INSCRIBING CLOSED NON- σ -LOWER POROUS SETS INTO SUSLIN NON- σ -LOWER POROUS SETS

LUDĚK ZAJÍČEK AND MIROSLAV ZELENÝ

Received 28 April 2004

The main aim of this paper is to prove that every non- σ -lower porous Suslin set in a topologically complete metric space contains a closed non- σ -lower porous subset. In fact, we prove a general result of this type on "abstract porosities." This general theorem is also applied to ball small sets in Hilbert spaces and to σ -cone-supported sets in separable Banach spaces.

1. Introduction

This paper is a continuation of the work done in [9]. We are interested in the following question within the context of σ -ideals of σ -porous type.

Let *X* be a metric space and let \mathcal{I} be a σ -ideal of subsets of *X*. Let $S \subset X$ be a Suslin set with $S \notin \mathcal{I}$. Does there exist a closed set $F \subset S$ which is not in \mathcal{I} ?

The answer is positive provided that X is locally compact and \mathcal{F} is a σ -ideal of σ -P-porous sets, where \mathbf{P} is a porosity-like relation satisfying some additional conditions (see the definitions below, and for the precise statement, see [9]). In the case of the σ -ideal of ordinary (i.e., upper) σ -porous sets, which satisfies the assumptions of the abovementioned theorem in any locally compact metric space, even more is true: X can be any topologically complete metric space (see [8]). The proofs are not easy; they use either some amount of descriptive set theory (see [9]) or a quite complicated construction (see [8]).

In this paper, we deal with σ -ideals of σ -**P**-porous sets again, but these σ -ideals are supposed to be generated by closed **P**-porous sets, that is, every σ -**P**-porous set is covered by countably many closed **P**-porous sets. Note that this property does not hold for ordinary σ -porous sets but does hold for σ -lower porous sets. Although we will also work in nonseparable spaces, it turns out that the situation is much simpler than in [9]. Under a simple additional condition on the porosity-like relation **P**, we prove that every such σ -ideal has the property that every non- σ -**P**-porous Suslin subset of a topologically complete metric space X contains a closed non- σ -**P**-porous subset. As the main tool, we use a nonseparable version of Solecki's theorem proved in [2].

The general result will be applied to the σ -ideals of σ -lower porous sets, of σ -conesupported sets, and of ball small sets.

2. The general result

We start with notations and definitions. Let (X, ρ) be a metric space. Then the open ball with center $x \in X$ and radius r > 0 is denoted by B(x, r). We will use the following terminology from [7, 9]. We say that \mathbf{R} is a *point-set relation on* X if it is a relation between points of X and subsets of X. Thus a point-set relation \mathbf{R} is a subset of $X \times 2^X$. The symbol $\mathbf{R}(x, A)$, where $x \in X$ and $A \subset X$, means that $(x, A) \in \mathbf{R}$, that is, \mathbf{R} holds for the pair (x, A).

Let **R** be a point-set relation on *X*. If $A \subset X$ and $B \subset X$, then $\mathbf{R}(A,B) \stackrel{\text{def}}{\Longleftrightarrow} \forall a \in A$: $\mathbf{R}(a,B)$. The point-set relation $\neg \mathbf{R}$ on *X* is defined by $(\neg \mathbf{R})(x,A) \stackrel{\text{def}}{\Longleftrightarrow} \neg (\mathbf{R}(x,A))$.

We consider the following properties of a point-set relation \mathbf{R} on X.

- (A1) If $A \subset B \subset X$, $x \in X$, and $\mathbf{R}(x, B)$, then $\mathbf{R}(x, A)$.
- (A2) $\mathbf{R}(x,A)$ if and only if there is r > 0 such that $\mathbf{R}(x,A \cap B(x,r))$.
- (A3) $\mathbf{R}(x,A)$ if and only if $\mathbf{R}(x,\overline{A})$.

We say that a point-set relation P on X is a *porosity-like relation* if P satisfies the "axioms" (A1)–(A3).

Let **P** be a porosity-like relation on *X*. We say that $A \subset X$ is

- (i) **P**-porous at $x \in X$ if P(x,A),
- (ii) **P**-porous if P(x,A) for every $x \in A$,
- (iii) σ -**P**-porous if A is a countable union of **P**-porous sets.

If **P** is a porosity-like relation on *X* and $A \subset X$, then the set of all points of *A*, at which *A* is not **P**-porous, is denoted by N(**P**,*A*).

The proof of our result is based on the following nonseparable version (see [2, Corollary 3.6 and Remark 3.7]) of Solecki's theorem (see [3]). We need the following definitions to formulate it.

Let $\mathcal A$ be a system of subsets of a metric space X. We say that $\mathcal A$ is *weakly locally determined* if $A \subset X$ belongs to $\mathcal A$ whenever for each $x \in X$ there exists a, not necessarily open, neighbourhood U of x such that $U \cap A \in \mathcal A$.

Let \mathcal{F} be a family of closed subsets of a metric space X. We say that \mathcal{F} is *hereditary* if for all sets F_1 , F_2 with $F_1 \subset F_2$, $F_2 \in \mathcal{F}$, we have $F_1 \in \mathcal{F}$.

PROPOSITION 2.1 (see [2]). Let X be a topologically complete metric space. Let \mathcal{F} be a hereditary weakly locally determined system of closed sets. Then each Suslin subset of X is either covered by countably many elements of \mathcal{F} or else contains a G_{δ} set H such that $H \cap G$ cannot be covered by countably many elements of \mathcal{F} , whenever G is open and $G \cap H \neq \emptyset$.

Definition 2.2. Let X be a metric space and let \mathbf{P} be a porosity-like relation on X. It is said that \mathbf{P} has property (\star) if the following condition is satisfied.

(*) If $H \subset X$, $x \in H'$, and H is not **P**-porous at x, then there exists $J \subset H$ such that $J' = \{x\}$ and J is not **P**-porous at x.

The symbol H' stands for the set of all points of accumulation of H.

Now we can formulate our abstract theorem.

Theorem 2.3. Let X be a topologically complete metric space and let \mathbf{P} be a porosity-like relation on X such that \mathbf{P} satisfies (\star) , and each σ - \mathbf{P} -porous set is covered by countably many closed \mathbf{P} -porous sets. If $S \subset X$ is a Suslin non- σ - \mathbf{P} -porous set, then there exists a closed non- σ - \mathbf{P} -porous set $F \subset S$.

The next lemma immediately follows by a Baire category argument.

LEMMA 2.4. Let X and P be as in Theorem 2.3. Let $F \subset X$ be a closed nonempty set such that N(P,F) is dense in F. Then F is not σ -P-porous.

Proof of Theorem 2.3. We denote the σ -ideal of all σ -**P**-porous sets by \mathcal{I} .

The system of all closed **P**-porous sets is clearly hereditary and weakly locally determined by (A1) and (A2). According to Proposition 2.1, we may and do assume that S is a G_{δ} set and $S \cap G \notin \mathcal{I}$ for every open $G \subset X$ intersecting S. If there is $x \in S \setminus S'$, then $\{x\} \notin \mathcal{I}$. In this case, $F := \{x\}$ can serve as the set for which we are looking. From now on, we assume that $S \subset S'$. Let $S = \bigcap_{n=1}^{\infty} G_n$, where $\{G_n\}_{n=1}^{\infty}$ is a decreasing sequence of open sets. We will construct a sequence $\{F_n\}_{n=0}^{\infty}$ of closed sets and a decreasing sequence $\{H_n\}_{n=1}^{\infty}$ of open sets such that $F_0 = \emptyset$ and for every $n \in \mathbb{N}$, we have

- (a) $\emptyset \neq F_n \subset N(\mathbf{P}, S)$,
- (b) $F'_n = F_{n-1}$,
- (c) $F_n \subset H_n \subset \overline{H_n} \subset G_n$,
- (d) $(\neg \mathbf{P})(F_{n-1}, F_n)$.

We proceed by induction over n. Since $S \notin \mathcal{G}$, we can choose $x \in N(\mathbf{P}, S)$. We put $F_1 = \{x\}$. We easily find an open set H_1 such that $x \in H_1$ and $\overline{H_1} \subset G_1$. The sets F_1 and H_1 satisfy (a)–(d) for n = 1.

Assume that we have constructed F_1, \ldots, F_m and H_1, \ldots, H_m such that (a)–(d) hold for $n=1,\ldots,m$. We find an open set H_{m+1} with $F_m \subset H_{m+1} \subset \overline{H_{m+1}} \subset G_{m+1} \cap H_m$. The set $F_m \setminus F'_m$ is discrete in $X \setminus F'_m$, that is, for every $y \in X \setminus F'_m$, there exists r > 0 such that $B(y,r) \cap (F_m \setminus F'_m)$ contains at most one point. It is well known and easy to prove that, for each $z \in F_m \setminus F'_m$, we can choose $r_z > 0$ such that $\mathfrak{B} = (B(z,r_z))_{z \in F_m \setminus F'_m}$ is discrete in $X \setminus F'_m$, that is, for every $y \in X \setminus F'_m$, there exists s > 0 such that, for at most one $z \in F_m \setminus F'_m$, B(y,s) intersects $B(z,r_z)$.

Since $S \cap G \notin \mathcal{I}$ for every open G intersecting S, we have that $N(\mathbf{P}, S)$ is dense in S. According to this, (A3), and (a), we have $F_m \subset N(\mathbf{P}, N(\mathbf{P}, S))$. Thus using the condition (\star) and (A2), we find for every $z \in F_m \setminus F'_m$ a set J_z such that $J_z \subset B(z, r_z) \cap H_{m+1} \cap N(\mathbf{P}, S)$, $(\neg \mathbf{P})(z, J_z)$, and $J'_z = \{z\}$.

We put $F_{m+1} = F_m \cup \bigcup \{J_z; z \in F_m \setminus F_m'\}$. Clearly, $F_{m+1} \subset N(\mathbf{P}, S)$ and $F_{m+1} \subset H_{m+1}$. It is easy to see that $F'_{m+1} = F_m$; in particular, F_{m+1} is closed.

Let $x \in F_m$. We distinguish two possibilities. If $x \in F'_m = F_{m-1}$, then $(\neg \mathbf{P})(x, F_m)$ by the induction hypothesis, and so $(\neg \mathbf{P})(x, F_{m+1})$ by (A1). If $x \in F_m \setminus F'_m$, then $(\neg \mathbf{P})(x, J_x)$ and we also have $(\neg \mathbf{P})(x, F_{m+1})$. We get $(\neg \mathbf{P})(F_m, F_{m+1})$. Thus the sets F_{m+1} and H_{m+1} satisfy (a)–(d) for n = m+1 and the construction of our sequences is finished.

The desired set F is defined by $F = \overline{\bigcup_{n=1}^{\infty} F_n}$. Using (c) and the monotonicity of the H_n 's, we get $F \subset S$. We have $(\neg \mathbf{P})(\bigcup_{n=1}^{\infty} F_n, F)$ by (d). The set $\bigcup_{n=1}^{\infty} F_n$ is dense in F. Hence $F \notin \mathcal{I}$, by Lemma 2.4.

3. Applications

We will apply Theorem 2.3 to the σ -ideal of σ -lower porous sets (in a topologically complete metric space) and to two of its subsystems: to the σ -ideal of σ -cone-supported sets (in a separable Banach space) and to the σ -ideal of ball small sets (in an arbitrary Hilbert space).

Note that σ -lower porous sets (called frequently simply " σ -porous sets" and sometimes " σ -very porous sets") were applied in a number of articles on exceptional sets in (sometimes also nonseparable) Banach spaces (cf. [6]). In [6], information on σ -conesupported and ball small sets can also be found.

To verify condition (\star) in concrete cases, we will apply the following easy lemma.

LEMMA 3.1. Let $g: [0, \infty) \to [0, \infty)$ be a continuous increasing function with g(0) = 0. Let (X, ρ) be a metric space, $H \subset X$, and $a \in H'$. Then there exists $J \subset H \setminus \{a\}$, such that $J' = \{a\}$, and for each $x \in H \setminus \{a\}$, there exists $x^* \in J$ such that $g(\rho(x, x^*)) < \min(\rho(x, a), \rho(x^*, a))$.

Proof. Let $M_1 := \{x \in X; \ 1 \le \rho(x,a)\}$ and $M_n := \{x \in X; \ 1/n \le \rho(x,a) < 1/(n-1)\}$ for $n = 2, 3, \ldots$ For each natural n, choose $\varepsilon_n > 0$ such that $g(\varepsilon_n) < 1/n$ and in $H \cap M_n$, find a maximal ε_n -discrete subset D_n ($\rho(u,v) \ge \varepsilon_n$ for each $u,v \in D_n$, $u \ne v$). Put $J := \bigcup_{n=1}^{\infty} D_n$. Clearly, $J \subset H \setminus \{a\}$ and $J' = \{a\}$. Let $x \in H \setminus \{a\}$ be given. Find $n \in \mathbb{N}$ with $x \in M_n$. By maximality of D_n , we can choose $x^* \in D_n \subset J$ with $\rho(x,x^*) < \varepsilon_n$. Consequently,

$$g(\rho(x,x^*)) < g(\varepsilon_n) < \frac{1}{n} \le \min(\rho(x,a),\rho(x^*,a)).$$
 (3.1)

3.1. σ -lower porous sets

Definition 3.2. Let (X, ρ) be a metric space. It is said that $A \subset X$ is *lower porous at* $x \in X$ if there exist c > 0 and $r_0 > 0$ such that for every $r \in (0, r_0)$, there exists $y \in B(x, r)$ with $B(y, cr) \subset B(x, r) \setminus A$. The corresponding porosity-like relation is denoted by $\mathbf{P_l}$, and σ - $\mathbf{P_l}$ -porous sets are called σ -*lower porous*.

It is a well known and an easy fact that the σ -ideal \mathcal{I}_l of all σ -lower porous sets is generated by closed \mathbf{P}_l -porous sets (see, e.g., [6, Proposition 2.5]). The proof of the following lemma is also easy.

LEMMA 3.3. Let X be a metric space. Then P_1 has property (\star) .

Proof. Let $x \in N(\mathbf{P}, H) \cap H'$. Put $g(h) := \sqrt{h}$ (then $h = o(g(h)), h \to 0+$) and find $J \subset H$ by Lemma 3.1. Then $J' = \{x\}$. We will prove $(\neg \mathbf{P_1})(x, J)$.

Suppose on the contrary that J is lower porous at x. Then there exist c > 0 and $r_0 > 0$ such that for each $0 < r < r_0$, there exists $y \in X$ with $B(y,cr) \subset B(x,r) \setminus J$. We can clearly choose $r_1 > 0$ such that g(h) > 2h/c for each $0 < h < r_1$. Put $\widetilde{r} := \min(r_0, r_1)$, $\widetilde{c} := c/2$, and consider an arbitrary $0 < r < \widetilde{r}$. Choose $y \in X$ such that $B(y,cr) \subset B(x,r) \setminus J$. To obtain a contradiction with $x \in N(\mathbf{P_1}, H)$, it is sufficient to show that

$$B(y,\widetilde{c}r) \cap H = \emptyset. \tag{3.2}$$

Suppose that it is not the case and choose $z \in B(y, \tilde{c}r) \cap H$. By the choice of J, we can find $z^* \in J$ such that $g(\rho(z, z^*)) < \rho(z, x) < r < r_1$. Since $\tilde{c} < c$, we have $z \neq z^*$ and the definition of r_1 gives $g(\rho(z, z^*)) > 2\rho(z, z^*)/c$. Consequently, $\rho(z, z^*) < cr/2$, which implies that $z^* \in B(y, cr) \cap J$. This is a contradiction which proves (3.2).

Theorem 2.3 thus implies the following result.

COROLLARY 3.4. Let X be a topologically complete metric space and let $S \subset X$ be a Suslin set which is not σ -lower porous. Then there exists a closed $F \subset S$ which is not σ -lower porous.

Remark 3.5. We say that $A \subset \mathbf{R}$ is lower symmetrically porous at $x \in \mathbf{R}$ if there exist $r_0 > 0$ and c > 0 such that for each $0 < r < r_0$, there exist h > 0 and $t \ge 0$ such that h/r > c, $t+h \le r$, $(x+t,x+t+h) \cap A = \emptyset$, and $(x-t-h,x-t) \cap A = \emptyset$. The notions of a lower symmetrically porous set and a σ -lower symmetrically porous set are defined in the obvious way.

Proceeding quite similarly as above, we can easily obtain that each analytic set $S \subset \mathbf{R}$ which is not σ -lower symmetrically porous contains a closed set which is not σ -lower symmetrically porous.

3.2. Cone-supported sets

Definition 3.6. If *X* is a Banach space, v ∈ X, ||v|| = 1, and 0 < c < 1, then define the cone $A(v,c) := \bigcup_{\lambda>0} \lambda \cdot B(v,c)$. Define the (clearly porosity-like) point-set relation $\mathbf{P_s}$ as follows: $\mathbf{P_s}(x,M)$ if there exist r > 0 and a cone A(v,c) such that $M \cap (x + A(v,c)) \cap B(x,r) = \emptyset$. Sets which are $\mathbf{P_s}$ -porous (σ - $\mathbf{P_s}$ -porous) are called *cone supported* (σ -*cone supported*).

If X is separable, it is easy to prove (see [4, Lemma 1], cf. [6]) that $M \subset X$ is σ -cone supported (i.e., σ - \mathbf{P}_s -porous) if and only if M can be covered by countably many Lipschitz hypersurfaces. Since each Lipschitz hypersurface is clearly a closed \mathbf{P}_s -porous set, every σ - \mathbf{P}_s -porous set is covered by countably many closed \mathbf{P}_s -porous sets.

LEMMA 3.7. Let X be a Banach space. Then P_s has property (\star).

Proof. Let $x \in N(P_s, H) \cap H'$. Put $g(h) := \sqrt{h}$ and find $J \subset H$ by Lemma 3.1. Then $J' = \{x\}$. We will prove $(\neg P_s)(x, J)$. We can and will suppose that x = 0.

Suppose on the contrary that $\mathbf{P_s}(0,J)$. Then there exist $v \in X$, with ||v|| = 1, 1 > c > 0, and r > 0 such that $J \cap A(v,c) \cap B(0,r) = \emptyset$. We can suppose that r < c/4. To obtain a contradiction with $0 \in \mathbf{N}(\mathbf{P_s}, H)$, it is sufficient to show that

$$H \cap A\left(\nu, \frac{c}{2}\right) \cap B\left(0, \frac{r}{2}\right) = \emptyset. \tag{3.3}$$

Suppose that this is not the case and choose $z \in H \cap A(v,c/2) \cap B(0,r/2)$. By the choice of J, we can find $z^* \in J$ such that $||z-z^*|| \le ||z||^2 < \min(r/2,c/4 \cdot ||z||)$. Thus clearly $z^* \in B(0,r)$. Choose $\lambda > 0$ with $||\lambda z - v|| < c/2$. Then

$$||\lambda z^* - \nu|| \le \frac{c}{2} + \lambda ||z - z^*|| \le \frac{c}{2} + ||\lambda z|| \cdot \frac{c}{4} < \frac{c}{2} + \left(1 + \frac{c}{2}\right) \cdot \frac{c}{4} < c,$$
 (3.4)

and thus $z^* \in A(v,c) \cap B(0,r)$. This is a contradiction which proves (3.3).

Theorem 2.3 thus implies the following result.

COROLLARY 3.8. Let X be a separable Banach space and let $S \subset X$ be an analytic set which cannot be covered by countably many Lipschitz hypersurfaces. Then there exists a closed set $F \subset S$ which cannot be covered by countably many Lipschitz hypersurfaces.

3.3. Ball small sets

Definition 3.9. Let X be a Banach space and let r > 0. It is said that $A \subset X$ is r-ball porous at a point $x \in A$ if for each $\varepsilon \in (0,r)$, there exists $y \in X$ such that ||x - y|| = r and $B(y,r - \varepsilon) \cap A = \emptyset$. A set $A \subset X$ is called r-ball porous if it is r-ball porous at each $x \in A$. It is said that $A \subset X$ is ball small if it can be written in the form $A = \bigcup_{n=1}^{\infty} A_n$, where each A_n is r_n -ball porous for some $r_n > 0$.

Using the obvious fact that $B(z, ||z - x|| - \varepsilon) \subset B(y, \rho - \varepsilon)$ whenever $||y - x|| = \rho > 0$, z lies on the segment xy, and $||z - x|| > \varepsilon > 0$, it is easy to verify the following facts.

- (i) If *A* is *r*-ball porous at *a* and $0 < r^* < r$, then *A* is r^* -ball porous at *a*.
- (ii) If A is r-ball porous, then \overline{A} is r/2-ball porous.

For $A \subset X$ and $x \in X$, we will write $P_b(x,A)$ if A is r-ball porous at x for some r > 0.

Using (i), it is easy to see that P_b is a porosity-like relation on X and that the σ -ideal \mathcal{I}_b of all ball small sets coincides with the system of all σ - P_b -porous sets.

By (ii), we easily obtain that \mathcal{I}_b is generated by closed $\mathbf{P_b}$ -porous sets.

The proof of the following lemma is not difficult but slightly technical.

LEMMA 3.10. Let X be a Hilbert space. Then P_b has property (\star).

Proof (Sketch). First, observe that an elementary (two-dimensional) computation gives the following fact.

(F) If b, v, x, x^* are points of X, ||v|| = 1, $0 < \rho < 1/10$, $x \in B(b + \rho/2 \cdot v, \rho/2)$, and $||x^* - x|| \le 4||b - x||^2$, then $x^* \in B(b + \rho v, \rho)$.

Now let $H \subset X$ and $a \in N(\mathbf{P_b}, H) \cap H'$. Put $g(h) := \sqrt{h}$ and find $J \subset H$ by Lemma 3.1. Then $J' = \{a\}$. We will prove $(\neg \mathbf{P_b})(a, J)$. Suppose to the contrary that J is r-ball porous at a for some r > 0. By (i), we can suppose that r < 1/10. Then for each $0 < \varepsilon < r/4$, there exists $v \in X$ with ||v|| = 1 such that $B(a + rv, r - \varepsilon) \cap J = \emptyset$. It is sufficient to prove that

$$B\left(a + \frac{r}{2} \cdot \nu, \frac{r}{2} - 2\varepsilon\right) \cap H = \emptyset. \tag{3.5}$$

Then H is r/2-ball porous at a, a contradiction.

To prove (3.5), suppose on the contrary that there exists $x \in B(a+r/2 \cdot v, r/2 - 2\varepsilon) \cap H$. By the choice of J, there exists $x^* \in J$ such that $||x-x^*|| < ||x-a||^2$. Denote $b := a + 2\varepsilon v$ and distinguish two cases.

If $||x - b|| < 2\varepsilon$, then $||x - a|| < 4\varepsilon$ and therefore $||x - x^*|| < 16\varepsilon^2 < \varepsilon$ (since $\varepsilon < r/4 < 1/40$). Consequently, $x^* \in B(a + r/2 \cdot v, r/2 - \varepsilon) \subset B(a + rv, r - \varepsilon)$, a contradiction.

If $||x - b|| \ge 2\varepsilon$, then $||x - a|| \le 2\varepsilon + ||x - b|| \le 2||x - b||$ and thus $||x - x^*|| \le 4||x - b||^2$. Put $\rho := r - 4\varepsilon$. Since $x \in B(b + \rho/2 \cdot v, \rho/2) = B(a + r/2 \cdot v, r/2 - 2\varepsilon)$, fact (F) implies

that

$$x^* \in B(b + \rho \nu, \rho) = B(a + (r - 2\varepsilon)\nu, r - 4\varepsilon) \subset B(a + r\nu, r - \varepsilon), \tag{3.6}$$

a contradiction.

COROLLARY 3.11. Let X be a Hilbert space and let $S \subset X$ be a Suslin set which is not ball small. Then there exists a closed set $F \subset S$ which is not ball small.

Finally, note that Theorem 2.3 can be easily applied also to the system of σ -cone porous sets in an arbitrary Banach space (by a cone porous set, we mean a set which is α -cone porous for some $\alpha > 0$; see [5] for the definition and [1] for some properties of α -cone porous sets in Hilbert spaces). On the other hand, it seems that Theorem 2.3 can be applied neither to the (more interesting) related system of cone small sets (cf. [6]) nor to the system of σ -cone supported sets in nonseparable Banach spaces.

Acknowledgment

This research is supported by the Grants MSM 113200007 and GAČR 201/03/0931.

References

- [1] P. Holický, *Local and global σ-cone porosity*, Acta Univ. Carolin. Math. Phys. **34** (1993), no. 2, 51–57.
- [2] P. Holický, L. Zajíček, and M. Zelený, A remark on a theorem of Solecki, Comment. Math. Univ. Carolin. 46 (2005), no. 1, 43–54.
- [3] S. Solecki, Covering analytic sets by families of closed sets, J. Symbolic Logic **59** (1994), no. 3, 1022–1031.
- [4] L. Zajíček, On the points of multivaluedness of metric projections in separable Banach spaces, Comment. Math. Univ. Carolin. 19 (1978), no. 3, 513–523.
- [5] ______, Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces, Czechoslovak Math. J. 41(116) (1991), no. 2, 288–296.
- [6] ______, On σ-porous sets in abstract spaces (a partial survey), submitted to Abstr. Appl. Anal., http://www.karlin.mff.cuni.cz/kma-preprints/.
- [7] L. Zajíček and M. Zelený, On the complexity of some σ-ideals of σ-P-porous sets, Comment. Math. Univ. Carolin. 44 (2003), no. 3, 531–554.
- [8] M. Zelený and J. Pelant, The structure of the σ -ideal of σ -porous sets, Comment. Math. Univ. Carolin. **45** (2004), no. 1, 37–72.
- [9] M. Zelený and L. Zajíček, Inscribing compact non-σ-porous sets into analytic non-σ-porous sets, Fund. Math. 185 (2005), no. 1, 19–39.

Luděk Zajíček: Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic

E-mail address: zajicek@karlin.mff.cuni.cz

Miroslav Zelený: Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic

E-mail address: zeleny@karlin.mff.cuni.cz

Submit your manuscripts at http://www.hindawi.com

Journal of Discrete Mathematics

