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We define an equivalence relation on a topological space which is acted by topological monoid S
as a transformation semigroup. Then, we give some results about the S-invariant classes for this
relation. We also provide a condition for the existence of relative S-invariant classes.

1. Introduction

The invariance theory is one of the principal concepts in the topological dynamics system,
see [1, 2]. In [3], Colonius and Kliemann introduced the concept of a control set which is
relatively invariant with respect to a subset of the phase space of the control system. From a
more general point of view, the theory of control sets for semigroup actions was developed
by San Martin and Tonelli in [4].

In this paper, we define an equivalence relation on a topological space which is acted
by topological monoid S as a transformation semigroup. Then, we provide the necessary and
sufficient conditions for the equivalence classes to be S-invariant classes which correspond
with the control sets for control systems. Then, we study the S-invariant classes for this
relation in X, in particular, and we provide the conditions for the existence and uniqueness
of S-invariant classes.

Throughout this paper, cl(A) will denote the closure set of a set A, and int(A) will
denote the interior set of A and all topological spaces involved Hausdorff.

Definition 1.1 (see [2]). Let S be a monoid with the identity element e and also a topological
space. Then, S will be called a topological monoid if the multiplication operation of: (s, t) →
st is continuous mapping from S × S to S.
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Definition 1.2 (see [4]). Let S be a topological monoid and X a topological space. We say that
Sacts on X as a transformation semigroup if there is a continuous map a : S × X → X between
the product space S ×X and X satisfying

a(st, x) = a(s, a(t, x)), ∀s, t ∈ S, x ∈ X, (1.1)

we further require that a(e, x) = x for all x ∈ X. The triple (S,X, a) is called an S-flow; sax
will denote a(s, x). In particular, an S-flow (S,X, a) is called S-phase flow if S is a compact
space.

The orbit of x ∈ X under S is the set Oa(x) = {sax : s ∈ S}. For a subset M of X, S(M)
denotes the set {sam : s ∈ S, m ∈ M}. And a subset M is called an S-invariant set if M/= ∅
and S(M) ⊂ M. A control set for S on X is a subset C of X which satisfies

(1) int(C)/= ∅,
(2) for all x ∈ C, C ⊂ cl(Oa(x)),

(3) C is a maximal with these properties.

Then, we say that a subset M ⊂ X, satisfies the no-return condition if y ∈ cl(Oa(x)) for some
x ∈ M and cl(Oa(y)) ∩M/= ∅, then y ∈ M.

Lemma 1.3 (see [5, Zorn’s Lemma]). If each chain in a partially ordered set has an upper bound,
then there is a maximal element of the set.

2. S-Invariant Classes

Let (S,X, a) be an S-flow. From the action on X, we can define the relation ∼ on X by

x ∼ y if x ∈ Oa

(
y
)
, y ∈ Oa(x), x, y ∈ X. (2.1)

It is clear that the relation ∼ is an equivalence relation, and [X] will denote the set of all
equivalence classes induced by ∼ on X. We observe that [x] ⊂ Oa(x) for all x ∈ X, and if
y ∈ Oa(x), then Oa(y) ⊂ Oa(x) for all x, y ∈ X.

The following theorem shows that an equivalence class with nonempty interior set is
a control set for S on X.

Theorem 2.1. Let (S,X, a) be an S-phase flow. A class [x] ∈ [X] with intX([x])/= ∅ is a control set
for S on X.

Proof. It is clear that [x] ⊂ Oa(x) ⊂ Oa(y) ⊂ cl(Oa(y)) for all y ∈ [x]. Let C be a subset of X
satisfying the property

C ⊂ cl(Oa(z)), ∀z ∈ C, [x] ⊂ C. (2.2)

Now if ω ∈ C then ω ∈ cl(Oa(z)) for all z ∈ C. Since S is a compact space, X is a Hausdorff
space and by the continuity of the action a, then the orbit Oa(x) is a closed subset of X for all
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x ∈ X (i.e., cl(Oa(x)) = Oa(x) for all x ∈ X). Then, ω ∈ Oa(z) for all z ∈ C. Since x ∈ C, then
ω ∈ Oa(x). On the other hand, since x ∈ [x] ⊂ C ⊂ Oa(ω), then ω ∈ [x]. Hence, C = [x].

In the following lemma, we give necessary and sufficient conditions for the
equivalence classes to be S-invariant classes.

Lemma 2.2. Let (S,X, a) be an S-flow. A class [x] ∈ [X] is an S-invariant class if and only if
[x] = Oa(x).

Proof. Suppose that [x] ∈ [X] is an S-invariant and let y ∈ Oa(x), then y = sax for some
s ∈ S. Since x ∈ [x], then y ∈ S([x]) ⊂ [x]. Hence, Oa(x) ⊂ [x], and we have [x] ⊂ Oa(x).
Therefore, [x] = Oa(x).

Conversely, let [x] = Oa(x) and y ∈ S([x]), then y = saz for some s ∈ S, z ∈ [x].
Hence, z ∈ Oa(x). Take z = s′ax for some s′ ∈ S. Hence

y = saz = sa
(
s′ax

)
= ss′ax ∈ Oa(x) = [x]. (2.3)

Therefore, [x] is an S-invariant class.

Theorem 2.3. Let (S,X, a) be an S-phase flow. Then, for all x ∈ X, there exists an S-invariant class
[y] ⊂ Oa(x).

Proof. For x ∈ X, consider the family of subsets

Ex = {z : Oa(z) ⊂ Oa(x)}. (2.4)

We can define the relation 
 on Ex by

x1 
 x2, if Oa(x2) ⊂ Oa(x1) for x1, x2 ∈ Ex. (2.5)

Then, it is clear that the family Ex with 
 is a partially order set. Let {zi : i ∈ ∧} be a linearly
ordered subset of Ex, where ∧ is an index set. Since S is a compact space, X is a Hausdorff
space and by the continuity of the action a, then the orbitOa(x) is a compact closed subset of
X for all x ∈ X. Hence we have a chain {Oa(zi) : i ∈ ∧} of closed subsets of a compact Oa(x).
Hence the intersection

⋂

i∈∧
Oa(zi)/= ∅. (2.6)

Take r ∈ Oa(zi) for all i ∈ ∧. Then, Oa(r) ⊂ Oa(zi) for all i ∈ ∧, implies that Oa(r) is a lower
bound of the chain {Oa(zi) : i ∈ ∧} (i.e., r is an upper bound of the linearly order subset
{zi : i ∈ ∧} of Ex). Hence, Zorn’s lemma implies that the family Ex has a maximal element,
say y. Then, [y] ⊂ Oa(y) ⊂ Oa(x).

Now, we show that [y] is an S-invariant. Let z ∈ Oa(y), then z ∈ Oa(z) ⊂ Oa(x) and
y 
 z, but by the maximality of y, we get that z 
 y, this implies y ∈ Oa(z). Hence, z ∈ [y]
(i.e., Oa(y) ⊂ [y]) and we have that [y] ⊂ Oa(y). Then, by Lemma 2.2, [y] is an S-invariant
class.
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Now, we propose an open problem that whether S-invariant class is unique?

Theorem 2.4. Let (S,X, a) be an S-phase flow. Every [x] ∈ [X] satisfies the no-return condition for
all x ∈ X.

Proof. Since S is a compact space,X is a Hausdorff space and by the continuity of the action a,
then the orbit Oa(x) is a compact closed subset of X for all x ∈ X (i.e., cl(Oa(x)) = Oa(x) for
all x ∈ X). Let z ∈ Oa(y) for some y ∈ [x] and Oa(z) ∩ [x]/= ∅. Take ω ∈ Oa(z) and ω ∈ [x].
Hence,

x ∈ Oa(x) ⊂ Oa(ω) ⊂ Oa(z). (2.7)

On the other hand, z ∈ Oa(y) for some y ∈ [x], we have

z ∈ Oa(z) ⊂ Oa

(
y
) ⊂ Oa(x). (2.8)

Hence, z ∈ [x].

The next theorem states that if M has the no-return condition, then any class [x] is
entirely contained inM orMc. FurtherM is also an S-invariant if [x] an S-invariant class for
all x ∈ M.

Theorem 2.5. Let (S,X, a) be S-phase flow and M be a subset of X has no-return condition. Then,
M is an S-invariant set if [x] is an S-invariant class for all x ∈ M.

Proof. It is clear that M ⊂ ⋃
x∈M[x] because x ∈ [x]. Since S is a compact space, X is a

Hausdorff space and by the continuity of the action a, then the orbit Oa(x) is a compact
closed subset of X for all x ∈ X (i.e., cl(Oa(x)) = Oa(x) for all x ∈ X). Let y ∈ ⋃

x∈M[x], then
y ∈ [x] for some x ∈ M. Hence, [x] = [y] (i.e., x ∈ Oa(y) and y ∈ Oa(x)). Since x ∈ M, then
Oa(y) ∩M/= ∅. By the no-return condition, we have that y ∈ M. Hence,

M =
⋃

x∈M
[x]. (2.9)

Now, we show that M is an S-invariant set. Let y ∈ S(M). Then, y = sax for some x ∈ M.
Hence, y ∈ Oa(x). Since [x] is an S-invariant class then by Lemma 2.2, [x] = Oa(x) and by
(2.9), we get that y ∈ [x] ⊂ M. Hence, M is an S-invariant.

Acknowledgments

The authors wish to express their sincere gratitude to anonyms referees for their very helpful
comments and suggestions which improved the paper. The authors would also acknowledge
that this research was partially supported by the University Putra Malaysia under the
Research University Grant Scheme (RUGS) 05-01-09-0720RU and Fundamental Research
Grant Scheme 01-11-09-723FR.



Abstract and Applied Analysis 5

References

[1] B. Balcar and F. Franek, “Structural properties of universal minimal dynamical systems for discrete
semigroups,” Transactions of the American Mathematical Society, vol. 349, no. 5, pp. 1697–1724, 1997.

[2] J. Lawson and A. Lisan, “Flows, congruences, and factorizations,” Topology and its Applications, vol. 58,
no. 1, pp. 35–46, 1994.

[3] F. Colonius and W. Kliemann, “Some aspects of control systems as dynamical systems,” Journal of
Dynamics and Differential Equations, vol. 5, no. 3, pp. 469–494, 1993.

[4] L. A. B. San Martin and P. A. Tonelli, “Semigroup actions on homogeneous spaces,” Semigroup Forum,
vol. 50, no. 1, pp. 59–88, 1995.

[5] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, UK, 2002.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


