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WITH RATIONAL ROTATION NUMBERS
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We study (h)-minimal configurations in Aubry-Mather theory, where h belongs to a com-
plete metric space of functions. Such minimal configurations have definite rotation num-
ber. We establish the existence of a set of functions, which is a countable intersection of
open everywhere dense subsets of the space and such that for each element / of this set
and each rational number «, the following properties hold: (i) there exist three different
(h)-minimal configurations with rotation number «; (ii) any (h)-minimal configuration
with rotation number « is a translation of one of these configurations.

1. Introduction

Let Z be a set of all integers. A configuration is a bi-infinite sequence x = (xi)iez
€ R”. The set R” will be endowed with the product topology and the partial order de-
fined by x < y ifand only if x; < y; for all i € Z.

We have an order-preserving action T : Z?> x R” — R” defined by

T(k,x) = Trx = ye=k = (k,k2) € 7,

. (1.1)
Xy € RZ, yi=Xi-f, thky VieZ
Let x,y € R%. We say that y is a translation of x if there is n = (n;,1,) € Z? such that
y = Tyx.
Let h: R? — R! be a continuous function. We extend h to arbitrary finite segments
(xj5...>xk), j <k, of configurations x € RZ by

k-1

h(xj,..oxk) i= > h(xi,Xi41). (1.2)

i=j

A segment (xj,...,x;) is called (h)-minimal if h(xj,...,xx) < h(yj,..., yx) whenever
xj = yj and x; = yx.
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692  Generic uniqueness of minimal configurations

We assume that / has the following properties [3, 4]:

(H1) forall (§,n) € R, h(§+1,n+1) = h(&,n);
(H2) limyy| o h(§,€ + 1) = co uniformly in &;
(H3) if &; < & and 1 < 12, then

h(&,m) +h(&,n2) <h(ELm) +h(&,m); (1.3)

(H4) if (x—1,x0,x1) # (y-1, y0, ¥1) are (h)-minimal segments and xo = yo, then
(x=1 = y-1) (x1 — y1) <O. (1.4)

A configuration x € R? is (h)-minimal if, for each pair of integers j and k satisfying
j < k and each finite segment {y;}X_ j C Rl satisfying y; = xj and yx = x, the inequality
h(xj,...,xx) < h(yj,..., yx) holds. Denote by .l(h) the set of all (h)-minimal configura-
tions. It is known that the set (k) is closed [2, 3].

The notion of global minimizers ((h)-minimal configurations in the present paper) is
crucial to the Aubry-Mather theory. The works by Aubry and Mather were begun inde-
pendently and with different motivations but led to similar results by different methods.
While Mather [12] studied area-preserving annulus mappings as they occur as section
mappings for Hamiltonian systems of two degrees of freedom, Aubry [1] investigated cer-
tain models of solid state physics related to dislocations in one-dimensional crystals. For
more details on Aubry-Mather theory, see [1, 2, 3, 4, 12, 13, 14, 15, 18, 19]. For the usage
of the notion of global minimizers in the related topics of calculus of variations, partial
differential equations, and geometry, see also [3, 4, 5, 6, 7, 8, 10, 11, 16, 17, 20, 21].

We briefly review the definitions, notions, and some basic results from Aubry-Mather
theory [2, 3].

Definition 1.1. The configurations x € R” and x* € R” cross
(a) ati e Zif x; = x and (x;-1 —x° ;) (%41 — x5,) <0,
(b) between i and i+ 1 if (x; — x;) (xi41 — x51) <O.

Definition 1.2. The configuration x € R” is periodic with period (g, p) € (Z\ {0}) X Z if
Tigpyx =X.

Remark 1.3. Assume that h = h(&,&,) € C*(R?) and (0*h/0€,0&,)(u,v) < 0 for all (u,v) €
R2. It is not difficult to show that (H3) and (H4) hold. Moreover, we can show that if
h € C*(IR?), then (H3) holds if and only if

{(u,v) ER2: (822;22)(%1/) < o} (1.5)

is an everywhere dense subset of R?,

We have the following result [3, Corollary 3.16, Theorem 3.17].
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PropoSITION 1.4. There exists a continuous function o™ : M(h) — R! with the following
properties:

(1) forall x € M(h), i € Z,
|x; — x0 —ia™W(x)| < 1; (1.6)
(ii) if x € M(h) is periodic with period (q, p) € 77, then a™ (x) = p/g;
(iii) for all « € R, the set {x € M(h): a (x) = a} + D.
Remark 1.5. We call a'"(x) the rotation number of x € JAL(h).
For each a € R!, define

M(h,a) = {x € M(h): a™(x) = a}. (1.7)

We study A (h, «) with rational & € R!.

Let a rational « = p/q be an irreducible fraction, where g = 1 and p are integers. De-
note by P (h, ) the set of all periodic (h)-minimal configurations x € A (h,«) which
satisfy T(4,p)x = x, equivalently, x; 4+ p = x;, for all i € Z.

For the proof of the following result, see [2, 3].

ProrosiTioN 1.6. JMP*(h,«) is a nonempty closed totally ordered set. Moreover, if x €
MPT(h, o), then x is a minimizer of hqp : Pgp — R, where

hgp(x) = h(x0,...,%4), Py = {x € R*: Ty pyx = x}. (1.8)

Two elements of MP'(h,«) are called (h)-neighboring if there does not exist an ele-
ment of MP'(h, a) between them. The following two propositions describe the structure
of the set JL(h,«). For their proofs, see [3].

ProposITION 1.7. Suppose that x~ < x* are (h)-neighboring elements of the set MP** (h,x).
Then there exist yV), y?) € M (h, ) such that

x~ <y <xt, x” < y@ <«xt,
: (1) - _ : 1) +
lim y; " —x7 =0, limy; "~ =0, (1.9)
lim yl-(z) —x =0, 1imy§2) —x; =0.
1——00 1— 00

Suppose that x~ < x™ are (h)-neighboring elements of MP" (h,«). Define

M (hya,x,xT) = {x e Mha): ‘liI_Tl xi—x; =0, limx; —xf = 0},

(1.10)
M (hya,x,x") = {x € M(h,&) : lim x; —x} =0, limx; —x; = 0}.

We denote by M* (h,«) (resp., M~ (h,«)) the union of the sets M* (h,a,x7,x*) (resp.,
M~ (h,a,x~,x")) extended over all pairs of (h)-neighboring elements x~ <x* of MP(h, ).

PropositioN 1.8. (1) Ifx € M~ (h,o,x™,x*) UM* (h,a,x~,x"), where x~,x* € MP"(h,«)
are (h)-neighboring and x~ < x*, then x~ <x < x*.
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(2) M(h, ) = MPE" (B, o) U MF (B, ) U M (B, ).

(3) The sets MP*(h, ) U M* (h, ) and MP (h, ) U M~ (h, ) are totally ordered.

(4) M*(h,a) = {x € M(h,a) : x> Tg,p)x} and M~ (h,a) = {x € M(h,a) : x < T(g pyx}.

Let k = 2 be an integer. In this paper, we consider a complete metric space of functions
h:R? — R which belong to C*(IR?). This space is defined in Section 2 and is denoted by
M. We establish the existence of a set  C 91 which is a countable intersection of open
everywhere dense subsets of 9t and such that for each h € & and each rational a = p/q
with p and q relatively prime, the following properties hold:

(i) there exist (h)-minimal configurations x*), x(=), and x(*) with rotation number

a such that xff; +p> x,m, xf:; +p< xf_), and xl(g)q +p= x,@ for all integers i;

(i) any (h)-minimal configuration with rotation number « is a translation of one of
the configurations x®), x5) and x©,

2. Spaces of functions

Let k > 2 be an integer. For f = f(x1,x2) € CK(R?) and q = (q1,92) € {0,...,k}?, satisfy-
ing g1 +q» < k, we set

04! f
—qit+q»  DIf= o 2.1
lql = q1+q2 f oxT T 2.1)
Denote by 90 the set of all k € C*(R?) which have the property (H1), satisfying

(ZE)@e) <0 v em, @)

8x1 aXZ
and have the following property:
(H5) there exist 8, € (0,1) and ¢;, > 0 such that
hixi,%) = 8 —x) —a, V(a,x0) €R (2.3)

Clearly (H5) implies (H2).
Denote by My the set of all h € M such that
( 0%h

8x1 8x2

)(fl,fz) <0 V(,8) eRA (2.4)

For each N, € >0, we set
Ex(N,€) = {(h1,hy) € My x My : | DIhy (x1,%2) — DUy (x1,%2) | <€
for each q € {0,...,k}? satisfying |q| < k
and each (x1,x;) € R? satisfying | x; |, | x2| < N} (2.5)
N{(h1,h) € M X My 2 | By (x1,%2) — ha(x1,%2) | <€
+emax{|hy(x1,%) |, | ha(x1,%2) |} ¥V (x1,%2) € R?}.

Using the following simple lemma, we can easily show that for the set 9 there exists
the uniformity which is determined by the base Ex(N,€), N,€ > 0.
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LEMMA 2.1. Leta,b € R}, € €(0,1), and |a — b| < € + emax{|al,|b|}. Then
la—bl<e+e*(1—€)'+e(1—¢€) 'min{|al,|b]}. (2.6)

It is not difficult to see that the uniformity determined by the base Ex(N,€), N,€ >0,
is metrizable (by a metric di) and complete [9]. For the set 91, we consider the topology
induced by the metric d,, which is called the weak topology, and the topology induced by
the metric dk, which is called the strong topology.

The following result shows that a generic function in 9% belongs to My and by
Remark 1.3 has the properties (H1), (H2), (H3), and (H4).

THEOREM 2.2. There exists a set Fy C My which is a countable intersection of open (in the
weak topology) everywhere dense (in the strong topology) subsets of M.

Proof. For h € My and y € (0,1), define hy : R* — R! by
hy (x1,%2) = h(x1,%2) +y(x1 ~x)°,  (x,%) €R2 (2.7)

It is easy to see that for h € My and y € (0,1), hy, € Ny and

0*h
(axlajcz) (gl’fz) = _2)}’ (51,52) € Rz’ (28)

and h, — has y — 0" in the strong topology.

Let f € My, let y € (0,1), and let i > 1 be an integer. By (2.5) and (2.8), there exists an
open neighborhood U( f,y,7) of f, in M with the weak topology such that the following
property holds:

(P1) for each g € U(f,y, i) and each (&,,8;) € R? satisfying |£1, |8 | < i, the inequality
0%g/0x10x2(§1,&,) < —y holds.

Define &y = N, U {WU(f,,0) : f € DMy, y € (0,1), i = n}. Clearly, Fy is a count-
able intersection of open (in the weak topology) everywhere dense (in the strong topol-
ogy) subsets of M. We will show that Fo C M. Let b € Fo, (&,&) € R Choose a
natural number n such that |& | + |&,| < n. There exist f € My, y € (0,1), and an inte-
ger i = n such that 1 € WU(f,y,i). It follows from property (P1) and the choice of n that
(0%h/0x10x,)(&1,&,) < —y. Therefore, h € M. This completes the proof of Theorem 2.2.

[l

3. The main results

We will prove the following result.

THEOREM 3.1. Let k > 2 be an integer and o a rational number. Then there exists a set
Fo C Mo which is a countable intersection of open (in the weak topology) everywhere dense
(in the strong topology) subsets of My such that for each f € F,, the following assertions
hold:

(1) ifx, y € MP*( f, ), then there exist integers m, n such that y; = xj_,, + n for all i € Z;
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(2) if x,y € M*(f, ), then there exist integers m,n such that y; = xi_, +n for all i € Z;
(3) if x,y € M~ (f,«), then there exist integers m,n such that y; = X;_p, +n for all i € Z.

It is not difficult to see that Theorem 3.1 implies the following result.

THEOREM 3.2. Let k = 2 be an integer. Then there exists a set F C 9Myo which is a countable
intersection of open (in the weak topology) everywhere dense (in the strong topology) subsets
of My such that for each rational number o and each f € F, assertions (1), (2), and (3) of
Theorem 3.1 hold.

Theorem 3.1 follows from the next two propositions.

ProrosITION 3.3. Let k = 2 be an integer and a a rational number. Then there exists a
set For C Mo which is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of My such that for each f € F -, assertions (1) and
(2) of Theorem 3.1 hold.

ProprosiTION 3.4. Let k = 2 be an integer and a a rational number. Then there exists a
set Fo- C Myo which is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of 9y such that for each f € &, assertions (1) and
(3) of Theorem 3.1 hold.

Our goal is to prove Proposition 3.3. Proposition 3.4 is proved analogously.

4. Preliminary results for assertion (1) of Theorem 3.1

Let m > 1 be an integer. Consider the manifold (R!/Z)™ and the canonical mapping P, :
R™ — (R!'/Z)™. We have the following result [21, Proposition 6.2].

ProrosITION 4.1. Let Q) be a closed subset of (R'/Z)?. Then there exists a nonnegative
function ¢ € C*((R'/Z)?) such that Q = {x € (R'/Z)*: ¢(x) = 0}.

COROLLARY 4.2. Let Q be a closed subset of R'/Z. Then there exists a nonnegative function
¢ € C*(RY/Z) such that Q = {x € RY/Z: ¢(x) = 0}.

In this section, we assume that k > 2 is an integer and « = p/q is an irreducible frac-
tion, where g > 1 and p are integers.
For each f € My, define

q-1
Ea(f) = z f(xi)xi+l)) xe J‘/Lper(f)a)) (41)
i=0

(see Proposition 1.6).

ProrosriTiOoN 4.3. Let f € My, let Q be a natural number, and let D,e > 0. Then there
exists a neighborhood W of f in MMy with the weak topology such that for each g € U, each
pair of integers ny,ny € [ny + 1,11 + Ql, and each sequence {x;};2, C R which satisfies

ny—1 ny—1
min{ > f(xixien), D g(xi,xm)} <D, (4.2)

i:m i:m
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the inequality

712—1 ﬂz—l

> flxixin) = > glxixin) | <€

i:m i:nl
holds.
Proof. By (H5), there exist §y € (0,1) and ¢y > 0 such that

Flxx) = 8(x1 —x:)° —co V(x1,x2) € R2.
Choose a positive number €, for which
€[Q+¢Q+D] <4 'min{l,e}
and a positive number €, < 1 which satisfies
cot+ei(1—€)  +eo(l—€) ' <4 ley.
Define
W= {geM:(f.g) €Ex(l,€)}

(see (2.5)).

697

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

Assume that g € WU, ny,n; € Z, ny € [n + 1, + QJ, {x;};2, C R, and that (4.2)

holds. By (2.5) and (4.7) for every (z),2,) € R?,

| f(z1,22) — g(z1,22) | < €0 +€omax{|f(z1,22)],|g(z1,22) | }.
It follows from (4.6), (4.8), and Lemma 2.1 that for every (z1,2;) € R?,
|f(21’22) ~g(z1,22) |

<€ +ej(l ~€0) ' +eo(1-€) 'minf | f(z1,22) |, |g(21,22) |}

<4 ley+4'eymin{| f(z1,22) |, |g(z1,22) | }.
Formulas (4.4) and (4.9) imply that for every (z1,2) € R?,
g(z1,22) = f(z1,22) —47'er —47 e | f(z1,22) | = —47 €1 — 20o.
Set
Ai = min { f (x5, %i41),8 (X, xi01) },  i=n1,...,m0— 1.
It follows from (4.4), (4.9), (4.10), and (4.11) that for i = ny,...,n, — 1,

| f(xi,xi01) — g (xi, %i01) |
<47 ler+47 ey min { f (xi,xi41) +2¢0,8 (xi,xi41) +4co +2}

€
< 4_161 +4_1€1A1‘+C0€1 + 71

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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By these inequalities, (4.2), (4.5), and (4.11),

ny—1

Z f(Xi,xi+1) —g(xi,xm)

iZVll

<(m—m)[4 e +27 e, +e100] +47 ey nzilxli (4.13)
< (ny—m)[er+€co] +47 e D o
< Qe +e€1cp) +47 e D<e.

This completes the proof of Proposition 4.3. O

COROLLARY 4.4. Let f € Myo and € > 0. Then there exists a neighborhood WU of f in My
with the weak topology such that for each g € WU N Mo, Ea(g) < Ea(f) +€.

ProrosriTiON 4.5. Assume that f € My, fu € Mio, n = 1,2,...,lim,_.« fu = f in the weak
topology,

") eM(f,), n=12,.., xeRE,

4.14
hmx()=x,- VieZ. ( )
n—oo
Then x € M(f).
Proof. We assume the converse. Then, there exist integers i; < i, and a sequence {y;} 2 i C
R! such that
i1 i1
Vir = Xips Vi = Xy . f (W yie1) < O f (xixi51). (4.15)
Set
lz 1
A= z f (xisxiv1) = f (yiryie1) |- (4.16)

111

For each integer n > 1, define a finite sequence { yl-(” 12 c R! as follows:

i=i

y =Xy =X Yy =y i€ i i)\ inia). (4.17)

It follows from (4.14), (4.15), (4.16), (4.17), and the continuity of f that

e 62) )]

(4.18)

ir—1 i—1

= Z f(xi7xi+1) - Z f(yi;yiJr]) =A>0.

i=iy i=ij
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Formulas (4.14) and (4.18) imply that the sequences

(St - {Ssoram] w19)

=1 i:il

are bounded. It follows from this fact, Proposition 4.3, and the equality f = lim,_« f, in
the weak topology that

[ S () - S )| <o

i=i; i=i

Aggo[izilf( i) - lzzlf( - ,ym)}

i=1) i=iy

(4.20)
0.

Formulas (4.18) and (4.20) imply that

%g?o[lzz fn( l+1> IZZ: fn( >)’z+1>:| =A>0. (4.21)

=1 ll]

There is an integer 1y > 1 such that for each integer n > ny,

ih—1 ir—1
an( "x) - an( "oy > %. (4.22)

i=i) i=i;

This fact contradicts the ( f,)-minimality of x" for all n > ny. The contradiction we have
reached proves Proposition 4.5. O

ProrosITION 4.6. Let f € Mo, fn € Mio, n=1,2,..., lim,—« fn = f in the weak topol-
0gy, xm e MPE( S, x), n=1,2,..., and let the sequence {x(()") o1 be bounded. Then the
following assertions hold:
(1) there exist x € R” and a strictly increasing sequence of natural numbers {n jY i1 such
that

Xitq = Xi +p, ie’Z, (4.23)

A

—Xx; asj— o, VieZ (4.24)

(2) assume that x € R” and {n jY521 is a strictly increasing sequence of natural numbers
such that (4.23) and (4.24) hold. Then x € MP*(f,«) and

q-1
Eo(f) =D f(xixin) = = lim anj( ) = lim Ea(fr,)- (4.25)
i=0

Proof. By Proposition 1.4, the sequence {x )} _, is bounded for all i € Z. This fact im-
plies that there exist a strictly increasing sequence of natural numbers {n;}7, andx € RZ
such that (4.23) and (4.24) are valid. Therefore, assertion (1) is true.
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We will prove assertion (2). Assume that x € R and {nj}}?i1 is a strictly increas-
ing sequence of natural numbers such that (4.23) and (4.24) hold. By Proposition 4.5
and (4.23), x € MP*(f,«). Since lim, .. f, = f in the weak topology, it follows from
Corollary 4.4 that the sequence {E«(fa)} ;=1 is bounded from above. Therefore, the se-
quence {> 1, fn(x ,x,H o1 is also bounded from above. It follows from this fact, the
equality lim,_ f, = f in the weak topology, and Proposition 4.3 that

-1
fim [an( P) = S (i) | o (426

n—oo

By (4.1), (4.23), (4.24), (4.26), and Corollary 4.4,

Euo(f) < Zf Xi> Xis1 —hme( ,,+1)

(4.27)
= lim 5. Z b ("1 = lim Ea(£,) < Eul ).
These relations imply (4.25). Proposition 4.6 is proved. O

Proposition 4.6 and Corollary 4.4 imply the following result.

ProrosiTioN 4.7. The function f — Ey(f) is continuous on My with the relative weak
topology.
ProrosITION 4.8. Assume that [ € 0y and that the following property holds:
If xM,x®) € MP(f,a), then there exists n = (ny,ny) € Z? such that x? = T,xV.
Then there exists it = (fiy,2) € Z* such that for each x € MP¥(f, ),
Tix>x, {yeMP(f,a):x<y<Tix}=Q. (4.28)
Proof. Let x € MP"(f,a). Then

MPE(fra) = {Tpk :n = (ny,m,y) € Z*}

={T,x:n=(m,m) €Z* 0<n <q—1}. (4.29)
Formula (4.29) implies that the set
{y e MP"(f,a) : X < y < T(o,1)x} (4.30)
is either finite or empty. Therefore, there exists x* € P ( f,«) such that
x<xt, {yeMr(f,a):x<y<x'}=0. (4.31)

There exists i1 = (1, 7,) € Z* such that

Thx = %" (4.32)
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Let x € MPe( f, ). There exists n = (n1,n,) € Z?* such that
x = Tyx. (4.33)
Formulas (4.31), (4.32), and (4.33) imply that

Thx = Tﬁ(TnJ_C) = T,,(T;,)'c) = Tn)_C+ > Tnfc =X,

Trx > X. (4.34)
Assume that
y e MPT(f,a), x<y<Tix. (4.35)
Then
Towx < T_py < T-n(Tsx), (4.36)
where —n = (—ny, —n,). It follows from (4.36), (4.33), and (4.32) that
X< Tony < Ta(T-yx) = Tpx = %", (4.37)
a contradiction (see (4.31)). Therefore,
{y e MP(fra):x< y < Tax} = @. (4.38)
This completes the proof of Proposition 4.8. O
COROLLARY 4.9. Assume that f € My and that the following property holds:
If xM,x® € MP(f,a), then there exists n = (n1,ny) € Z? such that T,xV = x?,
Then there exists a number k > 0 such that for each x,x* € MP*( f,«) satisfying
x<xt, {yeMP(f,a):x<y<x'} =0, (4.39)
the inequality x; — x; > x holds for all i € Z.
ProrosITION 4.10. Assume that f € My, X € MP(f, ),
MP(fra) = {Tpk i n = (ny,my) € Z2}, (4.40)

and € > 0. Then there exists a neighborhood WU of f in My with the weak topology such
that for each g € W N My and each x € MP(g,«), there is m = (my,m,) € Z?* such that
lxi — (TpX)il <€,i€Z.
Proof. We assume the converse. Then there exist a sequence { fj}}?":l C My satisfying
lim;_« f; = f in the weak topology and a sequence xW) e MPE(fiye), j=1,2,..., such
that for each natural number j and each n = (n;,n;) € 72,
(j) -
sup{ ‘x,»l — (Tyx),

1

i€ {0,1,...,q1} >e. (4.41)
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We may assume without loss of generality that the sequence {x(()J ) j=1 is bounded. By
Proposition 4.6, there exist x € MP(f,a) and a strictly increasing sequence of natural
numbers {j;} ;2 such that

xfj‘) — Xx; ass— oo, VieZ. (4.42)

By (4.40), there exists m = (my,m;) € Z?* such that x = Ty,x. It follows from this equality
and (4.42) that x,w — (T,u%x); as s — oo for all i € Z. This fact contradicts (4.41). The
contradiction we have reached proves Proposition 4.10. O

5. Preliminary results for assertion (2) of Theorem 3.1

In this section, we assume that k > 2 is an integer and a = p/q is an irreducible fraction,
where g = 1 and p are integers. Assume that f € 9,

X1 e MP(f,a), x<xF, (5.1)
{ye P (fa):x<y<xt} =0, (5.2)
MP(fra) = {Tpk :n = (ny,my) € Z*}. (5.3)

By Corollary 4.9, there exists a number x > 0 such that
xf—x;>2, i€Z, (5.4)

for each x,x* € MP( f, ) which satisfy (4.39).

LemMa 5.1. Let € € (0,x/2). Then there exists a neighborhood W of f in My with the weak
topology such that the following property holds:

Foreach g € W N Mo and each y € MP (g, ), there exists a unique x € AP (f,a) such
that

|x,-—yi| <€ i€ (5.5)
Proof. By Proposition 4.10, there exists a neighborhood U of f in Mt with the weak
topology such that the following property holds: for each g € U N My and each y €

MP (g, ), there exists x € JMP'( f,a) such that (5.5) holds.
Let g € U N Mo,

y e MP(g,a), xV,x? e MPr(f,a), |x,w —yil <€ i€Z, j=12. (5.6)

To complete the proof of the lemma, it is sufficient to show that x(!) = x(2). Assume the
contrary. We may assume without loss of generality that x() < x?). By our choice of
(see (5.4) and (4.39)) and Proposition 4.8,

inf {xfz) - x,m rie Z} > 2K. (5.7)
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On the other hand, it follows from (5.6) that for all i € Z,

<

xi =

xl§2)7 (1)‘ ' (2)

fy,'+‘yl 1)‘<2€<1c, (5.8)

a contradiction. The contradiction we have reached proves Lemma 5.1. O

LemMA 5.2. Let € € (0,x/2) and let a neighborhood W of f in My with the weak topology
be as guaranteed in Lemma 5.1. Assume that

gEUN My, y W,y e P (g,a), y<y?), (5.9)
{ze MP(g,0): yV < z< yP} = @, (5.10)
x,x® e M (fr), |x) -y | <eiez, j=1,2 (5.11)
Then either xV) = x) or
x < x@)] {z € MP(f,a) : xV < z< x@ )} . (5.12)

Proof. Assume that x) # x?), Formulas (5.9) and (5.11) imply that for all i € Z,

(2) (1) (2) (2) (2) (1) (1 (1)
XiT =X =Xy Yty Yty i

xfz) —xfl) >—k Vi€l

> —2€ > —K,
(5.13)

It follows from this inequality, (5.4), and Proposition 4.8 that x!) < x(?). To complete the
proof of the lemma, we need to show that the set

{ze P (f,a): xV <z<xP} = 2. (5.14)
We assume the converse. Then, by Proposition 4.8, there exists xB) e Aper( f>a) such that
xW<x®<x@ dzemrr(fa):xV <z<x¥} = 2. (5.15)
It follows from Proposition 4.8, (5.15), and our choice of x (see (5.4) and (4.39)) that
x}z) (3) > 2k, x§3) —x?l) >2Kk, i€Z. (5.16)
Formula (5.3) implies that there exists m = (m;,m,) € Z? for which
x® = T,xW. (5.17)

Set

y&) =T,y V. (5.18)
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Clearly, y® € MPer(g,a). It follows from (5.11), (5.16), (5.17), and (5.18) that for all
i€,

(3) (1) (3) (3) (1 ) (1) (1)
Yi — i yz Xi XX — i
(1) (1)

=y,-,m1 +my — ( ,( )ml +m )+x§3) ,“ +x;7 =y (5.19)
> —2€+2Kk > K.
Analogously, it follows from (5.11), (5.16), (5.17), and (5.18) that for all i € Z,

(2) (3) () _ (2) (2) (3 (3) (3)
Yi —Yi =i XX - X i
(2) (2) (3)

1
=yi —X; +x - X; +x()

i—m

+my — (y,(l),m +m2) (5.20)

> —2€+2K > K.

Therefore, y" < y© < y@)_ This fact contradicts (5.10). The contradiction we have
reached proves Lemma 5.2. O

Definition 5.3. Let € € (0,«/2), g € Mo, y € M*(g,«), y*, ¥y~ € MP(g,x),
y <y<y', limyi—y =0, lim y;—y; =0. (5.21)
We say that y is regular with respect to (€,g) if there exist x~,x™ € MP(f, ) such that

lxi —yil<e, |xf-yil<e i€k,

5.22
x~<xt, {zeMP(f,a):x" <z<xT}=0. ( )
We assume that there exists X € M*( f, ) such that
X<x<i (5.23)
M (f,a) = {T,x:n= (n1,m) € Z*}. (5.24)

LEmMMA 5.4. Let a neighborhood W of f in My with the weak topology be as guaranteed
in Lemma 5.1 with € = k/4. Assume that {f,};-1 C U N Mo, limy—o f = f in the weak
topology, and that x\" € M*(fu,«) is regular with respect to (k/4, fu), n =1,2,.... Then
there exist a strictly increasing sequence of natural numbers{n;}3., and a sequence sU) =

(55 ):52 )EZ?, j=1,2,..., such that

T, J>x( " _ Xi asj— oo, VieZ (5.25)

Proof. By (5.1), (5.2), and (5.23),
hm 56\,‘ - J_Ci = 0, hmfc, - J_Ci+ =0. (5.26)

Let n > 1 be an integer. There exist

x(i’ﬁ),x(”?) e MPper (fm(x) (527)
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such that
) < X < 17 (5.28)
lim x,w) - xf”) =0, 1imx§"+) - x?”) =0. (5.29)
i——o00 1—00

Since f, € U, it follows from the definition of U and Lemma 5.1 that there exist unique
2", 207 € P (£, a) such that

(n™) (n™) K K .
2yl 'SZ, |2 — <y i€l (5.30)
Since x" is regular with respect to («x/4, f,), we have
2" <2z e MP(fa) 12" <2< 2"} = @ (5.31)

Since lim, .« f, = f in the weak topology, it follows from Lemma 5.1 that

Xi i

Zgn’) ) ‘ ,

Jim sup { 2 ) ( ez} =o0. (5.32)

n— oo

It follows from (5.1), (5.2), (5.3), (5.31), and Proposition 4.8 that there is | € Z? such that
z") = Tix and z\"") = Tix*. We may assume without loss of generality that

)=z 2=t n=1,2,... (5.33)

It follows from (5.30), (5.33), and the definition of x (see (5.4) and (4.39)) that for any
integer n > 1 and any integer i,

+ - + + + - - - K 31{
xf" )—xf" ) zxf” )—zf" )+z,(" )—ZI(" )+z§" )—xf" ) >=3 +5c,~+—5c,->7, (5.34)

> 2= (5.35)

Let n > 1 be an integer. It follows from (5.28), (5.29), and (5.35) that there exists an
integer t, such that

x,ﬁf) —ngi) < g, xgﬂzl - xt(";l) > g (5.36)
By using translations, we may assume without loss of generality that
ta € [0,g]. (5.37)
Formulas (5.28), (5.30), and (5.33) imply that for all integers n > 1 and all i € Z,
X — Z <x™) e x® <X < x4 Z (5.38)
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Therefore, for any i € Z, the sequence {xf")}ﬁf:l is bounded. Together with (5.37), this
implies that there exist u € R” and a strictly increasing sequence of natural numbers
{nj}j"zl such that

xf”j)—»ui as j — oo, Vi€ Z, tey =tn, j=12... (5.39)

It follows from (5.28), (5.32), (5.33), and (5.39) that for all i € Z,

. i . (n7) .. (1)) _
u; = 11mxfn’) S [hmxin’ limx; ] =[x, %] (5.40)
]4’00

] ]

By Proposition 4.5, u € L( f). Since x™ € M*( fy, ), n = 1,2,..., we have x") > T(g ) x",

n=1,2,.... Therefore, x\" >x,(f21 + p for any integer n > 1 and any integer i. Combined

with (5.39), this fact implies that u; > u; 4+ p for all i € Z and that
ue MP(fra) UM (f,a). (5.41)

It follows from (5.36), (5.39), and (5.40) that

- . j . (n7)
Uy, — Xy, = }ir?ox,gf’) - JILH; X <2,
. (5.42)

- -1 n; >
Up+1 — Xpy+1 = IMX 4 =
]4'00

iR NIX

. (ny)
1 Jl,ljgxtﬁl

By these relations, (5.40), the definition of « (see (5.4) and (4.39)), (5.1), and (5.2),
u & {x,x"}. Combined with (5.1), (5.2), (5.40), and (5.41), this fact implies that u €
MF(f,a). By (5.24), there exists m = (my,m,) € Z? such that T,,x = X. This completes
the proof of Lemma 5.4. O

LEmMMA 5.5. Let Q > 1 be an integer and € € (0,«x/4). Then there exists a neighborhood U
of f in My with the weak topology such that for each g € WU N My and each y € M* (g, ),
one of the following properties holds:

(a) there exists n = (ny,n,) € Z? such that
| (Tay);,—%i| <€, i€Z;s (5.43)

(b) there exists n = (ny,n,) € Z? such that
[(Tuy); —%i| <€, i=-Q,...,Q. (5.44)

Proof. Assume the contrary. Then there exist a sequence {fi}s—1 C Mo, such that
lims_ f; = f in the weak topology, and a sequence y© e M*(fi ), s =1,2,..., such
that for any integer s > 1, the following properties hold:

(c) for any n = (n1,m,) € Z2,

sup{‘(T,,y(s))i—)'ci’ :ieZ}ze; (5.45)
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(d) for any n = (ny,n,) € 72,

SUP{\(Tny(”)i—)?i\ :i=—Q,.--,Q}ze. (5.46)

By Lemmas 5.1 and 5.2 and (5.3), y*) is regular with respect to ( f;,€/2) for all sufficiently
large integers s.
By Lemma 5.4, there exist a strictly increasing sequence of natural numbers {sj};‘;l

and a sequence n'/) = (ngj),ngj)) €72 j=1,2,...,such that (T, y")); — X; as j — oo for
all i € Z, a contradiction (see (d)). The contradiction we have reached proves Lemma 5.5.
O

LEMMA 5.6. Let € € (0,x/4). Then there exists a neighborhood U of f in My with the
weak topology such that for each g € U N Mo and each y € M*(g,a), one of the following
properties holds:

(i) there exists m = (my,m;) € Z?* such that

[(Tmy),—xi| <€, i€Zs (5.47)
(ii) there exists m = (m;,m,) € Z?* such that

[(Tmy); —%i| <€, i€Z (5.48)

Proof. Choose a positive number
€ <min{§,g}. (5.49)
By (5.1), (5.2), and (5.23), there exists a natural number Q > 84 + 8 such that

~ . € . Q
|xi— ?|<Z viz =, (5.50)

|3Ac,-ffci|<% Visf%. (5.51)
By Lemmas 5.1 and 5.2, there exists a neighborhood AU, of f in M with the weak topol-
ogy such that the following properties hold:

(iii) for each g € U; N Mo and each y € MP(g,«), there exists a unique x €
JP(f, @) such that [x; — y;| < € forall i € Z;
(iv) let g € Uy N Mo, y1, y?) € MPe (g, ax),

Y <y, fze (g )y <z< )P} = 2, (5.52)
x(l)’x(Z) = Mper(f)“), )xl(j) _yi(j)‘ <€, i€Z, j=12. )

Then either x(V) = x® or

x < x®, {z € MP(f, ) xW<z< x(z)} =Q. (5.53)
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By Lemma 5.5, there exists a neighborhood U of f in 9 with the weak topology such
that U € U, and that for each g € U N Ny and each y € M* (g, «), one of the following
properties holds:
(v) there exists m = (my,my) € Z? such that |(T,,y); — Xi| < € for all i € Z;
(vi) there exists m = (my,my) € Z?* such that [(T,,y); — Xil < €0, i = —Q,...,Q.
Let

g € AU N Mo, y e M (g,a). (5.54)

If (v) is true, then (ii) also holds. Therefore, we may assume that (v) does not hold. Then,
by the definition of U and (5.54), property (vi) holds. We may assume without loss of
generality that (vi) holds with m = (0,0). Thus

lyi—xi| <€, i=-Q,...,Q. (5.55)
There exist
Yoyt e M (g, a) (5.56)
such that
y <y<yho limy;r—yi=0,  limy;—y;i=0. (5.57)

By property (iii), (5.54), and (5.56), there exist unique
x7,xt e MP(f,a) (5.58)
such that
|xi —yi| <€, |xi—yf|<e€, i€Z (5.59)
By property (iv), (5.54), (5.56), (5.57), (5.58), and (5.59), either x~ = x* or
x <xt, {zeMP"(f,a):x <z<xT}=0. (5.60)
If x~ = x*, then (5.57) and (5.59) imply that for all i € Z,

yimxi =yi—yi Ayl —xf <yl =i <eo,
VimX =YX =Y yi Ty X > Y0 X > —€o, (5.61)

|yi — x| < €0,

and combining with (5.3) implies that property (v) holds. The contradiction we have
reached proves that (5.60) holds. It follows from (5.57) and (5.59) that for all i € Z,

X; — €< yi <yi<yi<xf+eo. (5.62)

We show that x™ = x" and x~ = x.
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By (5.50) and (5.55) fori = Q — 4g,...,Q,

_ N A~ _ €
|yi—xi+|s\yi—x,-|+|xi—x;r <€0+ZO’ (563)

and fori=—-Q,...,—Q+4q,

_ ~ ~ _ €
|yl-fx,-|s|yifx,-|+{xifx,'|<eo+zo. (5.64)

It follows from (5.62), (5.63), and (5.64) that for i = Q —4q,...,Q,

€
X'?- —€p — ZO <yi< x?- + €y, (5.65)

and that fori = —-Q,...,—Q+4q,
- - €o
X; —€0<)/i<x,‘+€0+z. (5.66)
Thus
—+ + €o :
X <xj +2€0+Z’ i=Q-4q,...,Q,

€o
Z)

(5.67)

xj <Xi+2€+ i=-Q,...,—-Q+4q.

It follows from these inequalities, the relation Q > 8¢ +8, (5.1), (5.49), (5.58), and the
definition of x (see (5.4) and (4.39)) that

x<xt or xt=xt,
L o (5.68)
X <X or X =X
Combined with (5.1), (5.2), (5.3), (5.58), and (5.60), this fact implies that
x=x, xt=x" or xt<xt, x<x,
ot e (5.69)
or xt<xt, x <=k
By (5.68) and (5.69),
XxX=x, xt =x". (5.70)
We will show that
lyi—xi| <€ (5.71)

for all i € Z. By (5.55), it is sufficient to show that (5.71) is valid for all integers i satisfying
lil > Q.

Assume that an integer i > Q. Then there exist integers s and j such that

s>1, j€lQ-29,Q—ql, i=j+sq. (5.72)
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By (5.55),
lyi =% < €. (5.73)

It follows from (5.50) that

A _ €o A _ €o
|x,-—x{r|<z, |xj—x;r|<z. (5.74)
By (5.54), (5.56), (5.57), (5.59), (5.70), (5.73), and (5.74),
0<yl—yj=y] —x/+x] —Xj+x; - yj <€
oA € (5.75)
+ ] —xj+xj—yj <Eo+z+€0<3€0,
0< }/7 —Yi< 3€y. (5.76)
Since y € M*(g,a), it follows from (5.56), (5.57), (5.72), and (5.76) that
3€0>yf =y > ) = (Tegmpy); > ¥i = ((Teg-p) ).
¥ =229 = (Tegp); >y = ((Tegp)'y), 57
= Y] = Vitsq ¥ SP = Yjrsg = Yitsa = ¥i =i >0.
Thus, we have shown that
0<yf—yi<3e Vi>Q. (5.78)
By (5.59), (5.74), and (5.78) for all integers i > Q,
%=yl = &=+ 155 =57 |+ 1y =3l < T +eo+ 360 (5.79)

and |x; — yil <5€p <€.
Analogously, we show that (5.71) holds for all integers i < —Q. Assume that i < —Q is
an integer. Then there exist integers s and j such that

s>1,  jE€[-Q+q,—-Q+2q], i=j—sq. (5.80)

By (5.55), inequality (5.73) is valid. It follows from (5.51) that

_ €o N €o
|x, xi|<z, |Xj— j|<z. (5.81)
By (5.57), (5.59), (5.70), (5.73), and (5.81),
_ AA o - _ € _ _
0<yj—y; =yi—Xj+Xj—Xj+Xj—y; <€0+Z+xj—y]-
(5.82)

€ _ _ €
:€0+Z+xj _yj <€0+Z+€0<3€0,

0< yi— )/; < 3€. (5.83)
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Since y € M*(g,a), it follows from (5.56), (5.57), (5.80), and (5.83) that

360>y~ 7 > (Tapy); =7 > ((Tap)'y) . - y;

J (5.84)
=Yj-satSP=Yj = Vi-sg = Vj-sq = Vi~ i >0
Thus, we have shown that
0<yi—y; <3e€o. (5.85)
It follows from this inequality, (5.59), (5.70), and (5.81) that for all integers i < —Q,
%= yil < |%i =%l + |-y | + [y =il
5.86
<%+€0+3€0<560<€. ( )
This completes the proof of Lemma 5.6. O

6. Proof of Proposition 3.3

Let k = 2 be an integer and a = p/q an irreducible fraction where q = 1and p are integers.

Let f € M. Choose 2 e M Per)(f «) such that Ix | < 1. By Corollary 4.2, there
exists a nonnegative function ¢ € C*((R'/Z)) such that

[z€RVZ:¢f(z) =0} = {P1 (") :ie z}. (6.1)
Let y € (0,1). Define f, : R? — R! by

H&L8) = F(6,86) +ypr(Pi(&)), (&,&) eR™ (6.2)

It is not difficult to see that f, € M. It follows from (4.1), (6.1), and (6.2) that

Eu(f) < Ea(fy) = ny( 1+1>
= > f(x" z+1)+yz¢ (Pi(x")) (6.3)

=Zf(xif 1+1) Ea(f)

i=0

and that

q
Eo(f) = ny( wli) = 3 f (")), (64)

i=0
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Assume that y € MP*"( f,, ). Formulas (4.1), (6.1), (6.2), and (6.4) imply that
q-1 q-1
D fGiyi) +y 2 65 (Pi(y)
i=0 i=0

9-1 q-1
= ny(}’i;)/iﬂ) :Etx(fy) :Ea(f) = Zf(}’i:)’iﬂ),
=0 i=0 (6.5)

q-1 q-1
Z,f()’i»}’m) = ny(yiayﬁl) :Eoc(fy) :Etx(f)>

y e M (froa), Pi(y) e {Pi(x):j=0,0g-1}, i=0,...q-1.
Since the set AP ( fy, ) is totally ordered, we conclude that y is a translation of x) . Thus
MPE(fyr ) = (TuxD i n = (n1,m) € Z2}. (6.6)
By Proposition 4.8 and (6.6), there exists
e e (fy,a) (6.7)
such that
D <xUD Aze P (fya) :xV) <z <xU} = 2. (6.8)

Proposition 1.7 implies that there exists

YUV e M (fra) (6.9)
such that
x) <y < £ (6.10)
}H},}%m l(f*) -0, lhr}goylfy) f) -0 (6.11)
Define
Q= {P1<yi(fy)> :iEZ}U{Pl(ng)>:ieZ}. (6.12)

It is easy to see that ) is a closed subset of R!/Z.
By Corollary 4.2, there exists a nonnegative function vy, € C*(R'/Z) such that

{zeRYZ:ys(z) =0} = (6.13)
Let 4 € (0,1). Define fy, : R* — R! by

T (E0,8) = f,(6.8) +uysy (Pi(&1)),  (8,8) e R (6.14)
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It is easy to see that f,, € Mo. Formulas (4.1), (6.4), (6.12), (6.13), and (6.14) imply that
Eo(fy) < Ea(fyy) < Zmﬂ”&)
= ny(xff),xfff) +V§)vffy(Pl (x) (6.15)
—ZﬂﬁfﬁJ=mm=mmm

Eo(fyu) = Ea(fy) = Ea(f) = mefm)
(6.16)

q-1
:g)fy(xi z+1) Zf( . 1+1)
Assume that
y € MP( fyp x). (6.17)
By (4.1), (6.14), (6.16), and (6.17),
q-—1

q-1
2 B i yist) + > sy (P (3i)

i=0

q-1

q-1
= > fu(yisyin) = E«(fu) = Ea(f) < ny(}/i,)/m)) (6.18)
i=0

i=0

q-1
Z fy(yia}’iﬂ) = Ea(fy),

and y € P ( f),&). Now, (6.6) implies that y is a translation of x). Thus
M (fyr ) = {Tux) i = (ny,my) € Z2}. (6.19)

LeMMA 6.1. Letz € M¥(fy ). Then there existsm = (my,my) € Z? such that T, y/7) = z.

Proof. By (6.8), (6.19), Proposition 4.8, and the definition of M*(h,«) with h satisfying
(H1), (H2), (H3), and (H4) (see Section 1), we may assume without loss of generality
that

x <z <xUD, (6.20)

Then it follows from Propositions 1.7 and 1.8, the definition of J* (h, «) with h satisfying
(H1), (H2), (H3), and (H4), and (6.8) that

lim x; (F1) -z =0, lim x;

j— 00 i——00

S _z=o. (6.21)
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Since the set JL*(f,,«) is totally ordered (see Proposition 1.8), in order to prove the
lemma, it is sufficient to show that there exist m = (m;,m,) € Z? and i € Z such that
zi = (Tmy'?));. Assume the contrary. Then

{PiziiieZ}n{Py”icz) = 0. (6.22)
Since the set AL* ( fyu, ) U MP*( fy, ) is totally ordered (see Proposition 1.7),

Piziriezin P iez) = . (6.23)
Formulas (6.12), (6.22), and (6.23) imply that

{Pizi:i€Z}nQ=Q. (6.24)

Formulas (6.13) and (6.24) imply that

Viy (Plzi) >0 VielZ. (625)

Choose a positive number

q
A<87 ' > vy (Pizi). (6.26)
i=—q
By Proposition 1.4,

|zi—zo—ia| <1 Vi€Z, (6.27)
77—y —ia| <1 view (6.28)

Since the functions f, and f,, are continuous and periodic, there exists a number € €
(0,1) such that for each &;,&,,&3,&, € R! satisfying

|16 -& |, |86 —&| <2]lal +38,

|£1 - 53 | = 26) |EZ - €4 | =< 26) (6‘29)
the following inequality holds:
(E8) ~hEE) [ <120 hE Lfnfuh (6.30)

16’

It follows from (6.11) and (6.21) that there exists an integer my > 4 + 4q such that

|2i= | <§ (6.31)
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for all integers i satisfying |i| > my. Define u € RZ as follows:

ui=z, i€[(—o0,—myg—1]U[mo+1,0)]N7Z,

(6.32)
y,(fy, i€ —mo,mo]NZ.
We will show that
mo myo
Z fw(ziaziﬂ) - z fyy(ub“iﬂ) > 0. (6.33)
i=—mg—1 i=—mp—1
It follows from (6.32) that
Mgy mo
Z fw (Ziazi+1) - Z fyy(ui: ui+1)
i=—mp—1 i=—mp—1
S ()
= Z f)’/" (Zi)zi+1) - f)’# (Z*WIO*I’)/*"):()) (6.34)
i=—my—1
(fy) (fy) )
— fou (J’ﬂ{;y ’Zm0+1) 2 fw( T 7y1{ly )
By the definition of € (see (6.29) and (6.30)), (6.27), (6.28), and (6.31),
‘fw(z—mo—laz—mo) +fw(zmo’zmo+1)
6.35)
) A (
—fw(z—mo LY fy) fW(}’mo ’ZWI)‘ =3
This inequality, (6.12), (6.13), (6.14), (6.26), and (6.34) imply that
Mo Mo
> fulznzi) = O fyu(unuin)
iZ*mofl I'Z*M[]*l
mo—1 mo—1 (f fy)
= > fulzzia) = 2 fw( oyl ) 87'A
1—7m0 l—*Wlo
mo—1 mo—1 mo— f ) (636)
=-87'A+ Z H(zizin) +p Z vy (Przi) — Z fy( ! ’)’z+1 )
i=—my i=—my i=—my
my—1 mo—1 FoUNT,
>7A+ Y filzwzin) = 2 fy ()’z Y odl ).
i=—my i=—my
Define
Vi=2Zi Q= Moty Vome1 = Y0 Ve = Y (6.37)



716  Generic uniqueness of minimal configurations

Since y/7) € M(fy,a), it follows from (6.28), the definition of € (see (6.29) and (6.30)),
and (6.31) that

0< Z(): fy(vi)vi+1)_ Z fy( fy)a}’zﬂ)

i:—mo—l 1——m0 1
£ Uy m
= Z fy(zinzien) = Z fy( y’)’iﬂy)"'fy(y nfo I’Z*m0>
i=—my i=—my (638)
) (fy) (fy) (fy) )
+fy<zmo))’n£)~’+1) fy()’—frzg LY fy) fy( W{ay ))’nﬁrl)
mo—1 mo—1 (f fy) A
< > flzzia) = > fy( "y ) 3
i=—my i=—my
By these inequalities and (6.36),
mo myo —A
z f)’!‘ (Zi,Z,'H) - Z fw(ui,uiﬂ) >7A+ (?> > 6A, (639)
i:—MQ—l i:—mo—l
a contradiction. The contradiction we have reached proves Lemma 6.1. O

Completion of the proof of Proposition 3.3. By Theorem 2.2, there exists a set %o C Mo
which is a countable intersection of open (in the weak topology) everywhere dense (in
the strong topology) subsets of 9. It is easy to see that for each f € My, limy ¢+ f, = f
in the strong topology, and that for each f € MM and each y € (0,1), lim, ¢+ f,, = f, in
the strong topology. Therefore, the set

D= {fyu: f € Do, pop € (0,1)} (6.40)

is an everywhere dense subset of 91 with the strong topology.
Let g € 9. By (6.19), (6.40), Propositions 1.7 and 4.8, and Lemma 6.1, there exist
©®),x&) e MPr(g,a) and y© € MT(g,a) such that

MPe (g, 0) = {T,x'®) : n = (ny,my) € 72}, (6.41)
MY (g,a) = {Toy'® :n = (n,my) € 7%}, (6.42)
x® <y < x&) Lz e MPT(g,q) 1 x® <z < x8)} = @ (6.43)

Let j > 1 be an integer. By Proposition 4.10 and Lemma 5.6, there is an open neighbor-
hood U(g, j) of g in M1y with the weak topology such that the following properties hold:
(a) for each f € U(g,j) N smko and each x € P ( f, ), there exists m = (m;,m;) €
7? such that |x; — (T,,x®));| < (2j)~! for alli € Z;
(b) for each f € U(g, j) N Mk and each y € M*(f,«), there exists m = (m;,m,) €
72 such that |(T,y); — x| < (2j)~! for alli € Z or |(Tmy)i — y&'| < (2j)" for
allie Z.
Define

For =Fon [Ny U{U(g,j):g €D, j=n}]. (6.44)
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It is not difficult to see that F,- is a countable intersection of open (in the weak topology)
everywhere dense (in the strong topology) subsets of 9.
Let f € . For each integer n > 1, there exist an integer s, > n and g, € % such that

f€U(gn>sn)- (6.45)

Let x,y € MP*(f,o). We will show that y is a translation of x. It follows from property
(a) and (6.45) that for each integer n > 1, there exists m" = (m(ln),m(zn)) € 77 such that

<s !

<
n =

VieZ. (6.46)

1
1= () <1<
By the periodicity of y and x, we may assume without loss of generality that

m™ € [0,q] Vn=1 (6.47)

[

Then (6.46) implies that the sequence {m3" 1, is bounded. By extracting a subsequence,
we may assume without loss of generality that

m" =m, n=1,,.. (6.48)
Then (6.46) implies that for all integers n > 1,
| i — (Thwx),| < %, icZ. (6.49)
Therefore, y = Ty, x. Fix x € MP'( f, ). We have shown that
MPE(f a) = {Twx : n = (ny,ny) € Z*}. (6.50)
Proposition 4.8 implies that there exists
xt e M (f,a) (6.51)
such that

<xt, {ze M (fa):k<z<i'}=0. (6.52)

=i

By (6.51), (6.52), and Proposition 1.7, there exists ¥ € M*(f,a) such that
<y <zt (6.53)

Assume that y € A*(f, ). We will show that y is a translation of y(?). By the definition
of M*(f,a), Proposition 4.8, and (6.50), we may assume without loss of generality that

X<y<i’. (6.54)

By (6.45) and property (b) for each integer n > 1, there exist r") = (rf”),rén)) € 7? and
10 = (1 "y € 72 such that

|~ (Tony®),| < (250 < @u? vie, (6.55)
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or
20— (Toox®)), | < (25) " <) Vies, (6.56)
yi— (Tiy®)), | < 2s) 7 < @m)™! Viez, (6.57)
or
yi— (Trx®),| < (25,) " < @m)! VieL (6.58)
Define
E={ne€Z:n=>1and (6.58) holds}. (6.59)

Assume that the set E is infinite. By the periodicity of x&), n > 1, we may assume without
loss of generality that

IV €[0,q], nekE. (6.60)

Recall that Ix(()g")l <1, n=1,2,.... Together with Proposition 1.4, this implies that for
eachi€Z,

(1) < ‘x(()gn)

'Xi

+lillal +1, n=12,.... (6.61)

It follows from (6.58), (6.59), (6.60), and (6.61) that the set {lg") :n € E} is bounded.
Therefore, the set {I" : n € E} is bounded. There exists an infinite set F C E such that
[(m) = ) for each nV,n® € F. Combined with (6.58) and (6.59), this fact implies that
[(T1y); — xfg")l < (2n)7! for all i € Z and all n € F with some [ € Z?. This implies that

y € MP(f,a), a contradiction. Therefore, E is finite. Since y is an arbitrary element of
M*(f,a), the set

{n€Z:n=>1and (6.56) holds} (6.62)

is finite. We may assume without loss of generality that (6.55) and (6.57) hold for any
integer n > 1. This fact implies that for each integer n > 1, there exists j® = (j\", i) €
72 such that

yi— (Tﬂ,,)y(o)),.) < % VieZ (6.63)

It follows from (6.52), (6.53), (6.54), (6.63), and the definition of ML*( f, ) that

lim % — y,-(o) =0, lim %; - y; =0,
e e (6.64)
lim% - y® =0, lim#& -y =0.

i— o0 i—00
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Formulas (6.63) and (6.64) imply that for each integer n > 1,

hm I:(Tj(n).’_(+)l- - (Tj(n)y(O))i] = 0)

i—00

X - (T‘(n)x-'—)i

limsup [ i

i—00

| = lim [%F — i +limsup |y = (Tioy®); || (6.65)

i—00

+Il£rg ‘ I:(Tj(n)y(o))i - (Tj(n)J_CJr)i] ‘ <

S | =

Since x* is periodic, we obtain that for any integer n > 1,

| % = (Tjwx*);| ==, i€ (6.66)

S | =

By Corollary 4.4 and (6.50), there exists x € (0, 1) such that for each z(V,z? € MP(f )
satisfying z(1 # z(2),

|2~z | > 2%, i€ (6.67)

1

Formulas (6.66) and (6.67) imply that for any integer n > 2x~!,

=Tk’ E =i+ i\ VYiez, (6.68)
-

and that the rotation number o of X* satisfies & = p/q = jén)/ ji”). Since p/q is an irre-
ducible fraction, we obtain that for any integer n > 2x~!, there is an integer a, such that

ax(p,q) = j™. (6.69)

We have three cases:

(1) there exists a strictly increasing sequence of natural numbers {n};2, such that
limy—. e ap, = 3

(2) there exists a strictly increasing sequence of natural numbers {n};2, such that
lim—.e ap, = —0;

(3) there exists a strictly increasing sequence of natural numbers {n}{2, such that
an, = ay, for all integers t > 1.

Assume that case (1) holds. Then, by (6.50), (6.64), and (6.69) for any integer i,

0 0 (0)
(Tjo0 y); = (Ta gy )i = Vi-anqt an P>
_ (0) 7
(Tj(ﬂt)y(O))i —Xi = yi*an,q + a”rp - (xifa"tq + amp) (6 70)
) ) .
:yzg—)un,q_x"*“mq — 0 ast— %

(ij,)y(o))i -%—0 ast— o, VieZ

This contradicts (6.63). Therefore, case (1) does not hold.
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Analogously, we can show that case (2) does not hold. Indeed, assume that case (2)
holds. Then, by (6.50), (6.64), and (6.69) for any integer i,

(0)
(Tj“‘f))’(o))i = (Tant(q,p)y(o))i = Yi—a,q T n. P>

_ 0) _
(Tj("f>y(0))i - x;r = yi(—a,,[q + “mP - (x;r—a,,tq + antp) (671)

_ (0 -+
=Yi-a,,q ~ Xi-a,q 0 ast— oo,

(ij)y(o))i —Xxf—0 ast— o0, Vi€eZ.

This contradicts (6.63). Therefore, case (2) does not hold. We have shown that case (3) is
valid. Then it follows from (6.63) and (6.69) that for all i € Z and any integer ¢ > 1,

1
= > [y (Tayapy )] = |7~ (Taapy )| (6.72)
and y = Ty, (4.0 %. Proposition 3.3 is proved.
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