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The boundedness and compactness of the weighted differentiation composition operator from the
mixed-norm space to the nth weighted-type space on the unit disk are characterized.

1. Introduction

Throughout this paper D will denote the open unit disk in the complex plane C, H(D)
the class of all holomorphic functions on D, and H∞ = H∞(D) the space of all bounded
holomorphic functions on D with the norm ‖f‖∞ = supz∈D

|f(z)|.
The mixed norm space Hp,q,γ = Hp,q,γ(D), 0 < p, q < ∞, −1 < γ < ∞, consists of all

f ∈ H(D) such that

∥
∥f
∥
∥
q

Hp,q,γ
=
∫1

0
M

q
p

(

f, r
)

(1 − r)γdr < ∞, (1.1)

where

Mp

(

f, r
)

=

(

1
2π

∫2π

0

∣
∣
∣f
(

reiθ
)∣
∣
∣

p
dθ

)1/p

. (1.2)
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A positive continuous function on D is called weight. Let μ(z) be a weight and n ∈ N0.
The nth weighted-type space on D, denoted by W(n)

μ (D), consists of all f ∈ H(D) such that

bW(n)
μ (D)

(

f
)

:= sup
z∈D

μ(z)
∣
∣
∣f (n)(z)

∣
∣
∣ < ∞. (1.3)

The space was recently introduced by this author in [1] as an extension of several weighted-
type spaces which attracted a lot of attention in last few decades. For instance, when n = 0,
the space becomes the weighted-type space H∞

μ (D) (see, e.g., [2–4]), when n = 1, the Bloch-
type space Bμ(D) (see, e.g., [5–7]), and for n = 2, the Zygmund-type space Zμ(D). Some
information on Zygmund-type spaces on D and some operators on them can be found, for
example, in [8–10] and on the unit ball, for example, in [11, 12].

The quantity bW(n)
μ (D)(f) is a seminorm on the nth weighted-type space W(n)

μ (D) and a

norm on W(n)
μ (D)/Pn−1, where Pn−1 is the set of all polynomials whose degrees are less than

or equal to n − 1. A natural norm on the nth weighted-type space is introduced as follows:

∥
∥f
∥
∥
W(n)

μ (D) =
n−1∑

j=0

∣
∣
∣f (j)(0)

∣
∣
∣ + bW(n)

μ (D)

(

f
)

. (1.4)

With this norm the nth weighted-type space becomes a Banach space.
The little nth weighted-type space, denoted byW(n)

μ,0(D), is a closed subspace ofW(n)
μ (D)

consisting of those f for which

lim
|z|→ 1

μ(z)
∣
∣
∣f (n)(z)

∣
∣
∣ = 0. (1.5)

An analytic self-map ϕ : D → D induces the composition operator Cϕ on H(D),
defined by Cϕ(f)(z) = f(ϕ(z)) for f ∈ H(D) (see, e.g., [8, 13–16]).

Let ϕ be an analytic self-map of D, u ∈ H(D), and m ∈ N. Then the weighted
differentiation composition operator, denoted by Dm

ϕ,u, is defined on H(D) by

Dm
ϕ,uf(z) = u(z)f (m)(ϕ(z)

)

, f ∈ H(D). (1.6)

Recently there has been some interest in studying some particular cases of operator
Dm

ϕ,u (see, e.g., [17–25]). For some other products of linear operators on spaces of holomorphic
functions see also recent papers [11, 26–32].

Here we study the boundedness and compactness of the operator Dm
ϕ,u from Hp,q,γ to

nth weighted-type spaces, where n ∈ N.
Throughout this paper, constants are denoted by C; they are positive and may differ

from one occurrence to the other. The notation A � B means that there is a positive constant
C such that B/C ≤ A ≤ CB.
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2. Auxiliary Results

Here we quote some auxiliary results which will be used in the proofs of the main results.
The first lemma can be proved in a standard way (see, e.g., in [13, Proposition 3.11] or in [15,
Lemma 3]).

Lemma 2.1. Assume that m ∈ N0, n ∈ N, p, q > 0, γ > −1, ϕ is an analytic self-map of D and
u ∈ H(D). Then the operator Dm

ϕ,u : Hp,q,γ → W(n)
μ is compact if and only if Dm

ϕ,u : Hp,q,γ → W(n)
μ

is bounded and for any bounded sequence (fk)k∈N
in Hp,q,γ which converges to zero uniformly on

compact subsets of D, Dm
ϕ,ufk → 0 inW(n)

μ as k → ∞.

The next lemma is known, but we give a proof of it for the benefit of the reader.

Lemma 2.2. Assume that n ∈ N0, 0 < p, q < ∞, −1 < γ < ∞ and f ∈ Hp,q,γ . Then there is a positive
constant C independent of f such that

∣
∣
∣f (n)(z)

∣
∣
∣ ≤ C

∥
∥f
∥
∥
Hp,q,γ

(

1 − |z|2
)(γ+1)/q+1/p+n

. (2.1)

Proof. By the monotonicity of the integral means, using the well-known asymptotic formula

∫1

0
M

q
p

(

f, r
)

(1 − r)γdr � ∣∣f(0)∣∣q +
∫1

0
M

q
p

(

f (n), r
)

(1 − r)γ+nqdr, (2.2)

and Theorem 7.2.5 in [33], we have that

∥
∥f
∥
∥
q

Hp,q,γ
≥
∫1

(1+|z|)/2
M

q
p

(

f (n), r
)

(1 − r)γ+nqdr

≥ CM
q
p

(

f (n),
1 + |z|

2

)(

1 − |z|2
)γ+1+nq

≥ C
(

1 − |z|2
)γ+1+nq+q/p∣

∣
∣f (n)(z)

∣
∣
∣

q
,

(2.3)

from which the result follows.

The following lemma can be found in [34].

Lemma 2.3. For β > −1 and m > 1 + β one has

∫1

0

(1 − r)β
(

1 − ρr
)mdr ≤ C

(

1 − ρ
)1+β−m

, 0 < ρ < 1. (2.4)

A proof of the next lemma can be found in [35, Lemma 2.3].
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Lemma 2.4. Assume a > 0 and

Dn(a) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1
a a + 1 · · · a + n − 1

a(a + 1) (a + 1)(a + 2) · · · (a + n − 1)(a + n)
· · ·

n−2∏

j=0

(

a + j
)

n−2∏

j=0

(

a + j + 1
) · · ·

n−2∏

j=0

(

a + j + n − 1
)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.5)

Then Dn(a) =
∏n−1

j=1 j!.

The following formula

(

f ◦ ϕ)(n)(z) =
n∑

k=1

f (k)(ϕ(z)
) ∑

k1,...,kn

n!
k1! · · · kn!

n∏

j=1

(

ϕ(j)(z)
j!

)kj

, (2.6)

where the second sum is over all nonnegative integers k1, k2, . . . , kn satisfying k = k1 + k2 +
· · ·+kn and k1+2k2+ · · ·+nkn = n, is attributed to Faà di Bruno [36]. By using Bell polynomials
Bn,k(x1, . . . , xn−k+1) it can be written as follows:

(

f ◦ ϕ)(n)(z) =
n∑

k=0

f (k)(ϕ(z)
)

Bn,k

(

ϕ′(z), ϕ′′(z), . . . , ϕ(n−k+1)(z)
)

. (2.7)

For n ∈ N the last sum can go from k = 1 since Bn,0(ϕ′(z), ϕ′′(z), . . . , ϕ(n+1)(z)) = 0; however
we will keep the summation since for n = 0 the only existing term B0,0 is equal to 1 and we
will use it.

The Leibnitz formula along with (2.6) yields

(

u(z)g
(

ϕ(z)
))(n) =

n∑

l=0

Cn
l u

(n−l)(z)
l∑

k=0

g(k)(ϕ(z)
)

Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)

. (2.8)

Hence we have the next result.

Lemma 2.5. Assume that g, u ∈ H(D) and ϕ is an analytic self-map of D. Then

(

u(z)g
(

ϕ(z)
))(n) =

n∑

k=0

g(k)(ϕ(z)
)

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)

. (2.9)

3. The Boundedness and Compactness of Dm
ϕ,u : Hp,q,γ → W(n)

μ

This section characterizes the boundedness and compactness of the operator Dm
ϕ,u : Hp,q,γ →

W(n)
μ .



Abstract and Applied Analysis 5

Theorem 3.1. Suppose that m,n ∈ N, 0 < p, q < ∞, −1 < γ < ∞, ϕ is an analytic self-map of the
unit disk, u ∈ H(D), and μ is a weight. Then the operator Dm

ϕ,u : Hp,q,γ → W(n)
μ is bounded if and

only if for each k ∈ {0, 1, . . . , n}

Ik := sup
z∈D

μ(z)
∣
∣
∑n

l=k C
n
l
u(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+m+k

< ∞. (3.1)

Moreover if Dm
ϕ,u : Hp,q,γ → W(n)

μ is bounded, then the following asymptotic relation holds

∥
∥
∥Dm

ϕ,u

∥
∥
∥
Hp,q,γ →W(n)

μ /Pn−1
�

n∑

k=0

Ik. (3.2)

Proof. First assume that Dm
ϕ,u : Hp,q,γ → W(n)

μ is bounded; then there exists a constant C such
that

∥
∥
∥Dm

ϕ,uf
∥
∥
∥
W(n)

μ

≤ C
∥
∥f
∥
∥
Hp,q,γ

(3.3)

for all f ∈ Hp,q,γ .
For a fixed w ∈ D, t ≥ (γ + 1)/q, and constants c1, . . . , cn+1, set

gw(z) =
n+1∑

j=1

cj
∏m−1

l=0
(

j + t + 1/p + l
) ĝw,j(z), (3.4)

where

ĝw,j(z) =

(

1 − |w|2
)j+t−(γ+1)/q

(1 −wz)1/p+j+t
, j = 1, . . . , n + 1. (3.5)

By [33, Theorem 1.4.10], we get

Mp

(

ĝw,j , r
) ≤ C

(

1 − |w|2
)j+t−(γ+1)/q

(1 − r|w|)j+t
, j = 1, . . . , n + 1. (3.6)
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Applying Lemma 2.3, we have that

∥
∥ĝw,j

∥
∥
q

Hp,q,γ
=
∫1

0
M

q
p

(

ĝw,j , r
)

(1 − r)γdr

≤ C

∫1

0

(

1 − |w|2
)q(j+t)−(γ+1)

(1 − r|w|)q(j+t)
(1 − r)γdr

≤ C.

(3.7)

Therefore gw ∈ Hp,q,γ , and moreover supw∈D
‖gw‖Hp,q,γ < ∞.

Nowwe show that for each s ∈ {m,m+1, . . . , m+n}, there are constants c1, c2, . . . , cn+1,
such that

g
(s)
w (w) =

ws

(

1 − |w|2
)s+(γ+1)/q+1/p

, g
(t)
w (w) = 0, t ∈ {m, . . . ,m + n} \ {s}. (3.8)

By differentiating function gw, for each s ∈ {m, . . . ,m + n}, (3.8) becomes

c1 + c2 + · · · + cn+1 = 0,
(

t + p−1 +m + 1
)

c1 +
(

t + p−1 +m + 2
)

c2 + · · · +
(

t + p−1 +m + n + 1
)

cn+1 = 0,

...

s−m∏

j=1

(

t + p−1 +m + j
)

c1 + · · · +
s−m∏

j=1

(

t + p−1 +m + n + j
)

cn+1 = 1,

...

n∏

j=1

(

t + p−1 +m + j
)

c1 + · · · +
n∏

j=1

(

t + p−1 +m + n + j
)

cn+1 = 0.

(3.9)

Applying Lemma 2.4 with a = t + 1/p +m + 1 > 0 and where n → n + 1, we see that
the determinant of system (3.9) is different from zero, as claimed.

By gw,k, k ∈ {0, 1, . . . , n}, denote the corresponding family of functions which satisfy
(3.8) with s = m + k. Then, for each fixed k ∈ {0, 1, . . . , n}, inequality (3.3) along with (2.9)
and (3.8) implies that for each ϕ(w)/= 0

μ(w)
∣
∣ϕ(w)

∣
∣
k+m∣
∣
∑n

l=k C
n
l u

(n−l)(w)Bl,k

(

ϕ′(w), . . . , ϕ(l−k+1)(w)
)∣
∣

(

1 − ∣∣ϕ(w)
∣
∣
2
)(γ+1)/q+1/p+k+m

≤ Csup
w∈D

∥
∥
∥Dm

ϕ,u

(

gϕ(w),k
)
∥
∥
∥
W(n)

μ

≤ C
∥
∥
∥Dm

ϕ,u

∥
∥
∥
Hp,q,γ →W(n)

μ

.

(3.10)
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From (3.10) it follows that for each k ∈ {0, 1, . . . , n},

sup
|ϕ(z)|>1/2

μ(z)
∣
∣
∑n

l=k C
n
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

≤ C‖Dm
ϕ,u‖Hp,q,γ →W(n)

μ
. (3.11)

Let

hk(z) = zk, k = m, . . . , n +m. (3.12)

Then clearly

‖hk‖Hp,q,γ
≤ 1, for each k ∈ N. (3.13)

By formula (2.9) applied to the function f(z) = hm(z) we get

(

Dm
ϕ,uhm

)(n)
(z) = h

(m)
m

(

ϕ(z)
)

n∑

l=0

Cn
l u

(n−l)(z)Bl,0

(

ϕ′(z), . . . , ϕ(l+1)(z)
)

= m!
n∑

l=0

Cn
l u

(n−l)(z)Bl,0

(

ϕ′(z), . . . , ϕ(l+1)(z)
)

,

(3.14)

which along with the boundedness of the operator Dm
ϕ,u : Hp,q,γ → W(n)

μ and (3.13) implies
that

m!sup
z∈D

μ(z)

∣
∣
∣
∣
∣

n∑

l=0

Cn
l u

(n−l)(z)Bl,0

(

ϕ′(z), . . . , ϕ(l+1)(z)
)
∣
∣
∣
∣
∣
≤
∥
∥
∥Dm

ϕ,u(z
m)
∥
∥
∥
W(n)

μ

≤
∥
∥
∥Dm

ϕ,u

∥
∥
∥
Hp,q,γ →W(n)

μ

.

(3.15)

Now assume that we have proved that for j ∈ {0, 1, . . . , k − 1} and a k ≤ n

sup
z∈D

μ(z)

∣
∣
∣
∣
∣
∣

n∑

l=j

Cn
l u

(n−l)(z)Bl,j

(

ϕ′(z), . . . , ϕ(l−j+1)(z)
)

∣
∣
∣
∣
∣
∣

≤ C
∥
∥
∥Dm

ϕ,u

∥
∥
∥
Hp,q,γ →W(n)

μ

. (3.16)

Applying (2.9) to the function f(z) = hm+k(z), k ∈ {0, 1, . . . , n}, and noticing that
h
(s)
m+k(z) ≡ 0 for s > m + k, we get

(

Dm
ϕ,uhm+k

)(n)
(z) =

k∑

j=0

h
(m+j)
m+k

(

ϕ(z)
)

n∑

l=j

Cn
l u

(n−l)(z)Bl,j

(

ϕ′(z), . . . , ϕ(l−j+1)(z)
)

=
k∑

j=0
(m + k) · · · (k − j + 1

)(

ϕ(z)
)k−j n∑

l=j

Cn
l u

(n−l)(z)Bl,j

(

ϕ′(z), . . . , ϕ(l−j+1)(z)
)

.

(3.17)
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From (3.17), the boundedness of the operator Dm
ϕ,u : Hp,q,γ → W(n)

μ , the fact
that ‖ϕ‖∞ ≤ 1, the triangle inequality, noticing that (m + k)! is the coefficient at
∑n

l=k C
n
l
u(n−l)(z)Bl,k(ϕ′(z), . . . , ϕ(l−k+1)(z)), and finally using hypothesis (3.16)we get

sup
z∈B

μ(z)

∣
∣
∣
∣
∣

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣
≤ C
∥
∥
∥Dm

ϕ,u

∥
∥
∥
Hp,q,γ →W(n)

μ

. (3.18)

Hence by induction, (3.18) holds for each k ∈ {0, 1, . . . , n}.
From (3.18), for each fixed k ∈ {0, 1, . . . , n}

sup
|ϕ(z)|≤1/2

μ(z)
∣
∣
∑n

l=k C
n
l
u(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

≤ C sup
z∈B

μ(z)

∣
∣
∣
∣
∣

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣
≤ C
∥
∥
∥Dm

ϕ,u

∥
∥
∥
Hp,q,γ →W(n)

μ

.

(3.19)

Inequalities (3.11) and (3.19) imply

n∑

k=0

Ik ≤ C
∥
∥
∥Dm

ϕ,u

∥
∥
∥
Hp,q,γ →W(n)

μ

. (3.20)

Now assume that (3.1) holds. Then for any f ∈ Hp,q,γ , by (2.9) and Lemma 2.2 we have

μ(z)
∣
∣
∣
∣

(

Dm
ϕ,uf
)(n)

(z)
∣
∣
∣
∣
= μ(z)

∣
∣
∣
∣
∣

n∑

k=0

f (m+k)(ϕ(z)
)

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣

≤ μ(z)
n∑

k=0

∣
∣
∣f (m+k)(ϕ(z)

)
∣
∣
∣

∣
∣
∣
∣
∣

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣

(3.21)

≤ C
∥
∥f
∥
∥
Hp,q,γ

n∑

k=0

μ(z)
∣
∣
∑n

l=k C
n
l
u(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

(3.22)

≤ C
∥
∥f
∥
∥
Hp,q,γ

n∑

k=0

sup
z∈D

μ(z)
∣
∣
∑n

l=k C
n
l
u(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

(3.23)
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We also have that for each s ∈ {1, . . . , n − 1}

∣
∣
∣
∣

(

Dm
ϕ,uf
)(s)

(0)
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

s∑

k=0

f (m+k)(ϕ(0)
)

s∑

l=k

Cs
l u

(s−l)(0)Bl,k

(

ϕ′(0), . . . , ϕ(l−k+1)(0)
)
∣
∣
∣
∣
∣

≤ C
∥
∥f
∥
∥
Hp,q,γ

s∑

k=0

∣
∣
∑s

l=k C
s
l
u(s−l)(0)Bl,k

(

ϕ′(0), . . . , ϕ(l−k+1)(0)
)∣
∣

(

1 − ∣∣ϕ(0)∣∣2
)(γ+1)/q+1/p+m+k

,

∣
∣
∣

(

Dm
ϕ,uf
)

(0)
∣
∣
∣ = |u(0)|

∣
∣
∣f (m)(ϕ(0)

)
∣
∣
∣ ≤ C|u(0)|

∥
∥f
∥
∥
Hp,q,γ

(

1 − ∣∣ϕ(0)∣∣2
)(γ+1)/q+1/p+m

.

(3.24)

Using (3.23), (3.24), and (3.1) it follows that the operator Dm
ϕ,u : Hp,q,γ → W(n)

μ is bounded.
From (3.23) and (3.20) the asymptotic relation (3.2) follows.

Theorem 3.2. Suppose that m,n ∈ N, 0 < p, q < ∞, −1 < γ < ∞, ϕ is an analytic self-map of the
unit disk, u ∈ H(D), and μ is a weight. Then the operator Dm

ϕ,u : Hp,q,γ → W(n)
μ,0 is bounded if and

only if Dm
ϕ,u : Hp,q,γ → W(n)

μ is bounded and for each k ∈ {0, 1, . . . , n}

lim
|z|→ 1

μ(z)

∣
∣
∣
∣
∣

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣
= 0. (3.25)

Proof. The boundedness of Dm
ϕ,u : Hp,q,γ → W(n)

μ,0 clearly implies that Dm
ϕ,u : Hp,q,γ → W(n)

μ is
bounded. Applying (2.9) to the function f(z) = hm(z) and using the assumption Dm

ϕ,u(hm) ∈
W(n)

μ,0 it follows that

μ(z)
∣
∣
∣
∣

(

Dm
ϕ,uhm

)(n)
(z)
∣
∣
∣
∣
= m!μ(z)

∣
∣
∣
∣
∣

n∑

l=0

Cn
l u

(n−l)(z)Bl,0

(

ϕ′(z), . . . , ϕ(l+1)(z)
)
∣
∣
∣
∣
∣
−→ 0, (3.26)

as |z| → 1, which is (3.25) for k = 0.
Assume that we have proved the following inequalities:

lim
|z|→ 1

μ(z)

∣
∣
∣
∣
∣
∣

n∑

l=j

Cn
l u

(n−l)(z)Bl,j

(

ϕ′(z), . . . , ϕ(l−j+1)(z)
)

∣
∣
∣
∣
∣
∣

= 0, (3.27)

for j ∈ {0, 1, . . . , k − 1} and a k ≤ n.
Applying formula (2.9) to the function f(z) = hm+k(z), k ∈ {0, 1, . . . , n}, we get (3.17).

From (3.17), by using the boundedness of function ϕ, the triangle inequality, noticing that the
coefficient at

∑n
l=k C

n
l
u(n−l)(z)Bl,k(ϕ′(z), . . . , ϕ(l−k+1)(z)) is independent of z, and finally using
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hypothesis (3.27), we easily obtain

lim
|z|→ 1

μ(z)

∣
∣
∣
∣
∣

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣
= 0. (3.28)

Hence by induction we get that (3.25) holds for each k ∈ {0, 1, . . . , n}.
Now assume that Dm

ϕ,u : Hp,q,γ → W(n)
μ is bounded and (3.25) holds for each k ∈

{0, 1, . . . , n}. For each polynomial p we have

μ(z)
∣
∣
∣
∣

(

Dm
ϕ,up
)(n)

(z)
∣
∣
∣
∣
= μ(z)

∣
∣
∣
∣
∣

n∑

k=0

p(k)
(

ϕ(z)
)

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣

≤
n∑

k=0

∥
∥
∥p(k)

∥
∥
∥
∞
μ(z)

∣
∣
∣
∣
∣

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣
−→ 0,

(3.29)

as |z| → 1.
From (3.29) we have that, for each polynomial p, Dm

ϕ,up ∈ W(n)
μ,0. The set of all

polynomials is dense in Hp,q,γ , so we have that for each f ∈ Hp,q,γ , there is a sequence
of polynomials (pk)k∈N

such that ‖f − pk‖Hp,q,γ
→ 0 as k → ∞. Thus the boundedness of

Dm
ϕ,u : Hp,q,γ → W(n)

μ implies

∥
∥
∥Dm

ϕ,uf −Dm
ϕ,upk

∥
∥
∥
W(n)

μ

≤
∥
∥
∥Dm

ϕ,u

∥
∥
∥
Hp,q,γ →W(n)

μ

∥
∥f − pk

∥
∥
Hp,q,γ

−→ 0, as k −→ ∞. (3.30)

Hence Dm
ϕ,u(Hp,q,γ) ⊆ W(n)

μ,0, from which the boundedness of Dm
ϕ,u : Hp,q,γ → W(n)

μ,0 follows,
completing the proof of the theorem.

Theorem 3.3. Suppose that m,n ∈ N, 0 < p, q < ∞, −1 < γ < ∞, ϕ is an analytic self-map of the
unit disk, u ∈ H(D), and μ is a weight. Then the operator Dm

ϕ,u : Hp,q,γ → W(n)
μ is compact if and

only if Dm
ϕ,u : Hp,q,γ → W(n)

μ is bounded and for each k ∈ {0, 1, . . . , n}

lim
|ϕ(z)|→ 1

μ(z)
∣
∣
∑n

l=k C
n
l
u(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

= 0. (3.31)

Proof. First assume thatDm
ϕ,u : Hp,q,γ → W(n)

μ is bounded and (3.31) holds. By Theorem 3.1 we
have that for each k ∈ {0, 1, . . . , n}, (3.1) holds.
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Let (fi)i∈N
be a sequence in Hp,q,γ such that supi∈N

‖fi‖Hp,q,γ
≤ L and fi converges to 0

uniformly on compact subsets of D as i → ∞. By the assumption, for any ε > 0, there is a
δ ∈ (0, 1), such that for each k ∈ {0, 1, . . . , n} and δ < |ϕ(z)| < 1

μ(z)
∣
∣
∑n

l=k C
n
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

< ε. (3.32)

We have

∥
∥
∥Dm

ϕ,ufi
∥
∥
∥
W(n)

μ

= sup
z∈D

μ(z)
∣
∣
∣
∣

(

Dm
ϕ,ufi

)(n)
(z)
∣
∣
∣
∣
+

n−1∑

j=0

∣
∣
∣
∣

(

Dm
ϕ,ufi

)(j)
(0)
∣
∣
∣
∣

= sup
z∈D

μ(z)

∣
∣
∣
∣
∣

n∑

k=0

f
(m+k)
i

(

ϕ(z)
)

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣

+
n−1∑

j=0

∣
∣
∣
∣
∣

j
∑

k=0

f
(m+k)
i

(

ϕ(0)
)

j
∑

l=k

C
j

l u
(j−l)(0)Bl,k

(

ϕ′(0), . . . , ϕ(l−k+1)(0)
)
∣
∣
∣
∣
∣

≤
⎛

⎝ sup
|ϕ(z)|≤δ

+ sup
|ϕ(z)|>δ

⎞

⎠μ(z)
n∑

k=0

∣
∣
∣f

(m+k)
i

(

ϕ(z)
)
∣
∣
∣

∣
∣
∣
∣
∣

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣

+
n−1∑

j=0

∣
∣
∣
∣
∣

j
∑

k=0

f
(m+k)
i

(

ϕ(0)
)

j
∑

l=k

C
j

l
u(j−l)(0)Bl,k

(

ϕ′(0), . . . , ϕ(l−k+1)(0)
)
∣
∣
∣
∣
∣
= J1 + J2 + J3.

(3.33)

Now we estimate J1, J2, and J3:

J1 = sup
|ϕ(z)|≤δ

μ(z)
n∑

k=0

∣
∣
∣f

(m+k)
i

(

ϕ(z)
)
∣
∣
∣

∣
∣
∣
∣
∣

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣

≤
n∑

k=0

sup
|w|≤δ

∣
∣
∣f

(m+k)
i (w)

∣
∣
∣ sup
|ϕ(z)|≤δ

μ(z)

∣
∣
∣
∣
∣

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣

≤
n∑

k=0

sup
|w|≤δ

∣
∣
∣f

(m+k)
i (w)

∣
∣
∣sup
z∈D

μ(z)
∣
∣
∑n

l=k C
n
l
u(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+m+k

=
n∑

k=0

sup
|w|≤δ

∣
∣
∣f

(m+k)
i (w)

∣
∣
∣Ik −→ 0, as i −→ ∞,

(3.34)

where in (3.34)we have used the fact that from fi → 0 uniformly on compact subsets of D as
i → ∞ it follows that for each s ∈ N, f (s)

i → 0 uniformly on compact subsets of D as i → ∞.
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The fact that

J3 =
n−1∑

j=0

∣
∣
∣
∣
∣

j
∑

k=0

f
(m+k)
i

(

ϕ(0)
)

j
∑

l=k

C
j

l
u(j−l)(0)Bl,k

(

ϕ′(0), . . . , ϕ(l−k+1)(0)
)
∣
∣
∣
∣
∣
−→ 0, (3.35)

as i → ∞, is proved similarly; so we omit it.
By Lemma 2.2 and (3.32) we have that

J2 ≤ C
∥
∥fi
∥
∥
Hp,q,γ

n∑

k=0

sup
|ϕ(z)|>δ

μ(z)
∣
∣
∑n

l=k C
n
l
u(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

< Cε(n + 1)L.

(3.36)

From (3.34), (3.35), and (3.36) we obtain

lim
i→∞

∥
∥
∥Dm

ϕ,ufi
∥
∥
∥
W(n)

μ

= 0. (3.37)

From this and applying Lemma 2.1 the implication follows.
Now assume that Dm

ϕ,u : Hp,q,γ → W(n)
μ is compact; then clearly Dm

ϕ,u : Hp,q,γ → W(n)
μ is

bounded. Let (zi)i∈N
be a sequence in D such that |ϕ(zi)| → 1 as i → ∞. If such a sequence

does not exist, then the conditions in (3.31) automatically hold.
Let gw,k, k ∈ {0, 1, . . . , n} be as in Theorem 3.1. Then the sequences (gϕ(zi),k)i∈N

are
bounded and gϕ(zi),k → 0 uniformly on compact subsets of D as i → ∞. SinceDm

ϕ,u : Hp,q,γ →
W(n)

μ is compact, we have that for each k ∈ {0, 1, . . . , n}

lim
i→∞

∥
∥
∥Dm

ϕ,ugϕ(zi),k
∥
∥
∥
W(n)

μ

= 0. (3.38)

On the other hand, from (3.10)we obtain

∥
∥
∥Dm

ϕ,ugϕ(zi),k
∥
∥
∥
W(n)

μ

≥ Cμ(zi)
∣
∣ϕ(zi)

∣
∣
k+m∣
∣
∑n

l=k C
n
l u

(n−l)(zi)Bl,k

(

ϕ′(zi), . . . , ϕ(l−k+1)(zi)
)∣
∣

(

1 − ∣∣ϕ(zi)
∣
∣
2
)(γ+1)/q+1/p+k+m

, (3.39)

which along with |ϕ(zi)| → 1 as i → ∞ and (3.38) implies that

lim
i→∞

μ(zi)
∣
∣
∑n

l=k C
n
l
u(n−l)(zi)Bl,k

(

ϕ′(zi), . . . , ϕ(l−k+1)(zi)
)∣
∣

(

1 − ∣∣ϕ(zi)
∣
∣
2
)(γ+1)/q+1/p+k+m

, (3.40)

for each k ∈ {0, 1, . . . , n}, from which (3.31) holds in this case.
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4. The Compactness of the Operator Dm
ϕ,u : Hp,q,γ → W(n)

μ,0

The compactness of Dm
ϕ,u : Hp,q,γ → W(n)

μ,0 is characterized here. The proof of the next lemma
is similar to the proof of the corresponding result in [14].

Lemma 4.1. Suppose that n ∈ N0 and μ is a radial weight such that lim|z|→ 1μ(z) = 0. A closed set
K inW(n)

μ,0 is compact if and only if it is bounded and satisfies

lim
|z|→ 1

sup
f∈K

μ(z)
∣
∣
∣f (n)(z)

∣
∣
∣ = 0. (4.1)

Theorem 4.2. Suppose that m,n ∈ N, 0 < p, q < ∞, −1 < γ < ∞, ϕ is an analytic self-map of
the unit disk, u ∈ H(D) and μ is a radial weight such that lim|z|→ 1μ(z) = 0. Then the operator
Dm

ϕ,u : Hp,q,γ → W(n)
μ,0 is compact if and only if for each k ∈ {0, 1, . . . , n}

lim
|z|→ 1

μ(z)
∣
∣
∑n

l=k C
n
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

= 0. (4.2)

Proof. First assume that Dm
ϕ,u : Hp,q,γ → W(n)

μ,0 is compact. Then it is bounded and since the
test functions in (3.12) belong toHp,q,γ(D), we have that (3.25) holds. Beside this the operator
Dm

ϕ,u : Hp,q,γ → W(n)
μ is compact too, so that (3.31) holds. Hence, if ‖ϕ‖∞ < 1, from (3.25) for

each k ∈ {0, 1, . . . , n} we get

μ(z)
∣
∣
∑n

l=k C
n
l
u(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

≤ μ(z)
∣
∣
∑n

l=k C
n
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∥∥ϕ∥∥2∞
)(γ+1)/q+1/p+k+m

−→ 0,

(4.3)

as |z| → 1, hence we obtain (4.2) in this case.
Now assume ‖ϕ‖∞ = 1. Let (ϕ(zi))i∈N

be a sequence such that |ϕ(zi)| → 1 as i → ∞.
Then from (3.31) we have that for every ε > 0, there is an r ∈ (0, 1) such that for each k ∈
{0, 1, . . . , n}

μ(z)
∣
∣
∑n

l=k C
n
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

< ε (4.4)

when r < |ϕ(z)| < 1, and from (3.25) there exists a σ ∈ (0, 1) such that for σ < |z| < 1

μ(z)

∣
∣
∣
∣
∣

n∑

l=k

Cn
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)
∣
∣
∣
∣
∣
< ε
(

1 − r2
)(γ+1)/q+1/p+k+m

. (4.5)
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Therefore, when σ < |z| < 1 and r < |ϕ(z)| < 1, we have that

μ(z)
∣
∣
∑n

l=k C
n
l
u(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

< ε. (4.6)

On the other hand, if |ϕ(z)| ≤ r and σ < |z| < 1, from (4.5)we obtain

μ(z)
∣
∣
∑n

l=k C
n
l
u(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(γ+1)/q+1/p+k+m

<
μ(z)

∣
∣
∑n

l=k C
n
l u

(n−l)(z)Bl,k

(

ϕ′(z), . . . , ϕ(l−k+1)(z)
)∣
∣

(1 − r2)(γ+1)/q+1/p+k+m
< ε.

(4.7)

Combining the last two inequalities we obtain (4.2), as desired.
Now assume that (4.2) holds. Taking the supremum in (3.22) over f in the unit ball of

Hp,q,γ , then letting |z| → 1 is such obtained inequality and using (4.2)we get

lim
|z|→ 1

sup
‖f‖Hp,q,γ ≤1

μ(z)
∣
∣
∣
∣

(

Dm
ϕ,uf
)(n)

(z)
∣
∣
∣
∣
= 0. (4.8)

Hence by Lemma 4.1 the compactness of the operator Dm
ϕ,u : Hp,q,γ → W(n)

μ,0 follows.
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[1] S. Stević, “Composition operators from the Hardy space to the Zygmund-type space on the upper
half-plane,” Abstract and Applied Analysis, vol. 2009, Article ID 161528, 8 pages, 2009.

[2] K. D. Bierstedt and W. H. Summers, “Biduals of weighted Banach spaces of analytic functions,”
Australian Mathematical Society Journal Series A, vol. 54, no. 1, pp. 70–79, 1993.
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[16] S. Stević, “Norm of weighted composition operators from Bloch space to H∞
μ on the unit ball,” Ars

Combinatoria, vol. 88, pp. 125–127, 2008.
[17] R. A. Hibschweiler and N. Portnoy, “Composition followed by differentiation between Bergman and

Hardy spaces,” The Rocky Mountain Journal of Mathematics, vol. 35, no. 3, pp. 843–855, 2005.
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[23] S. Stević, “Products of composition and differentiation operators on the weighted Bergman space,”

Bulletin of the Belgian Mathematical Society. Simon Stevin, vol. 16, no. 4, pp. 623–635, 2009.
[24] W. Yang, “Products of composition and differentiation operators from Qk(p, q) spaces to Bloch-type

spaces,” Abstract and Applied Analysis, vol. 2009, Article ID 741920, 14 pages, 2009.
[25] X. Zhu, “Generalized weighted composition operators from Bloch type spaces to weighted Bergman

spaces,” Indian Journal of Mathematics, vol. 49, no. 2, pp. 139–150, 2007.
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