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1. Introduction

Consider the dynamical system, the behavior of which is described by the differential
inclusion

ẋ ∈ F(t, x, u), (1.1)

where x ∈ Rn is the phase state vector, u ∈ P is the control vector, P ⊂ Rp is a compact set,
and t ∈ [0, θ] = T is the time.

It will be assumed that the right-hand side of system (1.1) satisfies the following
conditions:

(a) F(t, x, u) ⊂ Rn is a nonempty, convex and compact set for every (t, x, u) ∈ T ×Rn×P ;
(b) the set valued map (t, x) → F(t, x, u), (t, x) ∈ T × Rn, is upper semicontinuous for

every fixed u ∈ P ;

(c) max{‖f‖ : f ∈ F(t, x, u), u ∈ P} ≤ c(1 + ‖x‖) for every (t, x) ∈ T × Rn where
c = const, and ‖ · ‖ denotes Euclidean norm.

Note that the study of a dynamical system described by an ordinary differential
equation with discontinuous right-hand side, can be carried out in the framework of systems,
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given in the form (1.1) (see, e.g., [1–3] and references therein). The investigation of a conflict
control system the dynamic of which is given by an ordinary differential equation, can also
be reduced to a study of system in form (1.1) (see, e.g., [3–5] and references therein). The
tracking control problem and its applications for uncertain dynamical systems, the behavior
of which is described by differential inclusion with control vector, have been studied in [6].

In Section 2 the feedback principle is chosen as control method of the system (1.1).
The motion of the system generated by strategy (U∗, δ∗(·)) from initial position (t0, x0) is
defined. Here U∗ is a positional strategy and it specifies the control effort to the system for
realized position (t∗, x∗).The function δ∗(·) defines the time interval; along the length of which
the control effort, U∗(t∗, x∗) will have an effect on. It is proved that the pencil of motions is a
compact set in the space of continuous functions and every motion from the pencil of motions
is an absolutely continuous function (Proposition 2.1).

In Section 3 the notion of a positionally weakly invariant set with respect to the
dynamical system (1.1) is introduced. The positionally weak invariance of the closed set
W ⊂ T × Rn means that for each (t0, x0) ∈ W there exists a strategy (U∗, δ∗(·)) such that
the graph of all motions of system (1.1) generated by strategy (U∗, δ∗(·)) from initial position
(t0, x0) is in the setW right up to instant of time θ.Note that this notion is a generalization of
the notions of weakly and strongly invariant sets with respect to a differential inclusion (see,
e.g., [5, 7–11]) and close to the positional absorbing sets notion in the theory of differential
games (see, e.g., [3–5] ). In terms of upper directional derivatives, the sufficient conditions
for posititionally weak invariance of the setsW = {(t, x) ∈ T ×Rn : c(t, x) ≤ 0}with respect to
system (1.1) are formulated where c(·) : T × Rn → R is a continuous function (Theorems 3.2
and 3.3).

In Section 4, the boundedness of the motions of the system is investigated. Using the
Hamiltonian of the system (1.1), the sufficient condition for boundedness of the motions is
given (Theorem 4.3 and Corollary 4.4).

2. Motion of the System

Now let us give a method of control for the system (1.1) and define the motion of the system
(1.1).

A function U : T × Rn → P is called a positional strategy. The set of all positional
strategies U : T × Rn → P is denoted by symbol Upos (see, e.g., [3–5]).

The set of all functions δ(μ, t, x, u) : (0, 1)×[0, θ)×Rn×P → (0, 1) such that δ(μ, t, x, u) ≤
μ for every (μ, t, x, u) ∈ (0, 1) × [0, θ) × Rn × P is denoted by Δ(0, 1).

A pair (U, δ(·)) ∈ Upos ×Δ(0, 1) is said to be a strategy. Note that such a definition of a
strategy is closely related to concept of ε-strategy for player E given in [12].

Now let us give a definition of motion of the system (1.1) generated by the strategy
(U∗, δ∗(·)) ∈ Upos ×Δ(0, 1) from initial position (t0, x0) ∈ [0, θ) × Rn.

At first we give a definition of step-by-step motion of the system (1.1) generated by
the strategy (U∗, δ∗(·)) ∈ Upos × Δ(0, 1) from initial position (t0, x0) ∈ [0, θ) × Rn. Note that
step-by-step procedure of control via strategy (U∗, δ∗(·)) uses the constructions developed in
[3, 4, 12].

For δ∗(·) ∈ Δ(0, 1) and fixed μ∗ ∈ (0, 1), we set

Δμ∗(δ∗(·)) =
{
h(t, x, u) : [0, θ) × Rn × P −→ (0, 1) : h(t, x, u) ≤ δ∗

(
μ∗, t, x, u

)
,

for every (t, x, u) ∈ [0, θ) × Rn × P
}
.

(2.1)
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It is obvious that δ∗(μ∗, ·, ·, ·) ∈ Δμ∗(δ∗(·)). Let us choose an arbitrary h(·) ∈ Δμ∗(δ∗(·)).
For given (t0, x0) ∈ [0, θ) × Rn, (U∗, δ∗(·)) ∈ Upos × Δ(0, 1), h(·) ∈ Δμ∗(δ∗(·)), we define the
function x(·) : [t0, θ] → Rn in the following way.

The function x∗(·) on the closed interval [t0, t0 + h(t0, x0, U∗(t0, x0))] ∩ [t0, θ] is defined
as a solution of the differential inclusion ẋ∗(t) ∈ F(t, x∗(t), U∗(t0, x0)), x∗(t0) = x0 (see, e.g.,
[13]). If t0 + h(t0, x0, U∗(t0, x0)) < θ, then setting t1 = t0 + h(t0, x0, U∗(t0, x0)), x∗(t1) = x1, the
function x∗(·) on the closed interval [t1, t1+h(t1, x1, U∗(t1, x1))]∩[t1, θ] is defined as a solution
of the differential inclusion ẋ∗(t) ∈ F(t, x∗(t), U∗(t1, x1)), x∗(t1) = x1 and so on.

Continuing this process we obtain an increasing sequence {tk}∞k=1 and function x∗(·) :
[t0, t∗) → Rn, where t∗ = sup tk. If t∗ = θ, then it can be considered that the definition of the
function x∗(·) is completed. If t∗ < θ, then to define the function x∗(·) on the interval [t0, θ],
the transfinite induction method should be used (see, e.g., [14]).

Let ν be an arbitrary ordinal number and {tλ}λ<ν are defined for every λ < ν, where
tλ ∈ [t0, θ) and tλ1 < tλ2 if λ1 < λ2. If t∗ = supλ<νtλ = θ, then it can be considered that the
definition of the function x∗(·) on the interval [t0, θ] is completed. Let t∗ < θ. If ν follows
after an ordinal number σ, then setting x∗(tσ) = xσ,we define the function x∗(·) on the closed
interval [tσ , tν] ∩ [tσ , θ], where tν = tσ + h(tσ , xσ,U∗(tσ , xσ)), as a solution of the differential
inclusion ẋ∗(t) ∈ F(t, x∗(t), U∗(tσ , xσ)), x∗(tσ) = xσ. If ν has no predecessor, then there exists
a sequence {tλi}∞i=1 such that tλi1 < tλi2 < · · · and tλi → tν − 0 as i → ∞. Then we set x∗(tν) =
limi→∞x∗(tλi).Note that it is not difficult to prove that via conditions (a)–(c), this limit exists.

Since the intervals (tλ, tλ+1) are not empty and pairwise disjoint then tν = θ for some
ordinal number νwhich does not exceed first uncountable ordinal number (see, e.g., [15, 16]).
So, the function x∗(·) is defined on the interval [t0, θ].

From the construction of the function x∗(·) it follows that for given (t0, x0) ∈ [0, θ) ×
Rn, (U∗, δ∗(·)) ∈ Upos×Δ(0, 1), μ∗ ∈ (0, 1), h(·) ∈ Δμ∗(δ∗(·)) such a function is not unique. The
set of such functions is denoted by Yμ∗(t0, x0, U∗, h(·)). Further, we set

Zμ∗(t0, x0, U∗, δ∗(·)) =
⋃

h(·)∈Δμ∗ (δ∗(·))
Yμ∗(t0, x0, U∗, h(·)). (2.2)

The set Zμ∗(t0, x0, U∗, δ∗(·)) is called the pencil of step-by-step motions and each
function x(·) ∈ Zμ∗(t0, x0, U∗, δ∗(·)) is called step-by-step motion of the system (1.1),
generated by the strategy (U∗, δ∗(·)) from the initial position (t0, x0).

It is obvious that for each step-by-step motion x(·) ∈ Zμ∗(t0, x0, U∗, δ∗(·)) there exists
an h∗(·) ∈ Δμ∗(δ∗(·)) such that x(·) ∈ Yμ∗(t0, x0, U∗, h∗(·)).

By X(t0, x0, U∗, δ∗(·)) we denote the set of all functions x(·) : [t0, θ] → Rn

such that x(·) = limk→∞xk(·), where xk(·) ∈ Zμk(t0, x0, U∗, δ∗(·)), μk → 0+ as k →
∞. X(t0, x0, U∗, δ∗(·)) is said to be the pencil of motions and each function x(·) ∈
X(t0, x0, U∗, δ∗(·)) is said to be the motion of the system (1.1), generated by the strategy
(U∗, δ∗(·)) from initial position (t0, x0).

For every initial position (θ, x0) we set X(θ, x0, U, δ(·)) = {x0} for all (U, δ(·)) ∈ Upos ×
Δ(0, 1).

Using the constructions developed in [3, 4] it is possible to prove the validity of the
following proposition.

Proposition 2.1. For each (t0, x0) ∈ [0, θ) × Rn, (U∗, δ∗(·)) ∈ Upos × Δ(0, 1) the set
X(t0, x0, U∗, δ∗(·)) is nonempty compact subset of the space C([t0, θ];Rn) and each motion x(·) ∈
X(t0, x0, U∗, δ∗(·)) is an absolutely continuous function.
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Here C([t0, θ];Rn) is the space of continuous functions x(·) : [t0, θ] → Rn with norm
|x(·)| = max‖x(t)‖ as t ∈ [t0, θ].

3. Positionally Weakly Invariant Set

Let W ⊂ T × Rn be a closed set. We set

W(t) = {x ∈ Rn : (t, x) ∈ W}. (3.1)

Let us give the definition of positionally weak invariance of the set W ⊂ T × Rn with
respect to dynamical system (1.1).

Definition 3.1. A closed setW ⊂ T ×Rn is said to be positionally weakly invariant with respect
to a dynamical system (1.1) if for each position (t0, x0) ∈ W it is possible to define a strategy
(U∗, δ∗(·)) ∈ Upos ×Δ(0, 1) such that for all x(·) ∈ X(t0, x0, U∗, δ∗(·)) the inclusion x(t) ∈ W(t)
holds for every t ∈ [t0, θ].

We will consider positionally weak invariance of the set W ⊂ T × Rn, described by the
relation

W = {(t, x) ∈ T × Rn : c(t, x) ≤ 0}, (3.2)

where c(·) : T × Rn → R1. For (t, x) ∈ [0, θ) × Rn, f ∈ Rn we denote

∂+c(t, x)
∂
(
1, f

) = lim sup
δ→ 0+,‖y‖→ 0

[
c
(
t + δ, x + δf + δy

) − c(t, x)
]
δ−1. (3.3)

Let us formulate the theorem which characterizes positionally weak invariance of the
set W given by relation (3.2) with respect to dynamical system (1.1).

Theorem 3.2 ([17]). Let ε∗ > 0, and let the set W ⊂ T × Rn be defined by relation (3.2) where
c(·) : T × Rn → R1 is a continuous function. Assume that for each (t, x) ∈ [0, θ) × Rn such that
0 < c(t, x) < ε∗, it is possible to define u∗ ∈ P such that the inequality

sup
f∈F(t,x,u∗)

∂+c(t, x)
∂
(
1, f

) ≤ 0 (3.4)

holds.
Then the set W described by relation (3.2) is positionally weakly invariant with respect to the

dynamical system (1.1).



Abstract and Applied Analysis 5

Theorem 3.3. Let ε∗ > 0, and let the setW ⊂ T×Rn be defined by relation (3.2)where c(·) : T×Rn →
R1 is a continuous function. Assume that for each (t, x) ∈ [0, θ) × Rn such that 0 < c(t, x) < ε∗, the
inequality

inf
u∈P

sup
f∈F(t,x,u)

∂+c(t, x)
∂
(
1, f

) ≤ 0 (3.5)

is verified.
Then for each fixed (t0, x0) ∈ W and ε ∈ (0, ε∗) it is possible to define a strategy (Uε, δε(·)) ∈

Upos ×Δ(0, 1) such that for all x(·) ∈ X(t0, x0, Uε, δε(·)) the inequality c(t, x(t)) ≤ ε holds for every
t ∈ [t0, θ].

For (t, x, s) ∈ T × Rn × Rn we denote

ξ(t, x, s) = inf
u∈P

sup
f∈F(t,x,u)

〈
s, f

〉
. (3.6)

Here 〈·, ·〉 denotes the inner product in Rn.
The function ξ(·) : T × Rn × Rn → R is said to be the Hamiltonian of the system (1.1).
We obtain from Theorem 3.3 the validity of the following theorem.

Theorem 3.4. Let ε∗ > 0, and let the setW ⊂ T×Rn be defined by relation (3.2)where c(·) : T×Rn →
R1 is a differentiable function. Assume that for each (t, x) ∈ [0, θ)×Rn such that 0 < c(t, x) < ε∗, the
inequality

∂c(t, x)
∂t

+ ξ

(
t, x,

∂c(t, x)
∂x

)
≤ 0 (3.7)

holds.
Then for each fixed (t0, x0) ∈ W and ε ∈ (0, ε∗) it is possible to define a strategy (Uε, δε(·)) ∈

Upos ×Δ(0, 1) such that for all x(·) ∈ X(t0, x0, Uε, δε(·)) the inequality c(t, x(t)) ≤ ε holds for every
t ∈ [t0, θ].

4. Boundedness of the Motion of the System

Consider positionally weak invariance of the setW ⊂ T × Rn given by relation (3.2) where

c(t, x) = 〈E(t)(x − a(t)), (x − a(t))〉 − 1, (4.1)

E(·) is a differentiable (n×n)matrix function, a(·) : T → Rn is a differentiable function. Then
the set W is given by relation

W = {(t, x) ∈ T × Rn : 〈E(t)(x − a(t)), (x − a(t))〉 − 1 ≤ 0}. (4.2)

If the matrix E(t) is symmetrical and positive definite for every t ∈ T, then it is obvious
that for every t ∈ T the set W(t) ⊂ Rn is ellipsoid.
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Theorem 4.1. Let ε∗ > 0, and let the set W ⊂ T × Rn be defined by relation (4.2) where E(·) is a
differentiable (n×n)matrix function, a(·) : T → Rn is a differentiable function. Assume that for each
(t, x) ∈ [0, θ) × Rn such that 0 < 〈E(t)(x − a(t)), (x − a(t))〉 − 1 < ε∗ the inequality

〈[
dE(t)
dt

(x − a(t)) −
(
E(t) + ET (t)

)da(t)
dt

]
, (x − a(t))

〉

+ ξ
(
t, x,

[
E(t) + ET (t)

]
(x − a(t))

)
≤ 0

(4.3)

holds.
Then for each fixed (t0, x0) ∈ W and ε ∈ (0, ε∗) it is possible to define a strategy (Uε, δε(·)) ∈

Upos ×Δ(0, 1) such that for all x(·) ∈ X(t0, x0, Uε, δε(·)) the inequality

〈E(t)(x(t) − a(t)), (x(t) − a(t))〉 − 1 < ε (4.4)

holds for every t ∈ [t0, θ].
Here ET (t) means the transpose of the matrix E(t).

Proof. Since the function c(·) given by relation (4.1) is differentiable and

∂c(t, x)
∂x

=
[
E(t) + ET (t)

]
(x − a(t)),

∂c(t, x)
∂t

=
〈[

dE(t)
dt

(x − a(t)) − E(t)
da(t)
dt

− ET (t)
da(t)
dt

]
, (x − a(t))

〉 (4.5)

then the validity of the theorem follows from Theorem 3.4.

We obtain from Theorem 4.1 the following corollary.

Corollary 4.2. Let ε∗ > 0, and let the set W ⊂ T × Rn be defined by relation (4.2) where E(·) is
a differentiable (n × n) matrix function, a(·) : T → Rn is a differentiable function and E(t) is a
symmetrical positive definite matrix for every t ∈ T. Assume that for each (t, x) ∈ [0, θ) × Rn for
which

0 < 〈E(t)(x − a(t)), (x − a(t))〉 − 1 < ε∗, (4.6)

the inequality

〈[
1
2
dE(t)
dt

(x − a(t)) − E(t)
da(t)
dt

]
, (x − a(t))

〉
+ ξ(t, x, E(t)(x − a(t))) ≤ 0 (4.7)

holds.
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Then for each fixed (t0, x0) ∈ W and ε ∈ (0, ε∗) it is possible to define a strategy (Uε, δε(·)) ∈
Upos ×Δ(0, 1) such that for all x(·) ∈ X(t0, x0, Uε, δε(·)) the inequality

〈E(t)(x(t) − a(t)), (x(t) − a(t))〉 − 1 < ε (4.8)

holds for every t ∈ [t0, θ].

Now let us give the theorem which characterizes boundedness of the motion of the
system (1.1).

For a ∈ Rn, r > 0, and ε∗ > 0 denote

Sε∗(a, r) = {x ∈ Rn : r < ‖x − a‖ < r + ε∗},
Sε∗(r) = {x ∈ Rn : r < ‖x‖ < r + ε∗},

B(a, r) = {x ∈ Rn : ‖x − a‖ ≤ r}, B(r) = {x ∈ Rn : ‖x‖ ≤ r},

α∗ = ε2∗ + 2rε∗.

(4.9)

Theorem 4.3. Let ε∗ > 0 and let r > 0. Assume that for each (t, x) ∈ [0, θ) ×Rn such that t ∈ [0, θ),
and x ∈ Sε∗(a, r) the inequality

ξ(t, x, (x − a)) ≤ 0 (4.10)

holds.
Then for each fixed (t0, x0) ∈ T × B(a, r) and ε ∈ (0, α∗) it is possible to define a strategy

(Uε, δε(·)) ∈ Upos×Δ(0, 1) such that for all x(·) ∈ X(t0, x0, Uε, δε(·)) the inequality ‖x(t)−a‖ ≤ r+ε
holds for every t ∈ [t0, θ].

Here α∗ > 0 is defined by relation (4.9).

Proof. Let

c(t, x) = 〈x − a, x − a〉 − r2. (4.11)

Then

∂c(t, x)
∂t

= 0,
∂c(t, x)

∂x
= 2(x − a), (4.12)

and consequently

∂c(t, x)
∂t

+ ξ

(
t, x,

∂c(t, x)
∂x

)
= 2ξ(t, x, x − a). (4.13)

Let

W = {(t, x) ∈ T × Rn : c(t, x) ≤ 0}, (4.14)
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where the function c(·) : T × Rn → R is defined by (4.11). It is obvious that (t, x) ∈ W if and
only if t ∈ T and x ∈ B(a, r).

It is not difficult to verify that

{(t, x) ∈ T × Rn : 0 < c(t, x) < α∗} = {(t, x) ∈ T × Rn : x ∈ Sε∗(a, r)}, (4.15)

where α∗ > 0 is defined by relation (4.9). Then we obtain from (4.10), (4.13) and (4.15) that
for every (t, x) ∈ [0, θ) × Rn such that 0 < c(t, x) < α∗ the inequality

∂c(t, x)
∂t

+ ξ

(
t, x,

∂c(t, x)
∂x

)
≤ 0 (4.16)

holds. So we get from Theorem 3.4 and (4.16) the validity of Theorem 4.3.

Corollary 4.4. Let ε∗ > 0 and let r > 0. Assume that for each (t, x) ∈ [0, θ)×Rn such that t ∈ [0, θ),
and x ∈ Sε∗(r) the inequality

ξ(t, x, x) ≤ 0 (4.17)

holds.
Then for each fixed (t0, x0) ∈ T × B(r) and ε ∈ (0, α∗) it is possible to define a strategy

(Uε, δε(·)) ∈ Upos ×Δ(0, 1) such that for all x(·) ∈ X(t0, x0, Uε, δε(·)) the inequality ‖x(t)‖ ≤ r + ε
holds for every t ∈ [t0, θ].

Here α∗ > 0 is defined by relation (4.9).

Using the results obtained above, we illustrate in the following example that the given
system has bounded motions.

Example 4.5. Let the behavior of the dynamical system be described by the differential
inclusion

ẋ ∈
[
x1/3 − β|x|, x1/3 + β|x|

]
+ x1/5u, (4.18)

where x ∈ R, u ∈ R, |u| ≤ α, α > 0, β ≥ 0, t ∈ [0, T], and T > 0 is sufficiently large number.
Let γ∗ > 0 be such that βx4/5 + x2/15 − α ≤ 0 for every x ∈ [−γ∗, γ∗]. Then for every

t ∈ [0, T] and x ∈ [−γ∗, γ∗]we get that

ξ(t, x, x) = inf
u∈[−α,α]

max
f∈[x1/3−β|x|,x1/3+β|x|]

(
xf + xx1/5u

)

= inf
u∈[−α,α]

x6/5u + max
f∈[x1/3−β|x|,x1/3+β|x|]

xf

= −αx6/5 + x4/3 + βx2 = x6/5
[
βx4/5 + x2/15 − α

]
≤ 0.

(4.19)

Thus, we get from (4.19) and Corollary 4.4 that for each x0 ∈ R such that |x0| < γ < γ∗
there exists a strategy (Uγ, δγ(·)) ∈ Upos × Δ(0, 1) such that for all x(·) ∈ X(0, x0, Uγ , δγ(·))
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the inequality |x(t)| ≤ γ holds for every t ∈ [0, T], where X(0, x0, Uγ , δγ(·)) is the pencil of
motions of the system (4.18) generated by the strategy (Uγ, δγ(·)) from initial position (0, x0).
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