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Data analysis for a sample of celestial bodies generally is preceded by the completeness test in order to verify whether the sample
objects are proper representatives of the corresponding part of the universe. A data set following a multivariate, continuous,
uniform distribution is said to be “complete in space.” This paper introduces a new approach to check for this completeness for
any astronomical data set under a multivariate setup. Our proposed procedure, using the multiple tests of hypotheses based on
nonparametric statistics, and consequently, combining their p values, outperforms others from the literature.

1. Introduction

In astronomy, different catalogs from various sources are
generally combined to create a master data set, where it is
supposed to be “complete in space.” Under the univariate
setup, a sample related to a particular astronomical pa-
rameter (variable), original or transformed [1], is uniform in
distribution (continuous), then it is referred to as “complete
in space.” In this context, the popular V/V . test [1] has
been proposed. However, it is restricted to univariate
analysis; therefore, it cannot take into account the multi-
variate structure of the samples, and it provides only a point
estimation of the concerned statistics. On the other hand, the
other implemented statistical tests in astronomy, to check
for uniformity of a multidimensional sample, involve
comparison of each individual variable with a univariate
uniform distribution, irrespective of the important de-
pendence structure underlying the multivariate sample
under analysis [2, 3]. Therefore, in this paper, we propose
a new approach to investigate the completeness of a multi-
variate data set in space. To our very knowledge, it is the first
multivariate test of hypothesis to check completeness for an
astronomical sample. We discuss two nonparametric tests
[4, 5] to check whether the data set follows a multivariate

uniform distribution over the range [0, 1] (denoted by
U,;[0,1]) or not, where d is the dimension of data set for
d>2and [0, 1]% is the set of the d-times Cartesian product of
the closed interval [0, 1]. Any deviation of the given sample
from U, [0, 1] will lead to the rejection of the fact that the
data set is “complete in space.”

Establishment of a test to check U,[0, 1] becomes dif-
ficult for higher values of d, whereas the existing tests are
either not well defined or not feasible for big d [6, 7]. In the
literature, the multiple tests for goodness-of-fit are presented
for checking the null hypothesis if a sample is from a specific
multivariate distribution. However, only few of them are put
forward for the multivariate uniformity of the data set. Two
popular tests, among them, are (i) the multivariate Kol-
mogorov-Smirnov test [8] and (ii) the test based on em-
pirical characteristic function [9, 10]. The empirical
distribution function has jumps and discontinuity at various
points apart from the sample observations, which makes it
quite challenging to be computed for large d. Therefore, the
algorithm for the concerned test statistic is yet unavailable
for d>2 [6, 8]. Any distribution is characterized by its
characteristic function, which is consistently estimated by an
empirical version. However, computation of the test sta-
tistics and the critical value for the test, based on the
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empirical characteristic function, is very difficult for high-
dimensional sample as well as for big data, which induce
greater testing error [9-11]. Avoiding all these concerns, we
propose a novel approach as follows.

In this work of Astrostatistic, we suggest a new testing
procedure based on multiple nonparametric tests of hy-
potheses, where we check whether the individual marginal of
the data set is from a univariate, continuous, uniform dis-
tribution over the range [0, 1] (denoted by U0, 1]) or not.
Here, we use the fact that if the given multivariate sample
follows U ;[0,1], then all the d marginals of the data set will
be from U [0, 1] and vice versa. Our final decision is taken
uniquely by properly combining the dependent multiple
tests or their corresponding p values. With advanced fashion
of data collection, we focus on the high-dimensional big data
from astronomical field (see, [5, 12, 13], and references
therein), where our data study shows that the proposed
technique is effective and superior compared to its
competitors.

This paper is organized as follows. Two proposed
methods are described in Section 2. The simulation is carried
out in Section 3. Section 4 holds application of our proposed
tests to an astronomical data set. Finally, Section 5 concludes
the paper.

2. Proposed Method

Our main objective is to investigate the completeness of
a multivariate sample in space, which is done in terms of
hypothesis testing. Suppose X = (X, X,,...,X,) is a real-
valuedd-variate observation vector and we want to test
whether it follows U;[0, 1] or not, that is, we test the null.

H,: X ~U,4[0, 1] against the alternative H,: X+ U,[0, 1],

(1)
where ‘ ~’ is used to mean following and ‘+’ not following.
We perform our test using the given sample:

Xi= (X, X, Xig)»i=1,2,...,n}  with  size

n(>d).

2.1. Multiple Tests. The abovementioned proposed hy-
pothesis testing can be equivalently performed in terms of
the following d number of multiple tests, which are carried
out in a univariate setup for each variable. Here, we im-
plement the fact that if the given multivariate sample follows
U,[0, 1], then all the d marginals of the data set will be from
U0, 1] and vice versa. The dependent multiple tests are
formulated as follows:

Hyjt X; ~U[0, 1] agianst H,j: X;+U[0,1]Vj = 1,2,...,d.
(2)

Then, each of the univariate multiple tests is done with
the help of the popular nonparametric one-sample tests: (t1)
Kolmogorov-Smirnov test [14] and (t2) Anderson-Darling
test [15], to check whether the given sample for each di-
mension follows U[0, 1] or not. Acceptance of all Hy;s for
j=12,...,d concludes with acceptance of H,, whereas
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rejection of any H; for at least one j =1,2,...,d causes
rejection of H,,.

(t1) We implement the univariate, nonparametric,
distribution-free, one-sample Kolmogorov-Smirnov test of
hypothesis to check whether the unknown continuous
distribution function F (X) of a random variable X is equal
to a completely specified reference distribution F, (X). This
is done in terms of the test statistic:

Sup |F, (X;) = Fo (X)), (3)
Xpi=1(1)n

which involves a distance between the empirical distribution
function F,(X) computed using a random sample
X, X, ...,X, on X and the cumulative distribution
function F;(X) of the reference distribution. The null hy-
pothesis is accepted if the computed test statistic is smaller
than or equal to the upper « point of the distribution for the
test statistic (equation (3)) under the null.

(t2) Then, we suggest the nonparametric, distribution-
free Anderson-Darling test, which is a modification of the
Kolmogorov-Smirnov test, assigning more weight to the
tails of the distribution for the given sample. It tests whether
a univariate sample {X(l), Xy e ,X(,,)} comes from
a population with a specific continuous distribution function
F. When it is true, we can assume that F ~ U (0, 1) and the
sample F(X;),i =1,2,...,n are then tested for uniformity
[16]. The test statistic T is defined as follows:

T =-n-S with

2i-1 (4)

S= [In{F (X,)} +In{l - F(X,.,._)}],

™-

Il
—_

n
i

where values, greater than its upper « point under the null
hypothesis, reject the null of uniformity against the both-
sided alternative.

The influence of ties on (t2) varies depending on the
characteristics and frequency of ties present in the data. Ties
can have a noticeable impact on the precision of the test and
potentially affect the test results. Presence of ties disrupts the
estimation of the distribution function, particularly in the
tails of the distribution, which will lead to inaccurate cal-
culations of the test statistic and p value. If the numbers of
ties are less or if they are evenly distributed across the data
set, their impact on (t2) will be minimal. However, when
there are numerous ties or if they cluster around specific
values, the precision of the test can be compromised.

2.2. Test Statistics. Suppose the statistics for testing H,y;
against H,, carried out in terms of (t1) or (12), is T, for
j=1,2,...,d. Then, the critical region for the right-tailed
alternative in the j-th one among the multiple tests is given

by
{observed values oij>Ca}, (5)

where C, is the required upper « point of the sampling
distribution for our proposed test statistic T'; > .
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Py, (T;>C,) = aholds. (6)

Here, « is the nominal level of significance for each of our
marginal tests which we perform using the (t1) Kolmo-
gorov-Smirnov test, wherein the asymptotic C, = 1.36/+/n
[17] and (t2) Anderson-Darling test with the asymptotic
value for C, = 2.4986 [18, 19]. We denote the statistics for
testing H,, against H, by T, where the test statistics from the
multiple tests corresponding to the marginals are combined
together with equal weights which defines the following:

d
P(Tj>C) foranyC, (7)
=1

P(T>C) =

QUl —

and subsequently we obtain:

Py (T>C,) =« (8)

Thus, it is a right-tailed test, so the null hypothesis is
rejected at a% level of significance if the observed value of T
based on the given sample is greater than C,. Being a data-
driven test, the distribution of T and the corresponding p
value (discussed in the following section) are determined
empirically.

2.3. p Value Computation. To obtain the p value of our
proposed test, we have calculated the p value for the j-th
marginal test as p;, for j=1,2,....,d. Since the multiple
tests are interdependent, so are their p values. There are
various ways to combine these p values among themselves
[20-22]. We consider the following:

d
pP=)p; (9)
j=1
) d>-d-2
2-d
d>-d-2
&2 - d !

2x(d-2) 2x(d-3)
d*-d d*-d

_2><i+(j—1)><(j—2)

The null hypothesis H, is rejected if the p value ‘p’
computed from the data set is less than its upper « point, say
Pg» Which is estimated as p,, by applying the bootstrap
technique to the given sample. Thus, H| is rejected in favor
of H, at a% level of significance if the computed value of

P < Pa-
3. Simulation

The performance of our proposed technique of testing is
demonstrated through an extensive simulation study, in this
section, where we implement both (t1) and (t2) tests sep-
arately. The scenarios from which the samples are drawn are
(a) U4[0,1] under independence and (b) U,4[0,1] under
dependence structure. Case (a) has the d xd correlation
matrix given by p = (p;;), where p;; =0 for i#j and
pi =1Vi=1,2,...,d. Thus,

10. . .0
o1...0

p= . . (10)
00. . .1

On the other hand, the dependence structure in (b) is
induced in two distinct ways.

(b1) A nonidentity correlation matrix is considered as
p=7J)] —kA wherek =2/d(d-1),] = (1,1,....,1) is
a dx1 vector, and A = (a;;) is a d xd symmetric
matrix da;=i+(j-1(-2)/2 for i<j,
a;j=a;Vi# j,and a; =0Vi=1,2,...,d. Thus, p ex-
plicitly looks like:

2x(d-2)\"

d?-d

2x(d-3)
d:-d

dx(d-1) (11)




(b2)The later way of generating random samples from
U,;[0,1] under the dependent setup is carried out
through the Clayton copula modeling [23, 24] by
implementing the multivariate uniform distribution
from Cook and Johnson [25], where the scalar pa-
rameter involved in the distribution is taken to be 2.

We compute the size and power under (a) and (b) with
d =5,10,15,...,50 and n = 100, 150, 200, . . ., 1000, as
we focus on the multivariate large astronomical data
sets. Both size and power are estimated by the Monte
Carlo simulation with the number of replications
equals 10,000. The size is estimated as the proportion
(out of 10,000) with H|, rejected when the simulated
samples are originally drawn from U,[0, 1].

Analogously, the powers are computed when the
simulated samples are not coming from U, [0, 1], where
we consider the following setups.

al The multivariate beta (Dirichlet) distribution over
the range [0,1]% with the shape parameter vector as
p=1(1,2,3,.....,d) and the scale parameter (beta)
taken as 3 [26, 27].

a2 The truncated multivariate normal distribution, over
the range [0,1],d, with the mean vector 0.5] where
J=(1,1,....,1), and the correlation matrix: JJ' — kA
where k =2/d(d-1) and A = (a;;) with a; =i+ (j-
1)(j-2)2 fori<j,a;;=a;Vi#ja; =0v¥i=12,...,
d [28, 29].

It is to be noted that the samples are drawn through
a Gibbs sampler technique [21, 30] with a thinning of 10
(that is, every 10th observation is selected) to get rid of
the autocorrelation present in the synthetic data.

a3 Multivariate normal distribution with the same
mean vector and the correlation matrix as mentioned in
(a2) [31, 32].

a4 U,4[0,2] under independent structure.

a5 U,[-1, 1] under independent structure [33, 34].

3.1. Competitor Tests. Several goodness-of-fit tests checking
for multivariate uniformity, from Yang and Modarres [35],
are considered as competitors: (i) the test based on normal
quantiles and (ii) a set of tests based on interpoint distances,
as discussed below.

3.1.1. Uniformity Test Based on Normal Quantiles.
Suppose the random vectors, X; = (X;}, X;, ..., X;;) € R?
fori=1,2,...,n, constitute a random sample of size n from

1

m; =

0"

NS
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a population of the random vector X characterized by
a continuous multivariate distribution function Fy. We
consider the following transformation from X to Z:

Zi = (Zil’ZiZ""’Zid) (12)
Lo (Xid)) >

where ®(.) is the cumulative distribution function of
a standard normal distribution. The test statistics under
study is given by

- (cDil (Xy), @ (Xp), - .-

P =nZZ (13)
where Z = (1/nY", Z,, UnY" Zis .. 1Ny Zi) -
Under the null setup:

Fy ~Uy[0,1],and Z; ~ N4[0,I,] fori=1,2,...,n,
(14)

where I; is the identity matrix of order d and N[0, 1,]
denotes a d-variate normal distribution with the null vector
as the mean and the dispersion matrix I;. It implies
Z ~ N,4[0,1,/n] and y*> ~ x% (a central chi-square distri-
bution with degrees of freedom = d). Then, testing

thenull: Fyx ~ U,[0, 1] vs the alternative: Fy +U4[0, 1],
(15)

is equivalent to testing

thenull: Z ~ N;[0, 1] vsthealternative: Z+ N4[0,1;].
(16)

The null hypothesis is rejected at a% level of significance
if the calculated x*> 3,3 P(x*>x3,) = « holds under
the null.

3.1.2. Uniformity Test Based on Interpoint Distances. For
a given sample X;,X,, . ..., X, of nreal-valued vectors on X,
we use a test based on the first two moments of the interpoint
distances [36, 37]. The moments and the distribution of the
interpoint distances between the multivariate Bernoulli
random vectors are investigated by Modaeres in [38],
whereas the asymptotic properties of the small interpoint
distances in a sample are introduced by Jammalamadaka and
Janson [39]. The test, discussed in this section, uses the
asymptotic distribution of the sample mean and the sample
variance of all interpoint distances.

The sample mean (m,) and the sample variance (m,) of
the interpoint distances are respectively expressed as follows:

n 1 d d 2
Z"Xz —X]-"2 and m, = <n> ;("Xz - Xj" - g) ’ (17)
2
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where their corresponding expectations are as follows:

Under the null X ~U,[0, 1], the respective variances
would be described by Yang and Modarres [35]:

E(m1)=gandE(m2)=%. s
_d(2n+3)
V(m) = mand "
1 7 1 '
- _w{989+202(n—2)}],1fd:2,
2
1 11 .
_ﬁ{37+6(n—2)}],1fd _3, N

<
—~
3
8}
~—
1l
/
NI
N—————

[ 494°  101d
+ +
) 16200 * 37800

/N
NS

The central limit theorem for U-process says that under
the null, the followings hold (Arcones and Giné [40]):

(21)
m, — (7d/180)

Q,=
\/V(mz)

2 22
= Q},Q; ~ xjasn — 0o,

~ N (0,1)asn —> 00,

(22)

ZQ3=QT+Q§~X§asn—>oo, (23)
as the first two order moments are independent of each other
[41, 42]. Any of the statistics Q?,Q3, or Q, (see equations
(22) and (23)) may be regarded as our test statistics. The null
hypothesis is rejected in favor of the two-sided alternative for
large values of the statistic, which is done at a% level of
significance if the calculated value of the test statistics is
larger than its upper « point under the null.

3.2. Results. In the simulation study, we choose & = 0.05.
Tables 1-3 show the estimated sizes, for samples from the
null distributions under (a), (b1) and (b2), are all coming out
close to the nominal level of significance, with both the
proposed tests (t2) and (t2), for all considered values of n
and d.

To address ties in (t2), the averaging technique has been
used. The averaging technique is a tie-breaking method,
which involves assigning distinct values to tied observations
by taking the average of the tied values. Moreover, as our
simulated data set is from U, (0,1)? setup, it contains an

2
ﬂn—m{‘i+:md}}ﬁdz4
16200 ' 37800

insignificant number of ties for each of the marginal
U,4(0,1). Hence, the original data set with ties and the
modified data set where ties are resolved using tie-breaking
techniques are almost alike. By averaging the tied obser-
vations, we ensure that each tied value is distinct, allowing
(t2) to provide more accurate results and better estimate of
the distribution function.

As competitors, we consider the four tests discussed in
Section 3.1. They are referred to as their respective test
statistics: ¥, Q%, QZ, and Q;, where we first investigate their
empirical sizes under all the conditions as considered for our
proposed tests. Tables for competitor tests show that, among
all the competitors, only the y* test for (a) independent
U,(0,1) samples attains its nominal &, whereas it also fails
under the more sophisticated multivariate structures such as
(bl) and (b2). However, it can be deemed as a rival to
compare the performance of our proposed tests.

Just like Tables 1-3, we have also computed the size
values of the test (t2), competitor tests x?, and competitor
tests based on the statistics Qz,Qg, and Q;.

Both the first and second proposed tests (t1) and (t2), for
the samples from a non-null distribution (a2), exhibit an
increasing power computed with the increase in n and/or d.
A maximum of powers for (t1) comes out to be 0.542114
with n = 1000 and d = 50 (Table 4), whereas (t2) has its
highest power calculated as 0.586738 which is attained for
n =1000 and d = 50 (Table 5). For every choice of n, the
powers of the tests are optimally good with a value 1 for
samples from each of the non-null distributions (al, a3-a5)
under consideration.

The power estimated for the first competitor test 2
comes out to be very low under the non-null distribution
(a2). However, it gradually increases with an increase in # as
well as d (Table 6), with a largest value 0.2285. The empirical
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TaBLE 1: Size computed with the test (t1) for (a) independent U,4[0, 1].
d
" 5 10 15 20 25 30 35 40 45 50
100 0.04476 0.04568 0.045147 0.045385 0.045576 0.045577 0.04546 0.045563 0.045482 0.04553
150 0.04714 0.04587 0.046027 0.046145 0.045932 0.045893 0.045883 0.04597 0.045978 0.046068
200 0.04788 0.04728 0.04744 0.047095 0.04696 0.046913 0.046903 0.04683 0.046716 0.046638
250 0.0467 0.04715 0.046013 0.046265 0.046556 0.046613 0.04656 0.046395 0.04646 0.04663
300 0.04632 0.0463 0.046327 0.046095 0.046168 0.046303 0.046303 0.046563 0.046593 0.046528
350 0.0464 0.04698 0.046713 0.04663 0.046784 0.0467 0.046823 0.046855 0.046822 0.046826
400 0.0474 0.04748 0.047033 0.047285 0.046984 0.047137 0.047 0.047045 0.046996 0.047054
450 0.04892 0.04776 0.047247 0.04692 0.046948 0.047123 0.04706 0.04709 0.047158 0.047164
500 0.04818 0.04804 0.048407 0.04798 0.048 0.04788 0.047811 0.047883 0.048058 0.048078
550 0.04858 0.04704 0.04738 0.04753 0.047352 0.047337 0.04756 0.047825 0.04788 0.04787
600 0.04852 0.04723 0.046887 0.047605 0.047224 0.047247 0.047209 0.047403 0.047496 0.047476
650 0.04826 0.04823 0.047587 0.047695 0.047664 0.047677 0.047823 0.047873 0.047858 0.047778
700 0.04796 0.04829 0.048053 0.04808 0.048052 0.047867 0.047886 0.047968 0.047898 0.04788
750 0.04756 0.0481 0.04788 0.04794 0.047804 0.047983 0.047894 0.047818 0.047673 0.047766
800 0.04784 0.0479 0.048 0.047755 0.047892 0.047893 0.047777 0.047743 0.047724 0.04761
850 0.04776 0.04752 0.04752 0.047635 0.047708 0.048067 0.048094 0.048015 0.048064 0.047994
900 0.04762 0.04759 0.047953 0.047725 0.04792 0.04811 0.047897 0.048135 0.04802 0.047934
950 0.0486 0.04802 0.048753 0.04883 0.048656 0.048593 0.048554 0.048598 0.048516 0.048478
1000 0.04814 0.04818 0.048327 0.04859 0.048816 0.048657 0.048537 0.04835 0.048224 0.04802
TaBLE 2: Size computed with the test (t1) for (bl) dependent U,[0, 1].
d

" 5 10 15 20 25 30 35 40 45 50
100 0.04642 0.04398 0.04432 0.044025 0.044548 0.044683 0.044754 0.043635 0.044711 0.044448
150 0.04834 0.04571 0.047713 0.046325 0.045624 0.04587 0.047157 0.04685 0.047051 0.04562
200 0.04718 0.046 0.04684 0.046055 0.045404 0.046487 0.046197 0.04694 0.045722 0.046548
250 0.04684 0.04657 0.045787 0.045895 0.045884 0.045353 0.047289 0.046028 0.045836 0.046752
300 0.04712 0.04635 0.04592 0.04672 0.045996 0.045867 0.047111 0.046793 0.046869 0.04623
350 0.04594 0.04706 0.048153 0.04742 0.049148 0.04718 0.047723 0.047748 0.046487 0.047896
400 0.04798 0.04601 0.047893 0.047045 0.04834 0.046547 0.04804 0.046998 0.046582 0.047054
450 0.04966 0.04838 0.04804 0.04747 0.046208 0.04798 0.047246 0.04695 0.047924 0.04724
500 0.04862 0.04638 0.04816 0.047765 0.04816 0.047253 0.047346 0.047208 0.048238 0.048348
550 0.0485 0.04834 0.047727 0.0484 0.046908 0.04776 0.047723 0.048365 0.047713 0.048418
600 0.04736 0.0484 0.046653 0.046105 0.047184 0.047773 0.04634 0.046143 0.048751 0.047692
650 0.04816 0.0487 0.04798 0.04716 0.049032 0.048283 0.048503 0.047708 0.047502 0.047254
700 0.04866 0.04808 0.04746 0.048675 0.046612 0.047553 0.04916 0.048445 0.046327 0.047046
750 0.04756 0.04763 0.04758 0.04776 0.048612 0.04886 0.048117 0.049095 0.046978 0.048064
800 0.04886 0.04786 0.047487 0.048035 0.04752 0.047707 0.048743 0.048758 0.046916 0.047998
850 0.04776 0.0478 0.04838 0.047455 0.047004 0.04901 0.049209 0.047393 0.048542 0.046976
900 0.04732 0.04721 0.04874 0.04841 0.047944 0.049267 0.047766 0.04765 0.049489 0.04741
950 0.04688 0.04814 0.049513 0.04876 0.0484 0.04968 0.047291 0.049613 0.049542 0.048952
1000 0.0477 0.04829 0.04746 0.04806 0.05 0.049123 0.048729 0.048663 0.04708 0.048332

power takes a value 1 Vn, d under the distribution (al). Thus,
we comment that, in this situation, our proposed technique
with both the tests is competitive with this competitor. Here,
the test statistic involved in the rival is based on ® ! (z) for
z € [0,1]; therefore, among all non-null distributions
(al-a5), only the Dirichlet distribution (a2) and the trun-
cated multivariate normal distribution (3) are considered,
for power calculation of test x?, as those sample values lie
in [0,1].
For the later set of competitors based on the measures
?,Q3, and Q,, under the non-null distributions (al) and
(a2), the empirical power is increasing in # and d and reaches

1 for most values of the pair (n,d) (see, Tables 7-10). For the
samples from (a3-a5), the powers all attain 1. In spite of this
optimal power execution, the use of these tests in identifying
“completeness in space” is highly questionable due to the
drastic failure in satisfying the size condition, even for the
multivariate uniform distribution under independence.

4. Application

We apply our proposed technique to the observed data set in
space obtained from NEWFIRM Medium Band Survey
(NMBS). Data set from the NMBS catalog consists of two
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TaBLE 3: Size computed with the test (t1) for (b2) dependent U,[0, 1].
d
" 5 10 15 20 25 30 35 40 45 50
100 0.04482 0.04488 0.04526 0.044785 0.045064 0.044063 0.044466 0.045533 0.045369 0.044342
150 0.04644 0.04595 0.045153 0.046565 0.044804 0.046363 0.045477 0.04545 0.045731 0.045248
200 0.04536 0.04559 0.046087 0.045125 0.047116 0.046203 0.045634 0.046443 0.046829 0.046406
250 0.04574 0.04647 0.046147 0.04666 0.046544 0.04705 0.046746 0.046873 0.046429 0.046656
300 0.04564 0.04658 0.047673 0.0483 0.047328 0.047113 0.046423 0.046583 0.046547 0.047424
350 0.04746 0.04664 0.047193 0.04823 0.04708 0.047227 0.046654 0.046745 0.047051 0.047642
400 0.04804 0.04743 0.046933 0.04654 0.0472 0.047663 0.047466 0.046628 0.047238 0.047142
450 0.04826 0.04727 0.04706 0.04807 0.04758 0.04791 0.046794 0.046745 0.047556 0.046676
500 0.04636 0.04769 0.048173 0.04759 0.04798 0.047843 0.047134 0.047108 0.047944 0.0472
550 0.04698 0.0469 0.047033 0.04746 0.04798 0.047573 0.047474 0.04816 0.04816 0.0471
600 0.0478 0.04661 0.047153 0.04782 0.048496 0.04844 0.047897 0.04801 0.047404 0.047924
650 0.0478 0.04765 0.04714 0.048255 0.04698 0.046607 0.048374 0.04804 0.047489 0.047934
700 0.0469 0.04863 0.04838 0.04807 0.04688 0.04736 0.04832 0.048365 0.047949 0.04772
750 0.0489 0.04981 0.048447 0.047125 0.048088 0.04792 0.047906 0.04807 0.047907 0.047648
800 0.04812 0.04774 0.048173 0.04861 0.048056 0.048317 0.047751 0.047795 0.048313 0.048362
850 0.04812 0.0476 0.04714 0.048245 0.047696 0.047473 0.047606 0.04802 0.047887 0.04789
900 0.04924 0.04847 0.048613 0.04756 0.047636 0.0471 0.048357 0.048623 0.048202 0.047826
950 0.0482 0.04921 0.048593 0.04726 0.047392 0.048187 0.048569 0.04869 0.048273 0.047908
1000 0.05 0.04907 0.04754 0.04724 0.0483 0.04824 0.04848 0.047168 0.047164 0.048144
TABLE 4: Power estimated with the first proposed test (t1) for (al) multivariate truncated normal sample.
d

" 5 10 15 20 25 30 35 40 45 50
100 0.07478 0.162 0.18902 0.21238 0.233184 0.246853 0.256389 0.263498 0.268558 0.274604
150 0.1026 0.20196 0.242847 0.269775 0.288792 0.298597 0.305523 0.312215 0.31536 0.31962
200 0.13706 0.23465 0.284347 0.309 0.32422 0.332747 0.338497 0.34391 0.347029 0.34996
250 0.17176 0.26479 0.316347 0.338605 0.351276 0.358063 0.364303 0.367873 0.371764 0.374508
300 0.2027 0.29381 0.340387 0.36097 0.372216 0.379727 0.384577 0.388495 0.390798 0.394482
350 0.22804 0.31744 0.361527 0.379335 0.390308 0.397063 0.402117 0.40634 0.409131 0.412306
400 0.25244 0.33986 0.378747 0.39601 0.405784 0.41297 0.416834 0.422085 0.424927 0.42763
450 0.2712 0.35754 0.3955 0.410765 0.420452 0.42645 0.432037 0.435383 0.438587 0.44146
500 0.28732 0.37477 0.409047 0.42406 0.432736 0.43908 0.444149 0.448043 0.451011 0.454104
550 0.3016 0.38936 0.420853 0.435605 0.444908 0.451113 0.455557 0.459428 0.462836 0.465366
600 0.31362 0.40175 0.43216 0.44653 0.455652 0.462357 0.465709 0.47019 0.473744 0.476916
650 0.3267 0.41432 0.442807 0.456925 0.465796 0.47208 0.476157 0.479868 0.483411 0.485982
700 0.33468 0.42642 0.45248 0.46601 0.47554 0.48069 0.485497 0.489483 0.492962 0.495248
750 0.34502 0.43565 0.462727 0.47478 0.484152 0.490083 0.494371 0.49859 0.501191 0.504396
800 0.35666 0.44593 0.470493 0.48322 0.492392 0.49834 0.50218 0.506488 0.510542 0.512518
850 0.36584 0.4561 0.47894 0.491695 0.500476 0.506613 0.510571 0.514313 0.517993 0.520508
900 0.37444 0.46257 0.48522 0.499045 0.508176 0.51426 0.518591 0.522615 0.52564 0.528576
950 0.3843 0.47354 0.49362 0.5067 0.515516 0.520923 0.526234 0.529033 0.53254 0.535292
1000 0.39536 0.48021 0.500273 0.513705 0.522092 0.528797 0.53306 0.536483 0.540473 0.542114

versions for the photometric samples as the original SEx-
tractor output and a catalog with additional deblending. We
consider the first version that contains the photometric
redshifts and rest-frame colors from EAZY, and the stellar
population synthesis (SPS) variables from FAST using the
Bruzual and Charlot [43] models. Here, we study the early
type galaxies (ETGs) [44] from the AEGIS 1 catalog, whose
redshift ranges from 0.5 to 4. As our interest is to study the
intrinsic properties of the galaxies, we consider the following
parameters (variables) that remain invariant with the change

in distance: (i) Ky, is the K-band ellipticity, (ii) Kgs, is the

K-band half-light radius, (iii) z is the redshift of the galaxies,
(iv) L,ge is the log (age/year), (v) I, is the log (mass/M),
and (vi) I, is the log (specific star formation rate x year).
Our data set consists of the abovementioned variables on
6,661 ETGs. We apply our technique, in terms of the pro-
posed two tests, to investigate whether the data set is
“complete in space.” Here, for ‘x” as an observed variable, we
consider the following transformation “y” as follows:

log (|x]) — log (1% min)

Y= Tog (<) — log (Xl 29
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TaBLE 5: Power estimated with the second proposed test (t2) for (al) multivariate truncated normal sample.

d
" 5 10 15 20 25 30 35 40 45 50
100 0.08706 0.18502 0.226047 0.252485 0.271076 0.282643 0.291117 0.296515 0.300667 0.304674
150 0.13546 0.23222 0.285373 0.309035 0.323816 0.331347 0.338 0.342938 0.34548 0.349036
200 0.18192 0.2784 0.325107 0.34561 0.358504 0.365677 0.37036 0.374968 0.377864 0.380338
250 0.22294 0.31424 0.35638 0.3745 0.385236 0.390967 0.39684 0.400335 0.403776 0.406614
300 0.25302 0.3428 0.380947 0.396105 0.406404 0.413237 0.417974 0.42171 0.424169 0.427572
350 0.27758 0.36682 0.401273 0.414785 0.426112 0.432093 0.436494 0.44055 0.443536 0.446374
400 0.29494 0.38808 0.418153 0.432625 0.442024 0.448197 0.453223 0.456693 0.459744 0.46292
450 0.31186 0.40588 0.433913 0.447665 0.45702 0.462753 0.468123 0.471495 0.47482 0.477348
500 0.32654 0.4217 0.447933 0.46099 0.470884 0.47675 0.481574 0.484995 0.488813 0.491202
550 0.34116 0.43654 0.460153 0.473895 0.483248 0.489407 0.493343 0.49755 0.50118 0.503004
600 0.35716 0.449 0.472707 0.485105 0.49486 0.500793 0.505191 0.509313 0.512644 0.515478
650 0.3721 0.46175 0.483113 0.496515 0.5059 0.512023 0.516177 0.5202 0.523047 0.525594
700 0.38478 0.47148 0.493733 0.50638 0.515872 0.522043 0.526271 0.53045 0.533 0.53509
750 0.39934 0.48141 0.503773 0.516015 0.524692 0.53087 0.535954 0.539903 0.542709 0.54521
800 0.41464 0.49258 0.512833 0.525215 0.533808 0.54015 0.545054 0.54851 0.552324 0.554448
850 0.42922 0.50198 0.521573 0.534 0.543068 0.5493 0.553251 0.557185 0.561124 0.562808
900 0.44046 0.50967 0.52952 0.54209 0.550968 0.5568 0.561949 0.56581 0.568938 0.571622
950 0.4541 0.51873 0.536893 0.549885 0.558672 0.565363 0.569234 0.572825 0.576489 0.5789
1000 0.46576 0.52686 0.54374 0.557295 0.565496 0.572923 0.577389 0.58106 0.584838 0.586738
TaBLE 6: Power estimated with the competitor test y* for (al) multivariate truncated normal sample.
d
" 5 10 15 20 25 30 35 40 45 50
100 0.03 0.0198 0.0169 0.0265 0.0404 0.0753 0.1102 0.1467 0.1875 0.2277
150 0.0289 0.0193 0.017 0.0225 0.0421 0.0702 0.103 0.1434 0.1879 0.23
200 0.0296 0.0181 0.0168 0.0251 0.0401 0.0718 0.1024 0.143 0.1866 0.2212
250 0.0285 0.0187 0.0195 0.0211 0.0426 0.0777 0.102 0.1476 0.184 0.2149
300 0.0265 0.0198 0.0177 0.0259 0.0455 0.0711 0.1054 0.1489 0.1831 0.2263
350 0.0294 0.0195 0.0191 0.0263 0.0475 0.0707 0.1089 0.1475 0.1811 0.2228
400 0.029 0.0195 0.0168 0.0281 0.0422 0.0712 0.1063 0.1435 0.1832 0.221
450 0.0288 0.0172 0.0172 0.0248 0.0429 0.0678 0.1082 0.1444 0.1891 0.2268
500 0.0291 0.018 0.0157 0.0238 0.0432 0.0685 0.1018 0.1415 0.1888 0.2225
550 0.029 0.019 0.0165 0.0252 0.0424 0.0693 0.1086 0.1517 0.1824 0.2237
600 0.0293 0.0184 0.0163 0.0276 0.0463 0.0721 0.1077 0.1453 0.18 0.2227
650 0.0264 0.0198 0.0168 0.0229 0.0437 0.0693 0.1082 0.147 0.1806 0.2174
700 0.0264 0.0185 0.019 0.0244 0.0428 0.0706 0.1065 0.1446 0.1853 0.2257
750 0.03 0.0184 0.0182 0.0237 0.0441 0.073 0.1038 0.1399 0.1885 0.2285
800 0.0308 0.0197 0.0167 0.0236 0.0416 0.0689 0.1045 0.1411 0.1896 0.2274
850 0.029 0.0165 0.0184 0.0278 0.0427 0.0664 0.1054 0.1425 0.1833 0.2277
900 0.0294 0.0176 0.0184 0.0222 0.0419 0.0735 0.1064 0.1474 0.1865 0.2192
950 0.0286 0.0186 0.0173 0.027 0.0444 0.0708 0.1065 0.1407 0.1814 0.2281
1000 0.0276 0.0197 0.0168 0.0252 0.0459 0.0714 0.1053 0.1444 0.179 0.2217
where |x| is the absolute value of x, log(-) is the natural (ia) B = 10,000 bootstrap samples are drawn from the
logarithmic function with base e, |x|,,, is the maximum given data set and used to compute B number of
value of |x|, and |x|,;, is the minimum value of |x|. This bootstrap p values for the j-th marginal test as p;;, for
transformation is done on each of the 6 original variables in b=1,2,...,B
such a way that the ranges, under the null hypothesis, remain (ib) Estimate the upper « point p,, for p; using the
the same in .the transformed Space. sampling distribution of the computed bootstrap p
We now implement our tests in terms of the p value (see, values from step (ia) as
(9)), where we obtain p, (see Section 2.3) through the
nonparametric bootstrap technique (Modak and Bandyo- ' _ -~
padhyay (2018)) as follows: {rumber of pjys¥b = 1 (DB P, (25)

B
(i) For each of the multiple tests, we perform boot-

strapping individually (ii) Redo steps (ia)-(ib) for j=1,2...,d
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TaBLE 7: Power computed with the competitor test Q% for (a2)
multivariate truncated normal sample.

TaBLE 9: Power computed with the competitor test Q% for (al)
Dirichlet sample.

d d
" 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
100 0.0212 0.0137 06514 0992 1 1 1 1 1 1 100 0.6397 1 1 1 1 1 1 1 1 1
150 0.056 0.0179 0.8607 1 1 1 1 1 1 1 150 0.8801 1 1 1 1 1 1 1 1 1
200 0.0936 0.0227 0.9537 1 1 1 1 1 1 1 200 0.9723 1 1 1 1 1 1 1 1 1
250 0.1424 0.029 0.987 1 1 1 1 1 1 1 250 0.9953 1 1 1 1 1 1 1 1 1
300 0.1992 0.0309 0.9967 1 1 1 1 1 1 1 300 0.9988 1 1 1 1 1 1 1 1 1
350 0.253 0.0357 0.9993 1 1 1 1 1 1 1 350 0.9999 1 1 1 1 1 1 1 1 1
400 0.3122 0.0465 0.9996 1 1 1 1 1 1 1 400 1 1 1 1 1 1 1 1 1 1
450 0.3668 0.0553 1 1 1 1 1 1 1 1 : : : : : : : : : : :
500 0.4244 0.0611 1 1 1 1 1 1 1 1 1000 1 1 1 1 1 1 1 1 1 1
550 0.4812 0.0715 1 1 1 1 1 1 1 1
600 0.5285 0.08 1 1 1 1 1 1 1 1
650 0.5816 0.0886 1 1 1 1 1 1 1 1
700 0.6229 0.0991 1 1 1 1 1 1 1 1 TaBLE 10: Power computed with the competitor test Q; for (a2)
750  0.6631 0.107 1 1 1 1 1 1 1 1 multivariate truncated normal sample.
800 0.7031 0.1202 1 1 1 1 1 1 1 1 d
850 0.7397 0.1351 1 1 1 1 1 1 1 1 n
900 0.7634 01418 1 11 1 1 1 1 1 > 10 15 20 25 30 35 40 45 S0
950 0.7978 0.1564 1 1 1 1 1 1 1 1 100 0.5197 09935 1 1 1 1 1 1 1 1
1000 0.8245 0.1712 1 1 1 1 1 1 1 1 150 07272 09997 1 1 1 1 1 1 1 1
200 0.8642 1 1 1 1 1 1 1 1 1
250 0.9331 1 1 1 1 1 1 1 1 1
TaBLE 8: Power computed with the competitor test Q% for (a2) 300 0.9683 1 1 1 1 1 1 1 1 1
multivariate truncated normal sample. 350 0.9851 1 1 1 1 1 1 1 1 1
400 0.994 1 1 1 1 1 1 1 1 1
d 450 0.9981 1 1 1 1 1 1 1 1 1
8 5 10 15 20 25 30 35 40 45 50 500 0.999 1 1t 1 1 1 1 1
100 06256 09973 1 1 1 1 1 1 1 1 55009999 1 oo r bl
150 08145 09999 1 1 1 1 1 1 1 1 600 1 L S R S
200 0.9196 1 1 1 1 1 1 1 1 1 : : : T
250 09673 1 11 1 1 1 1 1 1 1000 1 1 1 v 1t 1t 1
300 0.9876 1 1 1 1 1 1 1 1 1
350 0.9946 1 1 1 1 1 1 1 1 1 < VIV, > = 0.5 where {-) denotes the mean of the study
400 0.9977 1 11 1 1 1 1 11 variable V' with its maximum V. However, it is not
450 0.9994 1 1 1 1 1 1 1 1 1 c . . .
500 09997 ) L1 1 1 1 1 1 1 a.statlstlcal tesF for an appropriate hypothesw. rat.her pro-
550 1 1 I 1 1 1 1 1 1 1 vides only a point estimate. Moreover, for multivariate data,
: : : S only the marginal means are determined independently by
1000 1 1 1 1 1 1 1 1 1 1 this procedure. Anyway, the computed values for <V/V >

(iii) For a given data set, the null hypothesis of mul-
tivariate uniformity is rejected at a% level of signifi-
cance if p = Y1 p; < u = X1 Pja
Based on our procedure, the tests (t1) and (t2) both
produce a p value zero with the cutoff values 2.608102 x
1077 and 2.571811 x 1077, respectively. Therefore, in the
light of the sample given, we reject the null hypothesis at
a = 5% level of significance and conclude that the sample
does not come from a U, (0, 1) distribution and hence is not
“complete in space.” Moreover, the data set under consid-
eration does not have any ties present in the marginal; hence,
no tie-breaking (such as, averaging technique 3.2) technique
is required to eradicate the ties from the data set before the
application of (t2) in the marginal.
Here, we cross-check our results by the popular and very
classical of its kind V/V . test [1] from astronomy fra-
ternity. It calls a univariate data set “complete in space,” if

corresponding to the 6 study variables are 0.6136369,
0.3906980, 0.4305935, 0.4915570, 0.5898555, and 0.1268829,
respectively. It shows the mean values for only 1 amongst 6
marginals are close to 0.5, whereas for the others they are less
than 0.5 and for 2 variables it is greater. Therefore, the
outcome of rejecting the null distribution resulted in our
method is supported by the well-knownV/V . test.

max

5. Conclusion

This paper checks the completeness for the multivariate
astronomical samples, implementing our novel approach.
The advised procedure, using two tests (t1) and (t2), has been
shown to perform well with the help of multiple tests of
hypotheses and then combining the results of the dependent
marginal tests. A few characteristics of our technique are
listed below.

(1) If an astronomical data set is from a continuous
multivariate uniform setup, then it is said to be
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“complete in space” and vice versa. Our test is the
first, to our best knowledge, to check for com-
pleteness of an astronomical sample in the
multivariate setup.

(2) Our approach, although proposed and analyzed for
checking multivariate uniformity, can be used for
any other arbitrary, continuous, multivariate
distribution.

(3) We have used two univariate, nonparametric, one-
sample tests: (t1) Kolmogorov-Smirnov and (t2)
Anderson-Darling, to check for uniformity of the
data set, corresponding to each of the marginals.
However, any other test, appropriate for use on the
multiple tests individually, can be implemented
analogously. All the shortcomings of the (t1) and (t2)
tests have been taken into consideration before their
application.

(4) The proposed tests’ efficiency, supremacy, and wide
applicability for high-dimensional, big data sets are
demonstrated through extensive data study.

(5) Our proposed test is established as an efficient
method in astronomy for the objective under
analysis.

In the near future, we are planning to develop a new test
based on the regression analysis to check for completeness of
astronomical samples.
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