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We consider a nonlinear parabolic equation involving nonmonotone diffusion.
Existence and uniqueness of solutions are obtained, employing methods for
semibounded evolution equations. Also shown is the existence of a global at-
tractor for the corresponding dynamical system.

1. Introduction

We consider the following nonlinear parabolic initial boundary value problem
in the open bounded interval Ω⊂R

ut − a(u)uxx− b(u)u2
x − λσ(u)= f (x), x ∈Ω, t > 0, (1.1a)

u(x,0)= u0(x), (1.1b)

u|∂Ω = 0, t > 0. (1.1c)

This problem extends the well studied porous medium diffusion, since no cer-
tain relationship between the coefficients a(u) and b(u) is assumed. Let us men-
tion that special cases of this system may typically arise in plasma physics within
the context of the fluid treatment of charged particles, and in density-dependent
reaction diffusion processes in mathematical biology. Naturally enough, these
systems imply only positive values for u(x, t); however, in the following treat-
ment, we do not impose such a restriction.

In order to demonstrate a specific case-modelled system, we consider the col-
lisionless evolution equation for the electron pressure P = nT , which, if we ig-
nore viscosity, gets the following form in the x-direction (see, Balescu [5])

3
2
Pt =−qx − 3

2
uPx − 5

2
Pux, (1.2)
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where u represents the electron velocity and q is the heat flux. Now, applying
Darcy’s law (see, Aronson [3])

u=−cPx, c > 0, (1.3)

to the above equation, we get

3
2
Pt =−qx +

3
2
cP2

x +
5
2
cPPxx. (1.4)

We see that the first term on the right-hand side corresponds to porous me-
dium diffusion (not considered here), whereas the other two terms constitute a
specific case of (1.1a), with a(P)= (5/3)cP and b(P)= c.

Concerning the applications in the dynamics of cell populations, with a spa-
tial distribution of cells, we may associate an energy density e(u), that is an inter-
nal energy per unit volume of an evolving spatial pattern, where u(x, t) denotes
the cell density (see [6, 14]). In this case, the total energy E(u) in a volume V is
given by

E(u)=
∫
V
e(u)dx. (1.5)

The change in energy δE, that is the work done in changing states by an amount
δu, is given by the variational derivative δE/δu which defines a potential

µ(u)= δE

δu
= e′(u). (1.6)

The gradient of the potential µ produces a flux J , which is classically proportional
to this gradient, that is

J =−kµ′(u). (1.7)

By using (1.6) and (1.7), the continuity equation for the density u is

∂u

∂t
= (a(u)ux

)
x, a(u)= ke′′(u). (1.8)

Writing out the diffusion term in full, we end up with the nonlinear operator
that appears in (1.1a), in the special case where it holds a′(u) = b(u), that is
the porous medium case. Also, the nonlinearity σ(u) may stand for the possible
growth dynamics.

For completeness, let us mention some of the results, concerning the large
time behavior of bounded solutions of nonlinear diffusion equations. Most of
them are related to porous medium type equations (degenerate, monotone dif-
fusion). In [4], the existence of a global attractor for the one-dimensional porous
medium equation, attracting all orbits starting from L∞-initial data, is demon-
strated. Extensive studies in [1, 13, 15] show that the ω-limit set is contained
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in the set of stationary solutions. Extensions for the unbounded domain case
can be found in [10, 11]. We also mention [2, 7, 8] on the existence of global
attractors for degenerate or nondegenerate quasilinear parabolic equations.

The principal assumption that will be used throughout this paper in the study
of problem (1.1) is the following assumption.

Hypothesis 1.1. a,b,σ ∈ C2(R), λ∈R, and there exists c∗ > 0 such that a(s)≥ c∗
(i.e., we consider nondegenerate but nonmonotone diffusion).

Due to the nonmonotonicity, the standard compactness methods on exis-
tence of solutions are not sufficient. To this end, the diffusion operator is treated as
a semibounded operator within the functional setting of an admissible triple. This
procedure allows for the construction of unique solutions in Cw([0,T],H2 ∩
H1

0 (Ω)), the space of weakly continuous functions u : [0,T]→H2∩H1
0 (Ω).

The existence of a global attractor in the phase space H = H2 ∩H1
0 (Ω) is

proved in Section 3. The result is shown assuming monotonicity for the non-
linearity b(·), considered to be nonincreasing. Nevertheless, this assumption does
not imply monotonicity for the diffusion operator itself. An important feature is
that this assumption is sufficient to prove further regularity with respect to time
for the solutions of (1.1) constructed in Section 2. Further, using this result, we
may define the semigroup S(t) : u0 ∈H 	→ u(t)∈H , corresponding to our prob-
lem.

We conclude by recalling some well-known results, which will be frequently
used (see, [16, 17, 18, 19]).

Lemma 1.2 (Gagliardo-Nirenberg inequality). Let 1 ≤ p,q,r ≤∞, j an integer,
0≤ j ≤m, and j/m≤ θ ≤ 1. Then

∥∥Dju
∥∥
p ≤ const‖u‖1−θ

q

∥∥Dmu
∥∥θ
r , u∈ Lq∩Wm,r(Ω), Ω⊆R

n, (1.9)

where

1
p
= j

n
+ θ
(

1
r
− m

n

)
+

1− θ

q
. (1.10)

Ifm− j−n/r is not a nonnegative integer, then the inequality holds for j/m≤ θ<1.

Lemma 1.3 (uniform Gronwall). Let g,h, y be three positive locally integrable
functions for t0 ≤ t <∞ which satisfy

dy

dt
≤ g y +h, ∀t ≥ t0,

∫ t+r

t
g(s)ds≤ α1,

∫ t+r

t
h(s)ds≤ α2,

∫ t+r

t
y(s)ds≤ α3,

(1.11)
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for all t ≥ t0, where α1, α2, and α3 are positive constants. Then

y(t+ r)≤
(
α3

r
+α2

)
exp

(
α1
)
, ∀t ≥ t0. (1.12)

We also use the short (equivalent) norms ‖ux‖2, ‖uxx‖2, and ‖uxxx‖2 inH1
0 (Ω),

H2∩H1
0 (Ω), and H3∩H1

0 (Ω), respectively (see Section 3). From the embedding
Hk ∩H1

0 (Ω)↩Ck−1
b (Ω), k = 1,2, . . . , and the Poincaré inequality (see [9, page

242]), we have

∥∥u(k−1)
∥∥∞ ≤ const‖u‖Hk∩H1

0
≤ const

∥∥u(k)
∥∥

2. (1.13)

2. Local existence

To obtain results on local existence of solutions, we intend to write problem (1.1)
as a nonlinear evolution equation in an appropriate functional setting. More
precisely, we will consider an admissible triple of Banach spaces, which is defined
as follows (see [17, 18] and [19, page 784]).

Definition 2.1. An admissible triple V ↩H↩W has the following properties:
(i) H is a real separable Hilbert space with scalar product (·|·)H , (ii) {V,W} is a
dual pair of real separable Banach spaces with the corresponding bilinear form
〈·,·〉 (i.e., 〈·,·〉 is continuous, 〈w,v〉 = 0, for every w ∈W , implies v = 0, and
〈w,v〉 = 0, for every v ∈ V , implies w = 0), (iii) the embeddings V↩H↩W
are continuous and dense, (iv) it holds 〈h,v〉 = (h|v)H , for all h∈H , v ∈V .

Clearly, an admissible triple generalizes the notion of the evolution triple, in
the sense that for an admissible triple it may hold W �= V∗. This generalization
is necessary in order to tackle the extended version of diffusion in hand. For
problem (1.1), we select the spaces

V =H4∩H1
0 (Ω), H =H2∩H1

0 (Ω), W = L2(Ω). (2.1)

Lemma 2.2. The embedding V↩H↩W for the spaces (2.1) defines an admissible
triple.

Sketch of the proof. Consider the bilinear form 〈·,·〉 : W ×V 	→ R, defined by
the integral

〈w,v〉 =
∫
Ω
vw+wvxxxx dx, ∀v ∈V, w ∈W. (2.2)

Now, it is easy to check that the inner product stemming from the bilinear
form 〈·,·〉

(w|v)H =
∫
Ω
vw+wxxvxx dx, for every w ∈H, v ∈H (2.3)
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induces an equivalent norm in H . We also have that

∣∣〈w,v〉∣∣=
∣∣∣∣
∫
Ω
vw+wvxxxx dx

∣∣∣∣
≤ ‖w‖2‖v‖2 +‖w‖2

∥∥vxxxx∥∥2

≤ c‖w‖W‖v‖V ,

(2.4)

hence the bilinear form 〈·,·〉 is continuous. Now assume that, for some w ∈
W , it holds 〈w,v〉 = 0, for every v ∈ V . Classical arguments on existence and
regularity of solutions for linear elliptic equations (see [12, Chapter II]) imply
the existence of solutions for the problem

v− vxxxx =w, v ∈V. (2.5)

For this solution v, we have that

0= 〈w,v〉 =
∫
Ω
w2dx, (2.6)

which implies that w = 0 and the proof is complete. �

We introduce the nonlinear operators A,B : V 	→W defined by

Au=−a(u)uxx, Bu=−b(u)u2
x. (2.7)

The following results outline the basic properties of the operators A and B.

Proposition 2.3. The operator A + B : H 	→W is bounded on bounded sets of H .

Proof. Let B = BH(R) be a closed ball in H . We will show that there exist con-
stants K1(R) and K2(R) such that

‖Au‖2 ≤ K1(R)‖u‖H, ‖Bu‖2 ≤ K2(R)‖u‖H, ∀u∈ B. (2.8)

Since a, b, σ ∈ C2(R) and the embedding H↩C1
b(Ω) is continuous, it follows

that there exist constants C1,m(R) and C2,m(R), m= 0,1,2, such that

sup
x∈Ω

∣∣a(m)(u(x)
)∣∣≤ C1,m(R), m= 0,1,2, (2.9)

sup
x∈Ω

∣∣b(m)(u(x)
)∣∣≤ C2,m(R), m= 0,1,2. (2.10)

Using (2.9), (2.10), and the fact that H1
0 (Ω) is a generalized Banach algebra, we

may obtain the inequalities

‖Au‖2 ≤ sup
x∈Ω

∣∣a(u(x)
)∣∣∥∥uxx∥∥2 ≤ K1(R)‖u‖H,

‖Bu‖2 ≤ sup
x∈Ω

∣∣b(u(x)
)∣∣∥∥u2

x

∥∥
2 ≤ constsup

x∈Ω

∣∣b(u(x)
)∣∣ ‖u‖2

H

≤ K2(R)‖u‖H.
(2.11)
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Finally, we conclude that

∥∥(A + B)u
∥∥

2 ≤ K(R)‖u‖H, (2.12)

where K(R)=max{K1(R),K2(R)}. �

Proposition 2.4. The operator A + B : H 	→W is locally Lipschitz continuous.

Proof. Let u,v ∈ B = BH(R) be a closed ball in H . We have that

‖Au−Av‖2 ≤
∥∥(a(u)− a(v)

)
vxx
∥∥

2 +
∥∥a(u)

(
uxx − vxx

)∥∥
2. (2.13)

From the mean value theorem and (2.9), we get

∣∣a(u(x)
)− a

(
v(x)

)∣∣≤ C1,1(R)
∣∣u(x)− v(x)

∣∣, (2.14)∣∣a′(u(x)
)− a′

(
v(x)

)∣∣≤ C1,2(R)
∣∣u(x)− v(x)

∣∣. (2.15)

Therefore,

∥∥(a(u)− a(v)
)
vxx
∥∥2

2 ≤ C1,1(R)2‖u− v‖2
∞
∥∥vxx∥∥2

2 ≤ C(R)‖u− v‖2
H,∥∥a(u)

(
uxx − vxx

)∥∥2
2 ≤ C2

1,0(R)
∥∥uxx − vxx

∥∥2
2 ≤ C(R)‖u− v‖2

H,
(2.16)

where C(R) is a common symbol for the constants. Similar inequalities hold for
the operator B. So finally it holds that

∥∥(A + B)u− (A + B)v
∥∥

2 ≤ C(R)‖u− v‖H. (2.17)
�

Proposition 2.5. The operator A + B : H 	→W is semibounded.

Proof. By definition, it must be proved that there exists a monotone increasing
function d1 ∈ C1(R) such that

〈
(A + B)u,u

〉≥−d1
(‖u‖2

H

)
, for every u∈V. (2.18)

Let u∈ C∞0 (Ω)∩C(Ω). For the operator A, it holds

〈Au,u〉 =
∫
Ω

Auudx+
∫
Ω

Auuxxxx dx. (2.19)
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Integration by parts in the second integral on the right-hand side of (2.19) gives

−
∫
Ω
a(u)uxxuxxxx dx =−1

2

∫
Ω
a′′(u)u2

xu
2
xx dx−

1
2

∫
Ω
a′(u)u3

xx dx

+
∫
Ω
a(u)u2

xxx dx.

(2.20)

Using Lemma 1.2, we obtain the inequality

∥∥uxx∥∥4 ≤ const‖u‖1/4
2

∥∥uxxx∥∥3/4
2 , (2.21)

which, with the aid of (2.9) and Young’s inequality, gives the following estimate:

− 1
2

∫
Ω
a′′(u)u2

xu
2
xx dx−

1
2

∫
Ω
a′(u)u3

xx dx

≥−C1,2
∥∥ux∥∥2

∞
∥∥uxx∥∥2

2−C1,1
∥∥uxx∥∥2

∥∥uxx∥∥2
4

≥−Ĉ1‖u‖4
H − Ĉ2‖u‖H‖u‖1/2

2

∥∥uxxx∥∥3/2
2

≥−Ĉ1‖u‖4
H − Ĉ3‖u‖3/2

H

∥∥uxxx∥∥3/2
2

≥−Ĉ1‖u‖4
H − Ĉ4‖u‖6

H −
c∗
2

∥∥uxxx∥∥2
2.

(2.22)

For the first integral of the right-hand side of (2.19), we have

−
∫
Ω
a(u)uxxudx ≥−C1,0‖u‖∞‖uxx‖1 ≥−Ĉ0‖u‖2

H. (2.23)

Using Hypothesis 1.1, (2.19), (2.20), (2.22), (2.23), and density arguments, we
obtain that

〈Au,u〉 ≥ −Ĉ0‖u‖2
H − Ĉ1‖u‖4

H − Ĉ4‖u‖6
H :=−d1,1

(‖u‖2
H

)
. (2.24)

A similar procedure may be followed for the operator B, to derive the relation

〈Bu,u〉 ≥ −d1,2
(‖u‖2

H

)
. (2.25)

Finally, from estimates (2.24) and (2.25) we get that there exists a monotone
increasing C1- function d1 : R→R satisfying (2.18). �

The previous propositions enable us to show local existence of solutions. The
result is stated as follows.
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Theorem 2.6. Let u0, f ∈H . Assume that Hypothesis 1.1 is satisfied. Then there
exists T > 0 such that problem (1.1) has a unique solution

u∈ Cw
(
[0,T],H

)
, ut ∈ Cw

(
[0,T],W

)
. (2.26)

Moreover, the solution u : [0,T]→W is Lipschitz continuous.

Proof. (A) Existence: the first step is to show existence of at least one solution
in a finite dimensional subspace Vn = span{e1, . . . , en} of V , where {ei}i≥1 is an
orthonormal basis of Vn with respect to (·|·)H . It holds that

⋃
nVn =V↩H .

We define the linear and continuous operator P̃n : W 	→V as

P̃nw =
n∑
i

〈
w,ei

〉
ei, w ∈W. (2.27)

Now, the Galerkin equation for problem (1.1) on Vn↩V↩H reads

u′n(t) + P̃n(A + B)un(t)= P̃nCun(t), t ∈ [0,T], un(0)= P̃nu0, (2.28)

where

Cun(t)= λσ
(
un(t)

)
+ f . (2.29)

Using Propositions 2.3 and 2.4, Peano’s theorem justifies the existence of a C1

solution for (2.28), un : [0,T0]→Vn, for some T0 > 0 which depends on n.
The next step is to obtain an a priori estimate for un in H . Note that P̃n :

H 	→ Vn is an orthogonal projection onto the space Vn, since it holds P̃nu =∑n
i (u|ei)Hei, u∈H . Since un is continuous on [0, T0], (2.28) implies that

(
u′n|un

)
H =−

(
P̃n(A + B)un|un

)
H +

(
P̃nCun|un

)
H

=−〈(A + B)un,un
〉

+
〈

Cun,un
〉
.

(2.30)

Now, it is not hard to verify that there exists a monotone increasing function
d2 ∈ C1(R) such that

∣∣〈Cu,u
〉∣∣≤ d2

(‖u‖2
H

)
, ∀u∈V. (2.31)

Hence, from (2.18), (2.30), and (2.31) we obtain the differential inequality

d

dt

∥∥un(t)
∥∥2
H ≤ 2d

(∥∥un(t)
∥∥2
H

)
, t ∈ [0,T0

]
, (2.32)
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where ‖un(0)‖H = ‖Pnu0‖H ≤ ‖u0‖H . Since the function d(·) is Lipschitz con-
tinuous as a C1 function, we may apply the theorem of Picard-Lindelöf to con-
clude that there exists a T > 0, this time independent of n, such that

∥∥un(t)
∥∥2
H ≤ max

t∈[0,T]
g(t)≤ R, t ∈ [0,T]. (2.33)

Finally, using standard continuation arguments, we can extend the solution un
to the interval [0,T].

Now, from (2.33) we have that there exists a subsequence, denoted again by
{un}, such that

un(t) u(t), in H, as n−→∞, (2.34)

at least in a dense countable subset of [0,T]. Let v ∈Vk↩H , k ≤ n. Since P̃nv =
v, for every k ≤ n, it follows that

(
u′n(t)|v)H =−

(
P̃n(A + B−C)un(t)|v)H =−

〈
(A + B−C)un(t),v

〉
. (2.35)

Using Proposition 2.3 and estimate (2.33), we conclude that (un(t)|v)H is
equicontinuous on [0,T], which implies that (2.34) holds in the whole inter-
val [0,T]. Finally, passing to the limit to (2.35) and using density of

⋃
k Vk in H ,

we obtain that u ∈ Cw([0,T],H), ut ∈ Cw([0,T],W) is a solution for problem
(1.1) and as a consequence, u : [0,T]→W is Lipschitz continuous.

(B) Uniqueness: the difference of solutions w = u− v of problem (1.1) satisfies
the following initial value problem:

wt − a(u)wxx −A(u,v)vxx−B(u,v)− λΣ(u,v)= 0, w(0)= 0, (2.36)

where A(u,v)= a(u)− a(v), B(u,v)= (b(u)− b(v))v2
x + b(u)(u2

x − v2
x), and Σ(u,

v)= σ(u)− σ(v). Multiplying (2.36) by u and integrating over Ω, we obtain the
equation

1
2
d

dt
‖w‖2

2 +
∫
Ω
a′(u)vxwwx dx+

∫
Ω

(
a(u)− a(v)

)
wxvx dx

+
∫
Ω
a′(u)uxwwx dx+

∫
Ω

(
a′(u)− a′(v)

)
v2
xwdx

−
∫
Ω

(
b(u)− b(v)

)
v2
xwdx−

∫
Ω
b(u)

(
u2
x − v2

x

)
wdx

+
∫
Ω
a(u)w2

x dx− λ
∫
Ω

(
σ(u)− σ(v)

)
wdx = 0.

(2.37)
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Using estimate (2.33) and relations (2.9), (2.10), and (2.15) the following es-
timates are derived:

∣∣∣∣
∫
Ω

(
a′(u)− a′(v)

)
v2
xwdx

∣∣∣∣≤ C1,2
∥∥vx∥∥2

∞‖w‖2
2 ≤ C(R)‖w‖2

2,
∣∣∣∣
∫
Ω
a′(u)vxwwx dx

∣∣∣∣≤ C1,1
∥∥vx∥∥∞‖w‖2

∥∥wx

∥∥
2

≤ ε0
∥∥wx

∥∥2
2 +C(R)‖w‖2

2.

(2.38)

The rest of the integrals in (2.37) can be estimated in a similar way. Hence,
for sufficiently small ε0, we get the inequality

1
2
d

dt

∥∥w(t)
∥∥2
W +

c∗
2

∥∥wx

∥∥2
2 ≤ C

∥∥w(t)
∥∥2
W. (2.39)

Application of the standard Gronwall’s lemma implies uniqueness. �

3. Existence of a global attractor in H

In this section, we discuss the asymptotic behavior of solutions of the nonlinear
parabolic problem (1.1). To this end, in addition to the principal hypothesis,
Hypothesis 1.1, we assume that the nonlinear functions b, σ satisfy the following
hypothesis.

Hypothesis 3.1. b′(s) ≤ 0 and there exist cm > 0, such that |σ (m)(s)| ≤ cm|s|, for
all m= 0,1,2.

First, we prove that under the extra hypothesis, Hypothesis 3.1, the unique
local solution u(x, t) of problem (1.1), obtained in Theorem 2.6, exists globally
in time. We denote by λ∗ the positive constant induced by Poincaré’s inequality.

Lemma 3.2. Let Hypotheses 1.1 and 3.1 be fulfilled and u0, f ∈ H . Assume also
that

λ <
c∗λ∗
2c0

. (3.1)

Then there exists a constant ρ2 independent of t, such that,

limsup
t→∞

∥∥ux(t)
∥∥

2 ≤ ρ2. (3.2)

Proof. We multiply (1.1a) by −uxx and integrate over Ω to get

1
2
d

dt

∥∥ux∥∥2
2 +
∫
Ω
a(u)u2

xx dx+
∫
Ω
b(u)u2

xuxx dx

+ λ
∫
Ω
σ(u)uxx dx =

∫
Ω
f uxx dx.

(3.3)
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Using Hypothesis 1.1, we observe that

∫
Ω
a(u)u2

xx dx ≥ c∗
∥∥uxx∥∥2

2, (3.4)

whereas from Hypothesis 3.1 we have

∫
Ω
b(u)u2

xuxx dx =−
1
3

∫
Ω
b′(u)u4

x dx ≥ 0. (3.5)

Furthermore, Hypothesis 3.1, together with Poincaré’s inequality

‖u‖2 ≤ λ−1/2
∗

∥∥ux∥∥2, (3.6)

implies that

λ
∣∣∣∣
∫
Ω
σ(u)uxx dx

∣∣∣∣≤ λc0‖u‖2
∥∥uxx∥∥2 ≤ λλ−1

∗ c0
∥∥uxx∥∥2

2. (3.7)

Relations (3.3), (3.4), and (3.7) imply that

d

dt

∥∥ux(t)
∥∥2

2 +α
∥∥uxx(t)

∥∥2
2 ≤

1
c∗
‖ f ‖2

2, (3.8)

where α= c∗ − 2c0λλ−1∗ . Applying again Poincaré’s inequality (3.6) to the above
estimate (3.8), we get

d

dt

∥∥ux(t)
∥∥2

2 +αλ∗
∥∥ux(t)

∥∥2
2 ≤

1
c∗
‖ f ‖2

2. (3.9)

If assumption (3.1) is satisfied, that is, α > 0 Gronwall’s lemma leads to the
following estimate:

∥∥ux(t)
∥∥2

2 ≤
∥∥ux(0)

∥∥2
2 exp

(−αλ∗t
)

+
1

αc∗λ∗
‖ f ‖2

2

(
1− exp

(−αλ∗t
))
. (3.10)

Letting t→∞, from estimate (3.10) we obtain that

limsup
t→∞

∥∥ux(t)
∥∥2

2 ≤ ρ2
2, (3.11)

where ρ2
2 = (1/αc∗λ∗)‖ f ‖2

2 and the proof is completed. �
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Let � be a bounded set of H , included in a ball BH(0,M) of H , centered at 0
of radius M. Assuming that u0 ∈�, we infer from Lemma 3.2 that for ρ′2 > ρ2,
there exists t0(�,ρ′2) > 0 such that for t ≥ t0(�,ρ′2)

∥∥ux(t)
∥∥

2 ≤ ρ′2,
∥∥u(t)

∥∥
2 ≤ ρ1 = λ−1/2

∗ ρ′2. (3.12)

Integrating (3.8) with respect to t, it follows that for every r > 0

α
∫ t+r

t

∥∥uxx(s)
∥∥2

2ds≤
r

c∗
‖ f ‖2

2 +
∥∥ux(t)

∥∥2
2. (3.13)

Once again, letting t→∞, we obtain from inequality (3.12) that

limsup
t→∞

∫ t+r

t

∥∥uxx(s)
∥∥2

2ds≤
r

αc∗
‖ f ‖2

2 +
ρ2

2

α
, for every r > 0. (3.14)

and for t ≥ t0(�,ρ′2)

∫ t+r

t

∥∥uxx(s)
∥∥2

2ds≤
r

αc∗
‖ f ‖2

2 +
ρ′22

α
, for every r > 0. (3.15)

Lemma 3.3. Let Hypotheses 1.1 and 3.1 be fulfilled, u0 ∈�, and f ∈H . Assume
also that (3.1) is satisfied. Then there exists a constant ρ3 independent of t, and
t1 > 0 such that

∥∥uxx(t)
∥∥

2 ≤ ρ3, for t ≥ t1. (3.16)

Proof. Multiply (1.1a) by uxxxx and integrate over Ω to get

1
2
d

dt

∥∥uxx∥∥2
2 +
∫
Ω
a′(u)uxuxxuxxx dx+

∫
Ω
a(u)u2

xxx dx

+ 2
∫
Ω
b(u)uxuxxuxxx dx+ λ

∫
Ω
σ ′(u)uxuxxx dx

+
∫
Ω
b′(u)u3

xuxxx dx

=−
∫
Ω
fxuxxx dx.

(3.17)

Using inequalities (1.13), (3.12), and Hypothesis 1.1, we obtain that inequal-
ities (2.9) and (2.10) hold, for all t ≥ t0(�,ρ′2), with R replaced by ρ′2. It follows
that

∣∣∣∣
∫
Ω
a′(u)uxuxxuxxx dx

∣∣∣∣≤ C1,1
∥∥ux∥∥∞

∥∥uxx∥∥2

∥∥uxxx∥∥2

≤ C1,1 const
∥∥uxx∥∥2

2

∥∥uxxx∥∥2

≤ C1
∥∥uxx∥∥4

2 + ε1
∥∥uxxx∥∥2

2.

(3.18)
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Applying Lemma 1.2, we obtain the inequality

∥∥ux∥∥6 ≤ const‖u‖1/3
2

∥∥uxx∥∥2/3
2 , (3.19)

which can be used to get the estimate

∣∣∣∣
∫
Ω
b′(u)u3

xuxxx dx
∣∣∣∣≤ C2,1

∥∥ux∥∥3
6

∥∥uxxx∥∥2

≤ C2,1 const‖u‖2
∥∥uxx∥∥2

2

∥∥uxxx∥∥2

≤ C2
∥∥uxx∥∥4

+ ε1
∥∥uxxx∥∥2

2.

(3.20)

We also have that the estimate

λ
∣∣∣∣
∫
Ω
σ ′(u)uxuxxx dx

∣∣∣∣≤ λc1‖u‖∞
∥∥ux∥∥2

∥∥uxxx∥∥2

≤ λc1 const
∥∥uxx∥∥2

2

∥∥uxxx∥∥2

≤ C3
∥∥uxx∥∥4

2 + ε1
∥∥uxxx∥∥2

2.

(3.21)

The rest of the integral terms in (3.17) can be bounded similarly. Thus, for
sufficiently small ε1, we get the inequalities

d

dt

∥∥uxx(t)
∥∥2

2 + c∗
∥∥uxxx(t)

∥∥2
2 ≤M1 +M2

∥∥uxx(t)
∥∥4

2, (3.22)

d

dt

∥∥uxx(t)
∥∥2

2 ≤M1 +M2
∥∥uxx(t)

∥∥4
2, (3.23)

where M1 and M2 are independent of t. We set y(t)= ‖uxx(t)‖2
2, h(t)=M1, and

g(t)=M2‖uxx(t)‖2
2. For fixed r > 0, we use (3.15) to deduce that

∫ t+r

t
g(s)ds≤ α1,

∫ t+r

t
h(s)ds≤ α2,

∫ t+r

t
y(s)ds≤ α3, (3.24)

for all t ≥ t0(�,ρ′2), where α1 =M2α3, α2 =M1r, and α3 = (r/αc∗)‖ f ‖2
2 + ρ′22 /α.

Applying uniform Gronwall’s lemma (Lemma 1.3) to the differential inequality
(3.23), we conclude that

∥∥uxx(t)
∥∥2

2 ≤
(
α3

r
+α2

)
exp

(
α1
)

:= ρ2
3, ∀t ≥ t0

(
�,ρ′2

)
+ r (3.25)

and the proof is complete. �

Lemma 3.4. Let Hypotheses 1.1 and 3.1 be fulfilled, u0 ∈�, and f ∈H . Assume
also that (3.1) is satisfied. Then, there exists a constant ρ4 independent of t and
t2 > 0, such that

∥∥uxxx(t)
∥∥

2 ≤ ρ4, for t ≥ t2. (3.26)
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Proof. We multiply (1.1a) by −u(6) and integrate over Ω to get the equation

1
2
d

dt

∥∥uxxx∥∥2
2 +
∫
Ω
a(u)u2

xxxx dx+
∫
Ω

A1(u)u2
xuxxuxxxx dx

+ 2
∫
Ω

A2(u)uxuxxxuxxxx dx+
∫
Ω

A3(u)u2
xxuxxxx dx

+ λ
∫
Ω

(
σ ′′(u)u2

x + σ ′(u)uxx
)
uxxxx dx+

∫
Ω
b′′(u)u4

xuxxxx dx

=−
∫
Ω
fxxuxxxx dx,

(3.27)

where A1(u)= a′′(u) + 5b′(u), A2(u)= a′(u) + b(u), and A3(u)= a′(u) + 2b(u).
Similarly to Lemma 3.3, we arrive at the inequality

d

dt

∥∥uxxx(t)
∥∥2

2 + c∗
∥∥uxxxx(t)

∥∥2
2 ≤M3 +M4

∥∥uxxx(t)
∥∥4

2, (3.28)

where M3(ρ1,ρ
′
2,ρ3) and M4(ρ1,ρ

′
2,ρ3) are independent of t. Moreover, from in-

equality (3.22) we obtain that for fixed r′ > 0

∫ t+r′

t

∥∥uxxx(s)
∥∥2

ds≤ M1r′

c∗
+
ρ2

3

c∗

(
M2ρ

2
3r
′ + 1

)
. (3.29)

Setting y(t)=‖uxxx(t)‖2
2, h(t)=M3, and g(t)=M4‖uxxx(t)‖2

2, inequality (3.29)
implies the following estimates:

∫ t+r′

t
g(s)ds≤ β1,

∫ t+r′

t
h(s)ds≤ β2,

∫ t+r′

t
y(s)ds≤ β3, (3.30)

where

β1 =M4β3, β2 =M3r
′, β3 = M1r′

c∗
+
ρ2

3

c∗

(
M2ρ

2
3r
′ + 1

)
. (3.31)

Applying Lemma 1.3 to the differential inequality (3.28), we conclude that

∥∥uxxx(t)
∥∥2

2 ≤
(
β3

r′
+β2

)
exp

(
β1
)

:= ρ2
4, for t ≥ t1 + r′ (3.32)

to complete the proof. �

Next we discuss certain regularity questions of the solution and the solution
operator for problem (1.1).
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Proposition 3.5. Let Hypotheses 1.1 and 3.1 be fulfilled and u0, f ∈H . Then, for
the unique solution of (1.1), it holds that u∈ C(0,T ;H), for every T > 0. Moreover,
the mapping S(t) : u0 ∈H 	→ u(t)∈H is continuous.

Proof. We will divide the proof to two parts.
(A) Continuity of Solutions. Consider the dense embeddings

V↩H↩V∗. (3.33)

A consequence of relation (3.28) is that u∈ L2(0,T ;V), for every T > 0. Also,
it can be easily proved that ut ∈ L2(0,T ;W). Taking into account the continuous
embedding L2(0,T ;W)↩L2(0,T ;V∗), it follows that

u∈�≡ {u∈ L2(0,T ;V), ut ∈ L2(0,T ;V∗)
}
↩C(0,T ;H). (3.34)

(B) Continuity of the solution mapping. Multiply (2.36) by wxxxx and integrate
over Ω to get the following relation:

1
2
d

dt

∥∥wxx

∥∥2
2 +
∫
Ω
a(u)w2

xxx dx+
∫
Ω
a′(u)uxwxxwxxx dx

+
∫
Ω

(
a′(u)− a′(v)

)
vxvxxwxxx dx+

∫
Ω
a′(u)wxvxxwxxx dx

+
∫
Ω

(
a(u)− a(v)

)
vxxxwxxx dx+

∫
Ω

(
b′(u)− b′(v)

)
v3
xwxxx dx

+
∫
Ω
b′(u)v2

xwxwxxx dx+
∫
Ω
b′(u)

(
ux + vx

)
uxwxwxxx dx

+
∫
Ω
b(u)

(
ux + vx

)
wxxwxxx dx+

∫
Ω
b(u)

(
uxx + vxx

)
wxwxxx dx

+ 2
∫
Ω

(
b(u)− b(v)

)
vxvxxwxxx dx+ λ

∫
Ω

(
σ(u)− σ(v)

)
wxxxx dx = 0.

(3.35)

The integral terms in the equation above, may be estimated as follows:

∣∣∣∣
∫
Ω

(
a(u)− a(v)

)
vxxxwxxx dx

∣∣∣∣≤ C1,1‖w‖∞
∥∥vxxx∥∥2

∥∥wxxx

∥∥
2

≤ K1
∥∥wxx

∥∥
2

∥∥vxxx∥∥2

∥∥wxxx

∥∥
2

≤ K2
∥∥vxxx∥∥2

2

∥∥wxx

∥∥2
2 + ε2

∥∥wxxx

∥∥2
2,∣∣∣∣

∫
Ω
b(u)

(
uxx + vxx

)
wxwxxx dx

∣∣∣∣≤ C2,0
∥∥wx

∥∥∞
∥∥uxx + vxx

∥∥
2

∥∥wxxx

∥∥
2

≤ K3
∥∥wxx

∥∥
2

∥∥uxx + vxx
∥∥

2

∥∥wxxx

∥∥
2

≤ K4
∥∥wxx

∥∥2
2 + ε2

∥∥wxxx

∥∥2
2.

(3.36)
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The inequality obtained by this procedure, for sufficiently small ε2, is

d

dt

∥∥wxx(t)
∥∥2

2 + c∗
∥∥wxxx(t)

∥∥2
2 ≤M0(t)

∥∥wxx(t)
∥∥2

2, (3.37a)

M0(t)= C1 +C2
∥∥vxxx(t)

∥∥2
2. (3.37b)

Since the solution v ∈ L2(0,T ;H3∩H1
0 (Ω)) (e.g., see Lemma 3.4), the func-

tion M0(t) is integrable on the interval [0,T]. Therefore, the standard Gronwall
lemma is applicable to inequality (3.37a) to obtain

∥∥wxx(t)
∥∥2

2 ≤ C3
∥∥wxx(0)

∥∥2
2, C3 = exp

{
max
t∈[0,T]

M0(t)
}
. (3.38)

Inequality (3.38) implies the continuity of the mapping S(t) : u0 ∈H 	→ u(t) ∈
H . �

Now, we are allowed to define a dynamical system in H as the mapping

S(t) : u0 ∈H 	−→ u(t)∈H (3.39)

associated to problem (1.1). We conclude with the following result.

Theorem 3.6. If f ∈ H , then the semigroup S(t) possesses global attractor �
in H .

Proof. Restating the result of Lemma 3.3 and taking into account inequality
(3.25) for some fixed r > 0, we have that the closed ball in H ,

�1 =
{
φ ∈H : ‖φ‖H ≤ ρ3

}
, (3.40)

is a bounded absorbing set for the semigroup S(t), that is, for every bounded set
� in H , there exists t1(B) > 0, such that S(t)�⊂�1, for every t ≥ t1(�). On the
other hand, Lemma 3.4 implies that there exists t2(�) > 0 such that S(t)�⊂ B2

for t ≥ t2(�), where

�2 =
{
φ∈ X : ‖φ‖X ≤ ρ4

}
(3.41)

is a closed ball in X :=H3 ∩H1
0 (Ω). The set �2 is bounded in X and relatively

compact in H and the semigroup S(t) is uniformly compact. Hence, the set �=
ω(�) is a compact attractor for the semigroup S(t). �
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