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Te existence and stability of noncollinear equilibrium points in the elliptic restricted three-body problem under the consideration
of Yukawa correction to Newtonian potential are studied in this paper. Te efects of various parameters (μ, ê, α, and λ) on the
noncollinear equilibrium points are discussed briefy, and it is found that only ordinate of noncollinear equilibria E4,5 is afected by
Yukawa correction while abscissa is afected by only mass parameter μ. Te noncollinear equilibria was found linearly stable for
a critical mass parameter μc. A critical point λ�½ is also obtained for the critical mass parameter μc, and at this point, the critical
mass parameter μc has maximum or minimum values according to α< 0 or α> 0, respectively.

1. Introduction

Te Yukawa potential is the modifed Newtonian potential
proposed by Yukawa [1]. It is an efective nonrelativistic
potential describing the strong interactions between parti-
cles. Fischbach et al. [2] have described the modifed po-
tential energy in two-body problem under the consideration
of Yukawa correction to Newtonian potential as

V(r) � −
GMm

r
−

GMm

r
αe

− (r/λ)
, (1)

where M and m are the masses of massive primary and
secondary body, respectively, VN(r) � − (GMm/r) is the
Newtonian potential between the two bodies M and m,
VY(r) � − (GMm/r)αe− (r/λ) is the Yukawa correction to the
Newtonian potential, r is the distance betweenm andM, G is
the Newtonian gravitational constant, α ∈ (− 1, 1) is the
coupling constant of the Yukawa force to the gravitational
force, and λ ∈ (0,∞) is the range of the Yukawa force.

Terefore, the corresponding force between M and m
can be expressed as

F
→

(r) �
GMm

r
2 1 + α 1 +

r

λ
 e

− (r/λ)
 r. (2)

On substituting α� 0 in the abovementioned expression,
the Newtonian gravitational force can be obtained.

Te restricted three-body problem under the consider-
ation of Yukawa correction is studied by Kokubun [3]. Te
main aim of this research was to study the efect of modifed
potential on the important aspects of restricted three-body
problem. Kolosnitsyn and Melnikov [4] have shown that the
minimum value of Yukawa coupling constant is
αmin � 1.38×10− 11 for λ� 6.081× 106m for the artifcial
Earth satellites LAGEOS and LAGEOS II. A gravitational
solution to the pioneer 10/11 anomaly is given by Brown-
stein and Mofat [5]. Te constraints on the range of lambda
in Yukawa-type modifcations to the Newtonian gravitation
from solar system planetary motions are discussed in detail
by Iorio [6]. Massa [7] has found a link between the mean
mass density and the radius of the observable universe using
Sciama linear approach to Mach’s principle and Yukawa
corrections to Newtonian potential. Haranas and Ragos [8]
have discussed the Yukawa efects in satellite dynamics.
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Pricopi [9] has worked on the stability of celestial orbits in
the two-body problem taking into account the Yukawa
correction to Newtonian potential.Te circular and elliptical
orbits of Earth under the consideration of Yukawa potential
combined with the Poynting–Robertson efect have been
studied by Haranas et al. [10].Te dynamics of the two-body
problem with Yukawa corrections is discussed by Cavan
et al. [11]. Idrisi et al. [12, 13] have studied the existence and
stability of triangular equilibria in the restricted three-body
problem under the consideration of Yukawa corrections.

In the present work, an elliptical restricted three-body
problemwith Yukawa correction to Newtonian potential has
been considered. Te efects of various parameters (μ, ê, α,
and λ) on the noncollinear equilibrium points have been
discussed briefy. Te manuscript is arranged as follows: the
equations of motion of the infnitesimal mass in terms of
pulsating coordinates are given in Section 2. Te non-
collinear equilibrium points are derived in Section 3, and the
efects of various parameters (μ, ê, α, and λ) on the non-
collinear equilibrium points are discussed in subsection 3.1.
Te linear stability of noncollinear equilibrium points is
discussed in Section 4. In the last section, the conclusions of
the problem are drawn.

2. Equations of Motion

Let m1 and m2 (m1>m2) be the masses of two particles P1
and P2, respectively, moving in elliptical orbits around their
common center of mass. It is also assumed that an in-
fnitesimal massm3 is moving in the orbital plane of motion
of P1 and P2. Te equations of motion of the infnitesimal
mass m3 in the elliptic restricted three-body problem in
terms of pulsating coordinates (ξ, η) and dimensionless
variables are given by

ξ″ − 2 η′ � Ωξ ,

η″ + 2 ξ′ � Ωη,
(3)

where Ω is the potential function which can be expressed as

Ω �
1

�����
1 − e

2


1
2

ξ2 + η2  +
1
n
2

1 − μ
r1

1 + αe
− r1/λ( ) 

+
μ
r2

1 + αe
− r2/λ( ) ,

(4)

where |α|< 1 is the coupling constant of Yukawa force to
gravitational force, λ ∈ (0,∞) is the range of Yukawa force,
μ ∈ (0, 1/2] is the mass parameter and defned as μ�m2/
(m1 +m2), and r1 and r2 are the distances of m3 from the m1
and m2, respectively,

r1 �

����������

(ξ − μ)
2

+ η2


,

r2 �

�������������

(ξ + 1 − μ)
2

+ η2


,

(5)

where n is the mean-motion of the primaries which is de-
fned as

n
2

� 1 +
3
2
e
2

  1 + α 1 +
1
λ

 e
− (1/λ)

 , (6)

where ê is the eccentricity of the orbits of the primaries
around their common center of mass.

Tus, the Jacobi integral associated to the problem is

v
2

� 2Ω − C, (7)

where v is the velocity of m3. As v2 � 2Ω − C≥ 0, thus the
possible regions of motion of m3 must satisfy the inequality
Ω≥C/2, C is a well-known Jacobi constant.

3. Noncollinear Equilibrium Points

Te noncollinear equilibrium points can be obtained by
setting Ωξ � 0 and Ωη � 0 for η≠ 0, i.e.,
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1
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(8)

and
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On simplifying equations (8) and (9) , we have

n
2

�
1
r
3
i

1 + α 1 +
ri

λ
 e

− ri/λ( ) , i � 1, 2. (10)

For ê� 0, ri � 1 is the solution of equation (10). Tus, for
ê≠ 0, let us assume that ri � 1 + ∊i, ∊i≪ 1, i� 1, and 2 be the
solution of equation (10). On substituting ri � 1 + ∊i in
equation (10) and considering only linear terms of ∊i and α,
we have

∈i � −
e
2

2
1 −

α
3

f(λ) ,

f(λ) �
e

− (1/λ)

λ2
, i � 1,2.

(11)

Tus, ri � 1 − (e2/2)(1 − (α/3)f(λ)) are the solutions of
equation (10), and hence, the noncollinear equilibrium
points form an isosceles triangle with the primaries. Te
coordinates of noncollinear equilibrium points E4,5 (ξ, η) are
given by

ξ � μ −
1
2

,

η � ±
�
3

√

2

�����������������

1 −
4
3
e
2 1 −

α
3

f(λ) 



.

(12)
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3.1. Efect of Various Parameters onNoncollinear Equilibrium
Points. In this section, we consider few cases to discuss the
efect of various parameters (μ, ê, α, and λ) on the non-
collinear equilibrium points E4,5 (ξ, η).

Case 1. Efect of μ on E4,5:
Te efects of the mass parameter μ on the abscissa of E4,5

can be clearly observed from equation (12). As μ approaches
0, the abscissa ξ tends towards − 1/2, while as μ approaches
1/2, ξ tends to 0. Tis suggests that an increase in the mass
parameter μ results in an increase in the abscissa ξ for both
E4 and E5. By varying μ, it is possible to observe that E4,5
form an isosceles triangle with the primaries and move
horizontally toward η-axis. Tis phenomenon is illustrated
in Figure 1 where for diferent values of μ, the equilibrium
points E4,5 are located graphically.

Case 2. Efect of ê on E4,5:
Te eccentricity ê of the orbits of the primaries afects

only the ordinate of noncollinear equilibrium points E4,5.
For ê� 0, the classical case of the restricted three-body
problem has been obtained in which the noncollinear
equilibrium points form an equilateral triangle with the
primaries. However, when ê is greater than zero, these values
will change due to the perturbations caused by eccentricity.
As the parameter ê approaches the value of unity, the
noncollinear equilibrium points E4 and E5 in the ξη-plane
will move vertically in opposite directions and form isosceles
triangle with the primaries. Te point E4 moves downwards
while point E5 moves upwards (Figure 2).Tis motion is due
to the change in eccentricity from zero to unity.

Case 3. Efect of λ on E4,5:
Te term f (λ) in equation (12) is a function of the

parameter λ, which tends to zero both as λ approaches 0 and
as λ approaches infnity. A graph of the function f (λ)
(Figure 3) reveals that it is increasing in the open interval
(0, 1/2), while decreasing after that point. It can be seen that
λ�½ is a critical point of the function, where its rate of
change is at its maximum value. In particular, for very small
and large values of λ, the Yukawa force vanishes and the
noncollinear equilibrium points are afected by the eccen-
tricity of the orbits of the primaries ê and mass parameter μ,
and therefore,

ri � 1 −
e
2

2
⇒ξ

� μ −
1
2

,

η � ±
�
3

√

2

������
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4
3
e
2



, 0< e <
�
3

√

2
.

(13)

Case 4. Efect of α on E4,5:
Te coupling constant α ∈ (− 1,1), and thus we have the

following cases:

(i) If α� 0, then the ordinate of noncollinear equilib-
rium points E4,5 is given by η � ± (

�
3

√
/2)

���������

1 − (4/3)e2


, which is the classic case of the elliptic
restricted three-body problem (Figure 4)

(ii) If α< 0, then η< ± (
�
3

√
/2)����������������������

1 − (4/3)e2(1 + (α/3)f(λ))
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(iii) If α> 0, then η> ± (
�
3

√
/2)����������������������

1 − (4/3)e2(1 − (α/3)f(λ))



.

4. Stability of Noncollinear Equilibrium Points

In this section, we study the linear stability of noncollinear
equilibria E4,5 by displacing the infnitesimal mass m3 to the
points (ξ0 + δ1, η0 + δ2), where (ξ0, η0) are the coordinates of
E4 and δi≪ 1, i� 1, 2. Terefore, linearizing system (1), we
have the variational equations of motion as

€δ1 − 2 _δ2 � δ1Ω
o

ξξ + δ2Ω
o

ξη,

€δ2 + 2 _δ1 � δ1Ω
o

ξη + δ2Ω
o

ηη.

⎫⎪⎪⎬

⎪⎪⎭
(14)

Now, considering only linear terms in δi and α, the
characteristic equation corresponding to system (14) is given
by

κ4 + 4 − Ω
o

ξξ − Ω
o

ηη κ2 +Ω
o

ξξΩ
o

ηη − Ω
o

ξη 
2

� 0, (15)

where
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Ω
o

ηη �
3
4

3 − e
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  +
3α
4

f(λ) 1 − 1 −
1
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 e
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 .

(16)

Let κ2 �Λ, therefore equation (15) reduces to quadratic
equation in Λ as

∧2 + p1∧ + p2 � 0, (17)

where p1 � 4 − Ω
o

ξξ − Ω
o

ηη andp2 � Ω
o

ξξ Ω
o

ηη − (Ω
o

ξη)2.
Te roots of equation (17) are

Λ1,2 �
1
2

− p1 ±
�������

p
2
1 − 4p2



 . (18)

Temotion around the equilibrium point E4(ξ0, η0) will
be bounded if the discriminant of equation (18) is either zero
or greater than zero, i.e., p2

1 − 4p2 ≥ 0 gives

μ≤ μc � μ0 − 0.0267524 e
2

− αf(λ) 0.10701 − 0.19347 −
0.0535048

λ
 e

2
 , (19)
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Figure 4: η for diferent values of α.
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where μ0 � 0.0385209. . . is the critical mass parameter in the
classical circular restricted three-body problem [14]. Tus,
the triangular equilibria E4,5 are linearly stable for the critical
mass parameter μc defned in equation (19). Te third term
in equation (19) vanishes as α⟶ 0 or λ⟶ 0 or λ⟶∞.
In Figure 5, the minima and maxima of the critical mass
parameter μc can be obtained at the critical point λ�½.
Tus, at λ�½, μc � μ0–0.0276524ê2 − 0.0574607 α. It can be
easily concluded that μc � μ0 − 0.0276524ê2 for α� 0,
μc > μ0 − 0.0276524ê2 for α< 0 and μc < μ0 − 0.0276524ê2 for
α> 0. Also, μc is maximum if α< 0 while it is minimum for
α> 0.

5. Conclusion

Te existence and stability of noncollinear equilibrium
points in the elliptic restricted three-body problem under the
consideration of Yukawa correction to Newtonian potential
is studied in this paper. Te locations of noncollinear
equilibria E4,5(ξ, η) can be obtained by equation (12). It is
found that only ordinate of noncollinear equilibria E4,5 is
afected by Yukawa correction while abscissa is afected by
only mass parameter μ. So, as μ⟶ 0, ξ⟶ − 1/2, and as
μ⟶ 1/2, ξ⟶ 0. Terefore, we can say that as the mass
parameter μ increases the noncollinear equilibria E4,5 move
toward η-axis horizontally and vice-versa (Figure 1). As
ê⟶ 0, the noncollinear equilibria E4,5 form equilateral
triangles with the primaries and as ê⟶ 1, E4,5 moving
toward ξ-axis vertically and vice-versa (Figure 2). Te term f
(λ) in equation (12) tends to zero as λ⟶ 0 and λ⟶∞
(Figure 3). It is also observed that λ�½ is the critical point of
f (λ). Te function f (λ) is increasing in the interval (0, ½)
while decreasing in (½, ∞). Tus, for very small and large
values of λ, the Yukawa force vanishes and the noncollinear
equilibrium points are afected only by the eccentricity of the
orbits of the primaries ê and mass parameter μ. Te

noncollinear equilibria found linearly stable for a critical
mass parameter μc defned in equation (16). A critical point
λ�½ is obtained for the critical mass parameter μc and it is
observed that when λ�½, μc � μ0 − 0.0276524ê2−
0.0574607α and hence μc � μ0 − 0.0276524ê2 for α� 0,
μc > μ0 − 0.0276524ê2 for α< 0 and μc < μ0 − 0.0276524ê2 for
α> 0. Also, μc is maximum or minimum according to α< 0
or α> 0, respectively.
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