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We prove the existence and uniqueness of a strong solution for a linear third-order equa-
tion with integral boundary conditions. The proof uses energy inequalities and the den-
sity of the range of the operator generated.

1. Introduction

In the rectangle Q = (0,1) x (0, T), we consider the equation

dAu 0 ou
f(x,t)_¥+a(a(x,t)$) (1.1)
with the initial conditions
ou
u(x,0) =0, g(x,o) =0, x€(0,1), (1.2)
the final condition
o*u
ﬁ(xaT)_()) S (O>l)1 (13)
the Dirichlet condition
u(0,t)=0 Vte (0,T), (1.4)
and the integral condition
1
L W, tdx =0, 0<l<1,te(0,T). (1.5)
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In addition, we assume that the function a(x,t) and its derivatives satisfy the conditions

O<ag<a(x,t)<a, Vx,teQ,

da

ox

ﬁb Vx,tEQ, (1 6)

Ky

8 7 (x fH<c Vx,teQ, k=1,3, withc| >0.
Over the last few years, many physical phenomena were formulated into nonlocal mathe-
matical models with integral boundary conditions [1, 9, 10, 11]. The reader should refer
to [13, 14] and the references therein. The importance of these kinds of problems has
also been pointed out by Samarskii [22]. This type of boundary value problems has been
investigated in (2, 3, 4, 6, 7, 8, 12, 18, 19, 20, 23, 25] for parabolic equations, in [21, 24]
for hyperbolic equations, and in [15, 16, 17] for mixed-type equations. The basic tool in
[5, 15, 16, 17, 20, 25] is the energy inequality method which, of course, requires appro-
priate multipliers and functional spaces. In this paper, we extend this method to the study
of a linear third-order partial differential equation.

2. Preliminairies

In this paper, we prove the existence and uniqueness of a strong solution of the problem
(1.1)—(1.5). For this, we consider the solution of problem (1.1)—(1.5) as a solution of the
operator equation

Lu=%, (2.1)

where the operator L has domain of definition D(L) consisting of functions u € L*(Q)
such that (0**'u/0tkdx)(x,t) € L*(Q), k = 1,3 and satisfing the conditions (1.4)-(1.5).

The operator L is considered from E to F, where E is the Banach space consisting of
function u € L*(Q)), with the finite norm

as az 2
|u|E_J®(ant3 v 28 ]dxdt
ou 0*u
J O Uax Stox ]d"dt (2.2)
2
+J (D(x)[ ou +|u|2]dxdt.
Q 0

F is the Hilbert space of functions & = (£,0,0,0), f € L*(Q), with the finite norm

FI2 = L)@(x) | e, t) P dxdt, (2.3)
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where

(1-0% 0<x<l,
Ox) =
() {(l—x)z, I<x<l,

(2.4)
0, O0<x<l,
D(x) =
1, I=sx<l.
3. An energy inequality and its application
TaeoreM 3.1. For any function u € D(L), the a priori estimate
lulle < kliLullp  for u € D(L), (3.1)

where k* = 40exp(cT)/k; with k; = inf{1/4,(c5 — 3cc] + 3c*c; — ay — b*)/2, a§/2, (3/
2)(cap — c1)}. The constant c satisfies

1 0a 1 oa
sup (——><c< inf (——+1>
(e \ a4 ot (xt)eQ \ a ot

—3cc; +3c%c) — Pay — b >0, (3.2)
—2¢c) +c*at+cag —¢; > 0.
Proof. Let
(1—l)2 t3’ 0<x<l,
LA, Fu
(I-x) ﬁ-{— (l—x)]xﬁ, <x<l1,

where J,u = || u(x,t)dx.

We consider the quadratic form obtained by multiplying (1.1) by exp(—ct)Mu, with
the constant ¢ satisfying (3.2), integrating over Q = (0,1) x (0,T), and taking the real
part:

®(u,u) = Re L} exp(—ct) f (x,t)Mudxdt. (3.4)
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By substituting the expression of Mu in (3.4), integrating with respect to x, and using the
Dirichlet and integral conditions, we obtain

Rej exp(—ct) flx, t)M_udxdt

Pu
dxot

3 amenca] 2]

+JOT Ll O(x) d’a d%a da ]

exp(—ct)[——3 98 3.2 3,
T rl
+J J exp(—ct)
0 Ji

ot3 or? ot
T Fu
—2ReJ J exp(—ct)a(x,t)u—dxdt

@ 2

3

,xM

5 dxdt

(3.5)

dx|e=r

=1

ou *u
- JO ®(x)exp(—ct)(— —ca )gmdxlt T

L @(x) d%a oa ou
—JO > exp(—ct)[ﬁ—z §+ a] E

J O(x)exp(—ct)a(x,t)

2
dx|e=7

T r1 93 Pu
—2ReJ0 L exp(—ct)gu]xﬁdxdt.

Integrating by parts —2Re [} |} exp(—ct)a(x, t)u(93u/dt>)dx dt with respect to t, and us-
ing the initial conditions, the final conditions, and the elementary inequalities, we obtain

T 1@(96) 3y
| ] B exnt-en| 55 dxdt
Pu
"IJMHWCﬂfﬁ]Mw
Pa _ Pa _0da 5 ||oul’
J J exp - t)[§—3 ¥+3CE—C a] E dxdt

dxdt

+J J exp(—ct)
JJ (t[“ 38——3]||2ddt
eXp C at3 at2 Ca callu X

_EL Jz eXp(_Ct)[ai: «a ] ?)t

+ J: ®;x) exp(—ct) [a -

u
]x?

]| 2
ot o0x0t
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L @(x) d%a oa da
_Jo > exp(—ct)[¥—2c§+c a+‘a ”8

o[ otwexp-enfa- |2 —cal]| 2]
- Ll (D(x)exp(—ct)[% _ zcg rat ' CLIP :||u|2dx|t:T
< 17J0T L1®(x) exp(—ct)| f [2dxd.
(3.6)
From (1.1), we get
| ewa u
A o

+4L2®(x)|f\ dxdt.

Combining this last inequality with (3.6) and using the conditions (3.2) yield

Bul? | Pu
jﬂ@(@[ = |5 }dxdt
au 82 au 2 ) (3 8)
J O(x) |:‘ax atax ]dxdt+J D(x) [‘E‘ + |ul ]dxdt

< kJ O()| f(x.t)|*dxdt,
Q

which is the desired inequality. O

It can be proved in a standard way that the operator L : E — F is closable. Let L be the
closure of this operator, with the domain of definition D(L).

Definition 3.2. A solution of the operator equation Lu = % is called a strong solution of
problem (1.1)—(1.5).

The a priori estimate (3.1) can be extended to strong solutions, that is, we have the
estimate

lullg < cllLullp  Vu e D(L). (3.9)

This last inequality implies the following corollaries.
CoROLLARY 3.3. A strong solution of (1.1)—(1.5) is unique and depends continuously on &

COROLLARY 3.4. The range R(L) of L is closed in F and R(L) = R(L).
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Corollary 3.4 shows that to prove that problem (1.1)—(1.5) has a strong solution for
arbitrary %, it suffices to prove that set R(L) is dense in F.

4. Solvability of problem (1.1)—(1.5)

To prove the solvability of problem (1.1)—(1.5) it is sufficient to show that R(L) is dense
in F. The proof is based on the following lemma.

LEmMMA 4.1. Suppose that the function a(x,t) and its derivatives are bounded. Let u € Dy(L)
= {u € D(L), u(x,0) =0, (du/dt)(x,0) =0, (*u/dt?)(x,T) = 0}. If for u € Do(L) and
some functions w(x,t) € L*(Q),

J h(x) fwdxdt = 0, (4.1)
Q
where
1-1, 0 I,
hix) = { =X (4.2)
1-x, I<x<l1,
holds, for arbitrary u € Dy(L), and then w = 0.
Proof. The equality (4.1) can be written as follows:
Pu__ _
J h(x) S wdxdt - J A(O)uvdxdt, (4.3)
Q ot3 Q
for a given w(x,t), where
(1-Dw, 0<x<l,
v W—Jl%(d(, I<x<1,
A= 2 (h(x)a(x, t)a—”), (4.4)
ox ox
(1 =D, 0<x<l,
Ny =
Q-x)v+Jv, I<x<l.

For v=w— [["(w/(1-{))d{, | < x <1 we deduce [ v({,t)d{ = (1—x) J;"(w/(1-{))dC,
then [ v({,1)d{ = 0.

Following [25], we introduce the smoothing operators with respect to ¢, (Jo!) = (I —
€(0*/03))7!, and (J-1)* = (I +€(0%/9t3))~! which provide the solution of the respective
problems:

3 2
uE —€ aa:/;e = u) uf (.x,O) = 0) %(x)o) = 0) aatl/;e (x) T) = OJ

B % . oy ?*vr (4:5)
v +e€ Yo =, vZ(x,0) =0, o (x,T) =0, 52 (x,T)=0.
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And also, we have the following properties: for any u € L*(0,T), the function J-'u €
W3(0,T), Jo')*u € W5(0,T). Ifu € D(L), J-'u € D(L).

. — . _ *
1;}?3”& u— ””LZ(O,T) =0, 1;{?3”(& 1) Uu-— ”HLZ(O,T) =0. (4.6)
Substituting the function u in (4.3) by the smoothing function #, and using the relation

A(Due = J7'A(t)u + €] B (t)u, where B(t) = (39/0t)((0A(t)/0t)(0uc/ot)) + (P A(t)/
ot3)ue, we obtain

j Na ve dxdt—J A uvEdxdt — e j B.()uvEdxdt. (4.7)

The operator A(t) has a continuous inverse in L?(0, 1) defined by

x Cl(t <4
(g - il acn e S [ Tt e
Jx;ﬂj (n)d +C()de7( u(d), l<x<l .
L (U= Oa@ J WA GO | gy T ’

where

(1= Du(D) + [y (d¢/a,1) Iy g(n)d
s (d¢/a(C,1)

—(1=Du() + [} (d¢/a,0) I glpdn.
f, (dl/a(l,t))

Ci(t) =

(4.9)

G(t) =

Then we have fllA‘l(t)u = 0, hence, the function J7'u = u, can be represented in the
form

=J AT (DAt (4.10)

The adjoint of B¢ () has the form

Bf(t)v = é(]gl)*gt? (]e Nt 0 (?;;%) = Ge(v)(x)

. (4.11)

N fo1 (d¢/a((,1)) Ge(v)(1),
IO (d(/a(cat))

where
I3, _,\x0 [ d%a ov 3aa % 0 (0aodv
GG(V)("):L [_Ue ) 8t<8t8( at) 2ot Ue &(a_a_> w1
ey () s (e
a’¢ o3¢ a? 8( ot?
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Consequently, equality (4.7) becomes

J NV 4 dt:J A(t)ule dxdt, (4.13)
ot3 Q

where he = v} —eBZ (t)vE.
The left-hand side of (4.13) is a continuous linear functional of u, hence the function
he has the derivatives ohe/0x, (1 — x)(0he/0x) € L*(Q), and the condition hc(0,t) = 0 is

satisfied.
From the equality

1o 1=k (28) Jo % ek (202
(4.14)

and since the operator (J7')* is bounded in L?(Q), for sufficiently small €, we have
lle(1/a)(J-1)* (9%a/ae®) || <1. Hence, the operator [ —€(1/a)(J- 1) * (93a/d¢*) has a bounded
inverse in L2(Q)). We conclude that (1 — x)(dv}/dx) € L*>(Q). Similarly, we conclude that
(0/0x)((1 — x)(9v}/0x)) exists and belongs to L?>(Q2), and the condition v} (0,¢) = 0 is
satisfied.

Putting u = fot fO{ fnT exp(ct)vFdrdnd{ in (4.3), where the constant c satisfies (3.2) and
using the proprieties of smoothing operator, we obtain

J exp(ct)v: Nvdxdt = —J A(D)uvF dxdt e (4.15)
Q Q Q
and from
fsJ’ A(t)u dxdt
o%a| Pu |’
_3J he)exp(~et) 32| 22| dxdt
Pa  Pa| Pu Fu
*3J hix) exp(~ Ct)[aﬁ ’Caﬂ]atzaxﬁd dt
h(x) da| Pu |*
+3J ey 2| T axl oy (4.16)
3]— —t)[az ek
exp( ot Cat atox
3 *
- | Hwexp(-cna| e dxdt

Padu Pu

J h(x)exp(—ct) = 55 o atzaxd xdt,
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we have
3,,%
“eRe | AWu® T dxat
o%a Pa  a Pu |?
<5§L | mwep-en| 5543 |55 - <55 | || amae | vt
3 Pa  da |Pa  al|l| Pu
+5Lzh(x)e’q’(_“) w “u o ‘or ] Jtox
v |?
—J h(x) exp(—ct)a dxdt (4.17)
Q o3
3 al|oul?
3 | mwesp(-en| 55 || 52| dxde
1 Pal| otu |?
+3 | mwesp(-an| 55| | 555 | dvr
aa du |’
J h(x)exp(— ct) FYEEN dxdt}.

Integrating the first term on the right-hand side by parts in (4.15), we obtain

- sReJ A(t)uvF dxdt

h(x)exp(—ct) ca
=3 Jeoest-en[ 5 -] | 55

Pa , Pa _,0a , )|oul’
—J h(x)exp(—ct){¥—3 ﬁ+3c g—c a} —
2y 12 (4.18)
J ~h(x)exp(—ct)a dx|i—r
otdx
da da 2 ou |’
J Shesp(-en{ 5~ 2657 + al | 52| dxlir
da ou 0*u
J h(x)exp(— ct){at }a@dxltg
This last equality gives
—sReJ A(HuvF dxdt
2 2
< —J h(x)exp( ct)‘—+a—ca Sxot dx|e—r (4.19)
da da) |ou|?
J —~h(x)exp( ct){w—2c§+c a+ca—g}‘a dx|i=r.
By using the conditions (3.2), inequalities (4.17) and (4.19), we obtain
(4.20)

ReJ exp(ct)vNvdxdt <0 ase — 0.
Q
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This implies Re [, exp(ct) (v} — v)Nvdxdt + Re [ exp(ct)vNvdxdt < 0, that is,
T 0l
J Jexp(—ct)(l—l)lvlzdxdt
0 Jo
T (1l T (1 ,
+J J Jexp(—ct)(l—x)lvlzdxdt+J J exp(—ct) | Jov| dxdt (4.21)
0o Ji Jo 0 Ji

-1 2
+J J ——exp(—ct) |Jxv| dxdt < 0.
0 Jo 21

Then v = 0.
Finally from (4.4), we conclude w = 0. O

THEOREM 4.2. The range R(L) of L coincides with F.
Proof. Since F is Hilbert space, then R(L) = F if and only if the relation

JQ O(x) fgdxdt = 0 (4.22)

holds.
Arbitraryu € Dy(L) and & = (f,0,0,0) € F implies f = 0. Takingin (4.22), u € Dy(L),
and using Lemma 4.1, we obtain

1-Dg, 0< I
w=<|( )g x <

4.23
(1-x)g, I<x<1, ( )

then g = 0. O
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