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In this work, we study the cosmological dynamics of the early universe by employing a small feld potential in the context of
multifeld infation. By investigating analytically the cosmological observables, such as the number of e-folds N, potential slow-roll
parameters ϵV, ηV, and spectral index ns which carry signifcant information, we show that they impact the infationary universe
considerably. Te tensor-to-scalar ratio concerning the curvature perturbation is worked out for the potential under consideration
which is another signifcant observable and comes out to be nonnegative. In multifeld models of infation, both types of curvature
and isocurvature perturbations exist, while, in the present work, during the slow-roll, isocurvature perturbations are suppressed and
therefore can be neglected. Te surviving perturbations which are due to the curvature only can be tackled suitably by a mechanism
developed by Sasaki and Stewart known as Sasaki–Stewart formalism. Te efect of augmenting the number of e-folds on the power
spectrum through the spectral index and its impact on the observable parameters of the slow-roll infationary phase is observed by
carrying out the analysis. It is observed analytically that the spectrum of multifeld infation is efectively diferent than its cor-
responding single-feld infation. Te feld values and their masses afect the results profoundly at the time of horizon-crossing.

1. Introduction

Infation as an exponentially growing phase in the history of
the very early universe was introduced in the framework of
the standard model of cosmology which entails the big bang
origin of the observable universe. It is believed to have
resolved a number of enigmatic issues encountered in the
standard model. It sets the initial conditions for the big bang
origin on one hand and explains the growth of cosmic
structure on the other hand. Tere is a large number of
infationary models proposed with single as well as with
multiple scalar felds. Te infationary models with more
than one light feld are referred to as multifeld models.
Obtaining the infationary era in multifeld models with two
or more felds has comparatively more perspectives, but less

predictive power of observables [1–4]. A notable diference
between single-feld and multifeld models is their sensitivity
to respond to the initial conditions. Multifeld models in-
crease the characterization and features of the adiabatic
spectrum by creating isocurvature or entropy perturbations
that have an impact on anisotropies of the CMB [1, 3, 5–8].
Te generation of density perturbations in some multifeld
models is treated in such a way as if to decouple it from the
dynamics of the infationary era.

At the end of infation in a multifeld scenario, pri-
mordial density perturbations can be created on account of
the inhomogeneous phase of reheating or modulated hybrid
infation if the decaying of dark energy turns to be sensitive
to the local values of multifelds except for the infation
[9–11].Te curvaton infation on the other hand traverses its
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path averse to it [12–14] where, at some point, after infation
a weakly coupled feld produces primordial density per-
turbations during its decay into radiation. Isocurvature
density perturbations are also a relict from the curvaton
scenario but the abundance of it comes out in many distinct
ways in relation to thermal equilibrium abundance at the
time when the curvaton sets to decay [15]. Te realization of
infation can also be availed through multifeld scenarios
comprising the double and hybrid models as well. Te in-
fationary theory [16] resolves the fatness, homogeneity, and
monopole problems in a very natural way and leads to
predict the density perturbations which show approximately
the scale invariance and are compatible with the current
observational data available.

Cosmic infationary models propound that the early
universe underwent an incipient phase of accelerated ex-
pansion driven by the dynamics of single, double, or more
scalar felds [17, 18], while the brief phase of accelerated
expansion to be called infation takes the responsibility of
seeding all structure formation of the universe we observe
today in the form of quantum fuctuations accompanying it
in the very tiny fraction of the frst second. Quantum
fuctuations [19] are considered to intertwine with the ex-
ponential expansion; however, they are supposed to be
frozen in Hubble radius while they horizon-cross it.
Nonetheless, once the infationary phase comes to an end,
they stretch to cosmological scales and grow out to the scale
of the present-day universe we do observe it [20].

Infationary dynamics are backed up by the contribution
of generic entropic perturbations to the adiabatic one. In
single-feld models of infation, adiabatic perturbations are
produced when in the models of multifeld both types of
perturbations are generated, namely, entropic and adiabatic
[21]. Infation has thus transformed into the robust para-
digmatic theory for understanding the properties and
characteristics of our entire observable universe. Nonethe-
less, infation models consisting of a single feld are char-
acterized by a few fne-tuning problems in general,
particularly on the parametric scales. For instance, the
masses of the felds and their couplings with one another, in
addition to the values of the felds , make it imperative to
substantially transform the theories concerning the high-
energy regime more realistic.

On taking a number of felds altogether into consider-
ation, it was observed that they can function and operate in
coordination with one another in order to give rise to a brief
era of infation with the help of the assisted infation
mechanism proposed by Liddle et al. [22], although neither
of these felds has the ability to sustain the infationary era
individually and alone. Te multifeld infationary models
diminish the enigmatic problems faced by single-feld in-
fationary models which can be thought of as a fascinating
feature to substantiate and materialize the infationary
scenario. Te evolution of the universe faces problems when
we use a single tachyonic feld to derive infation because, in
this case, a larger anisotropy is likely to be generated. Piao
studied a model of assisted infation [23] by taking multi-
tachyon felds to derive an infationary period.Te spectrum
of curvature perturbations of multifeld infation with

a small feld potential was studied [24] by Ahmad et al. Tey
put to use the Sasaki–Stewart formalism and reached the
results which were obtained with the assumption that iso-
curvature, i.e., entropy perturbations can, nonetheless, be
neglected. Piao investigated that [25] primordial density
perturbations can be possibly generated by taking into ac-
count the sufcient number of e-folds and by making the use
of the decaying speed of sound in a gradually expanding
phase of the universe. Some interesting and appealing topics
concerning the applications can be studied in [26–31].

Cai et al. investigated the entropy perturbations in in-
fation and computed the entropy corrections to the power
spectrum of curvature perturbations [32] by fnding out
a transfer coefcient analytically. He described a correlation
function between entropic and curvature perturbations for
this purpose.Temechanism of relating the power spectrum
to the slow-roll parameters is described in [33, 34] with
a detailed account presented there. Te governing evolu-
tionary equations in the background for the process of
driving the primordial power spectrum [35] are given by
_H � − _ϕ2/2 and €ϕ � − 3H _ϕ − V,ϕ(ϕ). Tere are appealing
related discussions with regard to the application and
implementation of these ideas [36–42].

Avgoustidis et al. investigated [43] the importance of slow-
roll corrections in multifeld infationary models when the
evolution of cosmological perturbations in the form of
quantum fuctuations takes place. Tey studied the evolution
of curvature and isocurvature perturbations to the next order
in the regime of slow-roll infation. Cosmological observables
are sensitive during the time of reheating phase in multifeld
infationarymodels. A study was carried out byHotinli et al. to
examine [44] the observables during this phase by devising
a method that permits a method, implementing the semi-
analytic remedying of the efect of perturbative reheating on
cosmological perturbations, and using the technique of abrupt
decay approximation. Tey further showed that the rate at
which the scalar felds decay into radiation afects the tensor-
to-scalar ratio “r” and scalar spectral index “ns.” Amethodwas
presented by Frazer [45] for deriving the analytical expression
of the density function of cosmological observables in mul-
tifeld models of infation using semiseparable potentials.
Frazer found that the sharp peak of the density function is very
faintly sensitive to the distribution of initial conditions which
means infationary models of multifeld may possess a density
function for the observables that peaked sharply.

Te dynamics of the exact multifeld scenarios have been
investigated in the classical style in [46] for the case of the
hybrid infationary model. Asadi and Nozari investigated
a multifeld model with two felds to study its reheat phase in
order to have some constraints in the parametric space.Tey
found the number of e-folds and the temperature during this
era of the reheating phase of their model [47]. A class of
multifeld models based on those felds that decay or get
stabilized in a staggered style during infation was explored
by Battefeld and Battefeld [48]. Tey observed that felds
remain fat before marching towards a steep downfall in
assisted infation, and when these felds face such a decrease,
their decay rate is measured dynamically and the transfer of
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energy takes place in the other degrees of freedom. A further
decrease in potential energy caused by the decay of the felds
contributes to the observables such as spectral index and
tensor-to-scalar ratio. Te number of e-folds is bounded for
the acceleratedly expanding universe that emerges out from
the de Sitter epoch asymptotically [49], and the multifeld
model of dark energy is investigated.

In this work, we intend to investigate an infationary
model with multifelds in the context of their number of e-
folds, slow-roll parameters, and spectral indices. Te mul-
tifeld infationary models possess some remarkably in-
teresting signatures which the single-feld models digress
due to taking into consideration a single feld and have more
perspectives for the observational evidence which provides
motivation to study these models theoretically. Te study of
infationary phase driven combinedly by multifelds usually
by axions spaced sparsely is of great interest. Te curvature
perturbations are an infationary relic that seeds the struc-
ture formation specifcally. Te investigations of the spec-
trum of these perturbations in multifeld infation are carried
out enormously. For the case of equal and unequal masses by
considering the suitable initial conditions, these are in-
vestigated [50–53]. When we use the power-law potential for
multifelds, the spectrum for these perturbations comes out
to be redder than it is when a single scalar feld is employed
[54–59]. Spontaneous symmetry breaking naturally gives
rise to the small feld models with multifelds where the felds
usually begin with unstable equilibrium about the origin and
roll down towards a stable minimum. Multifeld infation
could also lead to fguring out a mechanism to understand
the quantum gravity, an interplay between gravity and
quantum feld theory.

Te remaining part of the paper is organized as follows:
In Section 2, we perform calculations to determine the
expressions for the number of e-folds and spectral index,
following the formalism developed by Sasaki and Stewart.
Specifcally, we focus on the case where p > 2. Additionally,
this section includes an explanatory, albeit brief discussion
of the resulting outcomes.In Section 3, we examine the
scenario where p � 2. We observe that assigning a negative
value to p yields nonsensical results for the number of e-folds
and spectral index, while assigning a value of − 2 provides
results that are interpretable. Section 3 also includes
graphical representations of the results and accompanying
remarks that elucidate the relationships among the derived
cosmological observables. Te fnal section, Section 4,
summarizes the overall fndings of the study and their
implications. By considering diferent values of p, we derive
predictions regarding the number of e-folds and spectral
index.

2. Driving Multifield Inflation Based on Small
Field Potential and the Spectrum of
Curvature Perturbation

2.1. Introduction to the Multifeld Potential. While the uni-
verse undergoes an infationary phase, the geometry of
spacetime tends to be fat, so while addressing the multifeld

model of infation we consider cosmic geometry to be fat.
So, after proposing the geometry to be fat, we begin by
considering the following potential for investigation in the
present work:

V � 􏽘
i

Vi ϕi( 􏼁 � 􏽘
i

Λi 1 −
ϕi

μi

􏼠 􏼡

− p

􏼢 􏼣, (1)

where the subscript “i” in the potential in question stands for
the i th feld in addition to the entities related to it. Fur-
thermore, Λi is the mass scale and μi is a parameter which
describes the height and tilt of the potential of the i th feld,
respectively. Te parameters p and μi are free variables to
choose suitably from the underlying conditions. Te po-
tential given in equation (1) is the multifeld version of the
brane infationary potential V(ϕ) � Λ(1 − (ϕ/μ)− p) used in
the brane model of infation. In the brane model, the in-
fation is proposed to engender by the motion of branes in
the extra dimensions. Te efective Lagrangian for such
a system leads to the following expression: L � − 1/2
(ztϕ)2 − 2T3r

4
o/r

4
UV(1 − (T2

3r
4
o/Nϕ4)), where T3 is the ten-

sion of a light brane and r is related to the distance between
the two branes. Other parameters are defned for the system
on the same lines. Te efective Lagrangian for the brane
infation could be worked out to have the form of the po-
tential expressed in equation (1) for the case i � 1 with an
arbitrary value of p [60]. Te case i � 1 related to the po-
tential has already been frequently studied in the literature
(e.g., see reference [60] and the references furnished therein
in the corresponding section). Te potential can be con-
sidered a generalized version of the small feld models of
infation as discussed in [60–66] for the negative values of p.
Various potentials bearing resemblance to such models in
many aspects are also investigated in [67–69].

Infationary cosmology by posing an ultrafast phase of
cosmic expansion in its early evolution solves many prob-
lems, while single-feld infation despite showing extraor-
dinary consistency to the observational data available today
leaves room for considering the multifeld models of in-
fation. Being motivated by Lyth bound, in addition, in
particle physics, multifeld models come to the scene nat-
urally, especially in the realm of high energy physics beyond
the standard models of particle physics such as super-
symmetry (SUSY), supergravity (SUGRA), and string theory
where generally many felds are considered to be present. In
these theories, infation is thought to be driven by the
presence of more than one scalar feld where these felds may
interact similar to particle interactions.Te presence of more
than one feld leads to predictions that could quietly be
revolutionary in comparison to single-fled infation. Te
choice of the potential in equation (1) is motivated by the
presence of multiple scalars in the context of the axions of
string theory where brane infation is thought to be caused
by branes. In the context of superstring theory, by com-
pactifying six dimensions, the model incorporates multiple
scalars such as axion, dilaton, and spin two modes of tensor
perturbations in its low states of energy. Tus, we see that
physically or cosmologically, the choice of the potential in
equation (1) is well justifed and this model has
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a correspondence in elementary particle physics. On plotting
the potential, we see that it demonstrates an increasing
function of the feld, so that the infation feld advances from
the right-hand direction to the left. Te feld would disap-
pear for ϕ � μ or ϕ/μ � 1 and it might, therefore work in the
domain ϕ/μ> 1. Te study of this model hence should be
carried out only in the region lying within the limit ϕ/μ> 1.
In addition, the brane infation conforms to the condition
μ/Mpl≪ 1 and occurs following this condition. In Figure 1,
the plot of the potential is demonstrated, where the potential
and logarithm of the potential are plotted for i � 1 and p � 2.

Te dynamics in the background of a multifeld model of
infation can be realized and understood by describing them
in terms of dimensionless slow-roll parameters ε, η‖, and η⊥,
which is similar to the situation of a single-feld model,
however, the second slow-roll parameter η is required to be
modifed in the scenario due to multifeld infation likely to
be confronted with the eta problem. Te parameter ε is the
frst slow-roll parameter and η‖ and η⊥ give the slow-roll rate
of the felds along the perpendicular direction of the motion
of the felds.Te parameter η⊥ gives the turn rate of the felds
along the perpendicular direction of motion. Te slow roll
would last as long as ε≪ 1 and |η‖|≪ 1, whereas the pa-
rameter η⊥ gives the turn rate of the felds perpendicular to
the motion of the felds. A comparatively larger value of η⊥
may pose as an interesting phenomena to the multifeld
scenario, however, it does not imply that it will necessarily
violate the slow-roll conditions and will destroy it altogether
as is described for multifeld infation. It is also manifested
from the slow-roll parameters defned for the multifeld
infation that Hubble parameter H and the feld derivative
ztϕ would grow gradually.

2.2. Analytical Analysis for the Case Related to p> 2.
Considering the potential used usually for the brane in-
fationary phase concerning p> 2, this potential was found
to be relevant and useful in many situations occurring in the
viable phenomena ensuing from the real world [70–75]. It is
interesting and signifcant to note that when we assign the
value p � 2, then the model under consideration could be
thought to be the degenerate version of the infationary
model in the small feld realm. Te potential we consider
here is with − p. Tis is the profle representing small feld
infation and can be regarded as the lowest order of Taylor
series expansion of an arbitrary potential about the origin of
maxima and minima of it. Te equation of motion of the
scalar feld ϕi while it slow-rolls during the slow-roll phase is

€ϕi + 3H _ϕi + Vi
′ ϕi( 􏼁 � 0, (2)

where during the slow-roll phase, €ϕi ≈ 0 and accordingly
from equation (2), we are left with the following expression
which dominates the phase:

_ϕi � −
Vi
′ ϕi( 􏼁

3H
, (3)

and the number of e-folds N during the phase of the in-
fationary scenario can be calculated by the usual formula as

N � 􏽚
tf

ti

Hdt � − M
− 2
p 􏽘

i

􏽚
ϕe

i

ϕs
i

Vi

Vi
′
dϕi. (4)

Te lower limit ϕs
i in the integral marks the point of time

at the beginning of the infationary phase when the corre-
sponding perturbations cross the horizon and the upper
limit ϕe

i in the integral corresponds to the point in time when
the infationary phase terminates. It is noticeable, however,
that ϕs

i <ϕ
e
i in general and the coming of infation to an end

is consistent with the condition ϕe
i ≤ μi. In addition, the

model of small feld potential under consideration satisfes
the constraint μi ≤MP. For further evaluation of equation
(4), we have the following from equation (1):

􏽘
i

Vi
′ ϕi( 􏼁 � 􏽘

i

Λi

μi

ϕi

μi

􏼠 􏼡

− (p+1)

� p 􏽘
i

Λi

μi

ϕi

μi

􏼠 􏼡

− (p+1)

. (5)

Furthermore, we have

􏽘
i

Vi ϕi( 􏼁

Vi
′ ϕi( 􏼁

�
Vi

Vi
′

� 􏽘
i

Λi 1 − ϕi/μi( 􏼁
− p

􏽨 􏽩

Λi/μip ϕi/μi( 􏼁
− (p+1)

, (6)

which simplifes to

Vi

Vi
′

�
1
p

− ϕi +
ϕi

p+1

μp
i

􏼠 􏼡, (7)

and by substituting equation (7) into (4), we get

N �
1

pM
2
p

􏽘
i

1
μp

i (p + 2)
ϕs

i( 􏼁
p+2

− ϕe
i( 􏼁

p+2
􏼐 􏼑

− 0.5 ϕe
i( 􏼁

2
− ϕs

i( 􏼁
2

􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

For the small feld infation, it turns out that the value of
μi is less than the Planck’s mass Mp, i.e., μi ≤Mp and the
infation comes to an end for ϕe

i ≤ μi. Tis causes the qua-
dratic terms, i.e., (ϕs

i )
2 and (ϕe

i )
2 to disappear due to

ϕs
i ≤ϕ

e
i ≤Mp. Ten, from equation (8), we have

N � 􏽘
i

1
μp

i p(p + 2)

ϕs
i

Mp

􏼠 􏼡

p+2

−
ϕe

i

Mp

􏼠 􏼡

p+2
⎛⎝ ⎞⎠

−
0.5
p

ϕe
i

Mp

􏼠 􏼡

2

−
ϕs

i

Mp

􏼠 􏼡

2
⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

or

N �
1

p(p + 2)μp
i

􏽘
i

ϕs
i

Mp

􏼠 􏼡

p+2

−
ϕe

i

Mp

􏼠 􏼡

p+2
⎛⎝ ⎞⎠, (10)

which is further simplifed to

N �
μ2i

p(p + 2)M
2
pl

􏽘
i

ϕs
i

μi

1 −
ϕs

i

ϕe
i

􏼠 􏼡􏼠 􏼡􏼢 􏼣

p+2

. (11)

If we approximate the expression 1 − (ϕs
i /ϕ

e
i )

p+2 to unity,
then we are left with
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N �
1

p(p + 2)M
2
pl

􏽘
i

μ2i
μi

ϕs
i

􏼠 􏼡

− (p+2)

. (12)

Curvature perturbations, as well as isocurvature per-
turbations both, exist in multifeld infation models; how-
ever, to keep things simpler, it is considered here that during
the slow-roll phase, isocurvature perturbations are sup-
pressed and can be neglected. Te remaining perturbations
which are due to the curvature only can be tackled suitably
by a mechanism developed by Sasaki and Stewart known as
Sasaki–Stewart formalism [7, 8, 17, 76–81]. Tus, we see that
the magnitude of these curvature perturbations at the end of
infation could be worked out on the spatial hypersurfaces of
constant density denoted by ζ as

ζ � R −
H

_ρ
δρ, (13)

where δpna � δp − _p/ _ρδρ. We know that curvature pertur-
bation is a gauge invariant quantity and therefore has an
arbitrary nature and leads to temperature fuctuations in
CMB and spawns the seeds for cosmic structure.

Diferentiating with respect to time and using the energy
conservation equation give

_ζ � −
H

ρ + p
δpna +

k
2

3
δq

a
2
(ρ + p)

+ σg􏼠 􏼡. (14)

It reduces to the following on superhorizon scales
(k≪ aH):

_ζ � −
H

ρ + p
δpna, (15)

which on superhorizon scales vanishes in single-feld in-
fation. Tese perturbations, however, in multiple scalars’
case are measured by means of the power spectrum and its
related parameter bispectrum.

ζk1
, ζk2

􏽄 􏽅 � (2π)
3δ3 k1 + k2( 􏼁Pζ(κ),

ζk1
, ζk2

, ζk3
􏽄 􏽅 � (2π)

3δ3 k1 + k2 + k3( 􏼁Bζ κ1 + κ2 + κ3( 􏼁,
(16)

where κ � |k1| � |k2| � |k3| and the power spectrum is
worked out to bePζ(κ) � 2π2/κ3Pζ(κ) and the spectral index
ns − 1 using this formalism is given as

ns − 1 � 􏽘
i

Vi
′

Vi

􏼠 􏼡

2

+ 2􏽘
i

Vi
′

Vi

􏼠 􏼡

− 2

− 2􏽘
i

1
Vi

Vi/Vi
′( 􏼁
2
V″

Vj/Vi
′􏼐 􏼑

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦M

2
pl, (17)

In equation (12), we replace μi/φs
i by ωi, i.e.,

μi

φs
i

≃ωi, (18)

then equation (12) can be reexpressed in the following form:

N �
1

p(p + 2)M
2
pl

􏽘
i

μ2i ω
− (p+2)
i . (19)

Now, we substitute from equation (19) and get

􏽘
i

μ2i ω
− (p+2)
i � B1, (20)

then equation (19) is written as

N �
1

p(p + 2)M
2
pl

B1. (21)

Te reduced Planck mass can be expressed in terms of
the newly defned constant B1 as

M
2
pl �

B1

p(p + 2)

1
N

. (22)

Now, we calculate all three terms in the Sasaki–Stewart
formalism from equation (1) by squaring both sides as

1 2 3 4 5
ϕ

-2.0

-1.5

-1.0

-0.5

0.5

1.0
V(ϕ)

(a)

V(ϕ)

1 2 3 4 5
ϕ

0.4

0.6

0.8

1.0

(b)

Figure 1: Te plot of the potential for the brane infationary scenario. (a) the potential is plotted in simple scale, whereas on the (b) it is
plotted after taking its logarithm as a function of ϕ/μ for p � 2.
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V
2

� 􏽘
i

Vi φi( 􏼁( 􏼁
2

� 􏽘
i

Λ2i 1 +
φi

μi

􏼠 􏼡

− 2p

− 2
φi

μi

􏼠 􏼡

− p

⎡⎣ ⎤⎦. (23)

Te second and third terms can be neglected as the
constraint φe

i ≤ μi is satisfed for the infation to come to an
end. In addition, the model of small feld potential under
consideration satisfes the condition μi ≤MP and equation
(23) also has to satisfy φs

i ≤φs
i ≤ μi ≤MP which again mo-

tivates to ignore the terms that may result in quadratic form.
Te same will be applicable for μi/φs

i ≃ωi in equation (18) in
conjunction with equations (44) and (49), wherever
applicable.

V
2

� 􏽘
i

Vi φi( 􏼁( 􏼁
2

� 􏽘
i

Λ2i . (24)

Now, let us consider that

􏽘
i

Λi � B2, (25)

then equation (24) takes the following form:

V
2

� 􏽘
i

Vi φi( 􏼁( 􏼁
2

� B
2
2. (26)

Now, from equation (5), by squaring both sides and
employing equation (18), we obtain the following equation:

􏽘
i

Vi
′( 􏼁
2

� p
2

􏽘
i

Λ2i
μ2i

1
ω− 2(p+1)

i

. (27)

Now, let us take the expression

􏽘
i

Λ2i
μ2i

1
ω− 2(p+1)

i

� B3, (28)

then, equation (27) becomes

􏽘
i

Vi
′( 􏼁
2

� p
2
B3. (29)

Now, from equation (6), the simplifcation after squaring
both sides and by using equation (18) gives

􏽘
i

Vi φi( 􏼁

Vi
′ φi( 􏼁

􏼠 􏼡

2

�
1
p
2 􏽘

i

φ2
i + φ2

i

μi

φi

􏼠 􏼡

− 2p

− 2φ2
i

μi

φi

􏼠 􏼡

− p

⎛⎝ ⎞⎠. (30)

By using the defnition from equation (18) in equation
(30), we obtain

􏽘
i

Vi φi( 􏼁

Vi
′ φi( 􏼁

􏼠 􏼡

2

�
φ2

i

p
2 􏽘

i

1 + ω− 2p
i − 2ω− 2p

i􏼐 􏼑, (31)

and by absorbing φ2
i into the defnition of ωi as given in

equation (18), and after simplifcation, we obtain

􏽘
i

Vi φi( 􏼁

Vi
′ φi( 􏼁

􏼠 􏼡

2

�
1

p
2 􏽘

i

ω− 2
i + ω− 2(p+1)

i − 2ω− 4
i􏼐 􏼑μ2i , (32)

Let us now take

􏽘
i

ω− 2
i + ω− 2(p+1)

i − 2ω− 4
i􏼐 􏼑μ2i � B4. (33)

Now, equation (33) takes the following form by using the
above-defned constant:

􏽘
i

Vi φi( 􏼁

Vi
′ φi( 􏼁

􏼠 􏼡

2

�
1

p
2B4. (34)

Ten, equation (5) by diferentiating once again gives

􏽘
i

Vi
″ φi( 􏼁 � − p(p + 1)􏽘

i

Λi

μ2i

φi

μi

􏼠 􏼡

− (p+2)

. (35)

Hence, by using equation (18), we have

􏽘
i

Vi
″ φi( 􏼁 � − p(p + 1) 􏽘

i

Λi

ωi( 􏼁
− (p+2)μ2i

. (36)

By fnding out the product of equations (30) and (35)
and by using equation (18), we get

􏽘
i

Vi φi( 􏼁

Vi
′ φi( 􏼁

􏼠 􏼡

2

Vi
″ φi( 􏼁 � −

p + 1
p

􏽘
i

Λi ωp

i + ω− p

i − 2􏼐 􏼑, (37)

and

􏽘
i

Λi ωp
i + ω− p

i − 2􏼐 􏼑 � B5, (38)

then, equation (37) becomes

􏽘
i

Vi φi( 􏼁

Vi
′ φi( 􏼁

􏼠 􏼡

2

Vi
″ φi( 􏼁 � −

p + 1
p

B5, (39)

with

􏽘
i

Vi φi( 􏼁

Vi
′ φi( 􏼁

􏼠 􏼡

2

� 􏽘
i

Vj φj􏼐 􏼑

Vj
′ φj􏼐 􏼑

⎛⎝ ⎞⎠

2

. (40)

On substituting from equations (22), (24)–(26), (29),
(34), and (39) in equation (17), we determine the following
equation as follows:

ns − 1 �
p
2
B3

B
2
2

− 2
1

B4/p
2

􏼐 􏼑
+ 2

1
B2

− (p + 1/p)B5( 􏼁

B4/p
2

􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦

B1

p(p + 2)

1
N

􏼠 􏼡. (41)
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Equation (41) gives the following expression after sim-
plifying it:

ns − 1 � −
p

p + 2
1
N

B1B3

B
2
2

􏼠 􏼡 − 2
p

p + 2
􏼠 􏼡

1
N

B1

B4
􏼠 􏼡

− 2
p + 1
p + 2

􏼠 􏼡
1
N

B1B5

B2B4
􏼠 􏼡.

(42)

By multiplying and dividing the 1st and 2nd terms in the
abovementioned expression with p + 1 and by simplifying,
we get

ns − 1 � − 2
(p + 1)

p + 2
1
N

1
2

p

p + 2
B1B3

B
2
2

+
p

p + 1
B1

B4
+

B1B5

B2B4
􏼠 􏼡.

(43)

In equation (43), on the right-hand side, the 1st and 2nd
terms inside the parenthesis vanish due to ω− np±n

i ≃ 0, and
the remaining part is represented as

ns − 1 � − 2
(p + 1)

p + 2
1
N

B1B5

B2B4
􏼠 􏼡. (44)

We further write down the abovementioned equation in
a suitable form by adding and subtracting 1 on the right-
hand side within the parenthesis as

ns − 1 � − 2
(p + 1)

p + 2
1
N

B1B5

B2B4
+ 1 − 1􏼠 􏼡, (45)

or

ns − 1 � − 2
(p + 1)

p + 2
1
N

1 +
B1B5 − B2B4

B2B4
􏼠 􏼡. (46)

Let us replace the given equation as

B1B5 − B2B4

B2B4
� R ωi( 􏼁, (47)

then equation (46) has the following form:

ns − 1 � − 2
(p + 1)

p + 2
1
N

1 + R ωi( 􏼁( 􏼁. (48)

For R(ωi)≃ 0, equation (48) serves to calculate the
spectral index for a single scalar feld. However, the term
R(ωi) adds in for the case when we are considering mul-
tifelds. Terefore, it is important to determine this factor.
We will use the defnitions of involved constants to fnd out
the approximate value of the R(ωi) for larger values of p

than 2. From equations (20), (25), (28), (33), and (38) by
substituting for the constants B1, B2, B4, B5 in equation (47)
to determine R(ωi) we get

R ωi( 􏼁 � 􏽘
i

2 ωp
i − ω2

i􏼐 􏼑ωp
i

ω2(p+1)

i − 2ω2p

i + ω2
i

. (49)

From equation (36), we have the expression for ωp
i and

by considering 􏽐iVi
″(φi) � Vi

″(φi) � m2
i , we have

ωp

i � −
1

p(p + 1)

μ2i m
2
i

Λiω
2
i

, (50)

Ten, by using the value of ωp

i in equation (49), we get

R ωi( 􏼁 � 􏽘
i

2 μ2i m
2
i + ω4

iΛip(p + 1)􏼐 􏼑

μ2i m
2
i ω2

i − 1􏼐 􏼑 − ω4
iΛip(p + 1)

. (51)

Te expression of R(ωi) found in equation (51) is due to
the consideration of multifelds instead of a single feld.
Equation (48) now takes the following form:

ns − 1 � − 2
(p + 1)

p + 2
1
N

1 + 􏽘
i

2 μ2i m
2
i + ω4

iΛip(p + 1)􏼐 􏼑

μ2i m
2
i ω2

i − 1􏼐 􏼑 − ω4
iΛip(p + 1)

⎛⎝ ⎞⎠, (52)

and with R(ωi)≃ 0, equation (48) comes out to be

ns − 1 � − 2
(p + 1)

p + 2
1
N

. (53)

Te expression in equation (52) represents the spectral
index corresponding to multifelds, while equation (53)
demonstrates the value of the spectral index conforming to
the case when a single scalar feld is taken into account. In
this case, the masses of all the felds considered are of the
same value at the time of horizon-crossing. Tis poses the
case when the spectral index of the multifeld is the same and
corresponds to the spectral index of the single scalar feld
[50]. It is also clear that the term R(ωi) appears due to the
consideration of multifelds. It can also be observed in this
regard that the value of R(ωi) will be positive for ωi <ωi+1
and m2

i <m2
i+1. However, it will turn into a negative for

ωi <ωi+1 and m2
i >m2

i+1. Te positive value of R(ωi) is
interpreted to be its spectrum which is redder for multifelds
as compared to its corresponding spectrum emerging from
a single feld. While the nagative value attached to that
implies the corresponding spectrum would be less redder
comparatively. However, a stringent condition begs further
work to develop.

2.3. Analytical Analysis for the Case Related to p � − 2, +2.
Now, we will discuss some specifc cases for the values of p.
We will investigate for p � 2, − 2 and will observe what efect
it bores upon the expressions of number of e-folds and
spectral indices.

Let us frst take the case when p � 2. From equations (1),
(5), and (31), we have
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􏽘
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Vi ϕi( 􏼁 � 􏽘
i

Λi 1 −
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− 2
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􏽘
i

Vi
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i
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ϕi
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􏼠 􏼡

− 3

,

􏽘
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″ ϕi( 􏼁 � − 6􏽘

i

Λi

μ2i

ϕi

μi

􏼠 􏼡

− 4

.

(54)

From equation (12), for the number of e-folds with
p � 2, we get

N �
1

8M
2
pl

􏽘
i

μ2i
μi

φs
i

􏼠 􏼡

− 4

. (55)

Equation (55) leads to the absurd result which is

N �
1

8μ2i M
2
pl

􏽘
i

φe
i

Mpl

􏼠 􏼡

2

+
φs

i

Mpl

􏼠 􏼡

2
⎡⎣ ⎤⎦⟶ 0. (56)

Similarly, the spectral index ns − 1 from equation (52) for
p � 2 can be calculated as

ns − 1 � −
3
2
1
N

1 + 􏽘
i

2 μ2i m
2
i + 6ω4

iΛi􏼐 􏼑

μ2i m
2
i ω2

i − 1􏼐 􏼑 − 6ω4
iΛi

⎛⎝ ⎞⎠. (57)

For N≃ 0, as we have an absurd result from the
abovementioned equation, equation (57) leads to the value
of the spectral index ns − 1 approaching to∞ which is again
meaningless seemingly. For p � − 2, equation (1) takes the
following form:

􏽘
i

Vi φi( 􏼁 � 􏽘
i

Λi 1 −
φi

μi

􏼠 􏼡

2
⎡⎣ ⎤⎦. (58)

Equations (5) and (35) are reduced to the following
expressions:

􏽘
i

Vi
′ ϕi( 􏼁 � Vi
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i
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μ2i
ϕi,

􏽘
i
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″ ϕi( 􏼁 � − 2􏽘
i

Λi

μ2i
,

(59)

and the expression for the number of e-folds N is given by

N � −
1

2M
2
pl

􏽘
i

ln
φs

i

φe
i

􏼠 􏼡μ2i . (60)

Finding the values of the following from equation (58)
results in:

􏽘
i

Vi
′( 􏼁

2
� 4􏽘

i

Λ2i
ω2

i μ
2
i

, (61)

􏽘
i

Vi

Vi
′

􏼠 􏼡

2

�
1
4

􏽘
i

ω2
i μ

2
i . (62)

Similarly, we get

􏽘
j

Vj

Vj
′

⎛⎝ ⎞⎠

2

�
1
4

􏽘
j

ω2
jμ

2
j , (63)

and fnally, we have

􏽘
i

Vi

Vi
′

􏼠 􏼡

2

Vi
″ � −

1
2

􏽘
i

Λiω
2
i . (64)

By substituting equations (61)–(64) in equation (17), it
produces the following expression for the spectral index:

ns − 1 � − M
2
pl 􏽘

i

Λiω
2
i

Λi μ2jω
2
j􏼐 􏼑

⎛⎝ ⎞⎠, (65)

where we used the condition that ω− 2
i ≃ 0 and from equation

(3), we have

_φi

Vi
′ φi( 􏼁

�
_φj

Vj
′ φj􏼐 􏼑

. (66)

Tus, by fnding Vi
′(φi) and Vj

′(φj) from equation (58)
and by using them in equation (65), we obtain

μ2i
_φi

Λiφi

� μ2j
_φj

Λjφj

. (67)

By integrating the abovementioned equation between
the limits φs

i andφe
i for the i th feld and between φs

j and φe
i

for the corresponding j th feld, we get

μ2i
Λi

􏽚
φe

i

φs
i

_φi

φi

�
μ2j
Λj

􏽚
φe

j

φs
j

_φj

φj

, (68)

and after simplifcation, it gives

􏽘
i

μ2i ln
φs

i

φe
i

􏼠 􏼡 � 􏽘
k

μ2k ln
φs

k

φe
k

􏼠 􏼡 􏽘
i

Λi

Λk

. (69)

For some fxed value of k, the summation sign 􏽐k can be
dropped out of the expression as

􏽘
i

μ2i ln
φs

i

φe
i

􏼠 􏼡 � μ2k ln
φs

k

φe
k

􏼠 􏼡 􏽘
i

Λi

Λk

. (70)

In a more simplifed form, it can be written as

μ2i ln
φs

i

φe
i

􏼠 􏼡 � μ2k ln
φs

k

φe
k

􏼠 􏼡
Λi

Λk

, (71)

Te number of e-folds in equation (60) becomes

N � −
μ2k

2M
2
pl

ln
φs

k

φe
k

􏼠 􏼡 􏽘
i

Λi

Λk

. (72)

Tus, from equation (72), we can fnd the expression for
Planck mass in terms of the number of e-folds as
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M
2
pl � −

1
2N

μ2k ln
φs

k

φe
k

􏼠 􏼡 􏽘
i

Λi

Λk

. (73)

By using the value of Planck mass M2
pl from equation

(73), the expression for spectral index in equation (65) now
reads as

ns − 1 �
2
N

ln
φs

k

φe
k

􏼠 􏼡
􏽐i Λi/Λk( 􏼁ω2

i

􏽐j μj/μk􏼐 􏼑
2
ω2

j

, (74)

where forΛi � Λk, all the felds φi or φk will possess the same
value of Λi. In this case, the expression for the spectral index
in the abovementioned equation reduces to the following
form:

ns − 1 �
2
N

ln
φs

k

φe
k

􏼠 􏼡
􏽐iω

2
i

􏽐j μj/μk􏼐 􏼑
2
ω2

j

. (75)

Te results of equations (74) and (75) are independent of
the choice of the values of k as are considered to the
uncompromised level. In equation (75), if the multifelds
happen to be such that they can avail the chance of having
the same μi and μj � μk, then we would have

ns − 1 �
2
N

ln
φs

k

φe
k

􏼠 􏼡. (76)

It can be noted from equation (76) that all the terms
included in the ln(φs

k/φ
e
k) might be equivalent on the basis of

equation (72). On the other hand, equation (76) represents
the same equation for the corresponding single-feld case.
Te value of ln (φs

k/φ
e
k) in equation (72) will be smaller for

the bigger value of μi, when Λi is taken as equivalent to μi. If
we consider μk � Max(μn), where n pertains to natural
numbers, then it leads to μi/μk < 1 implying that the spec-
trum is redder than its corresponding spectrum which re-
sults from equation (76) for a single scalar feld φk. In this
case, the value of ln(φs

k/φ
e
k) would represent almost the

smallest value from all the values of ln(φs
i /φ

e
i ). It would

accordingly indicate that in the context of equation (76), the
value of k approaches nearer to unity in case of a single scalar
feld φk. On the other hand, if we take into account
μk � Min(μn), where n belongs to natural numbers, then
this would give rise to μi/μk > 1 which leads to the factual
result that the spectrum is less red than its corresponding
spectrum which results from equation (76) in the case of
a single scalar feld φk. In this case, the value of ln(φs

k/φ
e
k)

would represent almost the biggest value out of all the values
of ln(φs

i /φ
e
i ) showing that in equation (76) in the case of

a single scalar feld φk, the value of k shifts away from unity.
It means that the value of the scalar spectral index falls
between that of a single scalar feld in general for the biggest
μk and the smallest accordingly. In Tables 1 and 2, the range
for the e-folds N that is cosmologically viable as concerns for
the early cosmic evolution corresponding to p and that of
spectral index ns corresponding to N is shown, respectively.

Ten, in Figures 2 and 3, the spectral index (ns) is plotted
against the e-folding number N for a range of values.

Te presence of multiple scalars could lead to a some-
what revolutionary infationary paradigm such that the
dynamics due to these felds are quite naive compared to the
single feld. For example, specifcally, the generation of
primordial perturbation spectra and nonadiabatic feld
perturbations could afect the evolution of curvature per-
turbations and the detection of non-Gaussianity. Te in-
fation in the present case of potential occurs long enough so
that it is sufciently long that the observable universe comes
close to being spatially fat. In order to understand the
tensor-to-scalar ratio occurring in the model under con-
sideration, we determine frst the spectrum of scalar cur-
vature perturbations using the relation given beneath as it is
fgured out in references [51, 80].

PR �
H

2π
􏼒 􏼓

2
δijN,φi

N,φj
, (77)

which comes out approximately to be

PR ≈
V

12π2
􏽘

i

Vi

Vi
′􏼠 􏼡

2

. (78)

Substituting from equations (1) and (5) into equation
(78) and by simplifying, it produces

PR ≈
V

12π2
p
2 φi

μi

􏼠 􏼡

2p+4

, (79)

Table 1: Spectral index (ns) in terms of e-folding number N for
a range of values of p.

Values of p
Spectral index (ns) in terms of

e-folds (N)

p � − 4 − 3/N
p � − 3 − 4/N
p � − 2 − 3/N
p � − 1 Undefned
p � 0 − 1/N
p � 1 − 4/3N

p � 2 − 3/2N

p � 3 − 8/5N

p � 4 − 5/3N

Table 2: Tabulation of spectral index (ns) against the number of
e-folds N.

Sr. No Number of e-folds (N) Spectral index (ns)

1 30 0.90
2 35 0.914
3 40 0.925
4 45 0.93
5 50 0.94
6 55 0.945
7 60 0.95
8 65 0.953
9 70 0.96
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or

PR ≈
V

12π2
p
2

μ2i

φi

μi

􏼠 􏼡

p+2

μ2i , (80)

and with the help of equation (12), it becomes

PR ≈
V

12π2
p
4
(p + 2)

2
N

2

μ2i
, (81)

and

PR ≈
p
4
(p + 2)

2
N

2

12π2μ2i
􏽘

i

Λi 1 −
φi

μi

􏼠 􏼡

− p

, (82)

where it gives an additional relation that is

􏽘
i

Λi 1 −
φi

μi

􏼠 􏼡

− p

≈
12π2μ2i PR

p
4
(p + 2)

2
N

2. (83)

For tensor perturbations in the case of a general mul-
tifeld model, the relation can be used suitably as given in
reference [52].

PT ≈
2H

2

π2
. (84)

Now, the tensor-to-scalar ratio can be computed as

r �
PT

PR

�
24μi

p
4
(p + 2)

2
N

2
H

2

V
. (85)

Te recent BICEP results put the following constraint on
the tensor-to-scalar ratio as an upper bound
r< 0.034(95%CL) Friedmann evolution equation:

H
2

+
k

a
2 �

8πG

3
ρ, (86)

for vanishing the curvature term k and the energy density
ρ⟶ Vi(φi) during the infationary phase, and this further
gives

H
2

�
1

3M
2
pl

􏽘
i

Λi 1 −
φi

μi

􏼠 􏼡

− p

. (87)

Equation (85) takes the following form in the light of
equations (1) and (87):

r �
1

p
4
(p + 2)N

2
μi

M
2
pl

. (88)
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Figure 2: Plot of spectral index (ns) against the e-folding number (N) for the values of p given in Table 1. (a) the plot is directly drawn
between two quantities, (b) the logarithm of the plot is displayed.
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Figure 3: Plot of spectral index (ns) against the e-folding number (N) for the values of p given in Table 1. (a) the plot is simply presented
between the parameters, (b) it is drawn after taking the logarithm of (ns).
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It can be seen from equation (88) that the tensor-to-
scalar r ratio is dominantly dependent on the number of e-
folds N as well as on the distribution of μi. Tis dependence
indeed motivates us to stay focused on determining the
spectral index corresponding to the model in question.

Now, considering that the felds are uncoupled such that
the dynamics during slow-roll infation are governed by the
following equation:

Δφ≃

����������

􏽘
i

ztφi

H
􏼠 􏼡

2
􏽶
􏽴

. (89)

Ten, using equations (3), (5), and (86) in equation (89)
leads to

Δφ≃pM
2
pl

�������������������

􏽐i Λi/μi φi/μi( 􏼁
− (p+1)

􏼐 􏼑
2

􏽲

􏽐iΛi 1 − φi/μi( 􏼁
− p

􏼐 􏼑
.

(90)

Te quantum fuctuations during this phase occur as

δφ≃
�������
􏽘

i

δφi( 􏼁
􏽲

, (91)

where δφi ∼ H/2π and by making use of equations (1) and
(86), it gives

δφ≃
1

πMpl

���
N

12

􏽲
����������������

􏽘
i

Λi 1 −
φi

μi

􏼠 􏼡

− p

􏼠 􏼡

􏽶
􏽴

. (92)

Te critical feld values can be reached at Δφ≃ δφ, and
for p � 2, we have

p
2
M

6
pl 􏽘

i

Λi

μi

φi

μi

􏼠 􏼡

− (p+1)

⎛⎝ ⎞⎠

2

≃
N

12π2 􏽘
i

Λi 1 −
φi

μi

􏼠 􏼡

− p

􏼠 􏼡􏼠 􏼡

3

, (93)

Now, by using the slow-roll condition ε≪ 1, from
equations (1) and (5), we get

1
2

pM
2
pl 􏽘

i

Λi

μi

φi

μi

􏼠 􏼡

− (p+1)

⎛⎝ ⎞⎠

2

≪ 􏽘
i

Λi 1 −
φi

μi

􏼠 􏼡

− p

􏼠 􏼡􏼠 􏼡

2

, (94)

or toward the end of the slow-roll phase, we get

1
2

pM
2
pl 􏽘

i

Λi

μi

φi

μi

􏼠 􏼡

− (p+1)

⎛⎝ ⎞⎠

2

≃ 􏽘
i

Λi 1 −
φi

μi

􏼠 􏼡

− p

􏼠 􏼡􏼠 􏼡

2

. (95)

Reheating in single-feld infation models could take
place by the breakdown of a slow-roll constraint, while in
multifeld models, it could be geared by an instability when
the felds reach a minimum. Te reheating phase comes at
the end of the infationary period when the proposed
multifelds lose energy to transform into other relics such as
radiation and particles which grow to the present structure
formation. At the end of the multifeld infationary phase,

the reheating phase can be understood through isocurvature
perturbations. In a fat FLRW background, the line element
for the linear perturbations reads as

ds
2

� − (1 + 2χ)dt
2

+ 2aGidx
i
dt + a(t)

2δijdx
i
dx

j
, (96)

where χ and G represent lapse function and shear, re-
spectively. Ten, we have
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δφα + 3H +
1
2
Γαc + Γαm􏼐 􏼑􏼚 􏼛 _δφα −

∇2

a
2 δφα + 􏽘

β
U,αβδφβ

+ 2U,α
1
2

_φα Γ
α
c + Γαm􏼐 􏼑 + 3H _δφα􏼚 􏼛χ + _φαχ +

4πG

H
_φαδρ � 0.

(97)

Te adiabatic perturbations for a fuid in general, that is,
the adiabatic pressure can be written in expanded form as
δPna � δP − c2sδρ, where c2s � ztP/ztρ. For the two scalar
felds, we have the following:

δPna �
1

3H
2
M

2
Pl

Uφ1 _φ1 + Uφ2
_φ2􏼐 􏼑 _φ1δφ1 + _φ2δφ2( 􏼁

− 2 Uφ1
δφ1 + Uφ2

δφ2􏼐 􏼑 −
2
3H

Uφ1
_φ1 + Uφ2

_φ2􏼐 􏼑

φ2
1 + φ2

2

× _φ1δ _φ1 + _φ2δ _φ2 + U,φ1
δφ1 + U,φ2

δφ2􏽮 􏽯,

(98)

which on comparison gives

δP � _φ1δ _φ1 + _φ2δ _φ2 − φ2
1 + φ2

2􏼐 􏼑χ − U,φ1
δφ1 − U,φ2

δφ2. (99)

By reheating when the felds decay into the fuids which
transform into radiation and particles, the pressure per-
turbation of nonadiabatic fuid becomes

δPna �
1
3
δρc 1 −

ztρc

ztρc + ztρm

􏼠 􏼡 −
1
3

ztρcδρm

ztρc + 3ztρm

, (100)

where c2s � (ztρσ/ztρ)c2σ . Tus, through efective feld
equations coupling the felds by means of their decay
products, the reheating period after a multifeld infation
occurs, where the nonadiabatic pressure is inside the few
orders of magnitude of the pressure perturbations when the
infation ends. When diferent mass scales are given, we have
to use a robust technique which provides some suitable and
viable solution. R. Easter and L. McAllister devised a very
powerful technique to work out the mass scales concerning
the multifelds [51]. Te method is frequently employed in
infation or multiple feld scenarios. Tey suggested a new
technique known to be as the law regarding the distribution
of mass scales in general and is named after the two in-
ventors as Marcenco-Pastur law. In multifeld models of
infation, it is customary to make use of random matrix
theory which might play a very basic and important role in
the distribution of diferent masses related to the spectrum.
Tis is accomplished by using some suitable law, the best
example is the Mar �c enko-Pastur law. In the beginning, the
law was employed frst in the string theory where the
problem of the distribution of masses related to the axion
feld was being faced. In multifeld models, diferent tra-
jectories of infation occur and therefore, they become
susceptible to the initial conditions as the values of the felds
lay in the background dynamics. As in most cases, the in-
fationary scenarios are based on the hypothesis taken ad hoc
which poses the problem of fnding the initial conditions not
to be much reliable. Tus, based on it, infationary

parameters, in some specifc scenarios are predicted not to
depend largely on priors of initial conditions [81]. In this
work, we utilize the Mar �c enko-Pastur law for the distri-
bution of mass scales for the factors μ and Λi. Te Mar �c

enko-Pastur law puts to use two parameters μ and β, where β
stands for the factor μ expressed as the ratio of rows and
columns of the mass. For any mass-scale matrix of order
(n + r) × n, we can write it by β � n/n + r. Now, the values
that the parameter μ can have, which has to be the smallest
value on one hand and the largest value on the other hand,
can be determined by the following expressions, respectively:

μ21 � x � μ2(1 −

��

β
􏽱

)
2
,

μ22 � y � μ2(1 +

��

β
􏽱

)
2
,

(101)

whereas during slow-roll approximation, the feld values can
be worked out to be

φj(t)≃φj t0( 􏼁[T(t)]
μ21/y, (102)

where T(t) � (φn(t)/φn(t0)) specifes the ratio of relatively
larger feld values between t0 and t where they stand for
some initial and later times, respectively. Now, we introduce
z � 2 ln[T(t)]/y in equations (93) and (95), where φ2

j is
replaced by φ2

j(t0)e
zμ2

i . Straightforwardly, now we can fgure
out the values of mass distributions on the average within the
respective range regardless of the feld value distributions in
the beginning when the correlation relations are evaded and
overlooked between them. Ten, by applying the power
series expansion, we can fnd out the average value of the
term involving exponentiation.

e
zμ2

i􏼜 􏼝 � 􏽘
i

μ2i􏽄 􏽅
c

j

j
� μ2i

􏽘

i

j�1
T(i, j)βj− 1c

j

j

� 􏽘
∞

i�0
μ2i

F1(1 − i, − i, 2, β)
c

j

j
.

(103)

Now, equation (93) can be written as

μ2jφ
2
j � nαμ2 􏽘

∞

i�0
μ2i

F1(− i, − i − 1,2, β)
z

i

i
, (104)

where α � 〈ζ2j(t0)〉, moreover, we have

μ4jφ
2
j � nαμ4 􏽘

∞

i�0
μ2i

F1(− i − 1, − i − 2,2, β)
z

i

i
. (105)

On substituting equations (104) and (105) in equation
(93) in the frst place and afterward in equation (95), we
obtain the following for α:
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α � p
2
M

6
pl 􏽘

i

Λi

μi

φi

μi

􏼠 􏼡

− (p+1)

⎛⎝ ⎞⎠

2

f1(t, β)

α �
1
2

pM
2
pl 􏽘

i

Λi

μi

φi

μi

􏼠 􏼡

− (p+1)

⎛⎝ ⎞⎠

2

f2(t, β)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (106)

where

f1(t, β) �
􏽐
∞
i�0μ

2i
F1(− i − 1, − i − 2,2, β)z

i/i􏼐 􏼑
3/2

􏽐
∞
i�0μ

2i
F1(− i, − i − 1,2, β)z

i/i􏼐 􏼑
5/2

f2(t, β) �
􏽐
∞
i�0μ

2i
F1(− i − 1, − i − 2,2, β)z

i/i􏼐 􏼑
1/2

􏽐
∞
i�0μ

2i
F1(− i, − i − 1,2, β)z

i/i􏼐 􏼑
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (107)

In Figure 4, the distribution of mass scales is plotted
according to Mar �c enko-Pastur law.

We can have values of the functions f1(t, β) and f2(t, β)

corresponding to the distinct values as adapted by or
assigned to the parameter z. However, for comparatively
bigger values of it, the functions behave like a constant as the
fgures show it. In the case, when values of the felds and
mass scales are equivalent, the functions
f1(t, β) � f2(t, β)≃ 1 and from equation (106) the value of
α≃φ2 and m � m, in this case, which leads to regain the
values of the concerned felds.

3. Comments on Conclusions

In this article, we conducted an investigation into the model
of infationary phase dynamics by considering multifelds
where a small feld potential written in general form V �

􏽐iVi(φi) � 􏽐iΛi[1 − (φi/μi)
− p] is under consideration. It

stands for multifelds, however, we fgured out the results for
up to two felds and presented the outcomes analytically.Te
model is characterized by two free parameters p and μi

which are free to choose as constrained by their predicted
range of values. Te variable p is importantly negative in the
model we worked out and is arbitrarily chosen.Te potential
upon which the model is based represents the small feld
infation and can be regarded as Taylor series expansion
about the origin of its minima and maxima in its lowest
order. In these models of infation, the feld is usually
considered to begin with an unstable equilibrium around the
origin and then to roll down along its potential about the
origin. As the feld expression denotes a generalized po-
tential to stand for multiple scalars connoting the in-
fationary potential, i denotes an ith feld taken into account
out of multiple felds. Te parameters Λi and μi denote the
height and tilt of the ith chosen potential in the multiple
felds. Te spectrum of curvature perturbations that give rise
to the growth of cosmic structure is an important relic from
infation. We investigated this spectrum for the potential
under consideration here. In the frst place, we considered
the case for a value of p larger than 2. In this case, in general,
when the multifelds have the equivalent masses, the
equations of motion give rise to those of single-feld infation
producing the phase of nonperturbations.Tis occurs due to
relative mass diferences in the multifelds and it could be
observed that the spectrum comes out to be more or less
redder in comparison with the corresponding single-feld
model accordingly. Te multifelds under consideration as
well as their efective masses play a very signifcant role due
to the dependence of the results at the time of horizon-
crossing. We noted that the result corresponds to that of
a single scalar feld when the efective masses of all the felds
are taken to be equivalent. Te spectrum in this case results
to be the same and therefore coincides with the spectrum of
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Figure 4: Te fgure demonstrates the mass distribution according to the Marčhenko–Pastur law as it takes place against the dimensionless
mass variables in the case β that takes on diferent values.Te parameter c is along the parallel axis when the functions are along vertical axes.
It can be noted that the law of large numbers of mass scales ensures that the mass distribution of N felds obeys the distribution probability
similar to that of a single feld. the (a) plot is simply presented, (b) it is drawn after taking its logarithm.
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a single feld. It is concluded that the results for the values of
p> 2, p � 2, and p � − 2 are diferent and the behaviors of
the feld potentials and the corresponding spectrums are
distinct as well as diferent in their nature.

It can be further noted that all the terms included in the
factor ln(φs

k/φ
e
k) might be equivalent on account of the result

determined. With some extra terms, the two expressions
represent the same equation for the corresponding single-feld
case.WhenΛi are taken to be equivalent to μi, the larger value
of μi corresponds to the minimum value of ln (φs

k/φ
e
k).

When we consider μk � Max(μn), where n denotes natural
numbers, it leads to μi/μk < 1 which implies that the spectrum
is redder than its corresponding spectrum resulting from the
result of a single scalar feld φk. In this case, the value of
ln(φs

k/φ
e
k) would represent almost the smallest value from all

the values of ln(φs
i /φ

e
i ) which indicates that in equation (76),

expressing the case of a single scalar feld φk, the value of k

tends to get nearer to unity. On the other hand, when we take
the μk � Min(μn) for n to be a natural number, it gives rise to
μi/μk > 1, which resultantly leads to the result stating that the
spectrum is less red than its corresponding spectrum resulting
from the result for a single scalar feld φk. In this case, the
value of ln(φs

k/φ
e
k) would represent almost the larger one out

of all the values of ln(φs
k/φ

e
k) which shows that in the case of

a single scalar feld φk, the value of k shifts away from unity. It
means that the value of the scalar spectral index falls between
that of a single feld in general for the biggest μk and the
smallest accordingly.

Te results we came across depend on the efective
masses and the values of the felds, however, they emerge
irrespective of the consideration for the initial conditions.
Due to the spectrum being calculated on the time of horizon-
crossing, these occur at this time. In order to obtain these
results we only require to satisfy the constraints concerning
the slow-roll approximation of the felds in the beginning
only. Te following condition δφj/ _φj � δφj/ _φj is required to
be imposed so that the isocurvature perturbations can be
ignored. By implementing the condition, it seems as though
the felds are confned to some specifc trajectories. Although
the isocurvature perturbation modes look plausible to be
taken into account, for the time being, we evaded them to
keep the things simple and to stick to the main theme,
however, this is underway in our next investigation.

From the investigations conducted with regard to the
observable parameters e.g., slow-roll parameters, e-folding
number, and spectral index, we see that they efectively
infuence the infationary scenario when a host of a large
number of scalar felds is taken into account as the multifeld
case demands. Multifeld models might predict a range of
values for the spectral index, although the initial values of the
multifeld scalars depend upon the coefcient μ. In Figures 2
and 3, the spectral index (ns) is plotted against the e-folding
number N for a range of values. It illustrates the behavior
and trend of the spectral index against the number of e-folds
N where 0.70< ns < 0.97 corresponds to values
N � 20, 30, 40, 50, 60, 70 for plot (a) in Figure 2 and
0.85< ns < 0.98 corresponds to values N � 20, 30, 40, 50,

60, 70, 80, 90 for the logarithm of plot (b) in Figure 2. Te

range of values of the spectral index against e-folds falls in
the viable limit for cosmological evolution. Te range of
values for spectral index with an increasing number of e-fold
is listed in Tables 1 and 2.Te scalar feld infationary models
in conjunction with the potential in question such as natural
infation, double-well infationary model, and brane in-
fationary model are also of concern. Te recent Planck
results put the stringent constraint on the spectral index ns,
that is, ns � 0.9649 ± 0.0042(68%C.L.) which can be used
to see as how the model in question contrasts with it.
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[31] O. Özsoy and G. Tasinato, “Infation and primordial black
holes,” Universe, vol. 9, no. 5, p. 203, 2023.

[32] R. G. Cai, B. Hu, and Y. S. Piao, “Entropy perturbations in N-
fation,” Physical Review D, vol. 80, no. 12, Article ID 123505,
2009.

[33] E. D. Stewart and D. H. Lyth, “A more accurate analytic
calculation of the spectrum of cosmological perturbations
produced during infation,” Physics Letters B, vol. 302, no. 2-3,
pp. 171–175, 1993.

[34] E. H. Lieb and J. Yngvason, “Te physics and mathematics of
the second law of thermodynamics,” Physics Reports, vol. 310,
no. 1, pp. 1–96, 1999.

[35] I. Wolfson and R. Brustein, “Small feld models with gravi-
tational wave signature supported by CMB data,” PLoS One,
vol. 13, no. 5, Article ID e0197735, 2018.

[36] C. Longden, “Non-standard hierarchies of the runnings of the
spectral index in infation,” Universe, vol. 3, no. 1, p. 17, 2017.

[37] P. Avelino, T. Barreiro, C. S. Carvalho et al., “Unveiling the
dynamics of the universe,” Symmetry, vol. 8, no. 8, p. 70, 2016.

[38] V. Kamali, M. Motaharfar, and R. O. Ramos, “Recent de-
velopments in warm infation,” Universe, vol. 9, no. 3, p. 124,
2023.

[39] D. Cruces, “Review on stochastic approach to infation,”
Universe, vol. 8, no. 6, p. 334, 2022.

[40] N. Sauber, H. Teisel, and H. P. Seidel, “Multifeld-graphs: an
approach to visualizing correlations in multifeld scalar data,”
IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 5, pp. 917–924, 2006.

[41] C. T. Byrnes and K. Y. Choi, “Review of local non-gaussianity
from multifeld infation,” Advances in Astronomy, vol. 2010,
Article ID 724525, 18 pages, 2010.

[42] P. Carrilho, D. Mulryne, J. Ronayne, and T. Tenkanen,
“Attractor behaviour in multifeld infation,” Journal of
Cosmology and Astroparticle Physics, vol. 2018, no. 06, p. 032,
2018.

[43] A. Avgoustidis, S. Cremonini, A. C. Davis, R. H. Ribeiro,
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