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Tis study is about the efects of Yukawa-like corrections to Newtonian potential on the existence and stability of noncollinear
equilibrium points in a circular restricted three-body problem when bigger primary is an oblate spheroid. It is observed that zx0/
zλ� 0� zy0/zλ at λ0�1/2, so we have a critical point λ0�1/2 at which themaximum andminimum values of x0 and y0 can be obtained,
where λ ∈ (0,∞) is the range of Yukawa force and (x0, y0) are the coordinates of noncollinear equilibrium points. It is found that x0 and
y0 are increasing functions in λ in the interval 0<λ<λ0 and decreasing functions in λ in the interval λ0<λ<∞ for all α ∈ α+. On the
other hand, x0 and y0 are decreasing functions in λ in the interval 0<λ<λ0 and increasing functions in λ in the interval λ0<λ<∞ for all
α ∈ α− , where α ∈ (− 1, 1) is the coupling constant of Yukawa force to gravitational force. Te noncollinear equilibrium points are found
linearly stable for the critical mass parameter β0, and it is noticed that zβ0/zλ� 0 at λ∗ � 1/3; thus, we got another critical point which
gives themaximum andminimumvalues of β0. Also, zβ0/zλ> 0 if 0<λ<λ∗ and zβ0/zλ<0 if λ∗ <λ<∞ for all α ∈ α− , and zβ0/zλ< 0 if
0<λ<λ∗ and zβ0/zλ> 0 if λ∗ <λ<∞ for all α ∈ α+. Tus, the local minima for β0 in the interval 0<λ<λ∗ can also be obtained.

1. Introduction

Te general three-body problem deals with the motion of
three arbitrary spherically symmetric bodies considered as
a point mass. Te motions of these bodies are related to the
Newtonian force of gravity, which are superimposed on each
other and have no specifc path.Te closed form of analytical
solution to the general three-body problem is yet to be
determined.

Te restricted three-body problem (R3BP) is an approxi-
mation of the general three-body problem in which one body is
treated as having an infnitesimal mass compared to the other
two bodies. Te bigger bodies are called primaries which re-
volve around their common center of mass in circular or el-
liptical orbits in a rotating coordinate system in which the
infnitesimal mass alsomoves without disturbing themotion of

the primaries. Te restricted three-body problem has fve
equilibrium points, three collinear, and two noncollinear or
triangular. Te collinear equilibria are unstable for all values of
mass parameter but triangular equilibria are stable for a critical
mass parameter μ0 = 0.03852 [1].

Te restricted three-body problem has been studied by
many researchers in last two decades in diferent aspects. In
the classical restricted three-body problem, the primaries are
assumed as spherical in shape, but in real situation, several
heavenly bodies such as Earth, Saturn, and Jupiter are
sufciently oblate. Te oblateness efect in the restricted
three-body problem has been investigated by El-Shaboury
[2]; Khanna and Bhatnagar [3]; Raheem and Singh [4];
Ammar et al. [5]; Idrisi and Taqvi [6, 7], Singh and Umar [8];
Bury and McMahon [9]; Saeed and Zotos [10]; Alrebdi et al.
[11] etc.
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New theories in the contemporary world predict im-
provements to the theory of gravity. Te Yukawa potential
was frst proposed by Yukawa [12] to modify the Newtonian
potential. Te strong interactions between particles are well
described by the Yukawa potential, a nonrelativistic

potential. In a two-body problem, the modifed potential
energy may be used to express the gravity efects on the
secondary primary m in the presence of the Yukawa cor-
rection [13] as

V(r) � −
GMm

r
1 + αe

− (r/λ)
􏼐 􏼑 � −

GMm

r
−

GMm

r
αe

− (r/λ)
� VN(r) + VY(r), (1)

where VN (r) is the Newtonian potential between the two
bodies m and M, VY (r) is the Yukawa correction to the
Newtonian potential, r is the distance betweenm andM,G is
the Newtonian gravitational constant, α ϵ (− 1, 1) is the
coupling constant of the Yukawa force to the Gravitational
force, and λ ϵ (0,∞) is the range of the Yukawa force [14].
Terefore, the corresponding force betweenm andM can be
expressed as

F
→

(r) � −
GMm

r
2 1 + α 1 +

r

λ
􏼒 􏼓e

− (r/λ)
􏼚 􏼛 r

→
. (2)

As α⟶ 0, the Newtonian gravitational force can be
obtained.

In the restricted three-body problem, Kokubun [14] has
included Yukawa-like corrections to Newtonian potential.
His fndings difered signifcantly from the purely New-
tonian case. Reference [15] provides the minimal values of
the Yukawa coupling constant for the artifcial satellites
LAGEOS and LAGEOS II. Massa [16] investigated Mach’s
principle and Yukawa potential within the Sciama linear
approach framework. Haranas and Ragos [17] investigated
satellite dynamics while taking Yukawa-like corrections into
account. Pricopi [18] has investigated the stability of celestial

orbits under the efect of the Yukawa potential in the two-
body problem. Reference [19] has analyzed the elliptical and
circular orbits of the Earth while taking into account the
Yukawa potential and Poynting–Robertson efect. Te dy-
namics and stability of the two-body problem were exam-
ined by Cavan et al. [20] while taking the Yukawa
corrections to Newtonian potential into account. Idrisi et al.
[21] have investigated the triangular equilibria in the
framework of Yukawa correction to Newtonian potential in
the circular restricted three-body problem.

Te dynamics surrounding noncollinear equilibrium
points in a circular restricted three-body problem with
a Yukawa-like adjustment to Newtonian potential under an
oblate primary model piqued our attention. Te existence
and linear stability of noncollinear equilibrium points under
an oblate primary model with Yukawa like-corrections to
Newtonian potential have been examined in this study.

2. Yukawa Correction to Newtonian Potential

Te modifed potential between two bodiesM and m can be
described as follows:

V(r) � −
GMm

r
1 + αe

− (r/λ)
􏼐 􏼑 � −

GMm

r
−

GMm

r
αe

− (r/λ)
� VN(r) + VY(r), (3)

where VN (r)�Newtonian potential between the two bodies
M and m, VY (r)�Yukawa correction to the Newtonian
potential, r� distance between m and M, G�Newtonian
gravitational constant, α ∈ (− 1, 1) is the coupling constant of

Yukawa force to the gravitational force, and λ ∈ (0,∞) is the
range of Yukawa force [14].

Terefore, the corresponding force between M and m
can be expressed as

F(r) �
GMm

r
2 1 + α 1 +

r

λ
􏼒 􏼓e

− (r/λ)
􏼚 􏼛 �

GMm

r
2 +

GMm

r
2 α 1 +

r

λ
􏼒 􏼓e

− (r/λ)
� FN(r) + FY(r), (4)

where FN (r)�Newtonian gravitational force betweenM and
m and FY (r)�Yukawa correction to Newtonian gravita-
tional force between M and m.

From (4), as α⟶ 0 or λ⟶ 0, the term FY (r) vanishes
and F(r)� FN(r). If α< 0, F(r)< FN(r) and for α> 0, F(r)
> FN(r), Figure 1. Tus, as α increases in the interval (− 1, 1),
the force between m and M also increases and vice-versa.

But as λ⟶∞ the force between M and m is given by

F∞(r) �
GMm

r
2 (1 + α). (5)

From (5), it is clear that as α⟶ − 1, F∞(r)⟶ 0, i.e., the
force between m and M reduces as α reduces. For α⟶ 0,
F∞ (r)⟶ FN (r) and the Newtonian gravitational force can
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be obtained. But as α⟶ 1, F∞ (r)⟶ 2FN (r), i.e., the force
acting between m and M is twice of the Newtonian gravi-
tational force, as shown in Figure 2.

3. Model Description and Equations of Motion

Let us consider two primaries P1 and P2 having masses m1
and m2 (m1>m2) moving around their common center of
mass in circular orbits. Te more massive primary m1 is
considered to be an oblate body while less massive primary
m2 is spherical in shape. Te equations of motion of the
infnitesimal mass in a barycentric synodic co-ordinate
system (x, y) and dimensionless variables are

€x − 2n _y � Ux, €y + 2n _x � Uy, (6)

and the potential function U can be expressed as

U �
n
2

2
x
2

+ y
2

􏼐 􏼑 +
m1

r1
1 +

σ
2r

2
1

􏼠 􏼡 1 + αe
− r1/λ􏼐 􏼑 +

m2

r2
1 + αe

− r2/λ􏼐 􏼑, (7)

σ � (r2e − r2p)/5r
2 is the oblateness factor due to bigger pri-

mary m1, re and rp are the equatorial and polar radii re-
spectively of m1, r is the distance between m1 and m2
considered as unity, n is the mean-motion of the primaries,
and defned as

n
2

� 1 +
3σ
2

􏼒 􏼓 1 + α 1 +
1
λ

􏼒 􏼓e
− 1/λ

􏼔 􏼕. (8)

|α|< 1 is the coupling constant of Yukawa force to
gravitational force, λ ∈ (0,∞) is the range of Yukawa force.

We can defne a mass parameter β> 0 as

β �
m2

m1 + m2
<
1
2
⇒m1 � 1 − β ; m2 � β. (9)

Terefore, the distances of infnitesimal mass from the
primaries P1 and P2, are given by

r1 � (x − β)
2

+ y
2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 and r2 � (x + 1 − β)

2
+ y

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (10)

Te Jacobi integral associated to the problem is given by

v
2

� 2U − C, (11)

where v is the velocity of infnitesimal mass and C is Jacobi
constant.

4. Noncollinear Equilibrium Points

Te noncollinear equilibrium points are the solution of the
equations Ux � 0 and Uy � 0, y≠ 0, i.e.,

n
2
x −

(1 − β)(x − β)

r
3
1

1 +
3σ
2r

2
1

􏼠 􏼡 1 + α 1 +
r1

λ
􏼒 􏼓e

− r1/λ( )􏼔 􏼕 −
β(x + 1 − β)

r
3
2

1 + α 1 +
r2

λ
􏼒 􏼓e

− r2/λ( )􏼔 􏼕 � 0, (12)

n
2

−
(1 − β)

r
3
1

1 +
3σ
2r

2
1

􏼠 􏼡 1 + α 1 +
r1

λ
􏼒 􏼓e

− r1/λ􏼔 􏼕 −
β
r
3
2

1 + α 1 +
r2

λ
􏼒 􏼓e

− r2/λ􏼔 􏼕 � 0. (13)

F (r)

α = 1

α = 0

α = -1

F (r) > FN (r)

F (r) < FN (r)

FN (r)

1 2 3 4
λ

Figure 1: Te force function F(r) with respect to λ.
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On eliminating r1 and r2 from the (12) and (13), re-
spectively, we have

r
3
2 �

1
n
2 1 + α 1 +

r2

λ
􏼒 􏼓e

− r2/λ􏼔 􏼕, (14)

r
3
1 �

1
n
2 1 +

3σ
2r

2
1

􏼠 􏼡 1 + α 1 +
r1

λ
􏼒 􏼓e

− r1/λ􏼔 􏼕. (15)

Te solution of (15) is r1 � 1. To solve (14), we assume
that r2 �1 + δ, δ << 1. On substituting r2 �1 + δ in (14) and
considering only linear terms in α and δ and then solving it
for δ, we obtain

δ � −
σ
2

f(α, λ); f(α, λ) � 1 −
α
3

e
− 1/λ

λ2
.

Thus r2 � 1 −
σ
2

f(α, λ).

(16)

Now, solving r1 � 1 and (17), we have the coordinates of
noncollinear equilibrium points E4, 5 (x0, y0), i.e.,

x0 � β −
1
2

−
σ
2

f(α, λ), y0 � ±
�
3

√

2
1 −

σ
3

f(α, λ)􏼒 􏼓. (17)

For a nonoblate case, i.e., σ � 0 we obtain ri � 1 which is
the classic case of restricted three-body problem [1], and
hence in the nonoblate case, the noncollinear equilibrium
points are not afected by the Yukawa force [21]. For α� 0,
the results are agreed with [22].

As shown in Figure 3, f(α, λ) is a continuous function for
|α|< 1 and λ ∈ (0, ∞), and limλ⟶∞ f(α, λ) � 1 � limλ⟶0
f(α, λ). Tus, for very small and large values of λ, the term

f(α, λ) becomes unity and the noncollinear equilibrium
points E4, 5(x∗, y∗) in this case are given by

x
∗

� β −
1
2

−
σ
2

, y
∗

� ±
�
3

√

2
1 −

σ
3

􏼒 􏼓. (18)

Since zx0/zλ� 0� zy0/zλ at λ� 1/2. So we have a critical
point λ� λ0 �1/2 at which the maximum and minimum
values of x0 and y0 can be obtained. As it has been examined
that zx0/zλ, zy0/zλ> 0 for 0< λ< λ0 and zx0/zλ, zy0/zλ< 0
for λ0< λ<∞ for all α ∈ α+. Similarly, zx0/zλ, zy0/zλ< 0 for
0< λ< λ0 and zx0/zλ, zy0/zλ> 0 for λ0< λ<∞ for all α ∈ α− .
Tus, it is concluded that x0 and y0 are increasing functions
in λ in the interval 0< λ< λ0 and decreasing functions in λ in
the interval λ0< λ<∞ for all α ∈ α+. On the other hand, x0
and y0 are decreasing functions in λ in the interval 0< λ< λ0
and increasing functions in λ in the interval λ0< λ<∞ for all
α ∈ α− .

For α ∈ α+, as λ increases in the interval 0< λ< λ0, the
abscissa x0 of E4 moves toward the center of mass of the
system and the ordinate y0 moves vertically upward and
vice-versa. In the interval λ0< λ<∞, x0 and y0 decrease and
hence approach to x∗ and y∗, respectively, as λ increases and
vice versa. For α ∈ α− , as λ increases in the interval 0< λ< λ0,
the abscissa x0 moves away from x∗ and y0 moves vertically
downward and vice-versa. In the interval λ0< λ<∞, x0 and
y0 increase and hence approach to x∗ and y∗, respectively, as
λ increases and vice-versa (Figures 4 and 5).

Te noncollinear equilibrium points E4, 5 at the critical
point λ� 1/2 have maximum or minimum values according
to α ∈ α+ or α ∈ α− , respectively, are given as

xc � β −
1
2

−
σ
2

1 −
4
3
αe

− 2
􏼒 􏼓, yc � ±

�
3

√

2
1 −

σ
3

1 −
4
3
αe

− 2
􏼒 􏼓􏼔 􏼕. (19)

F∞ (r)

FN (r) F∞ (r) = 2 FN (r)

F∞ (r) > FN (r)F∞ (r) < FN (r)

–1.0 –0.5 0.5 1.0
α

Figure 2: Te force function F∞(r) with respect to α.
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α = –1

α = 0

α = 1

f (α, λ)

1.5

1.0

0.5

1 2 3 4
λ

λ = 1–2

Figure 3: Curves of f(α, λ) with respect to λ.

x0

x*

0.5 1.0 1.5 2.0

λ = 1–2
α = 1

α = 0

α = -1

λ

Figure 4: Curves of x0 with respect to λ.

λ = 1–2

y0

y*

0.5 1.0 1.5 2.0

α = 1

α = 0
α = -1

λ

Figure 5: Curves of y0 with respect to λ.
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5. Stability of Equilibrium Points

Te variational equations of motion can be obtained by
perturbing the equilibrium point (x0, y0) to a small dis-
placement (δ1, δ2), δi<< 1, i� 1, 2. Terefore, on substituting
x� xo+ δ1 and y� yo + δ2 in Equation (3), we have

€δ1 − 2n _δ2 � δ1 U
o

xx + δ2 U
o

xy,

€δ2 + 2n _δ1 � δ1 U
o

xy + δ2 U
o

yy.

⎫⎪⎪⎬

⎪⎪⎭
. (20)

As δi<< 1 and |α|< 1, therefore we consider only linear
terms in δ1, δ2, and α, and the characteristic equation
corresponding to (21) is given by

Γ4 + 4n
2

− U
o

xx − U
o

yy􏼒 􏼓 Γ2 + U
o

xx U
o

yy − U
o

xy􏼒 􏼓
2

� 0, (21)

where

U
o

xx �
z2U

zx2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 x0 ,y0( )
�
3
4

+
3λ2 + 3λ + 1􏼐 􏼑

4λ2
αe

− 1/λ
− 3 β −

9
8

􏼒 􏼓 σ,

U
o

xy �
z2U

zxzy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 x0 ,y0( )
�
3

�
3

√

2
β −

1
2

􏼒 􏼓 +

�
3

√
(2β − 1) 3λ2 + 3λ + 1􏼐 􏼑

4λ2
αe

− 1/λ
+
13

�
3

√

4
β −

19
26

􏼒 􏼓σ,

U
o

yy �
z2U

zy2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 x0 ,y0( )
�
9
4

+
3 3λ2 + 3λ + 1􏼐 􏼑

4λ2
αe

− 1/λ
+
33
8
σ.

(22)

Te quadratic equation corresponding to (22) is given by

Υ2 + p1Υ + p2 � 0, (23)

whereΥ � Γ2, p1 � 4n2 − U
o

xx − U
o

yy, p2 � U
o

xx U
o

yy− (U
o

xy)2.

Te roots of (24) are

Υ1,2 � 1/2 − p1 ±
�������

p
2
1 − 4p2

􏽱

􏼒 􏼓. (24)

Te motion near the equilibrium point (x0, y0) is said to
be bounded if p2

1 − 4p2 ≥ 0, i.e.,

27β2 − 27β +(1 − 3σ + Qα)≥ 0; Q �
2 λ2 + λ − 1􏼐 􏼑

λ2
e

− 1/λ
.

(25)

On solving the inequality (19), we get

β≤ β0 � μ0 −
σ
��
69

√ +
Qα
3

��
69

√ , (26)

where μ0 � 0.0385209. . .. For α� 0, β0 � β∗ � μ0 − σ/√69 is
the critical mass parameter in the circular restricted three-
body problem when bigger primary is an oblate body [22].
For α� 0 and σ � 0, β0 � μ0 � 0.0385209. . . is the critical mass

λ = 1–3
λ =

2
5 –1

β0

β*

0.5 1.0 1.5 2.0 2.5 3.0

α = 1

α = 0

α = -1

λ

Figure 6: Critical mass parameter β0 versus λ.
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Figure 7: Stability surface for noncollinear equilibrium points.
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Figure 8: Continued.
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Figure 8: Continued.
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parameter in the classical circular restricted three-body
problem [1]. For σ � 0, all results are in conformity with
those of Idrisi et al. [21]. Tus, the noncollinear equilibrium
points obtained in the proposed model are linearly stable for
the critical mass parameter β0 defned in (26).

Te third term in (26) vanishes either for α� 0 or Q� 0,
i.e., λ � λ1 �

�
5

√
− 1/2.Tus, β0> β∗ in the interval 0 < λ< λ1

and β0< β∗in the interval λ1< λ<∞ for all α ∈ (− 1, 0).
Similarly, β0< β∗ when 0 < λ< λ1 and β0> β∗in the interval
λ1< λ<∞ for all α ∈ (0, 1), Figure 6.

From (26), we have the following observations:
(zβ0/zλ) � 0 at λ� 1/3. Tus, λ� λ∗ � 1/3 is a critical point
which gives the maximum and minimum values of β0. Also,
(zβ0/zλ)> 0 if 0< λ< λ∗ and (zβ0/zλ)< 0 if λ∗ < λ<∞ for
all α ∈ (− 1, 0), and (zβ0/zλ)< 0 if 0< λ< λ∗ and (zβ0/zλ)> 0
if λ∗ < λ<∞ for all α ∈ (0, 1).Tus, we have the local minima
in the interval 0< λ< λ∗. Te local maximum and minimum
values of β0 at the critical point λ� λ∗ are given by

β0 � μ0 −
σ
��
69

√ +
10αe

− 3

3
��
69

√ �

β0max, − 1< α< 0

β0min, 0< α< 1

⎧⎪⎨

⎪⎩
. (27)

In Figure 7, the stability surface is plotted, and it can
be seen that when α rises, the stability surface does
too and vice versa. As a result, the noncollinear equi-
librium points are on the surface are stable and unstable
otherwise.

Te shaded region in Figure 8 corresponds to stable
region for the noncollinear equilibrium points, and it is seen
that as alpha increases the stability region also increases and
vice-versa.

6. Real Application to the Earth-Moon System

From astrophysical data [23], mass of Earth� 5.972×

1024 kg, mass of moon� 7.348×1022 kg, axes of the Earth:
re � 6378.140 km, rp � 6356.755 km, and average distance
between Earth and moon� 382500 km.

In the Earth-moon system, λ� 400000 km[24].
In a dimensionless system, we have

2.0

1.5

1.0

0.5

0.0

λ

0.05 0.10 0.150.00 0.250.20
β

(g)

Figure 8: Stability region for noncollinear equilibrium points for various values of α. (a) α� − 0.8. (b) α� − 0.5. (c) α� − 0.2. (d) α� 0.
(e) α� 0.2. (f ) α� 0.5. (g) α� 0.8.

Table 1: Noncollinear equilibrium points in the Earth-moon
system.

α x 0 y 0 Stability
‒1.0 ‒0.4878457082878896 ±0.866025283529371 Stable
‒0.9 ‒0.4878457061037406 ±0.866025284790389 Stable
‒0.8 ‒0.4878457039195917 ±0.866025286051407 Stable
‒0.7 ‒0.4878457017354426 ±0.866025287312426 Stable
‒0.6 ‒0.4878456995512938 ±0.866025288573446 Stable
‒0.5 ‒0.4878456973671447 ±0.866025289834465 Stable
‒0.4 ‒0.4878456951829958 ±0.866025291095484 Stable
‒0.3 ‒0.4878456929988468 ±0.866025992356502 Stable
‒0.2 ‒0.4878456908146979 ±0.866025293617522 Stable
‒0.1 ‒0.4878456886305489 ±0.866025294878541 Stable
0 ‒0.4878456864464 ±0.8660 5 96139559 Stable
0.1 ‒0.487845684262251 ±0.866025297400578 Stable
0.2 ‒0.4878456820781021 ±0.866025298661598 Stable
0.3 ‒0.4878456798939531 ±0.866025299922616 Stable
0.4 ‒0.4878456777098041 ±0.866025301183635 Stable
0.5 ‒0.4878456755256552 ±0.866025302444654 Stable
0.6 ‒0.4878456733415063 ±0.866025303705673 Stable
0.7 ‒0.4878456711573572 ±0.866025304966692 Stable
0.8 ‒0.4878456689732083 ±0.866025306227711 Stable
0.9 ‒0.4878456667890594 ±0.866025307488731 Stable
1.0 ‒0.4878456646049104 ±0.866025308749749 Stable
It is a special case when α � 0, i.e., pure Newtonian case.
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β � 0.0121545, σ � 3.72893 × 10− 7 and λ � 1.04575.

(28)

Table 1 lists the numerical locations of noncollinear
equilibrium points E4, 5(x0, y0) for the aforementioned values
of β, σ and for |α|< 1. For all possible values of α, it has been
found that the numerical values of x0 and y0 are identical up
to six decimal places.

 . Conclusion

We studied the dynamics around noncollinear equilibrium
points in the circular restricted three-body problem under
the considerations of oblateness of more massive primary
and Yukawa-like corrections to Newtonian potential. Te
modifed gravitational force between the two masses M and
m, therefore, can be written as F(r)� FN(r) + FY(r), where
FN(r) is Newtonian gravitational force between M and m,
and FY(r) is Yukawa correction to Newtonian gravitational
force betweenM andm. It is found that as α⟶ 0 or λ⟶ 0,
the term FY (r) vanishes and F(r)� FN(r), where α ∈ (− 1, 1) is
the coupling constant of Yukawa force to gravitational force
and λ ∈ (0, ∞) is the range of Yukawa force. If α< 0, F(r)
< FN(r) and for α> 0, F(r)> FN(r), Figure 1. Tus, as α in-
creases in the interval (− 1, 1), the force between m and M
also increases and vice-versa. But as λ⟶∞, the force
between M and m is given by F∞(r) and F∞(r)⟶ 0 as
α⟶ − 1, i.e., the force between m and M reduces as α
reduces. For α⟶ 0, F∞(r)⟶ FN(r) and the Newtonian
gravitational force can be obtained. But as α⟶ 1,
F∞(r)⟶ 2FN(r), i.e., the force acting between m and M is
twice of the Newtonian gravitational force, as shown in
Figure 2.

Te nonequilibrium points are the solutions of r1 � 1 and
(17). On solving these equations, we got two noncollinear
equilibrium points E4, 5(x0, y0) given in (18). For nonoblate
case, i.e., σ � 0 we obtain ri � 1 which is the classic case of
restricted three-body problem [1], and hence in the non-
oblate case, the noncollinear equilibrium points are not
afected by the Yukawa force [21]. For α� 0, the results are
agreed with [22]. It is observed that zx0/zλ� 0� zy0/zλ at
λ� 1/2. So, we have a critical point λ� λ0 �1/2 at which the
maximum and minimum values of x0 and y0 can be ob-
tained. As it has been examined that zx0/zλ, zy0/zλ> 0 for
0< λ< λ0 and zx0/zλ, zy0/zλ< 0 for λ0< λ<∞ for all α ∈ α+.
Similarly, zx0/zλ, zy0/zλ< 0 for 0< λ< λ0 and zx0/zλ, zy0/
zλ> 0 for λ0< λ<∞ for all α ∈ α− . Tus, it is concluded that
x0 and y0 are increasing functions in λ in the interval
0< λ< λ0 and decreasing functions in λ in the interval
λ0< λ<∞ for all α ∈ α+. On the other hand, x0 and y0 are
decreasing functions in λ in the interval 0< λ< λ0 and in-
creasing functions in λ in the interval λ0< λ<∞ for all
α ∈ α− . For α ∈ α+, as λ increases in the interval 0< λ< λ0, the
abscissa x0 of E4 moves toward the center of mass of the
system and the ordinate y0 moves vertically upward and
vice-versa. In the interval λ0< λ<∞, x0 and y0 decrease and
hence approach to x∗ and y∗, respectively, as λ increases and
vice versa. For α ∈ α− , as λ increases in the interval 0< λ< λ0,
the abscissa x0 moves away from x∗ and y0 moves vertically

downward and vice-versa. In the interval λ0< λ<∞, x0 and
y0 increase and hence approach to x∗ and y∗, respectively, as
λ increases and vice-versa (Figures 4 and 5).

Te noncollinear equilibrium points obtained in the
proposed model are linearly stable for the critical mass
parameter β0 defned in (26). From (26), zβ0/zλ� 0 at λ∗ � 1/
3 thus we got another critical point which gives the maxi-
mum and minimum values of β0. Also, zβ0/zλ> 0 if
0< λ< λ∗ and zβ0/zλ< 0 if λ∗ < λ<∞ for all α ∈ α− , and zβ0/
zλ< 0 if 0< λ< λ∗ and zβ0/zλ> 0 if λ∗ < λ<∞ for all α ∈ α+.
Te local maximum and minimum values of β0 at the critical
point λ� λ∗ are given in (27).

Data Availability

Te data used to support the fndings of this study are in-
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