PERIODIC SOLUTIONS OF A CLASS OF NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL INCLUSIONS SYSTEMS

DANIEL PAŞCA

Received 15 March 2001

Using an abstract framework due to Clarke (1999), we prove the existence of periodic solutions for second-order differential inclusions systems.

1. Introduction

Consider the second-order system

$$
\begin{gather*}
\ddot{u}(t)=\nabla F(t, u(t)) \quad \text { a.e. } t \in[0, T], \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0, \tag{1.1}
\end{gather*}
$$

where $T>0$ and $F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies the following assumption:
(A) $F(t, x)$ is measurable in t for each $x \in \mathbb{R}^{n}$ and continuously differentiable in x for a.e. $t \in[0, T]$, and there exist $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), b \in L^{1}\left(0, T ; \mathbb{R}^{+}\right)$ such that

$$
\begin{gather*}
|F(t, x)| \leq a(\|x\|) b(t) \\
\|\nabla F(t, x)\| \leq a(\|x\|) b(t) \tag{1.2}
\end{gather*}
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$.
Wu and Tang in [4] proved the existence of solutions for problem (1.1) when $F=F_{1}+F_{2}$ and F_{1}, F_{2} satisfy some assumptions. Now we will consider problem (1.1) in a more general sense. More precisely, our results represent the extensions to systems with discontinuity (we consider the generalized gradients unlike continuously gradient in classical results).

2. Main results

Consider the second-order differential inclusions systems

$$
\begin{gather*}
\ddot{u}(t) \in \partial F(t, u(t)) \quad \text { a.e. } t \in[0, T] \tag{2.1}\\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{gather*}
$$

where $T>0, F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ and ∂ denotes the Clarke subdifferential.
We suppose that $F=F_{1}+F_{2}$ and F_{1}, F_{2} satisfy the following assumption:
(A') F_{1}, F_{2} are measurable in t for each $x \in \mathbb{R}^{n}$, at least F_{1} or F_{2} are strictly differentiable in x and there exist $k_{1} \in L^{2}(0, T ; \mathbb{R})$ and $k_{2} \in L^{2}(0, T ; \mathbb{R})$ such that

$$
\begin{align*}
& \left|F_{1}\left(t, x_{1}\right)-F_{1}\left(t, x_{2}\right)\right| \leq k_{1}(t)\left\|x_{1}-x_{2}\right\|, \\
& \left|F_{2}\left(t, x_{1}\right)-F_{2}\left(t, x_{2}\right)\right| \leq k_{2}(t)\left\|x_{1}-x_{2}\right\|, \tag{2.2}
\end{align*}
$$

for all $x_{1}, x_{2} \in \mathbb{R}^{n}$ and all $t \in[0, T]$.
Theorem 2.1. Assume that $F=F_{1}+F_{2}$, where F_{1}, F_{2} satisfy assumption (A^{\prime}) and the following conditions:
(i) $F_{1}(t, \cdot)$ is (λ, μ)-subconvex with $\lambda>1 / 2$ and $\mu<2 \lambda^{2}$ for a.e. $t \in[0, T]$;
(ii) there exist $c_{1}, c_{2}>0$ and $\alpha \in[0,1)$ such that

$$
\begin{equation*}
\zeta \in \partial F_{2}(t, x) \Longrightarrow\|\zeta\| \leq c_{1}\|x\|^{\alpha}+c_{2} \tag{2.3}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$;
(iii)

$$
\begin{equation*}
\frac{1}{\|x\|^{2 \alpha}}\left[\frac{1}{\mu} \int_{0}^{T} F_{1}(t, \lambda x) d t+\int_{0}^{T} F_{2}(t, x) d t\right] \longrightarrow \infty, \quad a s\|x\| \longrightarrow \infty \tag{2.4}
\end{equation*}
$$

Then problem (2.1) has at least one solution which minimizes φ on H_{T}^{1}.
Remark 2.2. Theorem 2.1 generalizes [3, Theorem 1]. In fact, [3, Theorem 1] follows from Theorem 2.1 letting $F_{1}=0$.

Theorem 2.3. Assume that $F=F_{1}+F_{2}$, where F_{1}, F_{2} satisfy assumption (A^{\prime}) and the following conditions:
(iv) $F_{1}(t, \cdot)$ is (λ, μ)-subconvex for a.e. $t \in[0, T]$, and there exists $\gamma \in$ $L^{1}(0, T ; \mathbb{R}), h \in L^{1}\left(0, T ; \mathbb{R}^{n}\right)$ with $\int_{0}^{T} h(t) d t=0$ such that

$$
\begin{equation*}
F_{1}(t, x) \geq\langle h(t), x\rangle+\gamma(t), \tag{2.5}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$;
(v) there exist $c_{1}>0, c_{0} \in \mathbb{R}$ such that

$$
\begin{equation*}
\zeta \in \partial F_{2}(t, x) \Longrightarrow\|\zeta\| \leq c_{1} \tag{2.6}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and all $t \in[0, T]$, and

$$
\begin{equation*}
\int_{0}^{T} F_{2}(t, x) d t \geq c_{0} \tag{2.7}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$;
(vi)

$$
\begin{equation*}
\frac{1}{\mu} \int_{0}^{T} F_{1}(t, \lambda x) d t+\int_{0}^{T} F_{2}(t, x) d t \longrightarrow \infty, \quad a s\|x\| \longrightarrow \infty \tag{2.8}
\end{equation*}
$$

Then problem (2.1) has at least one solution which minimizes φ on H_{T}^{1}.
Theorem 2.4. Assume that $F=F_{1}+F_{2}$, where F_{1}, F_{2} satisfy assumption $\left(A^{\prime}\right)$ and the following conditions:
(vii) $F_{1}(t, \cdot)$ is (λ, μ)-subconvex for a.e. $t \in[0, T]$, and there exists $\gamma \in$ $L^{1}(0, T ; \mathbb{R}), h \in L^{1}\left(0, T ; \mathbb{R}^{n}\right)$ with $\int_{0}^{T} h(t) d t=0$ such that

$$
\begin{equation*}
F_{1}(t, x) \geq\langle h(t), x\rangle+\gamma(t) \tag{2.9}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$;
(viii) there exist $c_{1}, c_{2}>0$ and $\alpha \in[0,1)$ such that

$$
\begin{equation*}
\zeta \in \partial F_{2}(t, x) \Longrightarrow\|\zeta\| \leq c_{1}\|x\|^{\alpha}+c_{2} \tag{2.10}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$;
(ix)

$$
\begin{equation*}
\frac{1}{\|x\|^{2 \alpha}} \int_{0}^{T} F_{2}(t, x) d t \longrightarrow \infty, \quad \text { as }\|x\| \longrightarrow \infty \tag{2.11}
\end{equation*}
$$

Then problem (2.1) has at least one solution which minimizes φ on H_{T}^{1}.

3. Preliminary results

We introduce some functional spaces. Let $[0, T]$ be a fixed real interval $(0<$ $T<\infty)$ and $1<p<\infty$. We denote by $W_{T}^{1, p}$ the Sobolev space of functions $u \in L^{p}\left(0, T ; \mathbb{R}^{n}\right)$ having a weak derivative $\dot{u} \in L^{p}\left(0, T ; \mathbb{R}^{n}\right)$. The norm over $W_{T}^{1, p}$ is defined by

$$
\begin{equation*}
\|u\|_{W_{T}^{1, p}}=\left(\int_{0}^{T}\|u(t)\|^{p} d t+\int_{0}^{T}\|\dot{u}(t)\|^{p} d t\right)^{1 / p} \tag{3.1}
\end{equation*}
$$

We denote by H_{T}^{1} the Hilbert space $W_{T}^{1,2}$. We recall that

$$
\begin{equation*}
\|u\|_{L^{p}}=\left(\int_{0}^{T}\|u(t)\|^{p} d t\right)^{1 / p}, \quad\|u\|_{\infty}=\max _{t \in[0, T]}\|u(t)\| \tag{3.2}
\end{equation*}
$$

For our aims, it is necessary to recall some very well-known results (for proof and details see [2]):

Proposition 3.1. If $u \in W_{T}^{1, p}$ then

$$
\begin{equation*}
\|u\|_{\infty} \leq c\|u\|_{W_{T}^{1, p}} . \tag{3.3}
\end{equation*}
$$

If $u \in W_{T}^{1, p}$ and $\int_{0}^{T} u(t) d t=0$ then

$$
\begin{equation*}
\|u\|_{\infty} \leq c\|\dot{u}\|_{L^{p}} \tag{3.4}
\end{equation*}
$$

If $u \in H_{T}^{1}$ and $\int_{0}^{T} u(t) d t=0$ then

$$
\begin{align*}
\|u\|_{L^{2}} & \leq \frac{T}{2 \pi}\|\dot{u}\|_{L^{2}} \quad \text { (Wirtinger's inequality), } \tag{3.5}\\
\|u\|_{\infty}^{2} & \leq \frac{T}{12}\|\dot{u}\|_{L^{2}}^{2} \quad \text { (Sobolev inequality). }
\end{align*}
$$

Proposition 3.2. If the sequence $\left(u_{k}\right)_{k}$ converges weakly to u in $W_{T}^{1, p}$, then $\left(u_{k}\right)_{k}$ converges uniformly to u on $[0, T]$.

Let X be a Banach space. Now, following [1], for each $x, v \in X$, we define the generalized directional derivative at x in the direction v of a given $f \in$ $\operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$ as

$$
\begin{equation*}
f^{0}(x ; v)=\limsup _{y \rightarrow x, \lambda \searrow 0} \frac{f(y+\lambda v)-f(y)}{\lambda} \tag{3.6}
\end{equation*}
$$

and denote x by

$$
\begin{equation*}
\partial f(x)=\left\{x^{*} \in X^{*}: f^{0}(x ; v) \geq\left\langle x^{*}, v\right\rangle, \forall v \in X\right\} \tag{3.7}
\end{equation*}
$$

the generalized gradient of f at x (the Clarke subdifferential).
We recall the Lebourg's mean value theorem (see [1, Theorem 2.3.7]). Let x and y be points in X, and suppose that f is Lipschitz on an open set containing the line segment $[x, y]$. Then there exists a point u in (x, y) such that

$$
\begin{equation*}
f(y)-f(x) \in\langle\partial f(u), y-x\rangle . \tag{3.8}
\end{equation*}
$$

Clarke considered in [1] the following abstract framework:

- let (T, \mathscr{T}, μ) be a positive complete measure space with $\mu(T)<\infty$, and let Y be a separable Banach space;
- let Z be a closed subspace of $L^{p}(T ; Y)$ (for some p in $[1, \infty)$), where $L^{p}(T ; Y)$ is the space of p-integrable functions from T to Y;
- we define a functional f on Z via

$$
\begin{equation*}
f(x)=\int_{T} f_{t}(x(t)) \mu(d t) \tag{3.9}
\end{equation*}
$$

where $f_{t}: Y \rightarrow R,(t \in T)$ is a given family of functions;

- we suppose that for each y in Y the function $t \rightarrow f_{t}(y)$ is measurable, and that x is a point at which $f(x)$ is defined (finitely).

Hypothesis 3.3. There is a function k in $L^{q}(T, R),(1 / p+1 / q=1)$ such that, for all $t \in T$,

$$
\begin{equation*}
\left|f_{t}\left(y_{1}\right)-f_{t}\left(y_{2}\right)\right| \leq k(t)\left\|y_{1}-y_{2}\right\|_{Y} \quad \forall y_{1}, y_{2} \in Y \tag{3.10}
\end{equation*}
$$

Hypothesis 3.4. Each function f_{t} is Lipschitz (of some rank) near each point of Y, and for some constant c, for all $t \in T, y \in Y$, one has

$$
\begin{equation*}
\zeta \in \partial f_{t}(y) \Longrightarrow\|\zeta\|_{Y^{*}} \leq c\left\{1+\|y\|_{Y}^{p-1}\right\} \tag{3.11}
\end{equation*}
$$

Under the conditions described above Clarke proved (see [1, Theorem 2.7.5]):
Theorem 3.5. Under either of Hypotheses 3.3 or 3.4, f is uniformly Lipschitz on bounded subsets of Z, and there is

$$
\begin{equation*}
\partial f(x) \subset \int_{T} \partial f_{t}(x(t)) \mu(d t) \tag{3.12}
\end{equation*}
$$

Further, if each f_{t} is regular at $x(t)$ then f is regular at x and equality holds.
Remark 3.6. The function f is globally Lipschitz on Z when Hypothesis 3.3 holds.

Now we can prove the following result.
Theorem 3.7. Let $F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F=F_{1}+F_{2}$ where F_{1}, F_{2} are measurable in t for each $x \in \mathbb{R}^{n}$, and there exist $k_{1} \in L^{2}(0, T ; \mathbb{R})$, $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), b \in L^{1}\left(0, T ; \mathbb{R}^{+}\right), c_{1}, c_{2}>0$, and $\alpha \in[0.1)$ such that

$$
\begin{gather*}
\left|F_{1}\left(t, x_{1}\right)-F_{1}\left(t, x_{2}\right)\right| \leq k_{1}(t)\left\|x_{1}-x_{2}\right\| \tag{3.13}\\
\left|F_{2}(t, x)\right| \leq a(\|x\|) b(t) \tag{3.14}\\
\zeta \in \partial F_{2}(t, x) \Longrightarrow\|\zeta\| \leq c_{1}\|x\|^{\alpha}+c_{2} \tag{3.15}
\end{gather*}
$$

for all $t \in[0, T]$ and all $x, x_{1}, x_{2} \in \mathbb{R}^{n}$. We suppose that $L:[0, T] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow$ \mathbb{R} is given by $L(t, x, y)=(1 / 2)\|y\|^{2}+F(t, x)$.

Then, the functional $f: Z \in \mathbb{R}$, where

$$
\begin{equation*}
Z=\left\{(u, v) \in L^{2}(0, T ; Y): u(t)=\int_{0}^{t} v(s) d s+c, c \in \mathbb{R}^{n}\right\} \tag{3.16}
\end{equation*}
$$

given by $f(u, v)=\int_{0}^{T} L(t, u(t), v(t)) d t$, is uniformly Lipschitz on bounded subsets of Z and

$$
\begin{equation*}
\partial f(u, v) \subset \int_{0}^{T}\left\{\partial F_{1}(t, u(t))+\partial F_{2}(t, u(t))\right\} \times\{v(t)\} d t \tag{3.17}
\end{equation*}
$$

Proof. Let $L_{1}(t, x, y)=F_{1}(t, x), L_{2}(t, x, y)=(1 / 2)\|y\|^{2}+F_{2}(t, x)$, and f_{1}, f_{2} : $Z \rightarrow \mathbb{R}$ given by $f_{1}(u, v)=\int_{0}^{T} L_{1}(t, u(t), v(t)) d t, f_{2}(u, v)=\int_{0}^{T} L_{2}(t, u(t)$, $v(t)) d t$. For f_{1} we can apply Theorem 3.5 under Hypothesis 3.3, with the following cast of characters:

- $(T, \mathscr{T}, \mu)=[0, T]$ with Lebesgue measure, $Y=\mathbb{R}^{n} \times \mathbb{R}^{n}$ is the Hilbert product space (hence is separable);
- $p=2$ and

$$
\begin{equation*}
Z=\left\{(u, v) \in L^{2}(0, T ; Y): u(t)=\int_{0}^{t} v(s) d s+c, c \in \mathbb{R}^{n}\right\} \tag{3.18}
\end{equation*}
$$

is a closed subspace of $L^{2}(0, T ; Y)$;

- $f_{t}(x, y)=L_{1}(t, x, y)=F_{1}(t, x)$; in our assumptions it results that the integrand $L_{1}(t, x, y)$ is measurable in t for a given element (x, y) of Y and there exists $k \in L^{2}(0, T ; \mathbb{R})$ such that

$$
\begin{align*}
\left|L_{1}\left(t, x_{1}, y_{1}\right)-L_{1}\left(t, x_{2}, y_{2}\right)\right| & =\left|F_{1}\left(t, x_{1}\right)-F_{1}\left(t, x_{2}\right)\right| \\
& \leq k_{1}(t)\left\|x_{1}-x_{2}\right\| \\
& \leq k_{1}(t)\left(\left\|x_{1}-x_{2}\right\|+\left\|y_{1}-y_{2}\right\|\right) \tag{3.19}\\
& =k_{1}(t)\left\|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right\|_{Y}
\end{align*}
$$

for all $t \in[0, T]$ and all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in Y$. Hence f_{1} is uniformly Lipschitz on bounded subsets of Z and one has

$$
\begin{equation*}
\partial f_{1}(u, v) \subset \int_{0}^{T} \partial L_{1}(t, u(t), v(t)) d t \tag{3.20}
\end{equation*}
$$

For f_{2} we can apply Theorem 3.5 under Hypothesis 3.4 with the same cast of characters, but now $f_{t}(x, y)=L_{2}(t, x, y)=(1 / 2)\|y\|^{2}+F_{2}(t, x)$. In our assumptions, it results that the integrand $L_{2}(t, x, y)$ is measurable in t for a given element (x, y) of Y and locally Lipschitz in (x, y) for each $t \in[0, T]$.

Proposition 2.3.15 in [1] implies

$$
\begin{equation*}
\partial L_{2}(t, x, y) \subset \partial_{x} L_{2}(t, x, y) \times \partial_{y} L_{2}(t, x, y)=\partial F_{2}(t, x) \times y \tag{3.21}
\end{equation*}
$$

Using (3.15) and (3.21), if $\zeta=\left(\zeta_{1}, \zeta_{2}\right) \in \partial L_{2}(t, x, y)$ then $\zeta_{1} \in \partial F_{2}(t, x)$ and $\zeta_{2}=y$, and hence

$$
\begin{equation*}
\|\zeta\|=\left\|\zeta_{1}\right\|+\left\|\zeta_{2}\right\| \leq c_{1}\|x\|^{\alpha}+c_{2}+\|y\| \leq \tilde{c}\{1+\|(x, y)\|\} \tag{3.22}
\end{equation*}
$$

for each $t \in[0, T]$. Hence f_{2} is uniformly Lipschitz on bounded subsets of Z and one has

$$
\begin{equation*}
\partial f_{2}(u, v) \subset \int_{0}^{T} \partial L_{2}(t, u(t), v(t)) d t \tag{3.23}
\end{equation*}
$$

It follows that $f=f_{1}+f_{2}$ is uniformly Lipschitz on the bounded subsets of Z.

Propositions 2.3.3 and 2.3.15 in [1] imply that

$$
\begin{align*}
\partial f(u, v) \subset & \partial f_{1}(u, v)+\partial f_{2}(u, v) \\
\subset & \int_{0}^{T}\left[\partial L_{1}(t, u(t), v(t))+\partial L_{2}(t, u(t), v(t))\right] d t \\
\subset & \int_{0}^{T}\left[\left(\partial_{x} L_{1}(t, u(t), v(t)) \times \partial_{y} L_{1}(t, u(t), v(t))\right)\right. \\
& \left.\quad+\left(\partial_{x} L_{2}(t, u(t), v(t)) \times \partial_{y} L_{2}(t, u(t), v(t))\right)\right] d t \tag{3.24}\\
\subset & \int_{0}^{T}\left[\left(\partial_{x} L_{1}(t, u(t), v(t))+\partial_{x} L_{2}(t, u(t), v(t))\right)\right. \\
& \left.\times\left(\partial_{y} L_{1}(t, u(t), v(t))+\partial_{y} L_{2}(t, u(t), v(t))\right)\right] d t \\
= & \int_{0}^{T}\left(\partial F_{1}(t, u(t))+\partial F_{2}(t, u(t))\right) \times\{v(t)\} d t
\end{align*}
$$

Moreover, Corollary 1 of Proposition 2.3.3 in [1] implies that, if at least one of the functions F_{1}, F_{2} is strictly differentiable in x for all $t \in[0, T]$ then

$$
\begin{equation*}
\partial f(u, v) \subset \int_{0}^{T} \partial F(t, u(t)) \times\{v(t)\} d t \tag{3.25}
\end{equation*}
$$

Remark 3.8. The interpretation of expression (3.25) is that if (u_{0}, v_{0}) is an element of Z (so that $\left.v_{0}=\dot{u}_{0}\right)$ and if $\zeta \in \partial f\left(u_{0}, v_{0}\right)$, we deduce the existence of a measurable function $(q(t), p(t))$ such that

$$
\begin{equation*}
q(t) \in \partial F\left(t, u_{0}(t)\right), \quad p(t)=v_{0}(t) \quad \text { a.e. on }[0, T] \tag{3.26}
\end{equation*}
$$

and for any (u, v) in Z, one has

$$
\begin{equation*}
\langle\zeta,(u, v)\rangle=\int_{0}^{T}\{\langle q(t), u(t)\rangle+\langle p(t), v(t)\rangle\} d t \tag{3.27}
\end{equation*}
$$

In particular, if $\zeta=0$ (so that u_{0} is a critical point for $\varphi(u)=\int_{0}^{T}\left[(1 / 2)\|\dot{u}(t)\|^{2}+\right.$ $F(t, u(t))] d t)$, it then follows easily that $q(t)=\dot{p}(t)$ a.e., or taking into account (3.26)

$$
\begin{equation*}
\ddot{u}_{0}(t) \in \partial F\left(t, u_{0}(t)\right) \quad \text { a.e. on }[0, T], \tag{3.28}
\end{equation*}
$$

so that u_{0} satisfies the inclusions system (2.1).
Remark 3.9. Of course, if F is continuously differentiable in x, then system (2.1) becomes system (1.1).

4. Proofs of the theorems

Proof of Theorem 2.1. From assumption (A^{\prime}) it follows immediately that there exist $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), b \in L^{1}\left(0, T ; \mathbb{R}^{+}\right)$such that

$$
\begin{equation*}
\left|F_{1}(t, x)\right| \leq a(\|x\|) b(t) \tag{4.1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and all $t \in[0, T]$. Like, in [4], we obtain

$$
\begin{equation*}
F_{1}(t, x) \leq\left(2 \mu\|x\|^{\beta}+1\right) a_{0} b(t) \tag{4.2}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and all $t \in[0, T]$, where $\beta<2$ and $a_{0}=\max _{0 \leq s \leq 1} a(s)$.
For $u \in H_{T}^{1}$, let $\bar{u}=(1 / T) \int_{0}^{T} u(t) d t$ and $\tilde{u}=u-\bar{u}$. From Lebourg's mean value theorem it follows that for each $t \in[0, T]$ there exist $z(t)$ in $(\bar{u}, u(t))$ and $\zeta \in \partial F_{2}(t, z(t))$ such that $F_{2}(t, u(t))-F_{2}(t, \bar{u})=\langle\zeta, \tilde{u}(t)\rangle$. It follows from (2.3) and Sobolev's inequality that

$$
\begin{align*}
\mid \int_{0}^{T} & {\left[F_{2}(t, u(t))-F_{2}(t, \bar{u})\right] d t \mid } \\
& \leq \int_{0}^{T}\left|F_{2}(t, u(t))-F_{2}(t, \bar{u})\right| d t \leq \int_{0}^{T}\|\zeta\|\|\tilde{u}(t)\| d t \\
& \leq \int_{0}^{T}\left[2 c_{1}\left(\|\bar{u}\|^{\alpha}+\|\tilde{u}(t)\|^{\alpha}\right)+c_{2}\right]\|\tilde{u}(t)\| d t \tag{4.3}\\
& \leq 2 c_{1} T\|\tilde{u}\|_{\infty}\|\bar{u}\|^{\alpha}+2 c_{1} T\|\tilde{u}\|_{\infty}^{\alpha+1}+c_{2} T\|\tilde{u}\|_{\infty} \\
& \leq \frac{3}{T}\|\tilde{u}\|_{\infty}^{2}+\frac{T^{3}}{3} c_{1}^{2}\|\bar{u}\|^{2 \alpha}+2 c_{1} T\|\tilde{u}\|_{\infty}^{\alpha+1}+c_{2} T\|\tilde{u}\|_{\infty} \\
& \leq \frac{1}{4}\|\dot{u}\|_{L^{2}}^{2}+C_{1}\|\dot{u}\|_{L^{2}}^{\alpha+1}+C_{2}\|\dot{u}\|_{L^{2}}+C_{3}\|\bar{u}\|^{2 \alpha}
\end{align*}
$$

for all $u \in H_{T}^{1}$ and some positive constants C_{1}, C_{2}, and C_{3}. Hence we have

$$
\begin{aligned}
\varphi(u) \geq & \frac{1}{2} \int_{0}^{T}\|\dot{u}(t)\|^{2} d t+\frac{1}{\mu} \int_{0}^{T} F_{1}(t, \lambda \bar{u}) d t-\int_{0}^{T} F_{1}(t,-\tilde{u}(t)) d t \\
& +\int_{0}^{T} F_{2}(t, \bar{u}) d t+\int_{0}^{T}\left[F_{2}(t, u(t))-F_{2}(t, \bar{u})\right] d t \\
\geq & \frac{1}{4}\|\dot{u}\|_{L^{2}}^{2}-C_{1}\|\dot{u}\|_{L^{2}}^{\alpha+1}-C_{2}\|\dot{u}\|_{L^{2}}-C_{3}\|\bar{u}\|^{2 \alpha}-\left(2 \mu\|\tilde{u}\|_{\infty}^{\beta}+1\right) \int_{0}^{T} a_{0} b(t) d t \\
& +\frac{1}{\mu} \int_{0}^{T} F_{1}(t, \lambda \bar{u}) d t+\int_{0}^{T} F_{2}(t, \bar{u}) d t
\end{aligned}
$$

$$
\begin{align*}
\geq & \frac{1}{4}\|\dot{u}\|_{L^{2}}^{2}-C_{1}\|\dot{u}\|_{L^{2}}^{\alpha+1}-C_{2}\|\dot{u}\|_{L^{2}}-C_{4}\|\dot{u}\|_{L^{2}}^{\beta}-C_{5} \\
& +\|\bar{u}\|^{2 \alpha}\left\{\frac{1}{\|\bar{u}\|^{2 \alpha}}\left[\frac{1}{\mu} \int_{0}^{T} F_{1}(t, \lambda \bar{u}) d t+\int_{0}^{T} F_{2}(t, \bar{u}) d t\right]-C_{3}\right\} \tag{4.4}
\end{align*}
$$

for all $u \in H_{T}^{1}$, which implies that $\varphi(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$ by (2.4) because $\alpha<1, \beta<2$, and the norm $\|u\|=\left(\|\vec{u}\|^{2}+\|\dot{u}\|_{L^{2}}^{2}\right)^{1 / 2}$ is an equivalent norm on H_{T}^{1}. Now we write $\varphi(u)=\varphi_{1}(u)+\varphi_{2}(u)$ where

$$
\begin{equation*}
\varphi_{1}(u)=\frac{1}{2} \int_{0}^{T}\|\dot{u}(t)\|^{2} d t, \quad \varphi_{2}(u)=\int_{0}^{T} F(t, u(t)) d t \tag{4.5}
\end{equation*}
$$

The function φ_{1} is weakly lower semi-continuous (w.l.s.c.) on H_{T}^{1}. From (i), (ii), and Theorem 3.5, taking into account Remark 3.6 and Proposition 3.2, it follows that φ_{2} is w.l.s.c. on H_{T}^{1}. By [2, Theorem 1.1], it follows that φ has a minimum u_{0} on H_{T}^{1}. Evidently, $Z \simeq H_{T}^{1}$ and $\varphi(u)=f(u, v)$ for all $(u, v) \in Z$. From Theorem 3.7, it results that f is uniformly Lipschitz on bounded subsets of Z, and therefore φ possesses the same properties relative to H_{T}^{1}. Proposition 2.3.2 in [1] implies that $0 \in \partial \varphi\left(u_{0}\right)$ (so that u_{0} is a critical point for φ). Now from Theorem 3.7 and Remark 3.8 it follows that problem (2.1) has at least one solution $u \in H_{T}^{1}$.

Proof of Theorem 2.3. Let $\left(u_{k}\right)$ be a minimizing sequence of φ. It follows from (iv), (v), Lebourg's mean value theorem, and Sobolev inequality, that

$$
\begin{align*}
\varphi\left(u_{k}\right) \geq & \frac{1}{2}\left\|\dot{u}_{k}\right\|_{L^{2}}^{2}+\int_{0}^{T}\left\langle h(t), u_{k}(t)\right\rangle d t+\int_{0}^{T} \gamma(t) d t \\
& +\int_{0}^{T} F_{2}\left(t, \bar{u}_{k}\right) d t-\int_{0}^{T}\|\zeta\|\left\|\tilde{u}_{k}(t)\right\| d t \\
\geq & \frac{1}{2}\left\|\dot{u}_{k}\right\|_{L^{2}}^{2}-\left\|\tilde{u}_{k}\right\|_{\infty} \int_{0}^{T}\|h(t)\| d t \tag{4.6}\\
& +\int_{0}^{T} \gamma(t) d t-c_{1}\left\|\tilde{u}_{k}\right\|_{\infty}+c_{0} \\
\geq & \frac{1}{2}\left\|\dot{u}_{k}\right\|_{L^{2}}^{2}-c_{2}\left\|\dot{u}_{k}\right\|_{L^{2}}-c_{3}
\end{align*}
$$

for all k and some constants c_{2}, c_{3}, which implies that $\left(\tilde{u}_{k}\right)$ is bounded. On the other hand, in a way similar to the proof of Theorem 2.1, one has

$$
\begin{equation*}
\left|\int_{0}^{T}\left[F_{2}(t, u(t))-F_{2}(t, \bar{u})\right] d t\right| \leq \frac{1}{4}\|\dot{u}\|_{L^{2}}^{2}+C_{1}\|\dot{u}\|_{L^{2}} \tag{4.7}
\end{equation*}
$$

for all k and some positive constant C_{1}, which implies that

$$
\begin{align*}
\varphi\left(u_{k}\right) \geq & \frac{1}{2}\left\|\dot{u}_{k}\right\|_{L^{2}}^{2}+\frac{1}{\mu} \int_{0}^{T} F_{1}\left(t, \lambda \bar{u}_{k}\right) d t-\int_{0}^{T} F_{1}\left(t,-\tilde{u}_{k}(t)\right) d t \\
& +\int_{0}^{T} F_{2}\left(t, \bar{u}_{k}\right) d t+\int_{0}^{T}\left[F_{2}(t, u(t))-F_{2}\left(t, \bar{u}_{k}\right)\right] d t \tag{4.8}\\
\geq & \frac{1}{4}\left\|\dot{u}_{k}\right\|_{L^{2}}^{2}-a\left(\left\|\tilde{u}_{k}\right\|_{\infty}\right) \int_{0}^{T} b(t) d t-C_{1}\left\|\dot{u}_{k}\right\|_{L^{2}} \\
& +\frac{1}{\mu} \int_{0}^{T} F_{1}\left(t, \lambda \bar{u}_{k}\right) d t+\int_{0}^{T} F_{2}\left(t, \bar{u}_{k}\right) d t
\end{align*}
$$

for all k and some positive constant C_{1}. It follows from (vi) and the boundedness of $\left(\tilde{u}_{k}\right)$ that $\left(\bar{u}_{k}\right)$ is bounded. Hence φ has a bounded minimizing sequence $\left(u_{k}\right)$. This completes the proof.

Proof of Theorem 2.4. From (vii), (3.26), and Sobolev's inequality it follows that

$$
\begin{align*}
\varphi(u) \geq & \frac{1}{2}\|\dot{u}\|_{L^{2}}^{2}+\int_{0}^{T}\langle h(t), u(t)) d t+\int_{0}^{T} \gamma(t) d t \\
& +\int_{0}^{T} F_{2}(t, \bar{u}) d t+\int_{0}^{T}\left[F_{2}(t, u(t))-F_{2}(t, \bar{u})\right] d t \\
\geq & \frac{1}{4}\|\dot{u}\|_{L^{2}}^{2}-\|\tilde{u}\|_{\infty} \int_{0}^{T}\|h(t)\| d t+\int_{0}^{T} \gamma(t) d t \tag{4.9}\\
& -C_{1}\|\dot{u}\|_{L^{2}}^{\alpha+1}-C_{2}\|\dot{u}\|_{L^{2}}+\int_{0}^{T} F_{2}(t, \bar{u}) d t-C_{3}\|\bar{u}\|^{2 \alpha} \\
\geq & \frac{1}{4}\|\dot{u}\|_{L^{2}}^{2}-C_{1}\|\dot{u}\|_{L^{2}}^{\alpha+1}-C_{4}\left(\|\dot{u}\|_{L^{2}}+1\right) \\
& +\|\bar{u}\|^{2 \alpha}\left[\frac{1}{\|\bar{u}\|^{2 \alpha}} \int_{0}^{T} F_{2}(t, \bar{u}) d t-C_{3}\right]
\end{align*}
$$

for all $u \in H_{T}^{1}$ and some positive constants C_{1}, C_{3}, and C_{4}. Now it follows like in the proof of Theorem 2.1 that φ is coercive by (ix), which completes the proof.

References

[1] F. H. Clarke, Optimization and Nonsmooth Analysis, 2nd ed., Classics in Applied Mathematics, vol. 5, SIAM, Pennsylvania, 1990. MR 91e:49001. Zbl 696.49002.
[2] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR 90e:58016. Zbl 676.58017.
[3] D. Pasca, Periodic solutions for second order differential inclusions with sublinear nonlinearity, Panamer. Math. J. 10 (2000), no. 4, 35-45. CMP 1801529.
[4] X.-P. Wu and C.-L. Tang, Periodic solutions of a class of non-autonomous second-order systems, J. Math. Anal. Appl. 236 (1999), no. 2, 227-235. MR 2000g:34069. Zbl 991.21227.

Daniel Paşca: Department of Mathematics, University of Oradea, Armatei Romane 5, 3700, Oradea, Romania

E-mail address: pasca@mathematik.uni-kl.de

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

