the results are agreed with [22].

As shown in Figure 3, $f(\alpha, \lambda)$ is a continuous function for $|\alpha|<1$ and $\lambda \in(0, \infty)$, and $\lim _{\lambda \longrightarrow \infty} f(\alpha, \lambda)=1=\lim _{\lambda \longrightarrow 0}$ $f(\alpha, \lambda)$. Thus, for very small and large values of λ, the term
$f(\alpha, \lambda)$ becomes unity and the noncollinear equilibrium points $E_{4,5}\left(x^{*}, y^{*}\right)$ in this case are given by

$$
\begin{equation*}
x^{*}=\beta-\frac{1}{2}-\frac{\sigma}{2}, y^{*}= \pm \frac{\sqrt{3}}{2}\left(1-\frac{\sigma}{3}\right) . \tag{18}
\end{equation*}
$$

Since $\partial x_{0} / \partial \lambda=0=\partial y_{0} / \partial \lambda$ at $\lambda=1 / 2$. So we have a critical point $\lambda=\lambda_{0}=1 / 2$ at which the maximum and minimum values of x_{0} and y_{0} can be obtained. As it has been examined that $\partial x_{0} / \partial \lambda, \partial y_{0} / \partial \lambda>0$ for $0<\lambda<\lambda_{0}$ and $\partial x_{0} / \partial \lambda, \partial y_{0} / \partial \lambda<0$ for $\lambda_{0}<\lambda<\infty$ for all $\alpha \in \alpha^{+}$. Similarly, $\partial x_{0} / \partial \lambda, \partial y_{0} / \partial \lambda<0$ for $0<\lambda<\lambda_{0}$ and $\partial x_{0} / \partial \lambda, \partial y_{0} / \partial \lambda>0$ for $\lambda_{0}<\lambda<\infty$ for all $\alpha \in \alpha^{-}$. Thus, it is concluded that x_{0} and y_{0} are increasing functions in λ in the interval $0<\lambda<\lambda_{0}$ and decreasing functions in λ in the interval $\lambda_{0}<\lambda<\infty$ for all $\alpha \in \alpha^{+}$. On the other hand, x_{0} and y_{0} are decreasing functions in λ in the interval $0<\lambda<\lambda_{0}$ and increasing functions in λ in the interval $\lambda_{0}<\lambda<\infty$ for all $\alpha \in \alpha^{-}$.

For $\alpha \in \alpha^{+}$, as λ increases in the interval $0<\lambda<\lambda_{0}$, the abscissa x_{0} of E_{4} moves toward the center of mass of the system and the ordinate y_{0} moves vertically upward and vice-versa. In the interval $\lambda_{0}<\lambda<\infty, x_{0}$ and y_{0} decrease and hence approach to x^{*} and y^{*}, respectively, as λ increases and vice versa. For $\alpha \in \alpha^{-}$, as λ increases in the interval $0<\lambda<\lambda_{0}$, the abscissa x_{0} moves away from x^{*} and y_{0} moves vertically downward and vice-versa. In the interval $\lambda_{0}<\lambda<\infty, x_{0}$ and y_{0} increase and hence approach to x^{*} and y^{*}, respectively, as λ increases and vice-versa (Figures 4 and 5).

The noncollinear equilibrium points $E_{4,5}$ at the critical point $\lambda=1 / 2$ have maximum or minimum values according to $\alpha \in \alpha^{+}$or $\alpha \in \alpha^{-}$, respectively, are given as

$$
\begin{equation*}
x_{c}=\beta-\frac{1}{2}-\frac{\sigma}{2}\left(1-\frac{4}{3} \alpha e^{-2}\right), y_{c}= \pm \frac{\sqrt{3}}{2}\left[1-\frac{\sigma}{3}\left(1-\frac{4}{3} \alpha e^{-2}\right)\right] . \tag{19}
\end{equation*}
$$

Figure 3: Curves of $f(\alpha, \lambda)$ with respect to λ.

Figure 4: Curves of x_{0} with respect to λ.

Figure 5: Curves of y_{0} with respect to λ.

Figure 6: Critical mass parameter β_{0} versus λ.

5. Stability of Equilibrium Points

The variational equations of motion can be obtained by perturbing the equilibrium point $\left(x_{0}, y_{0}\right)$ to a small displacement $\left(\delta_{1}, \delta_{2}\right), \delta_{i} \ll 1, i=1,2$. Therefore, on substituting $x=x_{\mathrm{o}}+\delta_{1}$ and $y=y_{o}+\delta_{2}$ in Equation (3), we have

$$
\left.\begin{array}{l}
\ddot{\delta}_{1}-2 n \dot{\delta}_{2}=\delta_{1} \stackrel{o}{U}_{x x}+\delta_{2} \stackrel{o}{U}_{x y} \tag{20}\\
\ddot{\delta}_{2}+2 n \dot{\delta}_{1}=\delta_{1} \stackrel{o}{U}_{x y}+\delta_{2} \stackrel{o}{U}_{y y}
\end{array}\right\}
$$

$$
\begin{align*}
& \stackrel{o}{U}_{x x}=\left.\frac{\partial^{2} U}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}=\frac{3}{4}+\frac{\left(3 \lambda^{2}+3 \lambda+1\right)}{4 \lambda^{2}} \alpha e^{-1 / \lambda}-3\left(\beta-\frac{9}{8}\right) \sigma \\
& \stackrel{o}{U}_{x y}=\left.\frac{\partial^{2} U}{\partial x \partial y}\right|_{\left(x_{0}, y_{0}\right)}=\frac{3 \sqrt{3}}{2}\left(\beta-\frac{1}{2}\right)+\frac{\sqrt{3}(2 \beta-1)\left(3 \lambda^{2}+3 \lambda+1\right)}{4 \lambda^{2}} \alpha e^{-1 / \lambda}+\frac{13 \sqrt{3}}{4}\left(\beta-\frac{19}{26}\right) \sigma, \tag{22}\\
& \stackrel{o}{U}_{y y}=\left.\frac{\partial^{2} U}{\partial y^{2}}\right|_{\left(x_{0}, y_{0}\right)}=\frac{9}{4}+\frac{3\left(3 \lambda^{2}+3 \lambda+1\right)}{4 \lambda^{2}} \alpha e^{-1 / \lambda}+\frac{33}{8} \sigma .
\end{align*}
$$

The quadratic equation corresponding to (22) is given by

$$
\begin{equation*}
\Upsilon^{2}+p_{1} \Upsilon+p_{2}=0 \tag{23}
\end{equation*}
$$

where $\Upsilon=\Gamma^{2}, p_{1}=4 n^{2}-\stackrel{o}{U}_{x x}-\stackrel{o}{U}_{y y}, p_{2}=\stackrel{o}{U}_{x x} \stackrel{o}{U}_{y y}-\left(\stackrel{o}{U}_{x y}\right)^{2}$.
The roots of (24) are

$$
\begin{equation*}
\Upsilon_{1,2}=1 / 2\left(-p_{1} \pm \sqrt{p_{1}^{2}-4 p_{2}}\right) \tag{24}
\end{equation*}
$$

The motion near the equilibrium point $\left(x_{0}, y_{0}\right)$ is said to be bounded if $p_{1}^{2}-4 p_{2} \geq 0$, i.e.,

As $\delta_{i} \ll 1$ and $|\alpha|<1$, therefore we consider only linear terms in δ_{1}, δ_{2}, and α, and the characteristic equation corresponding to (21) is given by

$$
\begin{equation*}
\Gamma^{4}+\left(4 n^{2}-\stackrel{o}{U}_{x x}-\stackrel{o}{U}_{y y}\right) \Gamma^{2}+\stackrel{o}{U}_{x x} \stackrel{o}{U}_{y y}-\left(\stackrel{o}{U}_{x y}\right)^{2}=0 \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
27 \beta^{2}-27 \beta+(1-3 \sigma+Q \alpha) \geq 0 ; \quad Q=\frac{2\left(\lambda^{2}+\lambda-1\right)}{\lambda^{2}} e^{-1 / \lambda} \tag{25}
\end{equation*}
$$

On solving the inequality (19), we get

$$
\begin{equation*}
\beta \leq \beta_{0}=\mu_{0}-\frac{\sigma}{\sqrt{69}}+\frac{Q \alpha}{3 \sqrt{69}}, \tag{26}
\end{equation*}
$$

where $\mu_{0}=0.0385209 \ldots$. For $\alpha=0, \beta_{0}=\beta^{*}=\mu_{0}-\sigma / \sqrt{ } 69$ is the critical mass parameter in the circular restricted threebody problem when bigger primary is an oblate body [22]. For $\alpha=0$ and $\sigma=0, \beta_{0}=\mu_{0}=0.0385209 \ldots$ is the critical mass

Figure 7: Stability surface for noncollinear equilibrium points.

Figure 8: Continued.

Figure 8: Continued.

(g)

Figure 8: Stability region for noncollinear equilibrium points for various values of α. (a) $\alpha=-0.8$. (b) $\alpha=-0.5$. (c) $\alpha=-0.2$. (d) $\alpha=0$. (e) $\alpha=0.2$. (f) $\alpha=0.5$. (g) $\alpha=0.8$.
parameter in the classical circular restricted three-body problem [1]. For $\sigma=0$, all results are in conformity with those of Idrisi et al. [21]. Thus, the noncollinear equilibrium points obtained in the proposed model are linearly stable for the critical mass parameter β_{0} defined in (26).

The third term in (26) vanishes either for $\alpha=0$ or $Q=0$, i.e., $\lambda=\lambda_{1}=\sqrt{5}-1 / 2$. Thus, $\beta_{0}>\beta^{*}$ in the interval $0<\lambda<\lambda_{1}$ and $\beta_{0}<\beta^{*}$ in the interval $\lambda_{1}<\lambda<\infty$ for all $\alpha \in(-1,0)$. Similarly, $\beta_{0}<\beta^{*}$ when $0<\lambda<\lambda_{1}$ and $\beta_{0}>\beta^{*}$ in the interval $\lambda_{1}<\lambda<\infty$ for all $\alpha \in(0,1)$, Figure 6.

From (26), we have the following observations: $\left(\partial \beta_{0} / \partial \lambda\right)=0$ at $\lambda=1 / 3$. Thus, $\lambda=\lambda^{*}=1 / 3$ is a critical point which gives the maximum and minimum values of β_{0}. Also, $\left(\partial \beta_{0} / \partial \lambda\right)>0$ if $0<\lambda<\lambda^{*}$ and $\left(\partial \beta_{0} / \partial \lambda\right)<0$ if $\lambda^{*}<\lambda<\infty$ for all $\alpha \in(-1,0)$, and $\left(\partial \beta_{0} / \partial \lambda\right)<0$ if $0<\lambda<\lambda^{*}$ and $\left(\partial \beta_{0} / \partial \lambda\right)>0$ if $\lambda^{*}<\lambda<\infty$ for all $\alpha \in(0,1)$. Thus, we have the local minima in the interval $0<\lambda<\lambda^{*}$. The local maximum and minimum values of β_{0} at the critical point $\lambda=\lambda^{*}$ are given by

$$
\beta_{0}=\mu_{0}-\frac{\sigma}{\sqrt{69}}+\frac{10 \alpha e^{-3}}{3 \sqrt{69}}=\left\{\begin{array}{ll}
\beta_{0 \max }, & -1<\alpha<0 \tag{27}\\
\beta_{0 \min }, & 0<\alpha<1
\end{array} .\right.
$$

In Figure 7, the stability surface is plotted, and it can be seen that when α rises, the stability surface does too and vice versa. As a result, the noncollinear equilibrium points are on the surface are stable and unstable otherwise.

The shaded region in Figure 8 corresponds to stable region for the noncollinear equilibrium points, and it is seen that as alpha increases the stability region also increases and vice-versa.

Table 1: Noncollinear equilibrium points in the Earth-moon system.

α	x_{0}	y_{0}	Stability
-1.0	-0.4878457082878896	± 0.866025283529371	Stable
-0.9	-0.4878457061037406	± 0.866025284790389	Stable
-0.8	-0.4878457039195917	± 0.866025286051407	Stable
-0.7	-0.4878457017354426	± 0.866025287312426	Stable
-0.6	-0.4878456995512938	± 0.866025288573446	Stable
-0.5	-0.4878456973671447	± 0.866025289834465	Stable
-0.4	-0.4878456951829958	± 0.866025291095484	Stable
-0.3	-0.4878456929988468	± 0.866025992356502	Stable
-0.2	-0.4878456908146979	± 0.866025293617522	Stable
-0.1	-0.4878456886305489	± 0.866025294878541	Stable
$\mathbf{0}$	$-\mathbf{0 . 4 8 7 8 4 5 6 8 6 4 4 6 4}$	$\pm \mathbf{0 . 8 6 6 0 2 5 2 9 6 1 3 9 5 5 9}$	Stable
0.1	-0.487845684262251	± 0.866025297400578	Stable
0.2	-0.4878456820781021	± 0.866025298661598	Stable
0.3	-0.4878456798939531	± 0.866025299922616	Stable
0.4	-0.4878456777098041	± 0.866025301183635	Stable
0.5	-0.4878456755256552	± 0.866025302444654	Stable
0.6	-0.4878456733415063	± 0.866025303705673	Stable
0.7	-0.4878456711573572	± 0.866025304966692	Stable
0.8	-0.4878456689732083	± 0.866025306227711	Stable
0.9	-0.4878456667890594	± 0.866025307488731	Stable
1.0	-0.4878456646049104	± 0.866025308749749	Stable
It is a special case when $\alpha=0$, i.e., pure Newtonian case.			

6. Real Application to the Earth-Moon System

From astrophysical data [23], mass of Earth $=5.972 \times$ $10^{24} \mathrm{~kg}$, mass of moon $=7.348 \times 10^{22} \mathrm{~kg}$, axes of the Earth: $r_{e}=6378.140 \mathrm{~km}, r_{p}=6356.755 \mathrm{~km}$, and average distance between Earth and moon $=382500 \mathrm{~km}$.

In the Earth-moon system, $\lambda=400000 \mathrm{~km}[24]$.
In a dimensionless system, we have

$$
\begin{equation*}
\beta=0.0121545, \sigma=3.72893 \times 10^{-7} \text { and } \lambda=1.04575 \tag{28}
\end{equation*}
$$

Table 1 lists the numerical locations of noncollinear equilibrium points $E_{4,5}\left(x_{0}, y_{0}\right)$ for the aforementioned values of β, σ and for $|\alpha|<1$. For all possible values of α, it has been found that the numerical values of x_{0} and y_{0} are identical up to six decimal places.

7. Conclusion

We studied the dynamics around noncollinear equilibrium points in the circular restricted three-body problem under the considerations of oblateness of more massive primary and Yukawa-like corrections to Newtonian potential. The modified gravitational force between the two masses M and m, therefore, can be written as $F(r)=F_{N}(r)+F_{Y}(r)$, where $F_{N}(r)$ is Newtonian gravitational force between M and m, and $F_{Y}(r)$ is Yukawa correction to Newtonian gravitational force between M and m. It is found that as $\alpha \longrightarrow 0$ or $\lambda \longrightarrow 0$, the term $F_{Y}(r)$ vanishes and $F(r)=F_{N}(r)$, where $\alpha \in(-1,1)$ is the coupling constant of Yukawa force to gravitational force and $\lambda \in(0, \infty)$ is the range of Yukawa force. If $\alpha<0, F(r)$ $<F_{N}(r)$ and for $\alpha>0, F(r)>F_{N}(r)$, Figure 1. Thus, as α increases in the interval $(-1,1)$, the force between m and M also increases and vice-versa. But as $\lambda \longrightarrow \infty$, the force between M and m is given by $F_{\infty}(r)$ and $F_{\infty}(r) \longrightarrow 0$ as $\alpha \longrightarrow-1$, i.e., the force between m and M reduces as α reduces. For $\alpha \longrightarrow 0, F_{\infty}(r) \longrightarrow F_{N}(r)$ and the Newtonian gravitational force can be obtained. But as $\alpha \longrightarrow 1$, $F_{\infty}(r) \longrightarrow 2 F_{N}(r)$, i.e., the force acting between m and M is twice of the Newtonian gravitational force, as shown in Figure 2.

The nonequilibrium points are the solutions of $r_{1}=1$ and (17). On solving these equations, we got two noncollinear equilibrium points $E_{4,5}\left(x_{0}, y_{0}\right)$ given in (18). For nonoblate case, i.e., $\sigma=0$ we obtain $r_{i}=1$ which is the classic case of restricted three-body problem [1], and hence in the nonoblate case, the noncollinear equilibrium points are not affected by the Yukawa force [21]. For $\alpha=0$, the results are agreed with [22]. It is observed that $\partial x_{0} / \partial \lambda=0=\partial y_{0} / \partial \lambda$ at $\lambda=1 / 2$. So, we have a critical point $\lambda=\lambda_{0}=1 / 2$ at which the maximum and minimum values of x_{0} and y_{0} can be obtained. As it has been examined that $\partial x_{0} / \partial \lambda, \partial y_{0} / \partial \lambda>0$ for $0<\lambda<\lambda_{0}$ and $\partial x_{0} / \partial \lambda, \partial y_{0} / \partial \lambda<0$ for $\lambda_{0}<\lambda<\infty$ for all $\alpha \in \alpha^{+}$. Similarly, $\partial x_{0} / \partial \lambda, \partial y_{0} / \partial \lambda<0$ for $0<\lambda<\lambda_{0}$ and $\partial x_{0} / \partial \lambda, \partial y_{0} /$ $\partial \lambda>0$ for $\lambda_{0}<\lambda<\infty$ for all $\alpha \in \alpha^{-}$. Thus, it is concluded that x_{0} and y_{0} are increasing functions in λ in the interval $0<\lambda<\lambda_{0}$ and decreasing functions in λ in the interval $\lambda_{0}<\lambda<\infty$ for all $\alpha \in \alpha^{+}$. On the other hand, x_{0} and y_{0} are decreasing functions in λ in the interval $0<\lambda<\lambda_{0}$ and increasing functions in λ in the interval $\lambda_{0}<\lambda<\infty$ for all $\alpha \in \alpha^{-}$. For $\alpha \in \alpha^{+}$, as λ increases in the interval $0<\lambda<\lambda_{0}$, the abscissa x_{0} of E_{4} moves toward the center of mass of the system and the ordinate y_{0} moves vertically upward and vice-versa. In the interval $\lambda_{0}<\lambda<\infty, x_{0}$ and y_{0} decrease and hence approach to x^{*} and y^{*}, respectively, as λ increases and vice versa. For $\alpha \in \alpha^{-}$, as λ increases in the interval $0<\lambda<\lambda_{0}$, the abscissa x_{0} moves away from x^{*} and y_{0} moves vertically
downward and vice-versa. In the interval $\lambda_{0}<\lambda<\infty, x_{0}$ and y_{0} increase and hence approach to x^{*} and y^{*}, respectively, as λ increases and vice-versa (Figures 4 and 5).

The noncollinear equilibrium points obtained in the proposed model are linearly stable for the critical mass parameter β_{0} defined in (26). From (26), $\partial \beta_{0} / \partial \lambda=0$ at $\lambda^{*}=1 /$ 3 thus we got another critical point which gives the maximum and minimum values of β_{0}. Also, $\partial \beta_{0} / \partial \lambda>0$ if $0<\lambda<\lambda^{*}$ and $\partial \beta_{0} / \partial \lambda<0$ if $\lambda^{*}<\lambda<\infty$ for all $\alpha \in \alpha^{-}$, and $\partial \beta_{0} /$ $\partial \lambda<0$ if $0<\lambda<\lambda^{*}$ and $\partial \beta_{0} / \partial \lambda>0$ if $\lambda^{*}<\lambda<\infty$ for all $\alpha \in \alpha^{+}$. The local maximum and minimum values of β_{0} at the critical point $\lambda=\lambda^{*}$ are given in (27).

Data Availability

The data used to support the findings of this study are included within this research article. For simulation, we have used data from other research papers which are properly cited.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] V. Szebehely, Theory of Orbits, the Restricted Problem of Three Bodies, Academic Press, New York and London, 1967.
[2] S. M. El-Shaboury, "Equilibrium solutions of the restricted problem of $2+2$ axisymmetric rigid bodies," Celestial Mechanics and Dynamical Astronomy, vol. 50, no. 3, pp. 199-208, 1991.
[3] M. Khanna and K. B. Bhatnagar, "Existence and stability of libration points in the restricted three body problem when the smaller primary is a triaxial rigid body and the bigger one an oblate spheroid," Indian Journal of Pure and Applied Mathematics, vol. 30, pp. 721-733, 1999.
[4] A. Raheem and J. Singh, "Combined effects of perturbations, radiation and oblateness on the stability of equilibrium points in the restricted three-body problem," The Astronomical Journal, vol. 131, no. 3, pp. 1880-1885, 2006.
[5] M. K. Ammar, S. M. El-Shaboury, and M. R. Amin, "Thirdorder secular solution of the variational equations of motion of a satellite in orbit around a non-spherical planet," Astrophysics and Space Science, vol. 340, no. 1, pp. 43-61, 2012.
[6] M. J. Idrisi and Z. A. Taqvi, "Restricted three-body problem when one of the primaries is an ellipsoid," Astrophysics and Space Science, vol. 348, no. 1, pp. 41-56, 2013.
[7] M. J. Idrisi and Z. A. Taqvi, "Existence and stability of the noncollinear libration points in the restricted three body problem when both the primaries are ellipsoid," Astrophysics and Space Science, vol. 350, no. 1, pp. 133-141, 2014.
[8] J. Singh and A. Umar, "Effect of oblateness of an artificial satellite on the orbits around the triangular points of the Earth-Moon system in the axisymmetric ER3BP," Differential Equations and Dynamical Systems, vol. 25, no. 1, pp. 11-27, 2017.
[9] L. Bury and J. McMahon, "The effect of zonal harmonics on dynamical structures in the circular restricted three-body problem near the secondary body," Celestial Mechanics and Dynamical Astronomy, vol. 132, no. 9, p. 45, 2020.
[10] T. Saeed and E. E. Zotos, "On the equilibria of the restricted three-body problem with a triaxial rigid body - I, oblate primary," Results in Physics, vol. 23, Article ID 103990, 2021.
[11] H. I. Alrebdi, F. L. Dubeibe, and E. E. Zotos, "On the equilibria of the restricted three-body problem with a triaxial rigid body, II: prolate primary," Results in Physics, vol. 38, Article ID 105623, 2022.
[12] H. Yukawa, "On the interaction of elementary particles," Proceedings of the Physico-Mathematical Society of Japan $3^{r d}$ Series, vol. 17, pp. 48-57, 1935.
[13] E. Fischbach, C. Talmadge, and D. E. Krause, "Exponential models of non-Newtonian gravity," Physical Review D, vol. 43, no. 2, pp. 460-467, 1991.
[14] F. Kokubun, "Restricted problem of three bodies with Newtonian+Yukawa potential," International Journal of Modern Physics D, vol. 13, no. 05, pp. 783-806, 2004.
[15] N. I. Kolosnitsyn and V. N. Melnikov, "Test of the inverse square law through precession of orbits," General Relativity and Gravitation, vol. 36, no. 7, pp. 1619-1624, 2004.
[16] C. Massa, "Mach's principle and Yukawa-like corrections to the Newtonian potential as a bound for the mean energy density of the universe," Astrophysics and Space Science, vol. 315, no. 1-4, pp. 285-286, 2008.
[17] I. Haranas and O. Ragos, "Yukawa-type effects in satellite dynamics," Astrophysics and Space Science, vol. 331, no. 1, pp. 115-119, 2011.
[18] D. Pricopi, "Stability of the celestial body orbits under the influence of Yukawa potential," Astrophysics and Space Science, vol. 361, no. 8, p. 277, 2016.
[19] I. Haranas, O. Ragos, I. Gkigkitzis, I. Kotsireas, C. Martz, and S. Van Middekoop, "The Poynting-Robertson effect in the Newtonian potential with a Yukawa correction," Astrophysics and Space Science, vol. 363, no. 1, p. 3, 2018.
[20] E. Cavan, I. Haranas, I. Gkigkitzis, and K. Cobbett, "Dynamics and stability of the two body problem with Yukawa correction," Astrophysics and Space Science, vol. 365, no. 2, p. 36, 2020.
[21] M. J. Idrisi, T. Eshetie, T. Tilahun, and M. Kerebh, "Triangular equilibria in R3BP under the consideration of Yukawa correction to Newtonian potential," Journal of Applied Mathematics, vol. 2022, Article ID 4072418, 6 pages, 2022.
[22] R. K. Sharma and P. V. Subba Rao, "Stationary solutions and their characteristic exponents in the restricted three-body problem when the more massive primary is an oblate spheroid," Celestial Mechanics, vol. 13, no. 2, pp. 137-149, 1976.
[23] K. R. Lang, Astrophysical Data: Planets and Stars, SpringerVerlag, Berlin, Germany, 1992.
[24] J. Muller, "Lunar Laser Ranging - A Science Tool for Geodesy and General Relativity," in Proceedings of the 16th International Conference on Laser Ranging, Poznan, Poland, 2008, https://cddis.nasa.gov/lw16/docs/presentations/sci_8_ Mueller.pdf.

