
GENERIC UNIQUENESS OF MINIMAL CONFIGURATIONS
WITH RATIONAL ROTATION NUMBERS
IN AUBRY-MATHER THEORY

ALEXANDER J. ZASLAVSKI

Received 18 November 2002

We study (h)-minimal configurations in Aubry-Mather theory, where h belongs to a com-
plete metric space of functions. Such minimal configurations have definite rotation num-
ber. We establish the existence of a set of functions, which is a countable intersection of
open everywhere dense subsets of the space and such that for each element h of this set
and each rational number α, the following properties hold: (i) there exist three different
(h)-minimal configurations with rotation number α; (ii) any (h)-minimal configuration
with rotation number α is a translation of one of these configurations.

1. Introduction

Let Z be a set of all integers. A configuration is a bi-infinite sequence x = (xi)i∈Z

∈ RZ. The set RZ will be endowed with the product topology and the partial order de-
fined by x < y if and only if xi < yi for all i∈ Z.

We have an order-preserving action T : Z2×RZ →RZ defined by

T(k,x)= Tkx = y⇐⇒k = (k1,k2
)∈ Z

2,

x, y ∈R
Z, yi = xi−k1 + k2 ∀i∈ Z.

(1.1)

Let x, y ∈ RZ. We say that y is a translation of x if there is n = (n1,n2) ∈ Z2 such that
y = Tnx.

Let h : R2 → R1 be a continuous function. We extend h to arbitrary finite segments
(xj , . . . ,xk), j < k, of configurations x ∈RZ by

h
(
xj , . . . ,xk

)
:=

k−1∑
i= j

h
(
xi,xi+1

)
. (1.2)

A segment (xj , . . . ,xk) is called (h)-minimal if h(xj , . . . ,xk) ≤ h(yj , . . . , yk) whenever
xj = yj and xk = yk.
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We assume that h has the following properties [3, 4]:

(H1) for all (ξ,η)∈R2, h(ξ + 1,η+ 1)= h(ξ,η);
(H2) lim|η|→∞h(ξ,ξ +η)=∞ uniformly in ξ;
(H3) if ξ1 < ξ2 and η1 < η2, then

h
(
ξ1,η1

)
+h
(
ξ2,η2

)
< h
(
ξ1,η2

)
+h
(
ξ2,η1

)
; (1.3)

(H4) if (x−1,x0,x1) �= (y−1, y0, y1) are (h)-minimal segments and x0 = y0, then

(
x−1− y−1

)(
x1− y1

)
< 0. (1.4)

A configuration x ∈ RZ is (h)-minimal if, for each pair of integers j and k satisfying
j < k and each finite segment {yi}ki= j ⊂ R1 satisfying yj = xj and yk = xk, the inequality
h(xj , . . . ,xk) ≤ h(yj , . . . , yk) holds. Denote by �(h) the set of all (h)-minimal configura-
tions. It is known that the set �(h) is closed [2, 3].

The notion of global minimizers ((h)-minimal configurations in the present paper) is
crucial to the Aubry-Mather theory. The works by Aubry and Mather were begun inde-
pendently and with different motivations but led to similar results by different methods.
While Mather [12] studied area-preserving annulus mappings as they occur as section
mappings for Hamiltonian systems of two degrees of freedom, Aubry [1] investigated cer-
tain models of solid state physics related to dislocations in one-dimensional crystals. For
more details on Aubry-Mather theory, see [1, 2, 3, 4, 12, 13, 14, 15, 18, 19]. For the usage
of the notion of global minimizers in the related topics of calculus of variations, partial
differential equations, and geometry, see also [3, 4, 5, 6, 7, 8, 10, 11, 16, 17, 20, 21].

We briefly review the definitions, notions, and some basic results from Aubry-Mather
theory [2, 3].

Definition 1.1. The configurations x ∈RZ and x∗ ∈RZ cross

(a) at i∈ Z if xi = x∗i and (xi−1− x∗i−1)(xi+1− x∗i+1) < 0,
(b) between i and i+ 1 if (xi− x∗i )(xi+1− x∗i+1) < 0.

Definition 1.2. The configuration x ∈RZ is periodic with period (q, p)∈ (Z \ {0})×Z if
T(q,p)x = x.

Remark 1.3. Assume that h= h(ξ1,ξ2)∈C2(R2) and (∂2h/∂ξ1∂ξ2)(u,v) < 0 for all (u,v)∈
R2. It is not difficult to show that (H3) and (H4) hold. Moreover, we can show that if
h∈C2(R2), then (H3) holds if and only if

{
(u,v)∈R

2 :
(

∂2h

∂ξ1∂ξ2

)
(u,v) < 0

}
(1.5)

is an everywhere dense subset of R2.

We have the following result [3, Corollary 3.16, Theorem 3.17].
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Proposition 1.4. There exists a continuous function α(h) : �(h)→ R1 with the following
properties:

(i) for all x ∈�(h), i∈ Z, ∣∣xi− x0− iα(h)(x)
∣∣ < 1; (1.6)

(ii) if x ∈�(h) is periodic with period (q, p)∈ Z2, then α(h)(x)= p/q;
(iii) for all α∈R1, the set {x ∈�(h) : α(h)(x)= α} �=∅.

Remark 1.5. We call α(h)(x) the rotation number of x ∈�(h).
For each α∈R1, define

�(h,α)= {x ∈�(h) : α(h)(x)= α}. (1.7)

We study �(h,α) with rational α∈R1.
Let a rational α= p/q be an irreducible fraction, where q ≥ 1 and p are integers. De-

note by �per(h,α) the set of all periodic (h)-minimal configurations x ∈�(h,α) which
satisfy T(q,p)x = x, equivalently, xi−q + p = xi, for all i∈ Z.

For the proof of the following result, see [2, 3].

Proposition 1.6. �per(h,α) is a nonempty closed totally ordered set. Moreover, if x ∈
�per(h,α), then x is a minimizer of hqp : Pqp →R1, where

hqp(x)= h(x0, . . . ,xq
)
, Pqp =

{
x ∈R

Z : T(q,p)x = x
}
. (1.8)

Two elements of �per(h,α) are called (h)-neighboring if there does not exist an ele-
ment of �per(h,α) between them. The following two propositions describe the structure
of the set �(h,α). For their proofs, see [3].

Proposition 1.7. Suppose that x− < x+ are (h)-neighboring elements of the set �per(h,α).
Then there exist y(1), y(2) ∈�(h,α) such that

x− < y(1) < x+, x− < y(2) < x+,

lim
i→−∞

y(1)
i − x−i = 0, lim

i→∞
y(1)
i − x+

i = 0,

lim
i→−∞

y(2)
i − x+

i = 0, lim
i→∞

y(2)
i − x−i = 0.

(1.9)

Suppose that x− < x+ are (h)-neighboring elements of �per(h,α). Define

�+(h,α,x−,x+)= {x ∈�(h,α) : lim
i→−∞

xi− x−i = 0, lim
i→∞

xi− x+
i = 0

}
,

�−(h,α,x−,x+)= {x ∈�(h,α) : lim
i→−∞

xi− x+
i = 0, lim

i→∞
xi− x−i = 0

}
.

(1.10)

We denote by �+(h,α) (resp., �−(h,α)) the union of the sets �+(h,α,x−,x+) (resp.,
�−(h,α,x−,x+)) extended over all pairs of (h)-neighboring elements x−<x+ of �per(h,α).

Proposition 1.8. (1) If x ∈�−(h,α,x−,x+)∪�+(h,α,x−,x+), where x−,x+ ∈�per(h,α)
are (h)-neighboring and x− < x+, then x− < x < x+.
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(2) �(h,α)=�per(h,α)∪�+(h,α)∪�−(h,α).
(3) The sets �per(h,α)∪�+(h,α) and �per(h,α)∪�−(h,α) are totally ordered.
(4) �+(h,α)= {x ∈�(h,α) : x > T(q,p)x} and �−(h,α)= {x ∈�(h,α) : x < T(q,p)x}.
Let k ≥ 2 be an integer. In this paper, we consider a complete metric space of functions

h : R2 →R1 which belong to Ck(R2). This space is defined in Section 2 and is denoted by
Mk. We establish the existence of a set �⊂Mk which is a countable intersection of open
everywhere dense subsets of Mk and such that for each h∈� and each rational α= p/q
with p and q relatively prime, the following properties hold:

(i) there exist (h)-minimal configurations x(+), x(−), and x(0) with rotation number

α such that x(+)
i−q + p > x(+)

i , x(−)
i−q + p < x(−)

i , and x(0)
i−q + p = x(0)

i for all integers i;
(ii) any (h)-minimal configuration with rotation number α is a translation of one of

the configurations x(+), x(−), and x(0).

2. Spaces of functions

Let k ≥ 2 be an integer. For f = f (x1,x2)∈Ck(R2) and q = (q1,q2)∈ {0, . . . ,k}2, satisfy-
ing q1 + q2 ≤ k, we set

|q| = q1 + q2, Dq f = ∂|q| f
∂x

q1

1 ∂x
q2

2
. (2.1)

Denote by Mk the set of all h∈Ck(R2) which have the property (H1), satisfying(
∂2h

∂x1∂x2

)(
ξ1,ξ2

)≤ 0 ∀(ξ1,ξ2
)∈R

2, (2.2)

and have the following property:

(H5) there exist δh ∈ (0,1) and ch > 0 such that

h
(
x1,x2

)≥ δh(x1− x2
)2− ch ∀(x1,x2

)∈R
2. (2.3)

Clearly (H5) implies (H2).
Denote by Mk0 the set of all h∈Mk such that(

∂2h

∂x1∂x2

)(
ξ1,ξ2

)
< 0 ∀(ξ1,ξ2

)∈R
2. (2.4)

For each N ,ε > 0, we set

Ek(N ,ε)= {(h1,h2
)∈Mk ×Mk :

∣∣Dqh1
(
x1,x2

)−Dqh2
(
x1,x2

)∣∣≤ ε
for each q ∈ {0, . . . ,k}2 satisfying |q| ≤ k
and each

(
x1,x2

)∈R
2 satisfying

∣∣x1
∣∣,
∣∣x2
∣∣≤N}

∩ {(h1,h2
)∈Mk ×Mk :

∣∣h1
(
x1,x2

)−h2
(
x1,x2

)∣∣ < ε
+ εmax

{∣∣h1
(
x1,x2

)∣∣,
∣∣h2
(
x1,x2

)∣∣}∀(x1,x2
)∈R

2}.
(2.5)

Using the following simple lemma, we can easily show that for the set Mk there exists
the uniformity which is determined by the base Ek(N ,ε), N ,ε > 0.
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Lemma 2.1. Let a,b ∈R1, ε ∈ (0,1), and |a− b| < ε+ εmax{|a|,|b|}. Then

|a− b| < ε+ ε2(1− ε)−1 + ε(1− ε)−1 min
{|a|,|b|}. (2.6)

It is not difficult to see that the uniformity determined by the base Ek(N ,ε), N ,ε > 0,
is metrizable (by a metric dk) and complete [9]. For the set Mk, we consider the topology
induced by the metric d2, which is called the weak topology, and the topology induced by
the metric dk, which is called the strong topology.

The following result shows that a generic function in Mk belongs to Mk0 and by
Remark 1.3 has the properties (H1), (H2), (H3), and (H4).

Theorem 2.2. There exists a set �0 ⊂Mk0 which is a countable intersection of open (in the
weak topology) everywhere dense (in the strong topology) subsets of Mk.

Proof. For h∈Mk and γ ∈ (0,1), define hγ : R2 →R1 by

hγ
(
x1,x2

)= h(x1,x2
)

+ γ
(
x1− x2

)2
,
(
x1,x2

)∈R
2. (2.7)

It is easy to see that for h∈Mk and γ ∈ (0,1), hγ ∈Mk0 and

(
∂2hγ
∂x1∂x2

)(
ξ1,ξ2

)≤−2γ,
(
ξ1,ξ2

)∈R
2, (2.8)

and hγ → h as γ→ 0+ in the strong topology.
Let f ∈Mk, let γ ∈ (0,1), and let i≥ 1 be an integer. By (2.5) and (2.8), there exists an

open neighborhood �( f ,γ, i) of fγ in Mk with the weak topology such that the following
property holds:

(P1) for each g ∈�( f ,γ, i) and each (ξ1,ξ2)∈R2 satisfying |ξ1|,|ξ2| ≤ i, the inequality
∂2g/∂x1∂x2(ξ1,ξ2)≤−γ holds.

Define �0 = ∩∞n=1 ∪ {�( f ,γ, i) : f ∈Mk, γ ∈ (0,1), i ≥ n}. Clearly, �0 is a count-
able intersection of open (in the weak topology) everywhere dense (in the strong topol-
ogy) subsets of Mk. We will show that �0 ⊂Mk0. Let h ∈ �0, (ξ1,ξ2) ∈ R2. Choose a
natural number n such that |ξ1|+ |ξ2| < n. There exist f ∈Mk, γ ∈ (0,1), and an inte-
ger i ≥ n such that h ∈�( f ,γ, i). It follows from property (P1) and the choice of n that
(∂2h/∂x1∂x2)(ξ1,ξ2)≤−γ. Therefore, h∈Mk0. This completes the proof of Theorem 2.2.

�

3. The main results

We will prove the following result.

Theorem 3.1. Let k ≥ 2 be an integer and α a rational number. Then there exists a set
�α ⊂Mk0 which is a countable intersection of open (in the weak topology) everywhere dense
(in the strong topology) subsets of Mk such that for each f ∈�α, the following assertions
hold:

(1) if x, y ∈�per( f ,α), then there exist integersm,n such that yi = xi−m +n for all i∈ Z;
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(2) if x, y ∈�+( f ,α), then there exist integers m,n such that yi = xi−m +n for all i∈ Z;
(3) if x, y ∈�−( f ,α), then there exist integers m,n such that yi = xi−m +n for all i∈ Z.

It is not difficult to see that Theorem 3.1 implies the following result.

Theorem 3.2. Let k ≥ 2 be an integer. Then there exists a set �⊂Mk0 which is a countable
intersection of open (in the weak topology) everywhere dense (in the strong topology) subsets
of Mk such that for each rational number α and each f ∈�, assertions (1), (2), and (3) of
Theorem 3.1 hold.

Theorem 3.1 follows from the next two propositions.

Proposition 3.3. Let k ≥ 2 be an integer and α a rational number. Then there exists a
set �α+ ⊂Mk0 which is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of Mk such that for each f ∈�α+ , assertions (1) and
(2) of Theorem 3.1 hold.

Proposition 3.4. Let k ≥ 2 be an integer and α a rational number. Then there exists a
set �α− ⊂Mk0 which is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of Mk such that for each f ∈�α− , assertions (1) and
(3) of Theorem 3.1 hold.

Our goal is to prove Proposition 3.3. Proposition 3.4 is proved analogously.

4. Preliminary results for assertion (1) of Theorem 3.1

Let m≥ 1 be an integer. Consider the manifold (R1/Z)m and the canonical mapping Pm :
Rm→ (R1/Z)m. We have the following result [21, Proposition 6.2].

Proposition 4.1. Let Ω be a closed subset of (R1/Z)2. Then there exists a nonnegative
function φ ∈C∞((R1/Z)2) such that Ω= {x ∈ (R1/Z)2 : φ(x)= 0}.
Corollary 4.2. Let Ω be a closed subset of R1/Z. Then there exists a nonnegative function
φ ∈C∞(R1/Z) such that Ω= {x ∈R1/Z : φ(x)= 0}.

In this section, we assume that k ≥ 2 is an integer and α = p/q is an irreducible frac-
tion, where q ≥ 1 and p are integers.

For each f ∈Mk0, define

Eα( f )=
q−1∑
i=0

f
(
xi,xi+1

)
, x ∈�per( f ,α), (4.1)

(see Proposition 1.6).

Proposition 4.3. Let f ∈Mk, let Q be a natural number, and let D,ε > 0. Then there
exists a neighborhood � of f in Mk with the weak topology such that for each g ∈�, each
pair of integers n1,n2 ∈ [n1 + 1,n1 +Q], and each sequence {xi}n2

i=n1
⊂R1 which satisfies

min

{n2−1∑
i=n1

f
(
xi,xi+1

)
,
n2−1∑
i=n1

g
(
xi,xi+1

)}≤D, (4.2)
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the inequality ∣∣∣∣∣
n2−1∑
i=n1

f
(
xi,xi+1

)− n2−1∑
i=n1

g
(
xi,xi+1

)∣∣∣∣∣≤ ε (4.3)

holds.

Proof. By (H5), there exist δ0 ∈ (0,1) and c0 > 0 such that

f
(
x1,x2

)≥ δ0
(
x1− x2

)2− c0 ∀(x1,x2
)∈R

2. (4.4)

Choose a positive number ε1 for which

ε1
[
Q+ c0Q+D

]
< 4−1 min{1,ε} (4.5)

and a positive number ε0 < 1 which satisfies

ε0 + ε2
0

(
1− ε0

)−1
+ ε0

(
1− ε0

)−1
< 4−1ε1. (4.6)

Define

�= {g ∈Mk : ( f ,g)∈ Ek
(
1,ε0

)}
(4.7)

(see (2.5)).
Assume that g ∈ �, n1,n2 ∈ Z, n2 ∈ [n1 + 1,n1 + Q], {xi}n2

i=n1
⊂ R1, and that (4.2)

holds. By (2.5) and (4.7) for every (z1,z2)∈R2,∣∣ f (z1,z2
)− g(z1,z2

)∣∣ < ε0 + ε0 max
{∣∣ f (z1,z2

)∣∣,
∣∣g(z1,z2

)∣∣}. (4.8)

It follows from (4.6), (4.8), and Lemma 2.1 that for every (z1,z2)∈R2,∣∣ f (z1,z2
)− g(z1,z2

)∣∣
< ε0 + ε2

0

(
1− ε0

)−1
+ ε0

(
1− ε0

)−1
min

{∣∣ f (z1,z2
)∣∣,
∣∣g(z1,z2

)∣∣}
< 4−1ε1 + 4−1ε1 min

{∣∣ f (z1,z2
)∣∣,
∣∣g(z1,z2

)∣∣}.
(4.9)

Formulas (4.4) and (4.9) imply that for every (z1,z2)∈R2,

g
(
z1,z2

)≥ f
(
z1,z2

)− 4−1ε1− 4−1ε1
∣∣ f (z1,z2

)∣∣≥−4−1ε1− 2c0. (4.10)

Set

λi =min
{
f
(
xi,xi+1

)
,g
(
xi,xi+1

)}
, i= n1, . . . ,n2− 1. (4.11)

It follows from (4.4), (4.9), (4.10), and (4.11) that for i= n1, . . . ,n2− 1,∣∣ f (xi,xi+1
)− g(xi,xi+1

)∣∣
< 4−1ε1 + 4−1ε1 min

{
f
(
xi,xi+1

)
+ 2c0,g

(
xi,xi+1

)
+ 4c0 + 2

}
≤ 4−1ε1 + 4−1ε1λi + c0ε1 +

ε1

2
.

(4.12)
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By these inequalities, (4.2), (4.5), and (4.11),

∣∣∣∣∣
n2−1∑
i=n1

f
(
xi,xi+1

)− g(xi,xi+1
)∣∣∣∣∣

≤ (n2−n1
)[

4−1ε1 + 2−1ε1 + ε1c0
]

+ 4−1ε1

n2−1∑
i=n1

λi

≤ (n2−n1
)[
ε1 + ε1c0

]
+ 4−1ε1D

≤Q(ε1 + ε1c0
)

+ 4−1ε1D < ε.

(4.13)

This completes the proof of Proposition 4.3. �

Corollary 4.4. Let f ∈Mk0 and ε > 0. Then there exists a neighborhood � of f in Mk

with the weak topology such that for each g ∈�∩Mk0, Eα(g)≤ Eα( f ) + ε.

Proposition 4.5. Assume that f ∈Mk0, fn ∈Mk0, n= 1,2, . . . , limn→∞ fn = f in the weak
topology,

x(n) ∈�
(
fn
)
, n= 1,2, . . . , x ∈R

Z,

lim
n→∞x

(n)
i = xi ∀i∈ Z.

(4.14)

Then x ∈�( f ).

Proof. We assume the converse. Then, there exist integers i1 < i2 and a sequence {yi}i2i=i1 ⊂
R1 such that

yi1 = xi1 , yi2 = xi2 ,
i2−1∑
i=i1

f
(
yi, yi+1

)
<
i2−1∑
i=i1

f
(
xi,xi+1

)
. (4.15)

Set

∆=
i2−1∑
i=i1

[
f
(
xi,xi+1

)− f
(
yi, yi+1

)]
. (4.16)

For each integer n≥ 1, define a finite sequence {y(n)
i }i2i=i1 ⊂R1 as follows:

y(n)
i1 = x(n)

i1 , y(n)
i2 = x(n)

i2 , y(n)
i = yi, i∈ {i1, . . . , i2

} \ {i1, i2
}
. (4.17)

It follows from (4.14), (4.15), (4.16), (4.17), and the continuity of f that

lim
n→∞

[ i2−1∑
i=i1

f
(
x(n)
i ,x(n)

i+1

)
−

i2−1∑
i=i1

f
(
y(n)
i , y(n)

i+1

)]

=
i2−1∑
i=i1

f
(
xi,xi+1

)− i2−1∑
i=i1

f
(
yi, yi+1

)= ∆ > 0.

(4.18)
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Formulas (4.14) and (4.18) imply that the sequences{ i2−1∑
i=i1

f
(
x(n)
i ,x(n)

i+1

)}∞
n=1

,

{ i2−1∑
i=i1

f
(
y(n)
i , y(n)

i+1

)}∞
n=1

(4.19)

are bounded. It follows from this fact, Proposition 4.3, and the equality f = limn→∞ fn in
the weak topology that

lim
n→∞

[ i2−1∑
i=i1

f
(
x(n)
i ,x(n)

i+1

)
−

i2−1∑
i=i1

fn
(
x(n)
i ,x(n)

i+1

)]
= 0,

lim
n→∞

[ i2−1∑
i=i1

f
(
y(n)
i , y(n)

i+1

)
−

i2−1∑
i=i1

fn
(
y(n)
i , y(n)

i+1

)]
= 0.

(4.20)

Formulas (4.18) and (4.20) imply that

lim
n→∞

[ i2−1∑
i=i1

fn
(
x(n)
i ,x(n)

i+1

)
−

i2−1∑
i=i1

fn
(
y(n)
i , y(n)

i+1

)]
= ∆ > 0. (4.21)

There is an integer n0 ≥ 1 such that for each integer n≥ n0,

i2−1∑
i=i1

fn
(
x(n)
i ,x(n)

i+1

)
−

i2−1∑
i=i1

fn
(
y(n)
i , y(n)

i+1

)
>
∆

2
. (4.22)

This fact contradicts the ( fn)-minimality of x(n) for all n≥ n0. The contradiction we have
reached proves Proposition 4.5. �

Proposition 4.6. Let f ∈Mk0, fn ∈Mk0, n = 1,2, . . . , limn→∞ fn = f in the weak topol-

ogy, x(n) ∈�per( fn,α), n = 1,2, . . . , and let the sequence {x(n)
0 }∞n=1 be bounded. Then the

following assertions hold:

(1) there exist x ∈RZ and a strictly increasing sequence of natural numbers {nj}∞j=1 such
that

xi+q = xi + p, i∈ Z, (4.23)

x
(nj)
i −→ xi as j −→∞, ∀i∈ Z; (4.24)

(2) assume that x ∈RZ and {nj}∞j=1 is a strictly increasing sequence of natural numbers
such that (4.23) and (4.24) hold. Then x ∈�per( f ,α) and

Eα( f )=
q−1∑
i=0

f
(
xi,xi+1

)= lim
j→∞

q−1∑
i=0

fnj
(
x

(nj )
i ,x

(nj )
i+1

)
= lim

j→∞
Eα
(
fnj
)
. (4.25)

Proof. By Proposition 1.4, the sequence {x(n)
i }∞n=1 is bounded for all i∈ Z. This fact im-

plies that there exist a strictly increasing sequence of natural numbers {nj}∞j=1 and x ∈RZ

such that (4.23) and (4.24) are valid. Therefore, assertion (1) is true.
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We will prove assertion (2). Assume that x ∈ RZ and {nj}∞j=1 is a strictly increas-
ing sequence of natural numbers such that (4.23) and (4.24) hold. By Proposition 4.5
and (4.23), x∈�per( f ,α). Since limn→∞ fn = f in the weak topology, it follows from
Corollary 4.4 that the sequence {Eα( fn)}∞n=1 is bounded from above. Therefore, the se-

quence {∑q−1
i=0 fn(x(n)

i ,x(n)
i+1)}∞n=1 is also bounded from above. It follows from this fact, the

equality limn→∞ fn = f in the weak topology, and Proposition 4.3 that

lim
n→∞

[ q−1∑
i=0

fn
(
x(n)
i ,x(n)

i+1

)
−

q−1∑
i=0

f
(
x(n)
i ,x(n)

i+1

)]
= 0. (4.26)

By (4.1), (4.23), (4.24), (4.26), and Corollary 4.4,

Eα( f )≤
q−1∑
i=0

f
(
xi,xi+1

)= lim
j→∞

q−1∑
i=0

f
(
x

(nj )
i ,x

(nj )
i+1

)

= lim
j→∞

q−1∑
i=0

fnj
(
x

(nj )
i ,x

(nj )
i+1

)
= lim

j→∞
Eα
(
fnj
)≤ Eα( f ).

(4.27)

These relations imply (4.25). Proposition 4.6 is proved. �

Proposition 4.6 and Corollary 4.4 imply the following result.

Proposition 4.7. The function f → Eα( f ) is continuous on Mk0 with the relative weak
topology.

Proposition 4.8. Assume that f ∈Mk0 and that the following property holds:
If x(1),x(2) ∈�per( f ,α), then there exists n= (n1,n2)∈ Z2 such that x(2) = Tnx(1).
Then there exists n̄= (n̄1, n̄2)∈ Z2 such that for each x ∈�per( f ,α),

Tn̄x > x,
{
y ∈�per( f ,α) : x < y < Tn̄x

}=∅. (4.28)

Proof. Let x̄ ∈�per( f ,α). Then

�per( f ,α)= {Tnx̄ : n= (n1,n2
)∈ Z

2}
= {Tnx̄ : n= (n1,n2

)∈ Z
2, 0≤ n1 ≤ q− 1

}
.

(4.29)

Formula (4.29) implies that the set{
y ∈�per( f ,α) : x̄ < y < T(0,1)x̄

}
(4.30)

is either finite or empty. Therefore, there exists x̄+ ∈�per( f ,α) such that

x̄ < x̄+,
{
y ∈�per( f ,α) : x̄ < y < x̄+}=∅. (4.31)

There exists n̄= (n̄1, n̄2)∈ Z2 such that

Tn̄x̄ = x̄+. (4.32)
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Let x ∈�per( f ,α). There exists n= (n1,n2)∈ Z2 such that

x = Tnx̄. (4.33)

Formulas (4.31), (4.32), and (4.33) imply that

Tn̄x = Tn̄
(
Tnx̄

)= Tn(Tn̄x̄)= Tnx̄+ > Tnx̄ = x,

Tn̄x > x.
(4.34)

Assume that

y ∈�per( f ,α), x < y < Tn̄x. (4.35)

Then

T−nx < T−ny < T−n
(
Tn̄x

)
, (4.36)

where −n= (−n1,−n2). It follows from (4.36), (4.33), and (4.32) that

x̄ < T−ny < Tn̄
(
T−nx

)= Tn̄x̄ = x̄+, (4.37)

a contradiction (see (4.31)). Therefore,{
y ∈�per( f ,α) : x < y < Tn̄x

}=∅. (4.38)

This completes the proof of Proposition 4.8. �

Corollary 4.9. Assume that f ∈Mk0 and that the following property holds:
If x(1),x(2) ∈�per( f ,α), then there exists n= (n1,n2)∈ Z2 such that Tnx(1) = x(2).
Then there exists a number κ > 0 such that for each x,x+ ∈�per( f ,α) satisfying

x < x+,
{
y ∈�per( f ,α) : x < y < x+}=∅, (4.39)

the inequality x+
i − xi > κ holds for all i∈ Z.

Proposition 4.10. Assume that f ∈Mk0, x̄ ∈�per( f ,α),

�per( f ,α)= {Tnx̄ : n= (n1,n2
)∈ Z

2}, (4.40)

and ε > 0. Then there exists a neighborhood � of f in Mk with the weak topology such
that for each g ∈�∩Mk0 and each x ∈�per(g,α), there is m = (m1,m2) ∈ Z2 such that
|xi− (Tmx̄)i| ≤ ε, i∈ Z.

Proof. We assume the converse. Then there exist a sequence { f j}∞j=1 ⊂Mk0 satisfying

lim j→∞ f j = f in the weak topology and a sequence x( j) ∈�per( f j ,α), j = 1,2, . . ., such
that for each natural number j and each n= (n1,n2)∈ Z2,

sup
{∣∣∣x( j)

i − (Tnx̄)i∣∣∣ : i∈ {0,1, . . . ,q}
}
> ε. (4.41)
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We may assume without loss of generality that the sequence {x( j)
0 }∞j=1 is bounded. By

Proposition 4.6, there exist x ∈�per( f ,α) and a strictly increasing sequence of natural
numbers { js}∞s=1 such that

x
( js)
i −→ xi as s−→∞, ∀i∈ Z. (4.42)

By (4.40), there exists m= (m1,m2)∈ Z2 such that x = Tmx̄. It follows from this equality

and (4.42) that x
( js)
i → (Tmx̄)i as s→∞ for all i ∈ Z. This fact contradicts (4.41). The

contradiction we have reached proves Proposition 4.10. �

5. Preliminary results for assertion (2) of Theorem 3.1

In this section, we assume that k ≥ 2 is an integer and α= p/q is an irreducible fraction,
where q ≥ 1 and p are integers. Assume that f ∈Mk0,

x̄, x̄+ ∈�per( f ,α), x̄ < x̄+, (5.1){
y ∈�per( f ,α) : x̄ < y < x̄+}=∅, (5.2)

�per( f ,α)= {Tnx̄ : n= (n1,n2
)∈ Z

2}. (5.3)

By Corollary 4.9, there exists a number κ > 0 such that

x+
i − xi > 2κ, i∈ Z, (5.4)

for each x,x+ ∈�per( f ,α) which satisfy (4.39).

Lemma 5.1. Let ε ∈ (0,κ/2). Then there exists a neighborhood � of f in Mk0 with the weak
topology such that the following property holds:

For each g ∈�∩Mk0 and each y ∈�per(g,α), there exists a unique x ∈�per( f ,α) such
that

∣∣xi− yi
∣∣ < ε, i∈ Z. (5.5)

Proof. By Proposition 4.10, there exists a neighborhood � of f in Mk with the weak
topology such that the following property holds: for each g ∈ �∩Mk0 and each y ∈
�per(g,α), there exists x ∈�per( f ,α) such that (5.5) holds.

Let g ∈�∩Mk0,

y ∈�per(g,α), x(1),x(2) ∈�per( f ,α),
∣∣x( j)

i − yi
∣∣ < ε, i∈ Z, j = 1,2. (5.6)

To complete the proof of the lemma, it is sufficient to show that x(1) = x(2). Assume the
contrary. We may assume without loss of generality that x(1) < x(2). By our choice of κ
(see (5.4) and (4.39)) and Proposition 4.8,

inf
{
x(2)
i − x(1)

i : i∈ Z

}
> 2κ. (5.7)
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On the other hand, it follows from (5.6) that for all i∈ Z,∣∣∣x(2)
i − x(1)

i

∣∣∣≤ ∣∣∣x(2)
i − yi

∣∣∣+
∣∣∣yi− x(1)

i

∣∣∣ < 2ε < κ, (5.8)

a contradiction. The contradiction we have reached proves Lemma 5.1. �

Lemma 5.2. Let ε ∈ (0,κ/2) and let a neighborhood � of f in Mk with the weak topology
be as guaranteed in Lemma 5.1. Assume that

g ∈�∩Mk0, y(1), y(2) ∈�per(g,α), y(1) < y(2), (5.9){
z ∈�per(g,α) : y(1) < z < y(2)}=∅, (5.10)

x(1),x(2) ∈�per( f ,α),
∣∣∣x( j)

i − y
( j)
i

∣∣∣ < ε, i∈ Z, j = 1,2. (5.11)

Then either x(1) = x(2) or

x(1) < x(2),
{
z ∈�per( f ,α) : x(1) < z < x(2)

}
=∅. (5.12)

Proof. Assume that x(1) �= x(2). Formulas (5.9) and (5.11) imply that for all i∈ Z,

x(2)
i − x(1)

i = x(2)
i − y(2)

i + y(2)
i − y(1)

i + y(1)
i − x(1)

i >−2ε >−κ,

x(2)
i − x(1)

i >−κ ∀i∈ Z.
(5.13)

It follows from this inequality, (5.4), and Proposition 4.8 that x(1) < x(2). To complete the
proof of the lemma, we need to show that the set

{
z ∈�per( f ,α) : x(1) < z < x(2)}=∅. (5.14)

We assume the converse. Then, by Proposition 4.8, there exists x(3) ∈�per( f ,α) such that

x(1) < x(3) < x(2),
{
z ∈�per( f ,α) : x(1) < z < x(3)}=∅. (5.15)

It follows from Proposition 4.8, (5.15), and our choice of κ (see (5.4) and (4.39)) that

x(2)
i − x(3)

i > 2κ, x(3)
i − x(1)

i > 2κ, i∈ Z. (5.16)

Formula (5.3) implies that there exists m= (m1,m2)∈ Z2 for which

x(3) = Tmx(1). (5.17)

Set

y(3) = Tmy(1). (5.18)
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Clearly, y(3) ∈ �per(g,α). It follows from (5.11), (5.16), (5.17), and (5.18) that for all
i∈ Z,

y(3)
i − y(1)

i = y(3)
i − x(3)

i + x(3)
i − x(1)

i + x(1)
i − y(1)

i

= y(1)
i−m1

+m2−
(
x(1)
i−m1

+m2

)
+ x(3)

i − x(1)
i + x(1)

i − y(1)
i

>−2ε+ 2κ > κ.

(5.19)

Analogously, it follows from (5.11), (5.16), (5.17), and (5.18) that for all i∈ Z,

y(2)
i − y(3)

i = y(2)
i − x(2)

i + x(2)
i − x(3)

i + x(3)
i − y(3)

i

= y(2)
i − x(2)

i + x(2)
i − x(3)

i + x(1)
i−m1

+m2−
(
y(1)
i−m1

+m2

)
>−2ε+ 2κ > κ.

(5.20)

Therefore, y(1) < y(3) < y(2). This fact contradicts (5.10). The contradiction we have
reached proves Lemma 5.2. �

Definition 5.3. Let ε ∈ (0,κ/2), g ∈Mk0, y ∈�+(g,α), y+, y− ∈�per(g,α),

y− < y < y+, lim
i→∞

yi− y+
i = 0, lim

i→−∞
yi− y−i = 0. (5.21)

We say that y is regular with respect to (ε,g) if there exist x−,x+ ∈�per( f ,α) such that∣∣x−i − y−i
∣∣ < ε,

∣∣x+
i − y+

i

∣∣ < ε, i∈ Z,

x− < x+,
{
z ∈�per( f ,α) : x− < z < x+}=∅. (5.22)

We assume that there exists x̂ ∈�+( f ,α) such that

x̄ < x̂ < x̄+, (5.23)

�+( f ,α)= {Tnx̂ : n= (n1,n2
)∈ Z

2}. (5.24)

Lemma 5.4. Let a neighborhood � of f in Mk with the weak topology be as guaranteed
in Lemma 5.1 with ε = κ/4. Assume that { fn}∞n=1 ⊂�∩Mk0, limn→∞ fn = f in the weak
topology, and that x(n) ∈�+( fn,α) is regular with respect to (κ/4, fn), n = 1,2, . . . . Then
there exist a strictly increasing sequence of natural numbers{nj}∞j=1 and a sequence s( j) =
(s

( j)
1 ,s

( j)
2 )∈ Z2, j = 1,2, . . . , such that

Ts( j)x
(nj )
i −→ x̂i as j −→∞, ∀i∈ Z. (5.25)

Proof. By (5.1), (5.2), and (5.23),

lim
i→−∞

x̂i− x̄i = 0, lim
i→∞

x̂i− x̄+
i = 0. (5.26)

Let n≥ 1 be an integer. There exist

x(n+),x(n−) ∈�per( fn,α
)

(5.27)
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such that

x(n−) < x(n) < x(n+), (5.28)

lim
i→−∞

x(n−)
i − x(n)

i = 0, lim
i→∞

x(n+)
i − x(n)

i = 0. (5.29)

Since fn ∈�, it follows from the definition of � and Lemma 5.1 that there exist unique
z(n−),z(n+) ∈�per( f ,α) such that

∣∣∣z(n−)
i − x(n−)

i

∣∣∣≤ κ

4
,
∣∣∣z(n+)

i − x(n+)
i

∣∣∣ < κ

4
, i∈ Z. (5.30)

Since x(n) is regular with respect to (κ/4, fn), we have

z(n−) < z(n+),
{
z ∈�per( f ,α) : z(n−) < z < z(n+)}=∅. (5.31)

Since limn→∞ fn = f in the weak topology, it follows from Lemma 5.1 that

lim
n→∞sup

{∣∣∣z(n−)
i − x(n−)

i

∣∣∣,
∣∣∣z(n+)

i − x(n+)
i

∣∣∣ : i∈ Z

}
= 0. (5.32)

It follows from (5.1), (5.2), (5.3), (5.31), and Proposition 4.8 that there is l ∈ Z2 such that
z(n−) = Tlx̄ and z(n+) = Tlx̄+. We may assume without loss of generality that

z(n−) = x̄, z(n+) = x̄+, n= 1,2, . . . . (5.33)

It follows from (5.30), (5.33), and the definition of κ (see (5.4) and (4.39)) that for any
integer n≥ 1 and any integer i,

x(n+)
i − x(n−)

i ≥ x(n+)
i − z(n+)

i + z(n+)
i − z(n−)

i + z(n−)
i − x(n−)

i >−κ
2

+ x̄+
i − x̄i >

3κ
2

, (5.34)

x(n+)
i − x(n−)

i >
3κ
2
. (5.35)

Let n ≥ 1 be an integer. It follows from (5.28), (5.29), and (5.35) that there exists an
integer tn such that

x(n)
tn − x(n−)

tn ≤ κ

2
, x(n)

tn+1− x(n−)
tn+1 >

κ

2
. (5.36)

By using translations, we may assume without loss of generality that

tn ∈ [0,q]. (5.37)

Formulas (5.28), (5.30), and (5.33) imply that for all integers n≥ 1 and all i∈ Z,

x̄i− κ

4
< x(n−)

i < x(n)
i < x(n+)

i < x̄+
i +

κ

4
. (5.38)
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Therefore, for any i ∈ Z, the sequence {x(n)
i }∞n=1 is bounded. Together with (5.37), this

implies that there exist u ∈ RZ and a strictly increasing sequence of natural numbers
{nj}∞j=1 such that

x
(nj )
i −→ ui as j −→∞, ∀i∈ Z, tnj = tn1 , j = 1,2, . . . . (5.39)

It follows from (5.28), (5.32), (5.33), and (5.39) that for all i∈ Z,

ui = lim
j→∞

x
(nj )
i ∈

[
lim
j→∞

x
(n−j )
i , lim

j→∞
x

(n+
j )

i

]
= [x̄i, x̄+

i

]
. (5.40)

By Proposition 4.5, u∈�( f ). Since x(n) ∈�+( fn,α), n= 1,2, . . . , we have x(n)>T(q,p)x(n),

n = 1,2, . . . . Therefore, x(n)
i >x(n)

i−q + p for any integer n ≥ 1 and any integer i. Combined
with (5.39), this fact implies that ui ≥ ui−q + p for all i∈ Z and that

u∈�per( f ,α)∪�+( f ,α). (5.41)

It follows from (5.36), (5.39), and (5.40) that

ut1 − x̄t1 = lim
j→∞

x
(nj)
t1 − lim

j→∞
x

(n−j )
t1 ≤ κ

2
,

ut1+1− x̄t1+1 = lim
j→∞

x
(nj)
t1+1− lim

j→∞
x

(n−j )
t1+1 ≥

κ

2
.

(5.42)

By these relations, (5.40), the definition of κ (see (5.4) and (4.39)), (5.1), and (5.2),
u �∈ {x̄, x̄+}. Combined with (5.1), (5.2), (5.40), and (5.41), this fact implies that u ∈
�+( f ,α). By (5.24), there exists m = (m1,m2) ∈ Z2 such that Tmx = x̂. This completes
the proof of Lemma 5.4. �

Lemma 5.5. Let Q ≥ 1 be an integer and ε ∈ (0,κ/4). Then there exists a neighborhood �
of f in Mk with the weak topology such that for each g ∈�∩Mk0 and each y ∈�+(g,α),
one of the following properties holds:

(a) there exists n= (n1,n2)∈ Z2 such that∣∣(Tny)i− x̄i∣∣ < ε, i∈ Z; (5.43)

(b) there exists n= (n1,n2)∈ Z2 such that∣∣(Tny)i− x̂i∣∣ < ε, i=−Q, . . . ,Q. (5.44)

Proof. Assume the contrary. Then there exist a sequence { fs}s=1 ⊂ Mk0, such that
lims→∞ fs = f in the weak topology, and a sequence y(s) ∈ �+( fs,α), s = 1,2, . . . , such
that for any integer s≥ 1, the following properties hold:

(c) for any n= (n1,n2)∈ Z2,

sup
{∣∣∣(Tny(s))

i− x̄i
∣∣∣ : i∈ Z

}
≥ ε; (5.45)
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(d) for any n= (n1,n2)∈ Z2,

sup
{∣∣∣(Tny(s))

i− x̂i
∣∣∣ : i=−Q, . . . ,Q

}
≥ ε. (5.46)

By Lemmas 5.1 and 5.2 and (5.3), y(s) is regular with respect to ( fs,ε/2) for all sufficiently
large integers s.

By Lemma 5.4, there exist a strictly increasing sequence of natural numbers {s j}∞j=1

and a sequence n( j) = (n
( j)
1 ,n

( j)
2 )∈ Z2, j = 1,2, . . . , such that (Tn( j) y(s j))i→ x̂i as j →∞ for

all i∈ Z, a contradiction (see (d)). The contradiction we have reached proves Lemma 5.5.
�

Lemma 5.6. Let ε ∈ (0,κ/4). Then there exists a neighborhood � of f in Mk with the
weak topology such that for each g ∈�∩Mk0 and each y ∈�+(g,α), one of the following
properties holds:

(i) there exists m= (m1,m2)∈ Z2 such that∣∣(Tmy)i− x̄i∣∣ < ε, i∈ Z; (5.47)

(ii) there exists m= (m1,m2)∈ Z2 such that∣∣(Tmy)i− x̂i∣∣ < ε, i∈ Z. (5.48)

Proof. Choose a positive number

ε0 <min
{
ε
6

,
κ

8

}
. (5.49)

By (5.1), (5.2), and (5.23), there exists a natural number Q > 8q+ 8 such that

∣∣x̂i− x̄+
i

∣∣ < ε0

4
∀i≥ Q

2
, (5.50)∣∣x̂i− x̄i∣∣ < ε0

4
∀i≤−Q

2
. (5.51)

By Lemmas 5.1 and 5.2, there exists a neighborhood �1 of f in Mk with the weak topol-
ogy such that the following properties hold:

(iii) for each g ∈ �1 ∩Mk0 and each y ∈ �per(g,α), there exists a unique x ∈
�per( f ,α) such that |xi− yi| < ε0 for all i∈ Z;

(iv) let g ∈�1∩Mk0, y(1), y(2) ∈�per(g,α),

y(1) < y(2),
{
z ∈�per(g,α) : y(1) < z < y(2)}=∅,

x(1),x(2) ∈�per( f ,α),
∣∣∣x( j)

i − y
( j)
i

∣∣∣ < ε0, i∈ Z, j = 1,2.
(5.52)

Then either x(1) = x(2) or

x(1) < x(2),
{
z ∈�per( f ,α) : x(1) < z < x(2)

}
=∅. (5.53)
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By Lemma 5.5, there exists a neighborhood � of f in Mk with the weak topology such
that �⊂�1 and that for each g ∈�∩Mk0 and each y ∈�+(g,α), one of the following
properties holds:

(v) there exists m= (m1,m2)∈ Z2 such that |(Tmy)i− x̄i| < ε0 for all i∈ Z;
(vi) there exists m= (m1,m2)∈ Z2 such that |(Tmy)i− x̂i| < ε0, i=−Q, . . . ,Q.

Let

g ∈�∩Mk0, y ∈�+(g,α). (5.54)

If (v) is true, then (ii) also holds. Therefore, we may assume that (v) does not hold. Then,
by the definition of � and (5.54), property (vi) holds. We may assume without loss of
generality that (vi) holds with m= (0,0). Thus∣∣yi− x̂i∣∣ < ε0, i=−Q, . . . ,Q. (5.55)

There exist

y−, y+ ∈�per(g,α) (5.56)

such that

y− < y < y+, lim
i→−∞

y−i − yi = 0, lim
i→∞

y+
i − yi = 0. (5.57)

By property (iii), (5.54), and (5.56), there exist unique

x−,x+ ∈�per( f ,α) (5.58)

such that ∣∣x−i − y−i
∣∣ < ε0,

∣∣x+
i − y+

i

∣∣ < ε0, i∈ Z. (5.59)

By property (iv), (5.54), (5.56), (5.57), (5.58), and (5.59), either x− = x+ or

x− < x+,
{
z ∈�per( f ,α) : x− < z < x+}=∅. (5.60)

If x− = x+, then (5.57) and (5.59) imply that for all i∈ Z,

yi− x+
i = yi− y+

i + y+
i − x+

i < y
+
i − x+

i < ε0,

yi− x+
i = yi− x−i = yi− y−i + y−i − x−i > y−i − x−i >−ε0,∣∣yi− x+

i

∣∣ < ε0,

(5.61)

and combining with (5.3) implies that property (v) holds. The contradiction we have
reached proves that (5.60) holds. It follows from (5.57) and (5.59) that for all i∈ Z,

x−i − ε0 < y
−
i < yi < y

+
i < x

+
i + ε0. (5.62)

We show that x+ = x̄+ and x− = x̄.
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By (5.50) and (5.55) for i=Q− 4q, . . . ,Q,

∣∣yi− x̄+
i

∣∣≤ ∣∣yi− x̂i∣∣+
∣∣x̂i− x̄+

i

∣∣ < ε0 +
ε0

4
, (5.63)

and for i=−Q, . . . ,−Q+ 4q,

∣∣yi− x̄i∣∣≤ ∣∣yi− x̂i∣∣+
∣∣x̂i− x̄i∣∣ < ε0 +

ε0

4
. (5.64)

It follows from (5.62), (5.63), and (5.64) that for i=Q− 4q, . . . ,Q,

x̄+
i − ε0− ε0

4
< yi < x

+
i + ε0, (5.65)

and that for i=−Q, . . . ,−Q+ 4q,

x−i − ε0 < yi < x̄i + ε0 +
ε0

4
. (5.66)

Thus

x̄+
i < x

+
i + 2ε0 +

ε0

4
, i=Q− 4q, . . . ,Q,

x−i < x̄i + 2ε0 +
ε0

4
, i=−Q, . . . ,−Q+ 4q.

(5.67)

It follows from these inequalities, the relation Q > 8q + 8, (5.1), (5.49), (5.58), and the
definition of κ (see (5.4) and (4.39)) that

x̄+ < x+ or x̄+ = x+,

x̄− < x̄ or x− = x̄. (5.68)

Combined with (5.1), (5.2), (5.3), (5.58), and (5.60), this fact implies that

x̄ = x−, x̄+ = x+ or x̄+ < x+, x̄ < x−,

or x+ < x̄+, x− < x̄.
(5.69)

By (5.68) and (5.69),

x̄ = x−, x+ = x̄+. (5.70)

We will show that ∣∣yi− x̂i∣∣ < ε (5.71)

for all i∈ Z. By (5.55), it is sufficient to show that (5.71) is valid for all integers i satisfying
|i| > Q.

Assume that an integer i > Q. Then there exist integers s and j such that

s > 1, j ∈ [Q− 2q,Q− q], i= j + sq. (5.72)
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By (5.55), ∣∣yj − x̂ j∣∣ < ε0. (5.73)

It follows from (5.50) that

∣∣x̂i− x̄+
i

∣∣ < ε0

4
,

∣∣x̂ j − x̄+
j

∣∣ < ε0

4
. (5.74)

By (5.54), (5.56), (5.57), (5.59), (5.70), (5.73), and (5.74),

0 < y+
j − yj = y+

j − x+
j + x+

j − x̂ j + x̂ j − yj < ε0

+ x̄+
j − x̂ j + x̂ j − yj < ε0 +

ε0

4
+ ε0 < 3ε0,

(5.75)

0 < y+
j − yj < 3ε0. (5.76)

Since y ∈�+(g,α), it follows from (5.56), (5.57), (5.72), and (5.76) that

3ε0 > y
+
j − yj > y

+
j −

(
T(−q,−p)y

)
j > y

+
j −

((
T(−q,−p)

)s
y
)
j

= y+
j − yj+sq + sp = y+

j+sq− yj+sq = y+
i − yi > 0.

(5.77)

Thus, we have shown that

0 < y+
i − yi < 3ε0 ∀i > Q. (5.78)

By (5.59), (5.74), and (5.78) for all integers i > Q,

∣∣x̂i− yi
∣∣≤ ∣∣x̂i− x̄+

i

∣∣+
∣∣x̄+

i − y+
i

∣∣+
∣∣y+

i − yi
∣∣ < ε0

4
+ ε0 + 3ε0 (5.79)

and |x̂i− yi| < 5ε0 < ε.
Analogously, we show that (5.71) holds for all integers i <−Q. Assume that i <−Q is

an integer. Then there exist integers s and j such that

s > 1, j ∈ [−Q+ q,−Q+ 2q], i= j− sq. (5.80)

By (5.55), inequality (5.73) is valid. It follows from (5.51) that

∣∣x̂i− x̄i∣∣ < ε0

4
,

∣∣x̂ j − x̄ j∣∣ < ε0

4
. (5.81)

By (5.57), (5.59), (5.70), (5.73), and (5.81),

0 < yj − y−j = yj − x̂ j + x̂ j − x̄ j + x̄ j − y−j < ε0 +
ε0

4
+ x̄ j − y−j

= ε0 +
ε0

4
+ x−j − y−j < ε0 +

ε0

4
+ ε0 < 3ε0,

(5.82)

0 < yj − y−j < 3ε0. (5.83)
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Since y ∈�+(g,α), it follows from (5.56), (5.57), (5.80), and (5.83) that

3ε0 > yj − y−j >
(
T(q,p)y

)
j − y−j >

((
T(q,p)

)s
y
)
j
− y−j

= yj−sq + sp− y−j = yj−sq− y−j−sq = yi− y−i > 0.
(5.84)

Thus, we have shown that

0 < yi− y−i < 3ε0. (5.85)

It follows from this inequality, (5.59), (5.70), and (5.81) that for all integers i <−Q,∣∣x̂i− yi
∣∣≤ ∣∣x̂i− x̄i∣∣+

∣∣x̄i− y−i
∣∣+

∣∣y−i − yi
∣∣

<
ε0

4
+ ε0 + 3ε0 < 5ε0 < ε.

(5.86)

This completes the proof of Lemma 5.6. �

6. Proof of Proposition 3.3

Let k ≥ 2 be an integer and α= p/q an irreducible fraction, where q ≥ 1 and p are integers.

Let f ∈Mk0. Choose x( f ) ∈�(per)( f ,α) such that |x( f )
0 | ≤ 1. By Corollary 4.2, there

exists a nonnegative function φf ∈C∞((R1/Z)) such that

{
z ∈R

1/Z : φf (z)= 0
}= {P1

(
x

( f )
i

)
: i∈ Z

}
. (6.1)

Let γ ∈ (0,1). Define fγ : R2 →R1 by

fγ
(
ξ1,ξ2

)= f
(
ξ1,ξ2

)
+ γφ f

(
P1
(
ξ1
))

,
(
ξ1,ξ2

)∈R
2. (6.2)

It is not difficult to see that fγ ∈Mk0. It follows from (4.1), (6.1), and (6.2) that

Eα( f )≤ Eα
(
fγ
)≤ q−1∑

i=0

fγ
(
x

( f )
i ,x

( f )
i+1

)

=
q−1∑
i=0

f
(
x

( f )
i ,x

( f )
i+1

)
+ γ

q−1∑
i=0

φf

(
P1

(
x

( f )
i

))

=
q−1∑
i=0

f
(
x

( f )
i ,x

( f )
i+1

)
= Eα( f )

(6.3)

and that

Eα( f )= Eα
(
fγ
)= q−1∑

i=0

fγ
(
x

( f )
i ,x

( f )
i+1

)
=

q−1∑
i=0

f
(
x

( f )
i ,x

( f )
i+1

)
. (6.4)
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Assume that y ∈�per( fγ,α). Formulas (4.1), (6.1), (6.2), and (6.4) imply that

q−1∑
i=0

f
(
yi, yi+1

)
+ γ

q−1∑
i=0

φf
(
P1
(
yi
))

=
q−1∑
i=0

fγ
(
yi, yi+1

)= Eα( fγ)= Eα( f )≤
q−1∑
i=0

f
(
yi, yi+1

)
,

q−1∑
i=0

f
(
yi, yi+1

)= q−1∑
i=0

fγ
(
yi, yi+1

)= Eα( fγ)= Eα( f ),

y ∈�per( fγ,α
)
, P1

(
yi
)∈ {P1

(
x

( f )
j

)
: j = 0, . . . ,q− 1

}
, i= 0, . . . ,q− 1.

(6.5)

Since the set �per( fγ,α) is totally ordered, we conclude that y is a translation of x( f ). Thus

�per( fγ,α
)= {Tnx( f ) : n= (n1,n2

)∈ Z
2}. (6.6)

By Proposition 4.8 and (6.6), there exists

x( f +) ∈�per( fγ,α
)

(6.7)

such that

x( f ) < x( f +),
{
z ∈�per( fγ,α

)
: x( f ) < z < x( f +)}=∅. (6.8)

Proposition 1.7 implies that there exists

y( f γ) ∈�+( fγ,α
)

(6.9)

such that

x( f ) < y( f γ) < x( f +), (6.10)

lim
i→∞

y
( f γ)
i − x( f +)

i = 0, lim
i→−∞

y
( f γ)
i − x( f )

i = 0. (6.11)

Define

Ω=
{
P1

(
y

( f γ)
i

)
: i∈ Z

}
∪
{
P1

(
x

( f )
i

)
: i∈ Z

}
. (6.12)

It is easy to see that Ω is a closed subset of R1/Z.
By Corollary 4.2, there exists a nonnegative function ψf γ ∈C∞(R1/Z) such that{

z ∈R
1/Z : ψf γ(z)= 0

}=Ω. (6.13)

Let µ∈ (0,1). Define fγµ : R2 →R1 by

fγµ
(
ξ1,ξ2

)= fγ
(
ξ1,ξ2

)
+µψf γ

(
P1
(
ξ1
))

,
(
ξ1,ξ2

)∈R
2. (6.14)
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It is easy to see that fγµ ∈Mk0. Formulas (4.1), (6.4), (6.12), (6.13), and (6.14) imply that

Eα
(
fγ
)≤ Eα( fγµ)≤ q−1∑

i=0

fγµ
(
x

( f )
i ,x

( f )
i+1

)

=
q−1∑
i=0

fγ
(
x

( f )
i ,x

( f )
i+1

)
+µ

q−1∑
i=0

ψf γ

(
P1

(
x

( f )
i

))

=
q−1∑
i=0

fγ
(
x

( f )
i ,x

( f )
i+1

)
= Eα( f )= Eα

(
fγ
)
,

(6.15)

Eα
(
fγµ
)= Eα( fγ)= Eα( f )=

q−1∑
i=0

fγµ
(
x

( f )
i ,x

( f )
i+1

)

=
q−1∑
i=0

fγ
(
x

( f )
i ,x

( f )
i+1

)
=

q−1∑
i=0

f
(
x

( f )
i ,x

( f )
i+1

)
.

(6.16)

Assume that

y ∈�per( fγµ,α
)
. (6.17)

By (4.1), (6.14), (6.16), and (6.17),

q−1∑
i=0

fγ
(
yi, yi+1

)
+
q−1∑
i=0

µψf γ
(
P1
(
yi
))

=
q−1∑
i=0

fγµ
(
yi, yi+1

)= Eα( fγµ)= Eα( fγ)≤ q−1∑
i=0

fγ
(
yi, yi+1

)
,

q−1∑
i=0

fγ
(
yi, yi+1

)= Eα( fγ),
(6.18)

and y ∈�per( fγ,α). Now, (6.6) implies that y is a translation of x( f ). Thus

�per( fγµ,α
)= {Tnx( f ) : n= (n1,n2

)∈ Z
2}. (6.19)

Lemma 6.1. Let z ∈�+( fγµ,α). Then there existsm= (m1,m2)∈ Z2 such thatTmy( f γ) = z.

Proof. By (6.8), (6.19), Proposition 4.8, and the definition of �+(h,α) with h satisfying
(H1), (H2), (H3), and (H4) (see Section 1), we may assume without loss of generality
that

x( f ) < z < x( f +). (6.20)

Then it follows from Propositions 1.7 and 1.8, the definition of �+(h,α) with h satisfying
(H1), (H2), (H3), and (H4), and (6.8) that

lim
i→∞

x
( f +)
i − zi = 0, lim

i→−∞
x

( f )
i − zi = 0. (6.21)
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Since the set �+( fγµ,α) is totally ordered (see Proposition 1.8), in order to prove the
lemma, it is sufficient to show that there exist m = (m1,m2) ∈ Z2 and i ∈ Z such that
zi = (Tmy( f γ))i. Assume the contrary. Then

{
P1zi : i∈ Z

}∩{P1y
( f γ)
i : i∈ Z

}
=∅. (6.22)

Since the set �+( fγµ,α)∪�per( fγµ,α) is totally ordered (see Proposition 1.7),

{
P1zi : i∈ Z

}∩{P1x
( f )
i : i∈ Z

}
=∅. (6.23)

Formulas (6.12), (6.22), and (6.23) imply that

{
P1zi : i∈ Z

}∩Ω=∅. (6.24)

Formulas (6.13) and (6.24) imply that

ψf γ
(
P1zi

)
> 0 ∀i∈ Z. (6.25)

Choose a positive number

∆ < 8−1µ
q∑

i=−q
ψ f γ

(
P1zi

)
. (6.26)

By Proposition 1.4,

∣∣zi− z0− iα
∣∣ < 1 ∀i∈ Z, (6.27)∣∣∣y( f γ)

i − y
( f γ)
0 − iα

∣∣∣ < 1 ∀i∈ Z. (6.28)

Since the functions fγ and fγµ are continuous and periodic, there exists a number ε ∈
(0,1) such that for each ξ1,ξ2,ξ3,ξ4 ∈R1 satisfying

∣∣ξ1− ξ2
∣∣,
∣∣ξ3− ξ4

∣∣≤ 2|α|+ 8,∣∣ξ1− ξ3
∣∣≤ 2ε,

∣∣ξ2− ξ4
∣∣≤ 2ε,

(6.29)

the following inequality holds:

∣∣h(ξ1,ξ2
)−h(ξ3,ξ4

)∣∣≤ ∆

16
, h∈ { fγ, fγµ

}
. (6.30)

It follows from (6.11) and (6.21) that there exists an integer m0 > 4 + 4q such that

∣∣∣zi− y
( f γ)
i

∣∣∣ < ε
2

(6.31)
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for all integers i satisfying |i| ≥m0. Define u∈RZ as follows:

ui = zi, i∈ [(−∞,−m0− 1
]∪ [m0 + 1,∞)]∩Z,

ui = y
( f γ)
i , i∈ [−m0,m0

]∩Z.
(6.32)

We will show that

m0∑
i=−m0−1

fγµ
(
zi,zi+1

)− m0∑
i=−m0−1

fγµ
(
ui,ui+1

)
> 0. (6.33)

It follows from (6.32) that

m0∑
i=−m0−1

fγµ
(
zi,zi+1

)− m0∑
i=−m0−1

fγµ
(
ui,ui+1

)
=

m0∑
i=−m0−1

fγµ
(
zi,zi+1

)− fγµ
(
z−m0−1, y

( f γ)
−m0

)

− fγµ
(
y

( f γ)
m0 ,zm0+1

)
−

m0−1∑
i=−m0

fγµ
(
y

( f γ)
i , y

( f γ)
i+1

)
.

(6.34)

By the definition of ε (see (6.29) and (6.30)), (6.27), (6.28), and (6.31),

∣∣∣ fγµ(z−m0−1,z−m0

)
+ fγµ

(
zm0 ,zm0+1

)
− fγµ

(
z−m0−1, y

( f γ)
−m0

)
− fγµ

(
y

( f γ)
m0 ,zm0+1

)∣∣∣≤ ∆

8
.

(6.35)

This inequality, (6.12), (6.13), (6.14), (6.26), and (6.34) imply that

m0∑
i=−m0−1

fγµ
(
zi,zi+1

)− m0∑
i=−m0−1

fγµ
(
ui,ui+1

)

≥
m0−1∑
i=−m0

fγµ
(
zi,zi+1

)− m0−1∑
i=−m0

fγµ
(
y

( f γ)
i , y

( f γ)
i+1

)
− 8−1∆

=−8−1∆+
m0−1∑
i=−m0

fγ
(
zi,zi+1

)
+µ

m0−1∑
i=−m0

ψf γ
(
P1zi

)− m0−1∑
i=−m0

fγ
(
y

( f γ)
i , y

( f γ)
i+1

)

> 7∆+
m0−1∑
i=−m0

fγ
(
zi,zi+1

)− m0−1∑
i=−m0

fγ
(
y

( f γ)
i , y

( f γ)
i+1

)
.

(6.36)

Define

vi = zi, i=−m0, . . . ,m0, v−m0−1 = y
( f γ)
−m0−1, vm0+1 = y

( f γ)
m0+1. (6.37)
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Since y( f γ) ∈�( fγ,α), it follows from (6.28), the definition of ε (see (6.29) and (6.30)),
and (6.31) that

0≤
m0∑

i=−m0−1

fγ
(
vi,vi+1

)− m0∑
i=−m0−1

fγ
(
y

( f γ)
i , y

( f γ)
i+1

)

≤
m0−1∑
i=−m0

fγ
(
zi,zi+1

)− m0−1∑
i=−m0

fγ
(
y

( f γ)
i , y

( f γ)
i+1

)
+ fγ

(
y

( f γ)
−m0−1,z−m0

)
+ fγ

(
zm0 , y

( f γ)
m0+1

)
− fγ

(
y

( f γ)
−m0−1, y

( f γ)
−m0

)
− fγ

(
y

( f γ)
m0 , y

( f γ)
m0+1

)
≤

m0−1∑
i=−m0

fγ
(
zi,zi+1

)− m0−1∑
i=−m0

fγ
(
y

( f γ)
i , y

( f γ)
i+1

)
+
∆

8
.

(6.38)

By these inequalities and (6.36),

m0∑
i=−m0−1

fγµ
(
zi,zi+1

)− m0∑
i=−m0−1

fγµ
(
ui,ui+1

)
> 7∆+

(−∆
8

)
> 6∆, (6.39)

a contradiction. The contradiction we have reached proves Lemma 6.1. �

Completion of the proof of Proposition 3.3. By Theorem 2.2, there exists a set �0 ⊂Mk0

which is a countable intersection of open (in the weak topology) everywhere dense (in
the strong topology) subsets of Mk. It is easy to see that for each f ∈Mk0, limγ→0+ fγ = f
in the strong topology, and that for each f ∈Mk0 and each γ ∈ (0,1), limµ→0+ fγµ = fγ in
the strong topology. Therefore, the set

� := { fγµ : f ∈Mk0, γ,µ∈ (0,1)
}

(6.40)

is an everywhere dense subset of Mk with the strong topology.
Let g ∈ �. By (6.19), (6.40), Propositions 1.7 and 4.8, and Lemma 6.1, there exist

x(g),x(g+) ∈�per(g,α) and y(g) ∈�+(g,α) such that

�per(g,α)= {Tnx(g) : n= (n1,n2
)∈ Z

2}, (6.41)

�+(g,α)= {Tny(g) : n= (n1,n2
)∈ Z

2}, (6.42)

x(g) < y(g) < x(g+),
{
z ∈�per(g,α) : x(g) < z < x(g+)}=∅. (6.43)

Let j ≥ 1 be an integer. By Proposition 4.10 and Lemma 5.6, there is an open neighbor-
hood �(g, j) of g in Mk with the weak topology such that the following properties hold:

(a) for each f ∈�(g, j)∩Mk0 and each x ∈�per( f ,α), there exists m= (m1,m2)∈
Z2 such that |xi− (Tmx(g))i| < (2 j)−1 for all i∈ Z;

(b) for each f ∈�(g, j)∩Mk0 and each y ∈�+( f ,α), there exists m = (m1,m2) ∈
Z2 such that |(Tmy)i − x(g)

i |< (2 j)−1 for all i ∈ Z or |(Tmy)i − y
(g)
i | < (2 j)−1 for

all i∈ Z.

Define

�α+ =�0∩
[∩∞n=1∪

{
U(g, j) : g ∈�, j ≥ n}]. (6.44)
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It is not difficult to see that �α+ is a countable intersection of open (in the weak topology)
everywhere dense (in the strong topology) subsets of Mk.

Let f ∈�α+ . For each integer n≥ 1, there exist an integer sn ≥ n and gn ∈� such that

f ∈�
(
gn,sn

)
. (6.45)

Let x, y ∈�per( f ,α). We will show that y is a translation of x. It follows from property

(a) and (6.45) that for each integer n≥ 1, there exists m(n) = (m(n)
1 ,m(n)

2 )∈ Z2 such that∣∣∣yi− (Tm(n)x
)
i

∣∣∣ < s−1
n ≤ 1

n
∀i∈ Z. (6.46)

By the periodicity of y and x, we may assume without loss of generality that

m(n)
1 ∈ [0,q] ∀n≥ 1. (6.47)

Then (6.46) implies that the sequence {m(n)
2 }∞n=1 is bounded. By extracting a subsequence,

we may assume without loss of generality that

m(n) =m(1), n= 1,2, . . . . (6.48)

Then (6.46) implies that for all integers n≥ 1,

∣∣yi− (Tm(1)x
)
i

∣∣ < 1
n

, i∈ Z. (6.49)

Therefore, y = Tm1x. Fix x̄ ∈�per( f ,α). We have shown that

�per( f ,α)= {Tnx̄ : n= (n1,n2
)∈ Z

2}. (6.50)

Proposition 4.8 implies that there exists

x̄+ ∈�per( f ,α) (6.51)

such that

x̄ < x̄+,
{
z ∈�per( f ,α) : x̄ < z < x̄+}=∅. (6.52)

By (6.51), (6.52), and Proposition 1.7, there exists y(0) ∈�+( f ,α) such that

x̄ < y(0) < x̄+. (6.53)

Assume that y ∈�+( f ,α). We will show that y is a translation of y(0). By the definition
of �+( f ,α), Proposition 4.8, and (6.50), we may assume without loss of generality that

x̄ < y < x̄+. (6.54)

By (6.45) and property (b) for each integer n ≥ 1, there exist r(n) = (r(n)
1 ,r(n)

2 ) ∈ Z2 and

l(n) = (l(n)
1 , l(n)

2 )∈ Z2 such that∣∣∣y(0)
i − (Tr(n) y(gn))

i

∣∣∣ < (2sn)−1 ≤ (2n)−1 ∀i∈ Z, (6.55)
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or ∣∣∣y(0)
i − (Tr(n)x(gn))

i

∣∣∣ < (2sn)−1 ≤ (2n)−1 ∀i∈ Z, (6.56)∣∣∣yi− (Tl(n) y(gn))
i

∣∣∣ < (2sn)−1 ≤ (2n)−1 ∀i∈ Z, (6.57)

or ∣∣∣yi− (Tl(n)x(gn))
i

∣∣∣ < (2sn)−1 ≤ (2n)−1 ∀i∈ Z. (6.58)

Define

E = {n∈ Z : n≥ 1 and (6.58) holds
}
. (6.59)

Assume that the set E is infinite. By the periodicity of x(gn), n≥ 1, we may assume without
loss of generality that

l(n)
1 ∈ [0,q], n∈ E. (6.60)

Recall that |x(gn)
0 | ≤ 1, n = 1,2, . . . . Together with Proposition 1.4, this implies that for

each i∈ Z, ∣∣∣x(gn)
i

∣∣∣≤ ∣∣∣x(gn)
0

∣∣∣+ |i||α|+ 1, n= 1,2, . . . . (6.61)

It follows from (6.58), (6.59), (6.60), and (6.61) that the set {l(n)
2 : n ∈ E} is bounded.

Therefore, the set {l(n) : n ∈ E} is bounded. There exists an infinite set F ⊂ E such that
l(n1) = l(n2) for each n(1),n(2) ∈ F. Combined with (6.58) and (6.59), this fact implies that

|(Tl y)i − x(gn)
i | < (2n)−1 for all i ∈ Z and all n ∈ F with some l ∈ Z2. This implies that

y ∈�per( f ,α), a contradiction. Therefore, E is finite. Since y is an arbitrary element of
�+( f ,α), the set {

n∈ Z : n≥ 1 and (6.56) holds
}

(6.62)

is finite. We may assume without loss of generality that (6.55) and (6.57) hold for any

integer n≥ 1. This fact implies that for each integer n≥ 1, there exists j(n) = ( j(n)
1 , j(n)

2 )∈
Z2 such that ∣∣∣yi− (Tj(n) y(0))

i

∣∣∣ < 1
n

∀i∈ Z. (6.63)

It follows from (6.52), (6.53), (6.54), (6.63), and the definition of �+( f ,α) that

lim
i→−∞

x̄i− y(0)
i = 0, lim

i→−∞
x̄i− yi = 0,

lim
i→∞

x̄+
i − y(0)

i = 0, lim
i→∞

x̄+
i − yi = 0.

(6.64)
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Formulas (6.63) and (6.64) imply that for each integer n≥ 1,

lim
i→∞

[(
Tj(n) x̄+)

i−
(
Tj(n) y(0))

i

]
= 0,

limsup
i→∞

[∣∣∣x̄+
i −

(
Tj(n) x̄+)

i

∣∣∣]≤ lim
i→∞

∣∣x̄+
i − yi

∣∣+ limsup
i→∞

[∣∣∣yi− (Tj(n) y(0))
i

∣∣∣]
+ lim
i→∞

∣∣∣[(Tj(n) y(0))
i−
(
Tj(n) x̄+)

i

]∣∣∣≤ 1
n
.

(6.65)

Since x̄+ is periodic, we obtain that for any integer n≥ 1,

∣∣x̄+
i −

(
Tj(n) x̄+)

i

∣∣≤ 1
n

, i∈ Z. (6.66)

By Corollary 4.4 and (6.50), there exists κ∈ (0,1) such that for each z(1),z(2) ∈�per( f ,α)
satisfying z(1) �= z(2), ∣∣∣z(1)

i − z(2)
i

∣∣∣ > 2κ, i∈ Z. (6.67)

Formulas (6.66) and (6.67) imply that for any integer n > 2κ−1,

x̄+ = Tj(n) x̄+, x̄+
i = x̄+

i− j(n)
1

+ j(n)
2 ∀i∈ Z, (6.68)

and that the rotation number α of x̄+ satisfies α = p/q = j(n)
2 / j(n)

1 . Since p/q is an irre-
ducible fraction, we obtain that for any integer n > 2κ−1, there is an integer an such that

an(p,q)= j(n). (6.69)

We have three cases:

(1) there exists a strictly increasing sequence of natural numbers {nt}∞t=1 such that
limt→∞ ant =∞;

(2) there exists a strictly increasing sequence of natural numbers {nt}∞t=1 such that
limt→∞ ant =−∞;

(3) there exists a strictly increasing sequence of natural numbers {nt}∞t=1 such that
ant = an1 for all integers t ≥ 1.

Assume that case (1) holds. Then, by (6.50), (6.64), and (6.69) for any integer i,

(
Tj(nt ) y

(0))
i =
(
Tant (q,p)y

(0))
i = y(0)

i−ant q + ant p,(
Tj(nt ) y

(0))
i− x̄i = y(0)

i−ant q + ant p−
(
x̄i−ant q + ant p

)
= y(0)

i−ant q− x̄i−ant q −→ 0 as t −→∞,(
Tj(nt ) y

(0))
i− x̄i −→ 0 as t −→∞, ∀i∈ Z.

(6.70)

This contradicts (6.63). Therefore, case (1) does not hold.
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Analogously, we can show that case (2) does not hold. Indeed, assume that case (2)
holds. Then, by (6.50), (6.64), and (6.69) for any integer i,

(
Tj(nt ) y

(0))
i =
(
Tant (q,p)y

(0))
i = y(0)

i−ant q + ant p,(
Tj(nt ) y

(0))
i− x̄+

i = y(0)
i−ant q + ant p−

(
x̄+
i−ant q + ant p

)
= y(0)

i−ant q− x̄+
i−ant q −→ 0 as t −→∞,(

Tj(nt ) y
(0))

i− x̄+
i −→ 0 as t −→∞, ∀i∈ Z.

(6.71)

This contradicts (6.63). Therefore, case (2) does not hold. We have shown that case (3) is
valid. Then it follows from (6.63) and (6.69) that for all i∈ Z and any integer t ≥ 1,

1
n
>
∣∣∣yi− (Tant (q,p)y

(0))
i

∣∣∣= ∣∣∣yi− (Tan1 (q,p)y
(0))

i

∣∣∣ (6.72)

and y = Tan1 (q,p)y(0). Proposition 3.3 is proved.
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