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Data analysis for a sample of celestial bodies generally is preceded by the completeness test in order to verify whether the sample
objects are proper representatives of the corresponding part of the universe. A data set following a multivariate, continuous,
uniform distribution is said to be “complete in space.” Tis paper introduces a new approach to check for this completeness for
any astronomical data set under a multivariate setup. Our proposed procedure, using the multiple tests of hypotheses based on
nonparametric statistics, and consequently, combining their p values, outperforms others from the literature.

1. Introduction

In astronomy, diferent catalogs from various sources are
generally combined to create a master data set, where it is
supposed to be “complete in space.” Under the univariate
setup, a sample related to a particular astronomical pa-
rameter (variable), original or transformed [1], is uniform in
distribution (continuous), then it is referred to as “complete
in space.” In this context, the popular V/Vmax test [1] has
been proposed. However, it is restricted to univariate
analysis; therefore, it cannot take into account the multi-
variate structure of the samples, and it provides only a point
estimation of the concerned statistics. On the other hand, the
other implemented statistical tests in astronomy, to check
for uniformity of a multidimensional sample, involve
comparison of each individual variable with a univariate
uniform distribution, irrespective of the important de-
pendence structure underlying the multivariate sample
under analysis [2, 3]. Terefore, in this paper, we propose
a new approach to investigate the completeness of a multi-
variate data set in space. To our very knowledge, it is the frst
multivariate test of hypothesis to check completeness for an
astronomical sample. We discuss two nonparametric tests
[4, 5] to check whether the data set follows a multivariate

uniform distribution over the range [0, 1]d (denoted by
Ud[0, 1]) or not, where d is the dimension of data set for
d≥ 2 and [0, 1]d is the set of the d-times Cartesian product of
the closed interval [0, 1]. Any deviation of the given sample
from Ud[0, 1] will lead to the rejection of the fact that the
data set is “complete in space.”

Establishment of a test to check Ud[0, 1] becomes dif-
fcult for higher values of d, whereas the existing tests are
either not well defned or not feasible for big d [6, 7]. In the
literature, the multiple tests for goodness-of-ft are presented
for checking the null hypothesis if a sample is from a specifc
multivariate distribution. However, only few of them are put
forward for the multivariate uniformity of the data set. Two
popular tests, among them, are (i) the multivariate Kol-
mogorov–Smirnov test [8] and (ii) the test based on em-
pirical characteristic function [9, 10]. Te empirical
distribution function has jumps and discontinuity at various
points apart from the sample observations, which makes it
quite challenging to be computed for large d. Terefore, the
algorithm for the concerned test statistic is yet unavailable
for d> 2 [6, 8]. Any distribution is characterized by its
characteristic function, which is consistently estimated by an
empirical version. However, computation of the test sta-
tistics and the critical value for the test, based on the
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empirical characteristic function, is very difcult for high-
dimensional sample as well as for big data, which induce
greater testing error [9–11]. Avoiding all these concerns, we
propose a novel approach as follows.

In this work of Astrostatistic, we suggest a new testing
procedure based on multiple nonparametric tests of hy-
potheses, where we check whether the individual marginal of
the data set is from a univariate, continuous, uniform dis-
tribution over the range [0, 1] (denoted by U[0, 1]) or not.
Here, we use the fact that if the given multivariate sample
follows Ud[0,1], then all the d marginals of the data set will
be from U[0, 1] and vice versa. Our fnal decision is taken
uniquely by properly combining the dependent multiple
tests or their corresponding p values. With advanced fashion
of data collection, we focus on the high-dimensional big data
from astronomical feld (see, [5, 12, 13], and references
therein), where our data study shows that the proposed
technique is efective and superior compared to its
competitors.

Tis paper is organized as follows. Two proposed
methods are described in Section 2.Te simulation is carried
out in Section 3. Section 4 holds application of our proposed
tests to an astronomical data set. Finally, Section 5 concludes
the paper.

2. Proposed Method

Our main objective is to investigate the completeness of
a multivariate sample in space, which is done in terms of
hypothesis testing. Suppose X � (X1, X2, . . . , Xd)′ is a real-
valuedd-variate observation vector and we want to test
whether it follows Ud[0, 1] or not, that is, we test the null.

H0: X ∼ Ud[0, 1] against the alternativeH1: X≁Ud[0, 1],

(1)

where ‘ ∼ ’ is used to mean following and ‘≁’ not following.
We perform our test using the given sample:

Xi � (Xi1, Xi2, . . . , Xid)′, i � 1, 2, . . . , n􏽮 􏽯 with size
n(≫ d).

2.1. Multiple Tests. Te abovementioned proposed hy-
pothesis testing can be equivalently performed in terms of
the following d number of multiple tests, which are carried
out in a univariate setup for each variable. Here, we im-
plement the fact that if the given multivariate sample follows
Ud[0, 1], then all the d marginals of the data set will be from
U[0, 1] and vice versa. Te dependent multiple tests are
formulated as follows:

H0j: Xj ∼ U[0, 1] agianstH1j: Xj ≁U[0, 1]∀j � 1, 2, . . . , d.

(2)

Ten, each of the univariate multiple tests is done with
the help of the popular nonparametric one-sample tests: (t1)
Kolmogorov–Smirnov test [14] and (t2) Anderson–Darling
test [15], to check whether the given sample for each di-
mension follows U[0, 1] or not. Acceptance of all H0js for
j � 1, 2, . . . , d concludes with acceptance of H0, whereas

rejection of any H0j for at least one j � 1, 2, . . . , d causes
rejection of H0.

(t1) We implement the univariate, nonparametric,
distribution-free, one-sample Kolmogorov–Smirnov test of
hypothesis to check whether the unknown continuous
distribution function F(X) of a random variable X is equal
to a completely specifed reference distribution F0(X). Tis
is done in terms of the test statistic:

Sup
Xi,i�1(1)n

Fn Xi( 􏼁 − F0 Xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (3)

which involves a distance between the empirical distribution
function Fn(X) computed using a random sample
X1, X2, . . . , Xn on X and the cumulative distribution
function F0(X) of the reference distribution. Te null hy-
pothesis is accepted if the computed test statistic is smaller
than or equal to the upper α point of the distribution for the
test statistic (equation (3)) under the null.

(t2) Ten, we suggest the nonparametric, distribution-
free Anderson–Darling test, which is a modifcation of the
Kolmogorov–Smirnov test, assigning more weight to the
tails of the distribution for the given sample. It tests whether
a univariate sample X(1), X(2), . . . , X(n)􏽮 􏽯 comes from
a population with a specifc continuous distribution function
F. When it is true, we can assume that F ∼ U(0, 1) and the
sample F(Xi), i � 1, 2, . . . , n are then tested for uniformity
[16]. Te test statistic 􏽥T is defned as follows:

􏽥T
2

� − n − S with

S � 􏽘
n

i�1

2i − 1
n

ln F Xi( 􏼁􏼈 􏼉 + ln 1 − F Xn+1− i( 􏼁􏼈 􏼉􏼂 􏼃,

(4)

where values, greater than its upper α point under the null
hypothesis, reject the null of uniformity against the both-
sided alternative.

Te infuence of ties on (t2) varies depending on the
characteristics and frequency of ties present in the data. Ties
can have a noticeable impact on the precision of the test and
potentially afect the test results. Presence of ties disrupts the
estimation of the distribution function, particularly in the
tails of the distribution, which will lead to inaccurate cal-
culations of the test statistic and p value. If the numbers of
ties are less or if they are evenly distributed across the data
set, their impact on (t2) will be minimal. However, when
there are numerous ties or if they cluster around specifc
values, the precision of the test can be compromised.

2.2. Test Statistics. Suppose the statistics for testing H0j

against H1j, carried out in terms of (t1) or (t2), is Tj for
j � 1, 2, . . . , d. Ten, the critical region for the right-tailed
alternative in the j-th one among the multiple tests is given
by

observed values of Tj >Cα􏽮 􏽯, (5)

where Cα is the required upper α point of the sampling
distribution for our proposed test statistic Tj ∋ .
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PH0j
Tj >Cα􏼐 􏼑 � α holds. (6)

Here, α is the nominal level of signifcance for each of our
marginal tests which we perform using the (t1) Kolmo-
gorov–Smirnov test, wherein the asymptotic Cα � 1.36/

�
n

√

[17] and (t2) Anderson–Darling test with the asymptotic
value for Cα � 2.4986 [18, 19]. We denote the statistics for
testing H0 against H1 by T, where the test statistics from the
multiple tests corresponding to the marginals are combined
together with equal weights which defnes the following:

P(T>C) �
1
d

􏽘

d

j�1
P Tj >C􏼐 􏼑 for anyC, (7)

and subsequently we obtain:

PH0
T>Cα( 􏼁 � α. (8)

Tus, it is a right-tailed test, so the null hypothesis is
rejected at α% level of signifcance if the observed value of T

based on the given sample is greater than Cα. Being a data-
driven test, the distribution of T and the corresponding p

value (discussed in the following section) are determined
empirically.

2.3. p Value Computation. To obtain the p value of our
proposed test, we have calculated the p value for the j-th
marginal test as pj, for j � 1, 2, . . . ., d. Since the multiple
tests are interdependent, so are their p values. Tere are
various ways to combine these p values among themselves
[20–22]. We consider the following:

p � 􏽘
d

j�1
pj. (9)

Te null hypothesis H0 is rejected if the p value ‘p’
computed from the data set is less than its upper α point, say
pα, which is estimated as 􏽢pα, by applying the bootstrap
technique to the given sample. Tus, H0 is rejected in favor
of H1 at α% level of signifcance if the computed value of
p< 􏽢pα.

3. Simulation

Te performance of our proposed technique of testing is
demonstrated through an extensive simulation study, in this
section, where we implement both (t1) and (t2) tests sep-
arately. Te scenarios from which the samples are drawn are
(a) Ud[0, 1] under independence and (b) Ud[0, 1] under
dependence structure. Case (a) has the d × d correlation
matrix given by ρ � (ρij), where ρij � 0 for i≠ j and
ρii � 1∀i � 1, 2, . . . , d. Tus,

ρ �

1 0 . . . 0

0 1 . . . 0

.

.

0 0 . . . 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

On the other hand, the dependence structure in (b) is
induced in two distinct ways.

(b1) A nonidentity correlation matrix is considered as
ρ � JJ′ − kA, where k � 2/d(d − 1), J � (1, 1, . . . ., 1)′ is
a d × 1 vector, and A � (aij) is a d × d symmetric
matrix ∋ aij � i + (j − 1)(j − 2)/2 for i< j,
aij � aji∀i≠ j, and aii � 0∀i � 1, 2, . . . , d. Tus, ρ ex-
plicitly looks like:

ρ �

1
d2 − d − 2

d2 − d
. .

2 ×(d − 2)

d2 − d

d2 − d − 2
d2 − d

1 . .
2 ×(d − 3)

d2 − d

. . . . .

. . . 1 −
2 × i +(j − 1) ×(j − 2)

d ×(d − 1)
.

. . . . .

. . . . .

. . . . .

. . . 1 .

2 ×(d − 2)

d2 − d

2 ×(d − 3)

d2 − d
. . 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d×d

. (11)
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(b2)Te later way of generating random samples from
Ud[0, 1] under the dependent setup is carried out
through the Clayton copula modeling [23, 24] by
implementing the multivariate uniform distribution
from Cook and Johnson [25], where the scalar pa-
rameter involved in the distribution is taken to be 2.
We compute the size and power under (a) and (b) with
d � 5, 10, 15, . . . , 50 and n � 100, 150, 200, . . . , 1000, as
we focus on the multivariate large astronomical data
sets. Both size and power are estimated by the Monte
Carlo simulation with the number of replications
equals 10,000. Te size is estimated as the proportion
(out of 10,000) with H0 rejected when the simulated
samples are originally drawn from Ud[0, 1].
Analogously, the powers are computed when the
simulated samples are not coming from Ud[0, 1], where
we consider the following setups.
a1 Te multivariate beta (Dirichlet) distribution over
the range [0, 1]d with the shape parameter vector as
μ � (1, 2, 3, . . . .., d)′ and the scale parameter (beta)
taken as 3 [26, 27].
a2Te truncated multivariate normal distribution, over
the range [0, 1]d, with the mean vector 0.5J where
J � (1, 1, . . . ., 1)′, and the correlation matrix: JJ′ − kA

where k � 2/d(d − 1) and A � (aij) with aij � i + (j −

1)(j − 2)/2 for i< j, aij � aji∀i≠ j, aii � 0∀i � 1, 2, . . . ,

d [28, 29].
It is to be noted that the samples are drawn through
a Gibbs sampler technique [21, 30] with a thinning of 10
(that is, every 10th observation is selected) to get rid of
the autocorrelation present in the synthetic data.
a3 Multivariate normal distribution with the same
mean vector and the correlationmatrix as mentioned in
(a2) [31, 32].
a4 Ud[0, 2] under independent structure.
a5 Ud[− 1, 1] under independent structure [33, 34].

3.1. Competitor Tests. Several goodness-of-ft tests checking
for multivariate uniformity, from Yang and Modarres [35],
are considered as competitors: (i) the test based on normal
quantiles and (ii) a set of tests based on interpoint distances,
as discussed below.

3.1.1. Uniformity Test Based on Normal Quantiles.
Suppose the random vectors, Xi � (Xi1, Xi2, . . . , Xid)′ ∈ Rd

for i � 1, 2, . . . , n, constitute a random sample of size n from

a population of the random vector X characterized by
a continuous multivariate distribution function FX. We
consider the following transformation from X to Z:

Zi � Zi1, Zi2, . . . , Zid( 􏼁
′

� Φ− 1
Xi1( 􏼁,Φ− 1

Xi2( 􏼁, . . . .,Φ− 1
Xid( 􏼁􏼐 􏼑
′
,

(12)

where Φ(·) is the cumulative distribution function of
a standard normal distribution. Te test statistics under
study is given by

χ2 � nZ′Z, (13)

where Z � (1/n􏽐
n
i�1Zi1, 1/n􏽐

n
i�1Zi2, . . . .., 1/n􏽐

n
i�1Zid)′.

Under the null setup:

FX ∼ Ud[0, 1], andZi ∼ Nd  , Id􏼂 􏼃 for i � 1, 2, . . . , n,

(14)

where Id is the identity matrix of order d and Nd[ , Id]

denotes a d-variate normal distribution with the null vector
as the mean and the dispersion matrix Id. It implies
Z ∼ Nd[ , Id/n] and χ2 ∼ χ2d (a central chi-square distri-
bution with degrees of freedom � d). Ten, testing

the null: FX ∼ Ud[0, 1] vs the alternative: FX ≁Ud[0, 1],

(15)

is equivalent to testing

the null: Z ∼ Nd  , Id􏼂 􏼃 vs the alternative: Z≁Nd  , Id􏼂 􏼃.

(16)

Te null hypothesis is rejected at α% level of signifcance
if the calculated χ2 > χ2d,α ∋ P(χ2 > χ2d,α) � α holds under
the null.

3.1.2. Uniformity Test Based on Interpoint Distances. For
a given sample X1,X2, . . . .,Xn of nreal-valued vectors on X,
we use a test based on the frst twomoments of the interpoint
distances [36, 37]. Te moments and the distribution of the
interpoint distances between the multivariate Bernoulli
random vectors are investigated by Modaeres in [38],
whereas the asymptotic properties of the small interpoint
distances in a sample are introduced by Jammalamadaka and
Janson [39]. Te test, discussed in this section, uses the
asymptotic distribution of the sample mean and the sample
variance of all interpoint distances.

Te sample mean (m1) and the sample variance (m2) of
the interpoint distances are respectively expressed as follows:

m1 �
1
n

2
􏼠 􏼡

􏽘

n

i<j
Xi − Xj

�����

�����
2
and m2 �

1
n

2
􏼠 􏼡

􏽘

n

i<j
Xi − Xj

�����

����� −
d

6
􏼠 􏼡

2

,
(17)
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where their corresponding expectations are as follows:

E m1( 􏼁 �
d

6
andE m2( 􏼁 �

7d

180
. (18)

Under the null X ∼ Ud[0, 1], the respective variances
would be described by Yang and Modarres [35]:

V m1( 􏼁 �
d(2n + 3)

90n(n − 1)
and (19)

V m2( 􏼁 �

1
n

2􏼠 􏼡

1
56700

989 + 202(n − 2){ }􏼔 􏼕, if d � 2,

1
n

2􏼠 􏼡

1
1050

37 + 6(n − 2){ }􏼔 􏼕, if d � 3,

1
n

2􏼠 􏼡

49d
2

16200
+

101d

37800
+ 2(n − 2)

d
2

16200
+

29d

37800
􏼨 􏼩􏼢 􏼣, if d≥ 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Te central limit theorem for U-process says that under
the null, the followings hold (Arcones and Giné [40]):

Q1 �
m1 − (d/6)

������
V m1( 􏼁

􏽱 ,

Q2 �
m2 − (7d/180)

������
V m2( 􏼁

􏽱 ∼ N(0, 1) as n⟶∞,

(21)

⟹Q
2
1, Q

2
2 ∼ χ21 as n⟶∞, (22)

⟹Q3 � Q
2
1 + Q

2
2 ∼ χ22 as n⟶∞, (23)

as the frst two order moments are independent of each other
[41, 42]. Any of the statistics Q2

1, Q2
2, or Q3 (see equations

(22) and (23)) may be regarded as our test statistics. Te null
hypothesis is rejected in favor of the two-sided alternative for
large values of the statistic, which is done at α% level of
signifcance if the calculated value of the test statistics is
larger than its upper α point under the null.

3.2. Results. In the simulation study, we choose α � 0.05.
Tables 1–3 show the estimated sizes, for samples from the
null distributions under (a), (b1) and (b2), are all coming out
close to the nominal level of signifcance, with both the
proposed tests (t2) and (t2), for all considered values of n

and d.
To address ties in (t2), the averaging technique has been

used. Te averaging technique is a tie-breaking method,
which involves assigning distinct values to tied observations
by taking the average of the tied values. Moreover, as our
simulated data set is from Ud(0, 1)d setup, it contains an

insignifcant number of ties for each of the marginal
Ud(0, 1). Hence, the original data set with ties and the
modifed data set where ties are resolved using tie-breaking
techniques are almost alike. By averaging the tied obser-
vations, we ensure that each tied value is distinct, allowing
(t2) to provide more accurate results and better estimate of
the distribution function.

As competitors, we consider the four tests discussed in
Section 3.1. Tey are referred to as their respective test
statistics: χ2, Q2

1, Q2
2, and Q3, where we frst investigate their

empirical sizes under all the conditions as considered for our
proposed tests. Tables for competitor tests show that, among
all the competitors, only the χ2 test for (a) independent
Ud(0, 1) samples attains its nominal α, whereas it also fails
under the more sophisticated multivariate structures such as
(b1) and (b2). However, it can be deemed as a rival to
compare the performance of our proposed tests.

Just like Tables 1–3, we have also computed the size
values of the test (t2), competitor tests χ2, and competitor
tests based on the statistics Q2

1, Q2
2, and Q3.

Both the frst and second proposed tests (t1) and (t2), for
the samples from a non-null distribution (a2), exhibit an
increasing power computed with the increase in n and/or d.
A maximum of powers for (t1) comes out to be 0.542114
with n � 1000 and d � 50 (Table 4), whereas (t2) has its
highest power calculated as 0.586738 which is attained for
n � 1000 and d � 50 (Table 5). For every choice of n, the
powers of the tests are optimally good with a value 1 for
samples from each of the non-null distributions (a1, a3–a5)
under consideration.

Te power estimated for the frst competitor test χ2
comes out to be very low under the non-null distribution
(a2). However, it gradually increases with an increase in n as
well as d (Table 6), with a largest value 0.2285. Te empirical
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power takes a value 1 ∀n, d under the distribution (a1).Tus,
we comment that, in this situation, our proposed technique
with both the tests is competitive with this competitor. Here,
the test statistic involved in the rival is based on Φ− 1(z) for
z ∈ [0, 1]; therefore, among all non-null distributions
(a1–a5), only the Dirichlet distribution (a2) and the trun-
cated multivariate normal distribution (3) are considered,
for power calculation of test χ2, as those sample values lie
in [0, 1]d.

For the later set of competitors based on the measures
Q2

1, Q2
2, and Q3, under the non-null distributions (a1) and

(a2), the empirical power is increasing in n and d and reaches

1 for most values of the pair (n, d) (see, Tables 7–10). For the
samples from (a3–a5), the powers all attain 1. In spite of this
optimal power execution, the use of these tests in identifying
“completeness in space” is highly questionable due to the
drastic failure in satisfying the size condition, even for the
multivariate uniform distribution under independence.

4. Application

We apply our proposed technique to the observed data set in
space obtained from NEWFIRM Medium Band Survey
(NMBS). Data set from the NMBS catalog consists of two

Table 1: Size computed with the test (t1) for (a) independent Ud[0, 1].

n
d

5 10 15 20 25 30 35 40 45 50
100 0.04476 0.04568 0.045147 0.045385 0.045576 0.045577 0.04546 0.045563 0.045482 0.04553
150 0.04714 0.04587 0.046027 0.046145 0.045932 0.045893 0.045883 0.04597 0.045978 0.046068
200 0.04788 0.04728 0.04744 0.047095 0.04696 0.046913 0.046903 0.04683 0.046716 0.046638
250 0.0467 0.04715 0.046013 0.046265 0.046556 0.046613 0.04656 0.046395 0.04646 0.04663
300 0.04632 0.0463 0.046327 0.046095 0.046168 0.046303 0.046303 0.046563 0.046593 0.046528
350 0.0464 0.04698 0.046713 0.04663 0.046784 0.0467 0.046823 0.046855 0.046822 0.046826
400 0.0474 0.04748 0.047033 0.047285 0.046984 0.047137 0.047 0.047045 0.046996 0.047054
450 0.04892 0.04776 0.047247 0.04692 0.046948 0.047123 0.04706 0.04709 0.047158 0.047164
500 0.04818 0.04804 0.048407 0.04798 0.048 0.04788 0.047811 0.047883 0.048058 0.048078
550 0.04858 0.04704 0.04738 0.04753 0.047352 0.047337 0.04756 0.047825 0.04788 0.04787
600 0.04852 0.04723 0.046887 0.047605 0.047224 0.047247 0.047209 0.047403 0.047496 0.047476
650 0.04826 0.04823 0.047587 0.047695 0.047664 0.047677 0.047823 0.047873 0.047858 0.047778
700 0.04796 0.04829 0.048053 0.04808 0.048052 0.047867 0.047886 0.047968 0.047898 0.04788
750 0.04756 0.0481 0.04788 0.04794 0.047804 0.047983 0.047894 0.047818 0.047673 0.047766
800 0.04784 0.0479 0.048 0.047755 0.047892 0.047893 0.047777 0.047743 0.047724 0.04761
850 0.04776 0.04752 0.04752 0.047635 0.047708 0.048067 0.048094 0.048015 0.048064 0.047994
900 0.04762 0.04759 0.047953 0.047725 0.04792 0.04811 0.047897 0.048135 0.04802 0.047934
950 0.0486 0.04802 0.048753 0.04883 0.048656 0.048593 0.048554 0.048598 0.048516 0.048478
1000 0.04814 0.04818 0.048327 0.04859 0.048816 0.048657 0.048537 0.04835 0.048224 0.04802

Table 2: Size computed with the test (t1) for (b1) dependent Ud[0, 1].

n
d

5 10 15 20 25 30 35 40 45 50
100 0.04642 0.04398 0.04432 0.044025 0.044548 0.044683 0.044754 0.043635 0.044711 0.044448
150 0.04834 0.04571 0.047713 0.046325 0.045624 0.04587 0.047157 0.04685 0.047051 0.04562
200 0.04718 0.046 0.04684 0.046055 0.045404 0.046487 0.046197 0.04694 0.045722 0.046548
250 0.04684 0.04657 0.045787 0.045895 0.045884 0.045353 0.047289 0.046028 0.045836 0.046752
300 0.04712 0.04635 0.04592 0.04672 0.045996 0.045867 0.047111 0.046793 0.046869 0.04623
350 0.04594 0.04706 0.048153 0.04742 0.049148 0.04718 0.047723 0.047748 0.046487 0.047896
400 0.04798 0.04601 0.047893 0.047045 0.04834 0.046547 0.04804 0.046998 0.046582 0.047054
450 0.04966 0.04838 0.04804 0.04747 0.046208 0.04798 0.047246 0.04695 0.047924 0.04724
500 0.04862 0.04638 0.04816 0.047765 0.04816 0.047253 0.047346 0.047208 0.048238 0.048348
550 0.0485 0.04834 0.047727 0.0484 0.046908 0.04776 0.047723 0.048365 0.047713 0.048418
600 0.04736 0.0484 0.046653 0.046105 0.047184 0.047773 0.04634 0.046143 0.048751 0.047692
650 0.04816 0.0487 0.04798 0.04716 0.049032 0.048283 0.048503 0.047708 0.047502 0.047254
700 0.04866 0.04808 0.04746 0.048675 0.046612 0.047553 0.04916 0.048445 0.046327 0.047046
750 0.04756 0.04763 0.04758 0.04776 0.048612 0.04886 0.048117 0.049095 0.046978 0.048064
800 0.04886 0.04786 0.047487 0.048035 0.04752 0.047707 0.048743 0.048758 0.046916 0.047998
850 0.04776 0.0478 0.04838 0.047455 0.047004 0.04901 0.049209 0.047393 0.048542 0.046976
900 0.04732 0.04721 0.04874 0.04841 0.047944 0.049267 0.047766 0.04765 0.049489 0.04741
950 0.04688 0.04814 0.049513 0.04876 0.0484 0.04968 0.047291 0.049613 0.049542 0.048952
1000 0.0477 0.04829 0.04746 0.04806 0.05 0.049123 0.048729 0.048663 0.04708 0.048332
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versions for the photometric samples as the original SEx-
tractor output and a catalog with additional deblending. We
consider the frst version that contains the photometric
redshifts and rest-frame colors from EAZY, and the stellar
population synthesis (SPS) variables from FAST using the
Bruzual and Charlot [43] models. Here, we study the early
type galaxies (ETGs) [44] from the AEGIS 1 catalog, whose
redshift ranges from 0.5 to 4. As our interest is to study the
intrinsic properties of the galaxies, we consider the following
parameters (variables) that remain invariant with the change
in distance: (i) Kellip is the K-band ellipticity, (ii) KR50 is the

K-band half-light radius, (iii) z is the redshift of the galaxies,
(iv) lage is the log (age/year), (v) lmass is the log (mass/M⊙),
and (vi) lssfr is the log (specifc star formation rate × year).

Our data set consists of the abovementioned variables on
6,661 ETGs. We apply our technique, in terms of the pro-
posed two tests, to investigate whether the data set is
“complete in space.” Here, for ‘x’ as an observed variable, we
consider the following transformation “y” as follows:

y �
log(|x|) − log |x|min( 􏼁

log |x|max( 􏼁 − log |x|min( 􏼁
, (24)

Table 3: Size computed with the test (t1) for (b2) dependent Ud[0, 1].

n
d

5 10 15 20 25 30 35 40 45 50
100 0.04482 0.04488 0.04526 0.044785 0.045064 0.044063 0.044466 0.045533 0.045369 0.044342
150 0.04644 0.04595 0.045153 0.046565 0.044804 0.046363 0.045477 0.04545 0.045731 0.045248
200 0.04536 0.04559 0.046087 0.045125 0.047116 0.046203 0.045634 0.046443 0.046829 0.046406
250 0.04574 0.04647 0.046147 0.04666 0.046544 0.04705 0.046746 0.046873 0.046429 0.046656
300 0.04564 0.04658 0.047673 0.0483 0.047328 0.047113 0.046423 0.046583 0.046547 0.047424
350 0.04746 0.04664 0.047193 0.04823 0.04708 0.047227 0.046654 0.046745 0.047051 0.047642
400 0.04804 0.04743 0.046933 0.04654 0.0472 0.047663 0.047466 0.046628 0.047238 0.047142
450 0.04826 0.04727 0.04706 0.04807 0.04758 0.04791 0.046794 0.046745 0.047556 0.046676
500 0.04636 0.04769 0.048173 0.04759 0.04798 0.047843 0.047134 0.047108 0.047944 0.0472
550 0.04698 0.0469 0.047033 0.04746 0.04798 0.047573 0.047474 0.04816 0.04816 0.0471
600 0.0478 0.04661 0.047153 0.04782 0.048496 0.04844 0.047897 0.04801 0.047404 0.047924
650 0.0478 0.04765 0.04714 0.048255 0.04698 0.046607 0.048374 0.04804 0.047489 0.047934
700 0.0469 0.04863 0.04838 0.04807 0.04688 0.04736 0.04832 0.048365 0.047949 0.04772
750 0.0489 0.04981 0.048447 0.047125 0.048088 0.04792 0.047906 0.04807 0.047907 0.047648
800 0.04812 0.04774 0.048173 0.04861 0.048056 0.048317 0.047751 0.047795 0.048313 0.048362
850 0.04812 0.0476 0.04714 0.048245 0.047696 0.047473 0.047606 0.04802 0.047887 0.04789
900 0.04924 0.04847 0.048613 0.04756 0.047636 0.0471 0.048357 0.048623 0.048202 0.047826
950 0.0482 0.04921 0.048593 0.04726 0.047392 0.048187 0.048569 0.04869 0.048273 0.047908
1000 0.05 0.04907 0.04754 0.04724 0.0483 0.04824 0.04848 0.047168 0.047164 0.048144

Table 4: Power estimated with the frst proposed test (t1) for (a1) multivariate truncated normal sample.

n
d

5 10 15 20 25 30 35 40 45 50
100 0.07478 0.162 0.18902 0.21238 0.233184 0.246853 0.256389 0.263498 0.268558 0.274604
150 0.1026 0.20196 0.242847 0.269775 0.288792 0.298597 0.305523 0.312215 0.31536 0.31962
200 0.13706 0.23465 0.284347 0.309 0.32422 0.332747 0.338497 0.34391 0.347029 0.34996
250 0.17176 0.26479 0.316347 0.338605 0.351276 0.358063 0.364303 0.367873 0.371764 0.374508
300 0.2027 0.29381 0.340387 0.36097 0.372216 0.379727 0.384577 0.388495 0.390798 0.394482
350 0.22804 0.31744 0.361527 0.379335 0.390308 0.397063 0.402117 0.40634 0.409131 0.412306
400 0.25244 0.33986 0.378747 0.39601 0.405784 0.41297 0.416834 0.422085 0.424927 0.42763
450 0.2712 0.35754 0.3955 0.410765 0.420452 0.42645 0.432037 0.435383 0.438587 0.44146
500 0.28732 0.37477 0.409047 0.42406 0.432736 0.43908 0.444149 0.448043 0.451011 0.454104
550 0.3016 0.38936 0.420853 0.435605 0.444908 0.451113 0.455557 0.459428 0.462836 0.465366
600 0.31362 0.40175 0.43216 0.44653 0.455652 0.462357 0.465709 0.47019 0.473744 0.476916
650 0.3267 0.41432 0.442807 0.456925 0.465796 0.47208 0.476157 0.479868 0.483411 0.485982
700 0.33468 0.42642 0.45248 0.46601 0.47554 0.48069 0.485497 0.489483 0.492962 0.495248
750 0.34502 0.43565 0.462727 0.47478 0.484152 0.490083 0.494371 0.49859 0.501191 0.504396
800 0.35666 0.44593 0.470493 0.48322 0.492392 0.49834 0.50218 0.506488 0.510542 0.512518
850 0.36584 0.4561 0.47894 0.491695 0.500476 0.506613 0.510571 0.514313 0.517993 0.520508
900 0.37444 0.46257 0.48522 0.499045 0.508176 0.51426 0.518591 0.522615 0.52564 0.528576
950 0.3843 0.47354 0.49362 0.5067 0.515516 0.520923 0.526234 0.529033 0.53254 0.535292
1000 0.39536 0.48021 0.500273 0.513705 0.522092 0.528797 0.53306 0.536483 0.540473 0.542114
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where |x| is the absolute value of x, log(·) is the natural
logarithmic function with base e, |x|max is the maximum
value of |x|, and |x|min is the minimum value of |x|. Tis
transformation is done on each of the 6 original variables in
such a way that the ranges, under the null hypothesis, remain
the same in the transformed space.

We now implement our tests in terms of the p value (see,
(9)), where we obtain 􏽢pα (see Section 2.3) through the
nonparametric bootstrap technique (Modak and Bandyo-
padhyay (2018)) as follows:

(i) For each of the multiple tests, we perform boot-
strapping individually

(ia) B � 10, 000 bootstrap samples are drawn from the
given data set and used to compute B number of
bootstrap p values for the j-th marginal test as pj,b for
b � 1, 2, . . . , B

(ib) Estimate the upper α point 􏽢pj,α for pj using the
sampling distribution of the computed bootstrap p

values from step (ia) as

number of pj,bs∀b � 1(1)B≤ 􏽢pj,α􏽮 􏽯

B
� α. (25)

(ii) Redo steps (ia)-(ib) for j � 1, 2 . . . , d

Table 5: Power estimated with the second proposed test (t2) for (a1) multivariate truncated normal sample.

n
d

5 10 15 20 25 30 35 40 45 50
100 0.08706 0.18502 0.226047 0.252485 0.271076 0.282643 0.291117 0.296515 0.300667 0.304674
150 0.13546 0.23222 0.285373 0.309035 0.323816 0.331347 0.338 0.342938 0.34548 0.349036
200 0.18192 0.2784 0.325107 0.34561 0.358504 0.365677 0.37036 0.374968 0.377864 0.380338
250 0.22294 0.31424 0.35638 0.3745 0.385236 0.390967 0.39684 0.400335 0.403776 0.406614
300 0.25302 0.3428 0.380947 0.396105 0.406404 0.413237 0.417974 0.42171 0.424169 0.427572
350 0.27758 0.36682 0.401273 0.414785 0.426112 0.432093 0.436494 0.44055 0.443536 0.446374
400 0.29494 0.38808 0.418153 0.432625 0.442024 0.448197 0.453223 0.456693 0.459744 0.46292
450 0.31186 0.40588 0.433913 0.447665 0.45702 0.462753 0.468123 0.471495 0.47482 0.477348
500 0.32654 0.4217 0.447933 0.46099 0.470884 0.47675 0.481574 0.484995 0.488813 0.491202
550 0.34116 0.43654 0.460153 0.473895 0.483248 0.489407 0.493343 0.49755 0.50118 0.503004
600 0.35716 0.449 0.472707 0.485105 0.49486 0.500793 0.505191 0.509313 0.512644 0.515478
650 0.3721 0.46175 0.483113 0.496515 0.5059 0.512023 0.516177 0.5202 0.523047 0.525594
700 0.38478 0.47148 0.493733 0.50638 0.515872 0.522043 0.526271 0.53045 0.533 0.53509
750 0.39934 0.48141 0.503773 0.516015 0.524692 0.53087 0.535954 0.539903 0.542709 0.54521
800 0.41464 0.49258 0.512833 0.525215 0.533808 0.54015 0.545054 0.54851 0.552324 0.554448
850 0.42922 0.50198 0.521573 0.534 0.543068 0.5493 0.553251 0.557185 0.561124 0.562808
900 0.44046 0.50967 0.52952 0.54209 0.550968 0.5568 0.561949 0.56581 0.568938 0.571622
950 0.4541 0.51873 0.536893 0.549885 0.558672 0.565363 0.569234 0.572825 0.576489 0.5789
1000 0.46576 0.52686 0.54374 0.557295 0.565496 0.572923 0.577389 0.58106 0.584838 0.586738

Table 6: Power estimated with the competitor test χ2 for (a1) multivariate truncated normal sample.

n
d

5 10 15 20 25 30 35 40 45 50
100 0.03 0.0198 0.0169 0.0265 0.0404 0.0753 0.1102 0.1467 0.1875 0.2277
150 0.0289 0.0193 0.017 0.0225 0.0421 0.0702 0.103 0.1434 0.1879 0.23
200 0.0296 0.0181 0.0168 0.0251 0.0401 0.0718 0.1024 0.143 0.1866 0.2212
250 0.0285 0.0187 0.0195 0.0211 0.0426 0.0777 0.102 0.1476 0.184 0.2149
300 0.0265 0.0198 0.0177 0.0259 0.0455 0.0711 0.1054 0.1489 0.1831 0.2263
350 0.0294 0.0195 0.0191 0.0263 0.0475 0.0707 0.1089 0.1475 0.1811 0.2228
400 0.029 0.0195 0.0168 0.0281 0.0422 0.0712 0.1063 0.1435 0.1832 0.221
450 0.0288 0.0172 0.0172 0.0248 0.0429 0.0678 0.1082 0.1444 0.1891 0.2268
500 0.0291 0.018 0.0157 0.0238 0.0432 0.0685 0.1018 0.1415 0.1888 0.2225
550 0.029 0.019 0.0165 0.0252 0.0424 0.0693 0.1086 0.1517 0.1824 0.2237
600 0.0293 0.0184 0.0163 0.0276 0.0463 0.0721 0.1077 0.1453 0.18 0.2227
650 0.0264 0.0198 0.0168 0.0229 0.0437 0.0693 0.1082 0.147 0.1806 0.2174
700 0.0264 0.0185 0.019 0.0244 0.0428 0.0706 0.1065 0.1446 0.1853 0.2257
750 0.03 0.0184 0.0182 0.0237 0.0441 0.073 0.1038 0.1399 0.1885 0.2285
800 0.0308 0.0197 0.0167 0.0236 0.0416 0.0689 0.1045 0.1411 0.1896 0.2274
850 0.029 0.0165 0.0184 0.0278 0.0427 0.0664 0.1054 0.1425 0.1833 0.2277
900 0.0294 0.0176 0.0184 0.0222 0.0419 0.0735 0.1064 0.1474 0.1865 0.2192
950 0.0286 0.0186 0.0173 0.027 0.0444 0.0708 0.1065 0.1407 0.1814 0.2281
1000 0.0276 0.0197 0.0168 0.0252 0.0459 0.0714 0.1053 0.1444 0.179 0.2217
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(iii) For a given data set, the null hypothesis of mul-
tivariate uniformity is rejected at α% level of signif-
cance if p � 􏽐

d
j�1pj < 􏽢pα � 􏽐

d
j�1􏽢pj,α

Based on our procedure, the tests (t1) and (t2) both
produce a p value zero with the cutof values 2.608102 ×

10− 7 and 2.571811 × 10− 7, respectively. Terefore, in the
light of the sample given, we reject the null hypothesis at
α � 5% level of signifcance and conclude that the sample
does not come from a Ud(0, 1) distribution and hence is not
“complete in space.” Moreover, the data set under consid-
eration does not have any ties present in the marginal; hence,
no tie-breaking (such as, averaging technique 3.2) technique
is required to eradicate the ties from the data set before the
application of (t2) in the marginal.

Here, we cross-check our results by the popular and very
classical of its kind V/Vmax test [1] from astronomy fra-
ternity. It calls a univariate data set “complete in space,” if

<V/Vmax> � 0.5, where 〈·〉 denotes the mean of the study
variable V with its maximum Vmax. However, it is not
a statistical test for an appropriate hypothesis rather pro-
vides only a point estimate. Moreover, for multivariate data,
only the marginal means are determined independently by
this procedure. Anyway, the computed values for 〈V/Vmax〉

corresponding to the 6 study variables are 0.6136369,
0.3906980, 0.4305935, 0.4915570, 0.5898555, and 0.1268829,
respectively. It shows the mean values for only 1 amongst 6
marginals are close to 0.5, whereas for the others they are less
than 0.5 and for 2 variables it is greater. Terefore, the
outcome of rejecting the null distribution resulted in our
method is supported by the well-knownV/Vmax test.

5. Conclusion

Tis paper checks the completeness for the multivariate
astronomical samples, implementing our novel approach.
Te advised procedure, using two tests (t1) and (t2), has been
shown to perform well with the help of multiple tests of
hypotheses and then combining the results of the dependent
marginal tests. A few characteristics of our technique are
listed below.

(1) If an astronomical data set is from a continuous
multivariate uniform setup, then it is said to be

Table 7: Power computed with the competitor test Q2
2 for (a2)

multivariate truncated normal sample.

n
d

5 10 15 20 25 30 35 40 45 50
100 0.0212 0.0137 0.6514 0.9962 1 1 1 1 1 1
150 0.056 0.0179 0.8607 1 1 1 1 1 1 1
200 0.0936 0.0227 0.9537 1 1 1 1 1 1 1
250 0.1424 0.029 0.987 1 1 1 1 1 1 1
300 0.1992 0.0309 0.9967 1 1 1 1 1 1 1
350 0.253 0.0357 0.9993 1 1 1 1 1 1 1
400 0.3122 0.0465 0.9996 1 1 1 1 1 1 1
450 0.3668 0.0553 1 1 1 1 1 1 1 1
500 0.4244 0.0611 1 1 1 1 1 1 1 1
550 0.4812 0.0715 1 1 1 1 1 1 1 1
600 0.5285 0.08 1 1 1 1 1 1 1 1
650 0.5816 0.0886 1 1 1 1 1 1 1 1
700 0.6229 0.0991 1 1 1 1 1 1 1 1
750 0.6631 0.107 1 1 1 1 1 1 1 1
800 0.7031 0.1202 1 1 1 1 1 1 1 1
850 0.7397 0.1351 1 1 1 1 1 1 1 1
900 0.7634 0.1418 1 1 1 1 1 1 1 1
950 0.7978 0.1564 1 1 1 1 1 1 1 1
1000 0.8245 0.1712 1 1 1 1 1 1 1 1

Table 8: Power computed with the competitor test Q2
1 for (a2)

multivariate truncated normal sample.

n
d

5 10 15 20 25 30 35 40 45 50
100 0.6256 0.9973 1 1 1 1 1 1 1 1
150 0.8145 0.9999 1 1 1 1 1 1 1 1
200 0.9196 1 1 1 1 1 1 1 1 1
250 0.9673 1 1 1 1 1 1 1 1 1
300 0.9876 1 1 1 1 1 1 1 1 1
350 0.9946 1 1 1 1 1 1 1 1 1
400 0.9977 1 1 1 1 1 1 1 1 1
450 0.9994 1 1 1 1 1 1 1 1 1
500 0.9997 1 1 1 1 1 1 1 1 1
550 1 1 1 1 1 1 1 1 1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1000 1 1 1 1 1 1 1 1 1 1

Table 9: Power computed with the competitor test Q2
2 for (a1)

Dirichlet sample.

n
d

5 10 15 20 25 30 35 40 45 50
100 0.6397 1 1 1 1 1 1 1 1 1
150 0.8801 1 1 1 1 1 1 1 1 1
200 0.9723 1 1 1 1 1 1 1 1 1
250 0.9953 1 1 1 1 1 1 1 1 1
300 0.9988 1 1 1 1 1 1 1 1 1
350 0.9999 1 1 1 1 1 1 1 1 1
400 1 1 1 1 1 1 1 1 1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1000 1 1 1 1 1 1 1 1 1 1

Table 10: Power computed with the competitor test Q3 for (a2)
multivariate truncated normal sample.

n
d

5 10 15 20 25 30 35 40 45 50
100 0.5197 0.9935 1 1 1 1 1 1 1 1
150 0.7272 0.9997 1 1 1 1 1 1 1 1
200 0.8642 1 1 1 1 1 1 1 1 1
250 0.9331 1 1 1 1 1 1 1 1 1
300 0.9683 1 1 1 1 1 1 1 1 1
350 0.9851 1 1 1 1 1 1 1 1 1
400 0.994 1 1 1 1 1 1 1 1 1
450 0.9981 1 1 1 1 1 1 1 1 1
500 0.999 1 1 1 1 1 1 1 1 1
550 0.9999 1 1 1 1 1 1 1 1 1
600 1 1 1 1 1 1 1 1 1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1000 1 1 1 1 1 1 1 1 1 1
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“complete in space” and vice versa. Our test is the
frst, to our best knowledge, to check for com-
pleteness of an astronomical sample in the
multivariate setup.

(2) Our approach, although proposed and analyzed for
checking multivariate uniformity, can be used for
any other arbitrary, continuous, multivariate
distribution.

(3) We have used two univariate, nonparametric, one-
sample tests: (t1) Kolmogorov–Smirnov and (t2)
Anderson–Darling, to check for uniformity of the
data set, corresponding to each of the marginals.
However, any other test, appropriate for use on the
multiple tests individually, can be implemented
analogously. All the shortcomings of the (t1) and (t2)
tests have been taken into consideration before their
application.

(4) Te proposed tests’ efciency, supremacy, and wide
applicability for high-dimensional, big data sets are
demonstrated through extensive data study.

(5) Our proposed test is established as an efcient
method in astronomy for the objective under
analysis.

In the near future, we are planning to develop a new test
based on the regression analysis to check for completeness of
astronomical samples.
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[10] M.-D. Jiménez-Gamero, V. Alba-Fernández, J. Muñoz-
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