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We will study meromorphic functions that share a small function, and prove the fol-
lowing result: let f (z) and g(z) be two transcendental meromorphic functions in the
complex plane and let n ≥ 11 be a positive integer. Assume that a(z)( �≡ 0) is a common
small function with respect to f (z) and g(z). If f n f

′
and gng

′
share a(z) CM, then ei-

ther f n(z) f
′
(z)gn(z)g

′
(z) ≡ a2(z), or f (z) ≡ tg(z) for a constant satisfying tn+1 = 1. As

applications, we give several examples.
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1. Introduction and main result

In this paper, a meromorphic function always means a function which is meromorphic
in the whole complex plane. Let f (z) be a nonconstant meromorphic function. We use
the following standard notations of value distribution theory:

T(r, f ),m(r, f ),N(r, f ),N(r, f ),N
(
r,

1
f

)
,N
(
r,

1
f

)
,Θ(a, f )

= 1− lim
r→∞

N
(
r,1/( f − a)

)
T(r, f )

, . . .

(1.1)

(see [1–3]). We use S(r, f ) to denote any function satisfying

S(r, f )= o
{
T(r, f )

}
, (1.2)

as r →∞, possibly outside of a set E with finite measure.
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Let a(z) be a meromorphic function in the complex plane. If T(r,a) = S(r, f ), then
a(z) is called a small function related to f (z).

Let b be a finite complex number. We denote by N2)(r,1/( f − b)) the counting func-
tion for zeros of f (z)− b (or poles of 1/( f (z)− b)) with multiplicity at most 2, and
by N2)(r,1/( f − b)) the corresponding one for which multiplicity is not counted. Let
N(2(r,1/( f − b)) be the counting function for zeros of f (z)− b with multiplicity at least
2 and N (2(r,1/( f − b)) the corresponding one for which multiplicity is not counted. Set

N2

(
r,

1
f − b

)
=N

(
r,

1
f − b

)
+N (2

(
r,

1
f − b

)
. (1.3)

Suppose that f (z) and g(z) are two meromorphic functions, and a(z) is a small func-
tion related to both of them. We say that f (z) and g(z) share the small function a(z) CM,
if f (z)− a(z) and g(z)− a(z) assume the same zeros with the same multiplicities. We say
that f (z) and g(z) share the value a CM if a(z)≡ a(∈ C) is constant.

In the 1920’s, Nevanlinna [2] proved his famous four-valued theorem, which is an
important result about uniqueness of meromorphic functions. Then many results about
meromorphic functions that share more than or equal to two values have been
obtained (see [4]). In 1997, Yang and Hua [5] studied meromorphic functions sharing
one value.

Theorem 1.1 (see [5]). Let f (z) and g(z) be two nonconstant meromorphic functions and
let n≥ 11 be a positive integer. If f n(z) f ′(z) and gn(z)g′(z) share 1 CM, then either f (z)=
c1ecz, g(z) = c2e−cz, where c1, c2, and c are three constants satisfying (c1c2)n+1c2 = −1, or
f (z)≡ tg(z) for a constant such that tn+1 = 1.

Fang and Qiu [6] investigated meromorphic functions sharing fixed point later.

Theorem 1.2 (see [6]). Let f (z) and g(z) be two nonconstant meromorphic(entire) func-
tions and let n≥ 11 (n≥ 6) be a positive integer. If f n(z) f ′(z) and gn(z)g′(z) share z CM,
then either f (z) = c1ecz

2
, g(z) = c2e−cz

2
, where c1, c2, and c are three constants satisfying

4(c1c2)n+1c2 =−1, or f (z)≡ tg(z) for a constant such that tn+1 = 1.

Recently, Banerjee [7] also studied meromorphic functions sharing one value, gener-
ating Theorem 1.1. In this paper, we extend the results above as follows.

Theorem 1.3. Let f (z) and g(z) be two transcendental meromorphic functions, and let
a(z)( �≡ 0) be a common small function with respect to them, and let n ≥ 11 be a positive
integer. If f n(z) f ′(z) and gn(z)g′(z) share a(z) CM, then either f n(z) f ′(z)gn(z)g′(z) ≡
a2(z), or f (z)≡ tg(z) for a constant such that tn+1 = 1.

2. Lemmas

In order to prove Theorem 1.3, we need the following lemmas.
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Lemma 2.1 (see [4]). Suppose that f (z) is a nonconstant meromorphic function in the
complex plane, and k is a positive integer. Then

N
(
r,

1
f (k)

)
≤N

(
r,

1
f

)
+ kN(r, f ) + S(r, f ). (2.1)

Lemma 2.2 (see [3, 4]). Suppose that f (z) is a nonconstant meromorphic function in the
complex plane, and a(∈ C∪∞) is any complex number. Then,

∑
a

Θ(a, f )≤ 2. (2.2)

Lemma 2.3 (see [3, 4, 8]). Let f (z) and g(z) be two meromorphic functions in the complex
plane. If f and g share 1 CM, then one of the following cases must occur:

(i) T(r, f )+T(r,g)≤ 2{N2(r,1/ f )+N2(r,1/g)+N2(r, f )+N2(r,g)}+S(r, f )+S(r,g),
(ii) either f ≡ g or f g ≡ 1.

3. Proof of Theorem 1.3

Let F(z)= f n(z) f ′(z)/a(z) andG(z)= gn(z)g′(z)/a(z). Then we know that F(z) andG(z)
share 1 CM. From Lemma 2.1, we have

N
(
r,

1
f ′

)
≤N

(
r,

1
f

)
+N(r, f ) + S(r, f ). (3.1)

By T(r,a)= S(r, f ) and (3.1), we obtain

N2

(
r,

1
F

)
≤N2

(
r,

1
f n f ′

)
+N2(r,a)

≤ 2N
(
r,

1
f

)
+N

(
r,

1
f ′

)
+N (2

(
r,

1
f ′

)
+ S(r, f )

≤ 2N
(
r,

1
f

)
+N

(
r,

1
f ′

)
+ S(r, f )

= 2
n

(
nN
(
r,

1
f

)
+N

(
r,

1
f ′

))
+
(

1− 2
n

)
N
(
r,

1
f ′

)
+ S(r, f )

≤ 2
n
N
(
r,

1
f n f ′

)
+
(

1− 2
n

)
1

n+ 1

[
nN
(
r,

1
f

)
+nN(r, f ) +N

(
r,

1
f ′

)]
+ S(r, f )

= 3
n+ 1

N
(
r,

1
f n f ′

)
+
n− 2
n+ 1

N(r, f ) + S(r, f ).

(3.2)
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Thus we have, by elementary Nevanlinna theory,

N2

(
r,

1
F

)
+N2(r,F)≤ 3

n+ 1
N
(
r,

1
f n f ′

)
+
n− 2
n+ 1

N(r, f ) +N2
(
r, f n f ′

)
+ S(r, f )

= 3
n+ 1

N
(
r,

1
f n f ′

)
+
n− 2
n+ 1

N(r, f ) + 2N(r, f ) + S(r, f )

= 3
n+ 1

N
(
r,

1
Fa

)
+

3n
n+ 1

N(r, f ) + S(r, f )

≤ 3
n+ 1

N
(
r,

1
F

)
+

3n
(n+ 1)(n+ 2)

N
(
r, f n f ′

)
+ S(r, f )

≤ 3
n+ 1

N
(
r,

1
F

)
+

3n
(n+ 1)(n+ 2)

N(r,F) + S(r, f )

≤
(

3
n+ 1

+
3n

(n+ 1)(n+ 2)

)
T(r,F) + S(r, f )

= 6
n+ 2

T(r,F) + S(r, f ).

(3.3)

On the other hand, since

nT(r, f )= T
(
r,

f n f ′

a

a

f ′

)
+ S(r, f )≤ T(r,F) + 2T(r, f ) + S(r, f ), (3.4)

we have S(r, f )= S(r,F), and therefore,

N2

(
r,

1
F

)
+N2(r,F)≤ 6

n+ 2
T(r,F) + S(r,F). (3.5)

Similarly, we have

N2

(
r,

1
G

)
+N2(r,G)≤ 6

n+ 2
T(r,G) + S(r,G). (3.6)

Combining with Lemma 2.3, suppose first that

T(r,F) +T(r,G)≤ 2
{
N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F) +N2(r,G)

}
+ S(r,F) + S(r,G).

(3.7)

By (3.5)–(3.7), we obtain

n− 10
n+ 2

{
T(r,F) +T(r,G)

}≤ S(r,F) + S(r,G). (3.8)

Since both F and G are transcendental meromorphic functions and n≥ 11, then we de-
duce a contradiction from (3.8).

Therefore, we deduce that either F(z)G(z) ≡ 1 or F(z) ≡ G(z) from Lemma 2.3, that
is, either f n(z) f ′(z)gn(z)g′(z)≡ a2(z) or f n+1(z)≡ gn+1(z) + c, where c is a constant.
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Suppose that c ��= 0, then

Θ
(∞, f n+1)+Θ

(
0, f n+1)+Θ

(
c, f n+1)=Θ

(∞, f n+1)+Θ
(
0, f n+1)+Θ

(
0,gn+1)

≥ 3
(

1− 1
n+ 1

)
≥ 33

12
,

(3.9)

which contradicts Lemma 2.2. Thus, f (z) ≡ tg(z) for a constant such that tn+1 = 1. The
proof is complete.

Remark 3.1. At this time, it is not easy to obtain the representation of f (z) and g(z) like
in Theorems 1.1 and 1.2. Suppose that either a(z) is an entire function or all of its poles
are simple. Set

f ′

f
=m(z),

g′

g
= n(z), (3.10)

then we get f (z) = c1e
∫ z
z0
m(z)dz and g(z) = c2e

∫ z
z0
n(z)dz, where c1 and c2 are two nonzero

constants, and the integral path [z0,z](z0 ��= z) does not pass the poles of either m(z) or
n(z). Combining with the equality in Theorem 1.3

f n(z) f ′(z)gn(z)g′(z)≡ a2(z), (3.11)

we have
(
c1c2

)n+1
e(n+1)(

∫ z
z0
m(z)dz+

∫ z
z0
n(z)dz)m(z)n(z)≡ a2(z). (3.12)

In particular,

f (z)= c1e
c
∫ z
z0
a(z)dz, g(z)= c2e

−c ∫ zz0
a(z)dz, (3.13)

if m(z)=−n(z)= ca(z), where c is a constant such that (c1c2)n+1c2 =−1. Hence (3.13) is
one of the representations of f (z) and g(z) which can be obtained from (3.11) under the
condition.

Example 3.2. If a(z) = ez, then by Theorem 1.3 and the Remark 3.1, we can obtain two
representations of f (z) and g(z): f (z) ≡ tg(z) for a constant such that tn+1 = 1; f (z) =
c1ece

z
,g(z)= c2e−ce

z
, where c1, c2, and c are three constants satisfying (c1c2)n+1c2 =−1.

Example 3.3. Suppose that

a(z)= 2z3− 2z2 + 1
z2− z

, (3.14)

then by Remark 3.1, we have

f (z)= c1e
c
∫ z
z0
a(z)dz = c1

(
z− 1
z

)c
ecz

2
, g(z)= c2e

−c ∫ zz0
a(z)dz = c2

(
z

z− 1

)c
e−cz

2
,

(3.15)

where c1, c2 and c are three constants satisfying (c1c2)n+1c2 =−1. This is one of the rela-
tions of f (z) and g(z).
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Example 3.4. If a(z) has a pole of order m(> 1), then we cannot get (3.13). Suppose that

a(z)= 1 + z2

z2
, (3.16)

then f (z) = c1e−c/zecz and g(z) = c2ec/ze−cz are not meromorphic functions in the com-
plex plane.
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