# SOLUTIONS TO H-SYSTEMS BY TOPOLOGICAL AND ITERATIVE METHODS 

P. AMSTER AND M. C. MARIANI

Received 2 May 2002

We study $H$-systems with a Dirichlet boundary data $g$. Under some conditions, we show that if the problem admits a solution for some $\left(H_{0}, g_{0}\right)$, then it can be solved for any $(H, g)$ close enough to $\left(H_{0}, g_{0}\right)$. Moreover, we construct a solution of the problem applying a Newton iteration.

## 1. Introduction

We consider the Dirichlet problem in a bounded $C^{1,1}$ domain $\Omega \subset \mathbb{R}^{2}$ for a vector function $X: \bar{\Omega} \rightarrow \mathbb{R}^{3}$ which satisfies the equation of prescribed mean curvature

$$
\begin{gather*}
\Delta X=2 H(u, v, X) X_{u} \wedge X_{v} \quad \text { in } \Omega, \\
X=g \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where $\wedge$ denotes the exterior product in $\mathbb{R}^{3}, H: \bar{\Omega} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a given continuous function, and the boundary data $g$ is smooth. Problem (1.1) above arises in the Plateau and Dirichlet problems for the prescribed mean curvature equation that has been studied, for example, in [1, 2, 3, 4, 5].

In Section 2, we prove the following theorem.
Theorem 1.1. Let $X_{0} \in W^{2, p}\left(\Omega, \mathbb{R}^{3}\right)$ be a solution of (1.1) for some ( $H_{0}, g_{0}$ ) with $g_{0} \in W^{2, p}\left(\Omega, \mathbb{R}^{3}\right)(2<p<\infty)$ and $H_{0}$ continuously differentiable with respect to $X$ over the graph of $X_{0}$. Set

$$
\begin{equation*}
k=-2 \inf _{(u, v, Y) \in \Omega \times \mathbb{R}^{3},|Y|=1}\left(\frac{\partial H_{0}}{\partial X}\left(u, v, X_{0}\right) Y\right)\left(\left(X_{0_{u}} \wedge X_{0_{v}}\right) Y\right) \tag{1.2}
\end{equation*}
$$

and assume that

$$
\begin{equation*}
k+2 \sqrt{\lambda_{1}}\left\|H_{0}\left(\cdot, X_{0}\right)\right\|_{\infty}\left\|\nabla X_{0}\right\|_{\infty}<\lambda_{1} \tag{1.3}
\end{equation*}
$$

where $\lambda_{1}$ is the first eigenvalue of $-\Delta$. Then there exists a neighborhood $\mathscr{B}$ of $\left(H_{0}, g_{0}\right)$ in the space $C\left(\bar{\Omega} \times \mathbb{R}^{3}, \mathbb{R}\right) \times W^{2, p}\left(\Omega, \mathbb{R}^{3}\right)$ such that (1.1) is solvable for any $(H, g) \in \mathscr{B}$.

Remark 1.2. It is clear that

$$
\begin{align*}
0 & \leq-2 \inf _{(u, v) \in \Omega} \frac{\partial H_{0}}{\partial X}\left(u, v, X_{0}\right)\left(X_{0_{u}} \wedge X_{0_{v}}\right) \\
& \leq k \leq 2\left\|\frac{\partial H_{0}}{\partial X}\left(\cdot, X_{0}\right)\right\|_{\infty}\left\|X_{0_{u}} \wedge X_{0_{v}}\right\|_{\infty} . \tag{1.4}
\end{align*}
$$

Moreover, a simple computation shows that $k=0$ if and only if $\left(\partial H_{0} / \partial X\right)\left(\cdot, X_{0}\right)$ and $X_{0_{u}} \wedge X_{0_{v}}$ are linearly dependent, with $\left(\partial H_{0} / \partial X\right)\left(u, v, X_{0}\right)\left(X_{0_{u}} \wedge X_{0_{v}}\right) \geq 0$ for every $(u, v) \in \Omega$.

In Section 3, we show that the solution provided by Theorem 1.1 can be obtained by a Newton iteration. For simplicity, we consider the case where $H$ does not depend on $X$ and prove the following theorem.

Theorem 1.3. Let $X_{0} \in W^{2, p}\left(\Omega, \mathbb{R}^{3}\right)$ be a solution of (1.1) for some $\left(H_{0}, g_{0}\right)$ with $g_{0} \in W^{2, p}\left(\Omega, \mathbb{R}^{3}\right)(2<p<\infty)$ and $H_{0}$ continuous, and assume that

$$
\begin{equation*}
2\left\|H_{0}\right\|_{\infty}\left\|\nabla X_{0}\right\|_{\infty}<\sqrt{\lambda_{1}} . \tag{1.5}
\end{equation*}
$$

Then, if $H$ and $g$ are close enough to $H_{0}$ and $g_{0}$, respectively, the sequence given by

$$
\begin{gather*}
\Delta X_{n+1}=2 H\left[\left(X_{n_{u}} \wedge\left(X_{n+1}-X_{n}\right)_{v}+\left(X_{n+1}-X_{n}\right)_{u} \wedge X_{n_{v}}\right)-X_{n_{u}} \wedge X_{n_{v}}\right] \\
\left.X_{n+1}\right|_{\partial \Omega}=g \tag{1.6}
\end{gather*}
$$

is well defined and converges in $W^{2, p}\left(\Omega, \mathbb{R}^{3}\right)$ to a solution of (1.1).

## 2. Proof of Theorem 1.1

First we will prove a slight extension of a well-known result for linear elliptic second-order operators.
Lemma 2.1. Let $L: W^{2, p}\left(\Omega, \mathbb{R}^{3}\right) \rightarrow L^{p}\left(\Omega, \mathbb{R}^{3}\right)$ be the linear elliptic operator given by $L X=\Delta X+A X_{u}+B X_{v}+C X$ with $A, B, C \in L^{\infty}\left(\Omega, \mathbb{R}^{3 \times 3}\right)(2<p<\infty)$, and assume that $r:=\left(\left(\left\||A|^{2}+|B|^{2}\right\|_{\infty}\right) / \lambda_{1}\right)^{1 / 2}<1$ and that $C Y \cdot Y \leq \kappa|Y|^{2}$ for every $Y \in \mathbb{R}^{3}$ with $\kappa<\lambda_{1}(1-r)$. Then $\left.L\right|_{W_{0}^{1, p}\left(\Omega, \mathbb{R}^{3}\right)}: W^{2, p} \cap W_{0}^{1, p}\left(\Omega, \mathbb{R}^{3}\right) \rightarrow L^{p}\left(\Omega, \mathbb{R}^{3}\right)$ is an isomorphism.

Proof. Let $Z_{n} \in W^{2, p} \cap W_{0}^{1, p}\left(\Omega, \mathbb{R}^{3}\right)$ be a sequence such that $\left\|L Z_{n}\right\|_{p} \rightarrow 0$. Then $\left\|L Z_{n}\right\|_{2} \rightarrow 0$, and from the inequalities

$$
\begin{align*}
-\int L Z_{n} Z_{n} & \geq\left\|\nabla Z_{n}\right\|_{2}^{2}-\left\|\left(|A|^{2}+|B|^{2}\right)^{1 / 2}\right\|_{\infty}\left\|\nabla Z_{n}\right\|_{2}\left\|Z_{n}\right\|_{2}-\int C Z_{n} Z_{n} \\
& \geq\left(1-r-\frac{\kappa}{\lambda_{1}}\right)\left\|\nabla Z_{n}\right\|_{2}^{2} \tag{2.1}
\end{align*}
$$

we deduce that $\left\|\nabla Z_{n}\right\|_{2} \rightarrow 0$. Thus, $\left\|Z_{n}\right\|_{2} \rightarrow 0$ and hence $\left\|\Delta Z_{n}\right\|_{2} \rightarrow 0$. From the invertibility of $\Delta$, there exists a subsequence (still denoted $Z_{n}$ ) such that $\left\|Z_{n}\right\|_{2,2} \rightarrow 0$. By Sobolev imbedding, $\left\|Z_{n}\right\|_{1, p} \rightarrow 0$ and we conclude that $\left\|\Delta Z_{n}\right\|_{p} \rightarrow 0$. In order to prove that $L$ is onto, it suffices to consider for any $\varphi \in L^{p}(\Omega)$, the homotopy

$$
\begin{equation*}
\Delta X=\sigma\left(\varphi-A X_{u}-B X_{v}-C X\right) \tag{2.2}
\end{equation*}
$$

and apply a Leray-Schauder argument.
Now we are able to prove Theorem 1.1. Consider a pair ( $H, g$ ) with $\| g$ $g_{0} \|_{2, p}<\delta$ and $\left\|\left.\left(H-H_{0}\right)\right|_{K}\right\|_{\infty}<\varepsilon$ for some compact $K$ containing a neighborhood of the graph of $X_{0}$. Setting $Y=X-X_{0}$, equation (1.1) is equivalent to the problem

$$
\begin{gather*}
L Y=F\left(u, v, Y, Y_{u}, Y_{v}\right) \quad \text { in } \Omega, \\
Y=g-g_{0} \quad \text { on } \partial \Omega, \tag{2.3}
\end{gather*}
$$

where $L$ is the linear operator given by

$$
\begin{equation*}
L Y=\Delta Y-2 H_{0}\left(u, v, X_{0}\right)\left[X_{0_{u}} \wedge Y_{v}+Y_{u} \wedge X_{0_{v}}\right]-2\left(\frac{\partial H_{0}}{\partial X}\left(u, v, X_{0}\right) Y\right) X_{0_{u}} \wedge X_{0_{v}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
& F\left(u, v, Y, Y_{u}, Y_{v}\right) \\
& :=2\left(H\left(u, v, X_{0}+Y\right) Y_{u} \wedge Y_{v}\right. \\
& \\
& +\left[H\left(u, v, X_{0}+Y\right)-H_{0}\left(u, v, X_{0}\right)\right]\left(X_{0_{u}} \wedge Y_{v}+Y_{u} \wedge X_{0_{v}}\right)  \tag{2.5}\\
& \\
& \left.+\left[H\left(u, v, X_{0}+Y\right)-H_{0}\left(u, v, X_{0}\right)-\frac{\partial H_{0}}{\partial X}\left(u, v, X_{0}\right) Y\right] X_{0_{u}} \wedge X_{0_{v}}\right) .
\end{align*}
$$

We define an operator $T: C^{1}\left(\bar{\Omega}, \mathbb{R}^{3}\right) \rightarrow C^{1}\left(\bar{\Omega}, \mathbb{R}^{3}\right)$ given by $T(\bar{Y})=Y$ where $Y$ is the unique solution of the linear problem

$$
\begin{gather*}
L Y=F\left(u, v, \bar{Y}, \bar{Y}_{u}, \bar{Y}_{v}\right) \quad \text { in } \Omega, \\
Y=g-g_{0} \quad \text { on } \partial \Omega . \tag{2.6}
\end{gather*}
$$

As $L$ satisfies the hypothesis of Lemma 2.1, it is immediate to prove that $T$ is well defined and continuous. Furthermore, the range of a bounded set is bounded with $\left\|\|_{2, p}\right.$, and by Sobolev imbedding, we conclude that $T$ is compact. More precisely, for $\|\bar{Y}\|_{1, \infty} \leq R$, we obtain

$$
\begin{align*}
\|T(\bar{Y})\|_{1, \infty} & \leq\left\|g-g_{0}\right\|_{1, \infty}+c\left\|T(\bar{Y})-\left(g-g_{0}\right)\right\|_{2, p} \\
& \leq\left\|g-g_{0}\right\|_{1, \infty}+c_{1}\left(\|L(T(\bar{Y}))\|_{p}+\left\|L\left(g-g_{0}\right)\right\|_{p}\right)  \tag{2.7}\\
& \leq k_{0} \delta+c_{1}\left\|F\left(\cdot, \bar{Y}, \bar{Y}_{u}, \bar{Y}_{v}\right)\right\|_{p}
\end{align*}
$$

for some constants $k_{0}$ and $c_{1}$.
On the other hand, a simple computation shows that

$$
\begin{equation*}
\left\|F\left(\cdot, \bar{Y}, \bar{Y}_{u}, \bar{Y}_{v}\right)\right\|_{p} \leq k_{1} R^{2}+k_{2} \varepsilon R+k_{3} \varepsilon \tag{2.8}
\end{equation*}
$$

for some constants $k_{1}, k_{2}$, and $k_{3}$. Hence, if $\delta$ and $\varepsilon$ are small, it is possible to choose $R$ such that $T\left(B_{R}\right) \subset B_{R}$ and the result follows by Schauder's Theorem.

## 3. A Newton iteration for problem (1.1)

In this section, we apply a Newton iteration to (1.1). For simplicity, we will assume that $H$ does not depend on $X$.

Let $X_{0}$ be a solution of (1.1) for some $H_{0}$ and $g_{0}$ with

$$
\begin{equation*}
2\left\|H_{0}\right\|_{\infty}\left\|\nabla X_{0}\right\|_{\infty}<\sqrt{\lambda_{1}} . \tag{3.1}
\end{equation*}
$$

In order to define a sequence that converges to a solution of $(1.1)$ for $(H, g)$ close to $\left(H_{0}, g_{0}\right)$, we consider the function $F: g+\left(W^{2, p} \cap W_{0}^{1, p}\left(\Omega, \mathbb{R}^{3}\right)\right) \rightarrow L^{p}\left(\Omega, \mathbb{R}^{3}\right)$ given by

$$
\begin{equation*}
F(X)=\Delta X-2 H X_{u} \wedge X_{v} \tag{3.2}
\end{equation*}
$$

Thus, the problem is equivalent to find a zero of $F$. The well-known Newton method consists in defining a recursive sequence

$$
\begin{equation*}
X_{n+1}=X_{n}-\left(D F\left(X_{n}\right)\right)^{-1}\left(F\left(X_{n}\right)\right) \tag{3.3}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
D F\left(X_{n}\right)\left(X_{n+1}-X_{n}\right)=-F\left(X_{n}\right) . \tag{3.4}
\end{equation*}
$$

A simple computation shows that in this case,

$$
\begin{equation*}
D F(X)(Y)=\Delta Y-2 H\left(X_{u} \wedge Y_{v}+Y_{u} \wedge X_{v}\right) \tag{3.5}
\end{equation*}
$$

According to this, we start at $X_{0}$ and define the sequence $\left\{X_{n}\right\}$ from the following problem:

$$
\begin{equation*}
\Delta X_{n+1}-2 H\left(X_{n_{u}} \wedge\left(X_{n+1}-X_{n}\right)_{v}+\left(X_{n+1}-X_{n}\right)_{u} \wedge X_{n_{v}}\right)=2 H X_{n_{u}} \wedge X_{n_{v}} \tag{3.6}
\end{equation*}
$$

with Dirichlet condition

$$
\begin{equation*}
\left.X_{n+1}\right|_{\partial \Omega}=g . \tag{3.7}
\end{equation*}
$$

We will prove that if $H$ and $g$ are close enough to $H_{0}$ and $g_{0}$, respectively, this sequence is well defined (i.e., $D F\left(X_{n}\right)$ is invertible for every $n$ ) and converges.

Fix a positive $R$ such that

$$
\begin{equation*}
R<\frac{\sqrt{\lambda_{1}}}{2\left\|H_{0}\left(\cdot, X_{0}\right)\right\|_{\infty}}-\left\|\nabla X_{0}\right\|_{\infty} \tag{3.8}
\end{equation*}
$$

and set

$$
\begin{equation*}
\mathscr{C}=\left\{X \in W^{2, p}\left(\Omega, \mathbb{R}^{3}\right):\left.X\right|_{\partial \Omega}=g,\left\|X-X_{0}\right\|_{2, p} \leq R\right\} \tag{3.9}
\end{equation*}
$$

We will assume that

$$
\begin{equation*}
\left\|H-H_{0}\right\|_{\infty}<\varepsilon, \quad\left\|g-g_{0}\right\|_{2, p}<\delta \leq R \tag{3.10}
\end{equation*}
$$

with

$$
\begin{equation*}
\varepsilon<\frac{\sqrt{\lambda_{1}}}{2\left(\left\|\nabla X_{0}\right\|_{\infty}+R\right)}-\left\|H\left(\cdot, X_{0}\right)\right\|_{\infty} . \tag{3.11}
\end{equation*}
$$

For each $X \in \mathscr{C}$, we define the linear operator $L_{X}$ given by

$$
\begin{equation*}
L_{X} Y=\Delta Y-2 H\left(X_{u} \wedge Y_{v}+Y_{u} \wedge X_{v}\right) \tag{3.12}
\end{equation*}
$$

By Lemma 2.1, $\left.L_{X}\right|_{W_{0}^{1, p}(\Omega)}$ is invertible for any $X \in \mathscr{C}$. Furthermore, we claim that $\left\|L_{X}^{-1}\right\|$ is bounded over $\mathscr{C}$. Indeed, for $Z \in W^{2, p} \cap W_{0}^{1, p}\left(\Omega, \mathbb{R}^{3}\right)$ and $X, Y \in \mathscr{C}$, we have

$$
\begin{align*}
\left\|L_{Y} Z\right\|_{p} & \geq\left\|L_{X} Z\right\|_{p}-\left\|\left(L_{X}-L_{Y}\right) Z\right\|_{p} \\
& \geq\left(\frac{1}{\left\|L_{X}^{-1}\right\|}-2\|H\|_{\infty}\|\nabla(X-Y)\|_{\infty}\right)\|Z\|_{2, p} \tag{3.13}
\end{align*}
$$

544 Solutions to $H$-systems by topological and iterative methods
Taking, for example, $Y$ such that $\|\nabla(Y-X)\|_{\infty} \leq 1 /\left(4\|H\|_{\infty}\left\|L_{X}^{-1}\right\|\right):=R_{X}$, we obtain

$$
\begin{equation*}
\left\|L_{Y}^{-1}\right\| \leq 2\left\|L_{X}^{-1}\right\| . \tag{3.14}
\end{equation*}
$$

By compactness, there exist $X^{1}, \ldots, X^{n} \in \mathscr{C}$ such that

$$
\begin{equation*}
\mathscr{C} \subset \bigcup_{i=1}^{n}\left\{Y:\left\|\nabla\left(Y-X^{i}\right)\right\|_{\infty} \leq R_{X^{i}}\right\} \tag{3.15}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\left\|L_{X}^{-1}\right\| \leq 2 \max _{1 \leq i \leq n}\left\|L_{X^{i}}^{-1}\right\| . \tag{3.16}
\end{equation*}
$$

Let $Z_{n}=X_{n+1}-X_{n}$. For $n=0$, we have

$$
\begin{align*}
\left\|Z_{0}\right\|_{2, p} & \leq\left\|g-g_{0}\right\|_{2, p}+\left\|Z_{0}-\left(g-g_{0}\right)\right\|_{2, p} \\
& \leq\left\|g-g_{0}\right\|_{2, p}+c\left(\left\|L_{X_{0}} Z_{0}\right\|_{p}+\left\|L_{X_{0}}\left(g-g_{0}\right)\right\|_{p}\right)  \tag{3.17}\\
& \leq 2 \delta\left(1+\|H\|_{\infty}\left\|\nabla X_{0}\right\|_{\infty}\right)+c\left\|L_{X_{0}} Z_{0}\right\|_{p} .
\end{align*}
$$

As

$$
\begin{equation*}
\left\|L_{X_{0}} Z_{0}\right\|_{p}=\left\|2\left(H-H_{0}\right) X_{0_{u}} \wedge X_{0_{v}}\right\|_{2 p}^{2} \leq \varepsilon\left\|\nabla X_{0}\right\|_{p} \tag{3.18}
\end{equation*}
$$

we conclude that

$$
\begin{equation*}
\left\|Z_{0}\right\|_{2, p} \leq 2 \delta\left(1+\left(\left\|H_{0}\right\|_{\infty}+\varepsilon\right)\left\|\nabla X_{0}\right\|_{\infty}\right)+c \varepsilon\left\|\nabla X_{0}\right\|_{2 p}^{2}:=c(\delta, \varepsilon) . \tag{3.19}
\end{equation*}
$$

Then we may establish a more precise version of Theorem 1.3.
Theorem 3.1. With the previous notations, assume that

$$
\begin{equation*}
c(\delta, \varepsilon) \leq \frac{R}{1+R c_{0} c\left(\left\|H_{0}\right\|_{\infty}+\varepsilon\right)} \tag{3.20}
\end{equation*}
$$

where $c_{0}$ is the constant of the imbedding $W^{2, p}\left(\Omega, \mathbb{R}^{3}\right) \hookrightarrow C^{1}\left(\bar{\Omega}, \mathbb{R}^{3}\right)$. Then the sequence given by (1.6) is well defined and converges in $W^{2, p}\left(\Omega, \mathbb{R}^{3}\right)$ to a solution of (1.1).

Proof. By (3.20), we have that $\left\|Z_{0}\right\|_{2, p} \leq c(\delta, \varepsilon) \leq R$, proving that $X_{1} \in \mathscr{C}$. For $n>0$, we assume as inductive hypothesis that $X_{k} \in \mathscr{C}$ for $k \leq n$, and then

$$
\begin{align*}
\left\|Z_{n}\right\|_{2, p} & \leq c\left\|L_{X_{n}} Z_{n}\right\|_{p}=2 c\left\|H Z_{n-1_{u}} \wedge Z_{n-1_{v}}\right\|_{p} \\
& \leq c\|H\|_{\infty}\left\|\nabla Z_{n-1}\right\|_{\infty}\left\|\nabla Z_{n-1}\right\|_{p}  \tag{3.21}\\
& \leq c_{0} c\|H\|_{\infty}\left\|Z_{n-1}\right\|_{2, p}^{2} .
\end{align*}
$$

Inductively,

$$
\begin{equation*}
\left\|Z_{n}\right\|_{2, p} \leq\left(c_{0} c\|H\|_{\infty}\right)^{2^{n}-1}\left\|Z_{0}\right\|_{2, p}^{2^{n}}=A^{2^{n}-1}\left\|Z_{0}\right\|_{2, p} \tag{3.22}
\end{equation*}
$$

where $A=c_{0} c\|H\|_{\infty}\left\|Z_{0}\right\|_{2, p}$. By hypothesis, it is immediate that $A<1$, and hence

$$
\begin{equation*}
\left\|X_{n+1}-X_{0}\right\|_{2, p} \leq \sum_{j=0}^{n}\left\|Z_{j}\right\|_{2, p} \leq\left\|Z_{0}\right\|_{2, p} \frac{1}{1-A} \leq R \tag{3.23}
\end{equation*}
$$

Thus, $X_{n} \in \mathscr{C}$ for every $n$, and

$$
\begin{equation*}
\left\|X_{n+k}-X_{n}\right\|_{2, p} \leq \frac{A^{2^{n}-1}}{1-A} \tag{3.24}
\end{equation*}
$$

for every $k \geq 0$. Then $X_{n}$ is a Cauchy sequence, and the result follows.
Remark 3.2. It is clear from definition that $c(\delta, \varepsilon) \rightarrow 0$ for $(\delta, \varepsilon) \rightarrow(0,0)$.

## Acknowledgment

This work was partially supported by UBACYT TX45.

## References

[1] P. Amster, M. C. Mariani, and D. F. Rial, Existence and uniqueness of $H$-system's solutions with Dirichlet conditions, Nonlinear Anal., Ser. A: Theory Methods 42 (2000), no. 4, 673-677.
[2] H. Brezis and J.-M. Coron, Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37 (1984), no. 2, 149-187.
[3] S. Hildebrandt, On the Plateau problem for surfaces of constant mean curvature, Comm. Pure Appl. Math. 23 (1970), 97-114.
[4] M. Struwe, Plateau's Problem and the Calculus of Variations, Mathematical Notes, vol. 35, Princeton University Press, New Jersey, 1988.
[5] G. F. Wang, The Dirichlet problem for the equation of prescribed mean curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), no. 6, 643-655.
P. Amster: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina

E-mail address: pamster@dm.uba.ar
M. C. Mariani: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina

E-mail address: mcmarian@dm.uba.ar


Advances in
Operations Research $=-$


The Scientific World Journal



Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$


Journal of Probability and Statistics
$\qquad$


International Journal of Differential Equations


