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Let X and K be compact plane sets with K ⊆ X. We define A(X,K) = {f ∈ C(X) : f |K ∈
A(K)}, where A(K) = {g ∈ C(X) : g is analytic on int(K)}. For α ∈ (0, 1], we define
Lip(X,K, α) = {f ∈ C(X) : pα,K(f) = sup{|f(z) − f(w)|/|z − w|α : z,w ∈ K, z/=w} < ∞} and
LipA(X,K, α) = A(X,K) ∩ Lip(X,K, α). It is known that LipA(X,K, α) is a natural Banach function
algebra on X under the norm ||f ||Lip(X,K,α) = ||f ||X + pα,K(f), where ||f ||X = sup{|f(x)| : x ∈ X}.
These algebras are called extended analytic Lipschitz algebras. In this paper we study unital
homomorphisms from natural Banach function subalgebras of LipA(X1, K1, α1) to natural Banach
function subalgebras of LipA(X2, K2, α2) and investigate necessary and sufficient conditions for
which these homomorphisms are compact. We also determine the spectrum of unital compact
endomorphisms of LipA(X,K, α).

1. Introduction and Preliminaries

We let C, D = {z ∈ C : |z| < 1}, D = {z ∈ C : |z| ≤ 1}, D(λ, r) = {z ∈ C : |z − λ| < r}, and
D(λ, r) = {z ∈ C : |z − λ| ≤ r} denote the field of complex numbers, the open unit disc, the
closed unit disc, and the open and closed discs with center at λ and radius r, respectively. We
also denote D(0, r) by Dr .

Let A and B be unital commutative semisimple Banach algebras with maximal ideal
spaces M(A) and M(B). A homomorphism T : A → B is called unital if T1A = 1B. If T
is a unital homomorphism from A into B, then T is continuous and there exists a norm-
continuous map ϕ : M(B) → M(A) such that ̂Tf = ̂f ◦ϕ for all f ∈ A, where ĝ is the Gelfand
transform g. In fact, ϕ is equal the adjoint of T ∗ : B∗ → A∗ restricted to M(B). Note that T ∗

is a weak∗-weak∗ continuous map from B∗ into A∗. Thus ϕ is a continuous map from M(B)
with the Gelfand topology intoM(A)with the Gelfand topology.
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Let A be a unital commutative semisimple Banach algebra, and let T be an
endomorphism of A, a homomorphism from A into A. We denote the spectrum of T by σ(T)
and define

σ(T) = {λ ∈ C : λI − T is not invertible}. (1.1)

For a compact Hausdorff space X, we denote by C(X) the Banach algebra of all
continuous complex-valued functions on X.

Definition 1.1. Let X be a compact Hausdorff space. A Banach function algebra on X is a
subalgebraA of C(X)which contains 1X , the constant function 1 onX, separates the points of
X, and is a unital Banach algebra with an algebra norm ‖ · ‖. If the norm of a Banach function
algebra on X is ‖ · ‖X , the uniform norm on X, it is called a uniform algebra on X.

Let A and B be Banach function algebras on X and Y , respectively. If ϕ : Y → X is
a continuous mapping such that f ◦ ϕ ∈ B for all f ∈ A and if T : A → B is defined by
Tf = f ◦ ϕ, then T is a unital homomorphism, which is called the induced homomorphism from
A into B by ϕ. In particular, if Y = X and B = A, then T is called the induced endomorphism of
A by the self-map ϕ of X.

Let A be a Banach function algebra on a compact Hausdorff space X. For x ∈ X, the
map ex : A → C, defined by ex(f) = f(x), is an element of M(A) and is called the evaluation
homomorphism on A at x. This fact implies that A is semisimple and ‖f‖X ≤ ‖ ̂f‖M(A) for all
f ∈ A. Note that the map x �→ ex : X → M(A) is a continuous one-to-one mapping. If this
map is onto, we say that A is natural.

Proposition 1.2. Let X and Y be compact Hausdorff spaces, and let A and B be natural Banach
function algebras on X and Y , respectively. Then every unital homomorphism T : A → B is induced
by a unique continuous map ϕ : Y → X. In particular, if X is a compact plane set and the coordinate
function Z belongs to A, then ϕ = TZ and so ϕ ∈ B.

Proof. Let T : A → B be a unital homomorphism. Since A and B are unital commutative
semisimple Banach algebras, there exists a continuous map ψ : M(B) → M(A) such that
̂Tf = ̂f ◦ψ for all f ∈ A. The naturality of the Banach function algebraA onX implies that the
map JA : X → M(A), defined by JA(x) = ex, is a homeomorphism and so J−1A : M(A) → X
is continuous. Since B is a Banach function algebra on Y , the map JB : Y → M(B), defined
by JB(y) = ey, is continuous. We now define the map ϕ : Y → X by ϕ = J−1A ◦ ψ ◦ JB. Clearly,
ϕ is continuous. Let f ∈ A. Since

(

Tf
)(

y
)

= ̂Tf
(

ey
)

=
(

̂f ◦ ψ
)

(

JB
(

y
))

=
(

̂f ◦ JA
)

(

ϕ
(

y
))

= ̂f
(

eϕ(y)
)

= eϕ(y)
(

f
)

= f
(

ϕ
(

y
))

=
(

f ◦ ϕ)(y),

(1.2)

for all y ∈ Y , we have Tf = f ◦ ϕ. Therefore, T is induced by ϕ.
Now, let X be a compact plane set, and let Z ∈ A. Then ϕ = Z ◦ ϕ = TZ, and so

ϕ ∈ B.
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Corollary 1.3. Let X be a compact Hausdorff space, and let A be a natural Banach function algebra
on X. Then every unital endomorphism T of A is induced by a unique continuous self-map ϕ of X. In
particular, if X is a compact plane set and A contains the coordinate function Z, then ϕ = TZ and so
ϕ ∈ A.

Definition 1.4. Let X be a compact plane set which is connected by rectifiable arcs, and let
δ(z,w) be the geodesic metric onX, the infimum of the length of the arcs joining z andw.X is
called uniformly regular if there exists a constantC such that, for all z,w ∈ X, δ(z,w) ≤ C|z−w|.

The following lemma occurs in [1] but it is important and we will be using it in the
sequel.

Lemma 1.5 (see [1, Lemma 1.5]). Let H and K be two compact plane sets with H ⊆ int(K).
Then there exists a finite union of uniformly regular sets in int(K) containing H, namely Y , and
then a positive constant C such that for every analytic complex-valued function f on int(K) and any
z,w ∈ H,

∣

∣f(z) − f(w)
∣

∣ ≤ C|z −w|(∥∥f∥∥Y +
∥

∥f ′∥
∥

Y

)

. (1.3)

Let X be a compact plane set. We denote by A(X) the algebra of all continuous
complex-valued functions on X which are analytic on int(X), the interior of X, and call it
the analytic uniform algebra on X. It is known that A(X) is a natural uniform algebra on X.

Let X and K be compact plane sets such that K ⊆ X. We define A(X,K) = {f ∈ C(X) :
f |K ∈ A(K)}. Clearly, A(X,K) = A(X) if K = X, and A(X,K) = C(X) if int(K) is empty. We
know that A(X,K) is a natural uniform algebra on X (see [2]) and call it the extended analytic
uniform algebra on X with respect to K.

Let (X, d) be a compact metric space. For α ∈ (0, 1], we denote by Lip(X, α) the algebra
of all complex-valued functions f for which pα,X(f) = sup{|f(z) − f(w)|/dα(z,w) : z,w ∈
X, z/=w} < ∞. For f ∈ Lip(X, α), we define the α-Lipschitz norm f by ‖f‖Lip(X,α) = ‖f‖X +
pα,X(f). Then (Lip(X, α), ‖ · ‖Lip(X,α)) is a unital commutative Banach algebra. For α ∈ (0, 1),
we denote by lip(X, α) the algebra of all complex-valued functions f on X for which |f(z) −
f(w)|/dα(z,w) → 0 as d(z,w) → 0. Then lip(X, α) is a unital closed subalgebra of Lip(X, α).
These algebras are called Lipschitz algebras of order α and were first studied by Sherbert in
[3, 4]. We know that the Lipschitz algebras Lip(X, α) and lip(X, α) are natural Banach function
algebras on X.

Let (X, d) be a compact metric space, and letK be a compact subset ofX. For α ∈ (0, 1],
we denote by Lip(X,K, α) the algebra of all complex-valued functions f on X for which
pα,K(f) = sup{|f(z) − f(w)|/dα(z,w) : z,w ∈ K, z/=w} < ∞. In fact, Lip(X,K, α) = {f ∈
C(X) : f |K ∈ Lip(K,α)}. For f ∈ Lip(X,K, α), we define ‖f‖Lip(X,K,α) = ‖f‖X + pα,K(f). Then
Lip(X,K, α) under the algebra norm ‖ · ‖Lip(X,K,α) is a unital commutative Banach algebra.
Moreover, Lip(X, α) is a subalgebra of Lip(X,K, α); Lip(X,K, α) = Lip(X, α) if X \ K is
finite, and Lip(X,K, α) = C(X) if K is finite. For α ∈ (0, 1), we denote by lip(X,K, α) the
algebra of all complex-valued functions f on X for which |f(z) − f(w)|/dα(z,w) → 0 as
d(z,w) → 0 with z,w ∈ K. In fact, lip(X,K, α) = {f ∈ C(X) : f |K ∈ lip(K,α)}. Clearly,
lip(X,K, α) is a closed unital subalgebra of Lip(X,K, α). Moreover, lip(X, α) is a subalgebra
of lip(X,K, α); lip(X,K, α) = lip(X, α) if X \K is finite, and lip(X,K, α) = C(X) if K is finite.
The Banach algebras Lip(X,K, α) and lip(X,K, α) are Banach function algebras on X and
were first introduced by Honary and Moradi in [5].



4 Abstract and Applied Analysis

Let X be a compact plane set. We define LipA(X, α) = Lip(X, α) ∩ A(X) for α ∈ (0, 1]
and lipA(X, α) = Lip(X, α) ∩ A(X) for α ∈ (0, 1). These algebras are called analytic Lipschitz
algebras. We know that analytic Lipschitz algebras LipA(X, α) and lipA(X, α) under the norm
‖ · ‖Lip(X,α) are natural Banach function algebras on X (see [6]).

Let X and K be compact plane sets with K ⊆ X. We define LipA(X,K, α) =
Lip(X,K, α) ∩ A(X,K) for α ∈ (0, 1] and lipA(X,K, α) = lip(X,K, α) ∩ A(X,K) for
α ∈ (0, 1). Then LipA(X,K, α) and lip(X,K, α) are closed unital subalgebras of Lip(X,K, α)
and lip(X,K, α) under the norm ‖ · ‖Lip(X,K,α), respectively. Moreover, LipA(X,K, α) =
LipA(X, α)[lipA(X,K, α) = LipA(X, α)] if K = X, and LipA(X,K, α) =
Lip(X,K, α)[lipA(X,K, α) = lip(X,K, α)] if int(K) is empty.

The algebras LipA(X,K, α) and lip(X,K, α) are called extended analytic Lipschitz algebras
and were first studied by Honary and Moradi in [5]. They showed that the extended analytic
Lipschitz algebras LipA(X,K, α) and lipA(X,K, α) under the norm ‖ · ‖Lip(X,K,α) are natural
Banach function algebras on X [5, Theorem 2.4].

Behrouzi and Mahyar in [1] studied endomorphisms of some uniform subalgebras of
A(X) and some Banach function subalgebras of LipA(X, α) and investigated some necessary
and sufficient conditions for these endomorphisms to be compact, whereX is a compact plane
set and α ∈ (0, 1].

In Section 2, we study unital homomorphisms from natural Banach function
subalgebras of LipA(X1, K1, α1) to natural Banach function subalgebras of LipA(X2, K2, α2)
and investigate necessary and sufficient conditions for which these homomorphisms are
compact. In Section 3, we determine the spectrum of unital compact endomorphisms of
LipA(X,K, α).

2. Unital Compact Homomorphisms

We first give a sufficient condition for which a continuous map ϕ : X2 → X1 induces a unital
homomorphism T from a subalgebra B1 of A(X1, K1) into a subalgebra B2 of A(X2, K2).

Proposition 2.1. Let Xj and Kj be compact plane sets with int(Kj)/= ∅ and Kj ⊆ Xj , and let Bj be
a subalgebra of A(Xj,Kj) which is a natural Banach function algebra on Xj under an algebra norm
‖ · ‖j , where j ∈ {1, 2}. If ϕ ∈ B2 with ϕ(X2) ⊆ int(K1), then ϕ induces a unital homomorphism
T : B1 → B2. Moreover, if Z ∈ B1, then ϕ = TZ.

Proof. The naturality of Banach function algebra B2 on X2 implies that σB2(h) = h(X2), where
σA(h) is the spectrum of h ∈ A in the Banach algebra A. Let f ∈ B1. Since ϕ ∈ B2, ϕ(X2) ⊆
int(K1), and f is analytic on int(K1), we conclude that f is analytic on an open neighborhood
of σB2(ϕ). By using the Functional Calculus Theorem [2, Theorem 5.1 in Chapter I], there
exists g ∈ B2 such that ĝ = f ◦ ϕ̂ on M(B2). It follows that

g(z) = ez
(

g
)

= ĝ(ez) = f
(

ϕ̂(ez)
)

= f
(

ez
(

ϕ
))

= f
(

ϕ(z)
)

=
(

f ◦ ϕ)(z),
(2.1)

for all z ∈ X2 and so g = f ◦ ϕ. Therefore, f ◦ ϕ ∈ B2. This implies that the map T : B1 → B2

defined by Tf = f ◦ϕ is a unital homomorphism from B1 into B2, which is induced by ϕ. Now
let Z ∈ B1. Then ϕ = TZ by Proposition 1.2.
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Corollary 2.2. Let X andK be compact plane sets with int(K)/= ∅ andK ⊆ X. Let B be a subalgebra
of A(X,K) which is a natural Banach function algebra on X under an algebra norm ‖ · ‖B. If ϕ ∈ B
with ϕ(X) ⊆ int(K), then ϕ induces a unital endomorphism T of B. Moreover, ifZ ∈ B, then ϕ = TZ.

Proposition 2.3. Suppose that αj ∈ (0, 1], zj ∈ C, 0 < rj < Rj , Gj = D(zj , Rj), Ωj = D(zj , rj),
Xj = Gj , and Kj = Ωj , where j ∈ {1, 2}. Then for each ρ ∈ (r1, R1] there exists a continuous map
ϕρ : X2 → X1 with ϕρ(X2) = D(z1, ρ) such that ϕρ ∈ LipA(X2, K2, α2) and ϕρ does not induce any
homomorphism from LipA(X1,K1, α1) to LipA(X2, K2, α2).

Proof. Let ρ ∈ (r1, R1]. We define the map ϕρ : X2 → X1 by

ϕρ(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z1 +
ρ(z − z2)

r2
|z − z2| ≤ r2,

z1 +
ρ(z − z1)
|z − z2| r2 < |z − z2| ≤ R2.

(2.2)

Clearly, ϕρ is a continuous mapping, ϕρ(X2) = D(z1, ρ), and ϕρ ∈ LipA(X2, K2, α2). We now
define the function fρ : X1 → C by

fρ(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρ(z − z1)
r1

|z − z1| ≤ r1,
ρ(z − z1)
|z − z1| r1 < |z − z1| ≤ R1.

(2.3)

Then, fρ ∈ LipA(X1, K1, α1). Since 0 < r1r2/ρ < r2 and

(

fρ ◦ ϕρ
)

(z) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ρ2

r1r2
(z − z2) |z − z2| ≤ r1r2

ρ
,

ρ(z − z2)
|z − z2|

r1r2
ρ

< |z − z2| ≤ R2,

(2.4)

we conclude that fρ ◦ ϕρ /∈ LipA(X2, K2, α2). Therefore, ϕρ does not induce any
homomorphism from LipA(X1, K1, α1) to LipA(X2, K2, α2). Hence, the proof is complete.

Corollary 2.4. Suppose that α ∈ (0, 1], λ ∈ C, 0 < r < R, G = D(λ, R), Ω = D(λ, r), X = G, and
K = Ω. Then for each ρ ∈ (r, R], there exists a continuous self-map ϕρ of X with ϕρ(X) = D(λ, ρ)
such that ϕρ ∈ LipA(X,K, α) and ϕρ does not induce any endomorphism of LipA(X,K, α).

We now give a sufficient condition for a unital homomorphism from a subalgebra B1

of LipA(X1, K1, α1) into a subalgebra B2 of LipA(X2, K2, α2) to be compact.

Theorem 2.5. Suppose that αj ∈ (0, 1], Xj and Kj are compact plane sets with int(Kj)/= ∅ and
Kj ⊆ Xj , and Bj is a subalgebra of LipA(Xj,Kj, αj) which is a natural Banach function algebra on
Xj under the norm ‖ · ‖Lip(Xj ,Kj ,αj ), where j ∈ {1, 2}. Let ϕ : X2 → X1 be a continuous mapping.
If ϕ is constant or ϕ ∈ B2 with ϕ(X2) ⊆ int(K1), then ϕ induces a unital compact homomorphism
T : B1 → B2.
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Proof. If ϕ : X2 → X1 is constant, then the map T : B1 → B2 defined by Tf = f ◦ ϕ is a unital
homomorphism from B1 into B2 with dim T(B1) ≤ 1, and so it is compact.

Let ϕ : X2 → X1 be a nonconstant mapping with ϕ ∈ B2 and ϕ(X2) ⊆ Ω1. Then
the map T : B1 → B2 defined by Tf = f ◦ ϕ is a unital homomorphism from B1 to B2

by Proposition 2.1. To prove the compactness of T , let {fn}∞n=1 be a bounded sequence in B1

with ‖fn‖Lip(X1,K1,α1) ≤ 1 for all n ∈ N. This implies that {fn|K1
}∞n=1 is a bounded sequence

in C(K1) which is equicontinuous on (K1, d
α1
1 ). By Arzela-Ascoli’s theorem, {fn}∞n=1 has a

subsequence {fnj}∞j=1 such that {fnj |K1
}∞j=1 is convergent in C(K1). Since fnj |K1

∈ A(K1) for all
j ∈ N, {fnj |K1

}∞j=1 is convergent in A(K1). By Montel’s theorem, the sequences {fnj}∞j=1 and
{f ′

nj}∞j=1 are uniformly convergent on the compact subsets of int(K1). Since ϕ(X2) and K1 are
compact sets in the complex plane and ϕ(X2) ⊆ int(K1), by using Lemma 1.5, we deduce
that there exists a finite union of uniformly regular sets in int(K1) containing ϕ(X2), namely
Y , and then a positive constant C such that for every analytic complex-valued function f on
int(K1) and any z,w ∈ ϕ(X2)

∣

∣f(z) − f(w)
∣

∣ ≤ C|z −w|(∥∥f∥∥Y +
∥

∥f ′∥
∥

Y

)

. (2.5)

Therefore, there exists a positive constant C such that

∣

∣

∣fnj
(

ϕ(z)
) − fnj

(

ϕ(w)
)

∣

∣

∣ ≤ C
∣

∣ϕ(z) − ϕ(w)
∣

∣

(∥

∥

∥fnj

∥

∥

∥

Y
+
∥

∥

∥f ′
nj

∥

∥

∥

Y

)

, (2.6)

for all j ∈ N and any z,w ∈ X2. Let j, k ∈ N. Then, for all z,w ∈ K2 with ϕ(z)/=ϕ(w), we have

∣

∣

∣

((

fnj ◦ ϕ
)

−
(

fnk ◦ ϕ
))

(z) −
((

fnj ◦ ϕ
)

−
(

fnk ◦ ϕ
))

(w)
∣

∣

∣

|z −w|α2

=

∣

∣

∣

(

fnj − fnk
)

(

ϕ(z)
) −

(

fnj − fnk
)

(

ϕ(w)
)

∣

∣

∣

∣

∣ϕ(z) − ϕ(w)
∣

∣

·
∣

∣ϕ(z) − ϕ(w)
∣

∣

|z −w|α2

≤ Cpα2,K2

(

ϕ
)

(∥

∥

∥fnj − fnk
∥

∥

∥

Y
+
∥

∥

∥f ′
nj − f ′

nk

∥

∥

∥

Y

)

.

(2.7)

The above inequality is certainly true for all z,w ∈ K2 with z/=w and ϕ(z) = ϕ(w). Therefore,

pα2,K2

((

fnj ◦ ϕ
)

−
(

fnk ◦ ϕ
))

≤ Cpα2,K2

(

ϕ
)

(∥

∥

∥fni − fnj
∥

∥

∥

Y
+
∥

∥

∥f ′
ni − f ′

nj

∥

∥

∥

Y

)

, (2.8)

and so

∥

∥

∥

(

fnj ◦ ϕ
)

−
(

fnk ◦ ϕ
)∥

∥

∥

Lip(X2,K2,α2)
≤ (

1 + Cpα2,K2

(

ϕ
))

(∥

∥

∥fnj − fnk
∥

∥

∥

Y
+
∥

∥

∥f ′
nj − f ′

nk

∥

∥

∥

Y

)

. (2.9)

Since Y is a compact subset of int(K1), we deduce that the sequences {fnj}∞j=1 and
{f ′

nj}∞j=1 are convergent uniformly on Y . Therefore, {fnj ◦ ϕ}∞j=1 is a Cauchy sequence on
Lip(X2, K2, α2), that is {Tfnj}∞j=1 is convergent in Lip(X2, K2, α2). Hence, T is compact.
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Corollary 2.6. Suppose that α ∈ (0, 1],X andK are compact plane sets with int(K)/= ∅, andK ⊆ X.
Let B be a subalgebra of LipA(X,K, α) which is a natural Banach function algebra onX with the norm
‖ · ‖Lip(X2,K2,α2), and let ϕ be a self-map of X. If ϕ is constant or ϕ ∈ B with ϕ(X) ⊆ int(K), then ϕ
induces a unital compact endomorphism of B.

Definition 2.7.

(a) A sector in D(z0, r) at a point ω ∈ ∂D(z0, r) is the region between two straight lines
in D(z0, r) that meet at ω and are symmetric about the radius to ω.

(b) If f is a complex-valued function on D(z0, r) and ω ∈ ∂D(z0, r), then
∠limz→ωf(z) = L means that f(z) → L as z → ω through any sector at ω. When
this happens, we say that L is angular (or non-tangential) limit of f at ω.

(c) An analytic map ϕ : D(z0, r) → Dρ has an angular derivation at a pointω ∈ ∂Dr(z0, r)
if for some η ∈ ∂Dρ

∠ lim
z→ω

η − f(z)
ω − z (2.10)

exists (finitely). We call the limit the angular derivative of ϕ at ω and denote it by
∠ϕ′(ω).

Lemma 2.8. Let 0 < r ≤ 1, and let ϕ : D(z0, r) → Dρ be an analytic function and ψ : D → D

defined by ψ(z) = (1/ρ)ϕ(z0 + rz). Then ϕ has angular derivation at ω ∈ ∂D(z0, r) if and only if ψ
has angular derivation at (ω − z0)/r ∈ ∂D. Moreover,

∠ϕ′(ω) =
r

ρ
∠ψ ′

(

ω − z0
r

)

. (2.11)

The following result is a modification of Julia-Caratheodory’s theorem. For further
details and proof of Julia-Caratheodory’s theorem, see [7, pages 295–300].

Theorem 2.9. Take 0 < r ≤ 1. Let ϕ : D(z0, r) → D be a nonconstant analytic function and
ω ∈ ∂D(z0, r). Then the following are equivalent:

(i) lim infz→ω(‖ϕ‖Dr − |ϕ(z)|)/(r − |z|) = δ <∞,

(ii) ∠limz→ω(η − ϕ(z))/(ω − z) exists for some η ∈ ∂D,

(iii) ∠limz→ωϕ
′(z) exists and ∠limz→ωϕ(z) = η ∈ ∂D.

The boundary point η in (ii) and (iii) is the same, and δ > 0 in (i). Also the limit of
the difference quotients in (ii) coincides with the limit of the derivative in (iii), and both are
equal to ωηδ.

Note that the existence of the angular derivative ϕ at ω ∈ ∂D(z0, r), according to
Theorem 2.9, is equivalent to lim infz→ω(‖ϕ‖D(z0,r) − |ϕ(z)|)/(r − |z − z0|) < ∞. In this case
the angular derivative of ϕ at ω is nonzero.

Proposition 2.10. Let X be a compact plane set, and let D(z0, r) ⊆ X and K = D(z0, r). Suppose
that c ∈ ∂D(z0, r) and ϕ ∈ LipA(X,K, 1) is a nonconstant function such that |ϕ(c)| = ‖ϕ‖

D(z0,r)
.

Then the angular derivative of ϕ at c exists and is nonzero.
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Proof. Let Γ = {z ∈ D(z0, r) : |z − c|/(r − |z − z0|) < 2}. For every z ∈ Γwe have

∥

∥ϕ
∥

∥

D(z0,r)
− ∣

∣ϕ(z)
∣

∣

r − |z − z0| =

∣

∣ϕ(c)
∣

∣ − ∣

∣ϕ(z)
∣

∣

r − |z − z0| ≤ |z − c|
r − |z − z0|

∣

∣ϕ(z) − ϕ(c)∣∣
|z − c| < 2p1,K

(

ϕ
)

. (2.12)

Therefore, lim infz→ω(‖ϕ‖D(z0,r) − |ϕ(z)|)/(r − |z − z0|) <∞, and, by Theorem 2.9, the proof is
complete.

Definition 2.11.

(a) A plane set X at c ∈ ∂X has an internal circular tangent if there exists a disc D in the
complex plane such that c ∈ ∂D and D \ {c} ⊆ int(X).

(b) A plane set X is called strongly accessible from the interior if it has an internal circular
tangent at each point of its boundary. Such sets include the closed unit disc D

and D(z0, r) \
⋃n
k=1 D(zk, rk), where closed discs D(zk, rk) are mutually disjoint in

D(z0, r).

(c) A compact plane setX has peak boundarywith respect to B ⊆ C(X) if for each c ∈ ∂X
there exists a nonconstant function h ∈ B such that ‖h‖X = h(c) = 1.

Example 2.12. The closed unit disc D has peak boundary with respect to A(D) because, if
c ∈ ∂D, then the function h : D → C defined by h(z) = (1/2)(1 + cz) belongs to A(D) and
satisfies ‖h‖

D
= h(c) = 1.

LetX be a compact plane set. The algebra R(X) consists of all functions in C(X)which
can be approximated by rational functions with poles offX. It is known that R(X) is a natural
uniform algebra on X.

Example 2.13. Let X be a compact plane set such that C \ X is strongly accessible from the
interior. If R(X) ⊆ B ⊆ C(X), then X has a peak boundary with respect to B.

Proof. Let z0 ∈ C\X. Since C\X is strongly accessible from the interior, for each c ∈ ∂(C\X),
there exists a δ > 0 such that |c−z0| = δ and D(z0, δ) ⊆ int(C\X). Now, we define the function
h : X → C by

h(z) =
δ2

(c − z0)(z − z0)
. (2.13)

Then h ∈ B, ‖h‖X = h(c) = 1.

Theorem 2.14. Let X1 be a compact plane set such that G1 = int(X1) is connected, and G1 = X1.
Suppose that X1 has peak boundary with respect to LipA(X1, 1). Let Ω1 ⊆ G1 be a bounded connected
open set in the complex plane, and let K1 = Ω1. Let Ω2 be a bounded connected open set in the
complex plane, and let K2 = Ω2 such that K2 is strongly accessible from the interior. Suppose that
X2 is a compact plane set such that K2 ⊆ X2. If T : LipA(X1, K1, 1) → LipA(X2, K2, 1) is a unital
compact homomorphism, then T is induced by a continuous mapping ϕ : X2 → X1 such that ϕ is
constant on K2 or ϕ(K2) ⊆ G1 = int(X1). Moreover, ϕ = TZ.
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Proof. Since LipA(X1, K1, 1) and LipA(X2, K2, 1) are, respectively, natural Banach function
algebras on X1 and X2, T : LipA(X1, K1, 1) → LipA(X2, K2, 1) is a unital homomorphism,
X1 is a compact plane set, and Z ∈ LipA(X1, K1, 1), we conclude that T is induced by ϕ = TZ
and so ϕ ∈ LipA(X2, K2, 1) by Proposition 1.2. Suppose that ϕ is nonconstant on Ω2. Since
ϕ is analytic on Ω2, we deduce that ϕ(Ω2) is an open subset of X1 and so ϕ(Ω2) ⊆ G1.
We now show that ϕ(K2) ⊆ G1. Suppose that ϕ(K2)/⊆G1. Then there exists c ∈ ∂K2 such
that ϕ(c) ∈ ∂X1. Since X1 has peak boundary with respect to LipA(X1, 1), there exists a
nonconstant function h ∈ LipA(X1, 1) such that ‖h‖X1 = h(ϕ(c)) = 1. We now define the
sequence {fn}∞n=1 of complex-valued functions on X1 by fn(z) = (1/n)hn(z). Let n ∈ N. Then

∥

∥fn
∥

∥

X1
=

1
n

(‖h‖X1

)n =
1
n
, (2.14)

p1,K1

(

fn
)

= sup
{ |hn(z) − hn(w)|

n|z −w| : z,w ∈ K1, z /=w
}

≤ sup
{ |h(z) − h(w)|

|z −w| : z,w ∈ K1, z /=w
}

≤ sup
{ |h(z) − h(w)|

|z −w| : z,w ∈ X1, z /=w
}

≤ p1,X1(h).

(2.15)

Thus

∥

∥fn
∥

∥

Lip(X1,K1,1)
≤ 1
n
+ p1,X1(h) ≤ 1 + p1,X1(h), (2.16)

by (2.14) and (2.15). This implies that {fn}∞n=1 is a bounded sequence in LipA(X1, K1, 1). The
compactness of homomorphism T implies that there exists a subsequence {fnj}∞j=1 of {fn}∞n=1
and a function g in LipA(X2, K2, 1) such that

lim
j→∞

∥

∥

∥Tfnj − g
∥

∥

∥

Lip(X2,K2,1)
= 0. (2.17)

This implies that

lim
j→∞

∥

∥

∥Tfnj − g
∥

∥

∥

X2
= 0. (2.18)

On the other hand, we have ‖Tfnj‖X2 ≤ 1/nj for all j ∈ N by (2.14). Hence,

lim
j→∞

∥

∥

∥Tfnj

∥

∥

∥

X2
= 0. (2.19)

By (2.18) and (2.19), g = 0. Therefore, by (2.17)we have

lim
j→∞

∥

∥

∥Tfnj

∥

∥

∥

Lip(X2,K2,1)
= 0. (2.20)
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This implies that

lim
j→∞

p1,K2

(

fnj ◦ ϕ
)

= 0. (2.21)

Assume that ε > 0. By (2.21), there exists a natural number N such that for each j ∈ N with
j ≥N

sup

⎧

⎨

⎩

∣

∣

∣

(

fnj ◦ ϕ
)

(z) −
(

fnj ◦ ϕ
)

(w)
∣

∣

∣

|z −w| : z,w ∈ K2, z /=w

⎫

⎬

⎭

< ε. (2.22)

In particular,

sup

{∣

∣

((

h ◦ ϕ)(z))nN − ((

h ◦ ϕ)(w)
)nN

∣

∣

nN |z −w| : z,w ∈ K2, z /=w

}

< ε. (2.23)

This implies that

1
nN

sup

{∣

∣

((

h ◦ ϕ)(z))nN − ((

h ◦ ϕ)(c))nN ∣∣
|z − c| : z ∈ K2, z /= c

}

< ε. (2.24)

Since c ∈ ∂K2 and K2 is strongly accessible from the interior, there exists an open disc D =
D(z0, r) such that c ∈ ∂D and D \ {c} ⊆ int(K2). Since ϕ is analytic on int(D) ⊆ int(K2) and h
is analytic on ϕ(D) ⊆ int(X1), we deduce that h ◦ ϕ is analytic on int(D). On the other hand,
we can easily show that

p1,D
(

h ◦ ϕ) ≤ p1,X1(h)p1,K2

(

ϕ
)

<∞. (2.25)

Therefore, h ◦ ϕ ∈ LipA(X2, D, 1). Since ‖h‖X1 = h(ϕ(c)) = 1, we conclude that

(

h ◦ ϕ)(c) = ∥

∥h ◦ ϕ∥∥D = 1. (2.26)

We claim that h ◦ ϕ is constant on D. If h ◦ ϕ is nonconstant on D, then, by Proposition 2.10,
∠(h ◦ ϕ)′(c) exists and is nonzero and since (h ◦ ϕ)nN (c) = 1, (h ◦ ϕ)nN (c) ∈ ∂D. If Γ is a sector
in D at c ∈ ∂D, then

1
nN

∠lim
z→ c
z∈Γ

∣

∣

∣

∣

∣

(

h ◦ ϕ)nN (z) − (

h ◦ ϕ)nN (c)
z − c

∣

∣

∣

∣

∣

≤ ε (2.27)

by (2.24). Thus

1
nN

∠
((

h ◦ ϕ)nN)′(c) ≤ ε. (2.28)
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But

∠
((

h ◦ ϕ)nN)′(c) = nN
(

h ◦ ϕ)nN−1(c) · ∠(

h ◦ ϕ)′(c). (2.29)

Hence, by (2.28)we have

∠
(

h ◦ ϕ)′(c) = 1
nN

∠
((

h ◦ ϕ)nN)′(c) ≤ ε. (2.30)

Since ε is assumed to be a positive number, we conclude that∠(h ◦ ϕ)′(c) = 0, contradicting to
∠(h ◦ ϕ)′(c)/= 0. Hence, our claim is justified. Since ϕ is nonconstant onK2, ϕ is a nonconstant
analytic function on connected open set D. This implies that ϕ(D) is a connected open set in
the complex plane. This implies that h is constant on connected open set G1. The continuity
of h on X1 = G1 follows that h is constant on G1 = X1. This contradicting to h is nonconstant
on X1. Therefore, ϕ(K2) ⊆ G1.

Corollary 2.15. Let X be a compact plane set such that G = int(X) is connected and G = X. Let
Ω ⊆ G be a bounded connected open set in the complex plane, and let K = Ω. Suppose that K is
strongly accessible from the interior and X has peak boundary with respect to LipA(X, 1). If T is a
unital compact endomorphism of LipA(X,K, 1), then T is induced by a continuous self-map ϕ of X
such that ϕ is constant on K or ϕ(K) ⊆ G = int(X). Moreover, ϕ = TZ.

Lemma 2.16. Let G and Ω be bounded connected open sets in the complex plane withΩ ⊆ G, and let
X = G andK = Ω. Then for each c ∈ G \K there exists a function fc ∈ LipA(X,K, 1) such that fc is
not analytic at c.

Proof. Let c ∈ G \K. Then there is a positive number r such that

{z ∈ C : |z − c| ≤ r} ⊆ G \K. (2.31)

We now define the function fc : X → C by

fc(z) =

⎧

⎪

⎨

⎪

⎩

z − c z ∈ X, |z − c| ≥ r,
(1 + r)(z − c)
1 + |z − c| z ∈ X, |z − c| < r.

(2.32)

It is easily seen that fc ∈ LipA(X,K, 1) and fc is not analytic at c.

Definition 2.17. Let X and K be compact plane sets such that K ⊆ X. We say that K has peak
K-boundary with respect to B ⊆ A(X,K) if for each c ∈ ∂K there is a function h ∈ B such that
h is nonconstant on K and ‖h‖X = h(c) = 1.

Example 2.18. Let r ∈ (0, 1] and K = Dr . Suppose that LipA(D, K, 1) ⊆ B ⊆ A(D, K). Then K
has peak K-boundary with respect to B.

Proof. We first assume that r = 1. If for each c ∈ ∂D the function h : D → C defined by
h(z) = (1/2)(1 + cz), then h ∈ B, h is nonconstant on K = D and h(c) = 1 = ‖h‖

D
.
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We now assume that 0 < r < 1. For each c ∈ ∂K, set z0 = (1 + r)c/r. Then z0 ∈ C \ D.
Define the function h : D → C by

h(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− r

c(z − z0) z ∈ D, |z − z0| ≥ 1,

− r|z − z0|
c(z − z0)

z ∈ D, |z − z0| < 1.
(2.33)

It is easily seen that h ∈ LipA(D, K, 1) and ‖h‖
D
= 1 = h(c).

Lemma 2.19. Let Ω be a connected open set in the complex plane, and let ϕ be a one-to-one analytic
function onΩ. If f is a continuous complex-valued function on ϕ(Ω) and f ◦ϕ is analytic onΩ, then
f is an analytic function on ϕ(Ω).

Proof. By [8, Theorem 7.5 and Corollary 7.6 in Chapter IV], we deduce that ϕ(Ω) is a
connected open set in the complex plane, ϕ′(z)/= 0 for all z ∈ Ω, and ϕ−1 : ϕ(Ω) → Ω is
an analytic function on ϕ(Ω). Since f = f ◦ ϕ ◦ ϕ−1 on ϕ(Ω), we conclude that f is analytic on
ϕ(Ω).

Theorem 2.20. Let X1 be a compact plane set such that G1 = int(X1) is connected and G1 = X1.
Suppose that K1 is a compact subset of X1 such that Ω1 = int(K1) is connected, K1 = Ω1, and K1

has peakK1-boundary with respect to LipA(X1, K1, 1). Let Ω2 be a bounded connected open set in the
complex plane, and let K2 = Ω2 such that K2 is strongly accessible from the interior. Suppose that
X2 is a compact plane set such that K2 ⊆ X2. If T : LipA(X1, K1, 1) → LipA(X2, K2, 1) is a unital
compact homomorphism and TZ is one-to-one on Ω2, then T is induced by a continuous mapping
ϕ : X2 → X1 such that ϕ = TZ and ϕ(K2) ⊆ Ω1 = int(K1).

Proof. Since LipA(X1, K1, 1) and LipA(X2, K2, 1) are, respectively, natural Banach function
algebras on X1 and X2, T : LipA(X1, K1, 1) → LipA(X2, K2, 1) is a unital homomorphism,
X1 is a compact plane set, and Z ∈ LipA(X1, K1, 1), we conclude that T is induced by ϕ = TZ
and so ϕ ∈ LipA(X2, K2, 1) by Proposition 1.2.

To prove ϕ(K2) ⊆ Ω1, we first show that ϕ(Ω2) ⊆ K1. Since ϕ is a one-to-one analytic
mapping onΩ2, we conclude that ϕ(Ω2) is an open set in the complex plane. This follows that
ϕ(Ω2) ⊆ int(X1) = G1 since ϕ(Ω2) ⊆ X1. Suppose that ϕ(Ω2)/⊆K1. Then there exists λ ∈ Ω2

such that ϕ(λ) ∈ G1 \ K1. By Lemma 2.16, there exists a function f ∈ LipA(X1, K1, 1) such
that f is not analytic at ϕ(λ). But f ◦ ϕ = Tf ∈ LipA(X2, K2, 1), so that f ◦ ϕ is analytic on Ω2.
Since f is continuous on ϕ(Ω2) and ϕ is a one-to-one analytic function on Ω2, we conclude
that f is analytic on ϕ(Ω2) by Lemma 2.19. This contradicts to the fact f is not analytic at
ϕ(λ) ∈ ϕ(Ω2). Therefore, ϕ(Ω2) ⊆ K1 so ϕ(Ω2) ⊆ int(K1) = Ω1 since ϕ(Ω2) is an open set in
the complex plane. Since ϕ is continuous on K2, ϕ(Ω2) ⊆ Ω1, K2 = Ω2, and K1 = Ω1, we can
easily show that ϕ(K2) ⊆ K1. We now show that ϕ(K2) ⊆ Ω1. Suppose that ϕ(K2)/⊆Ω1. Then
there exists c ∈ ∂K2 such that ϕ(c) ∈ ∂K1. Since K1 has peak K1-boundary with respect to
LipA(X1, K1, 1), there exists a function h ∈ LipA(X1, K1, 1) such that h is not constant on K1

and

‖h‖X1
= h

(

ϕ(c)
)

= 1. (2.34)
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Applying the similar argument used in the proof of Theorem 2.14, we can prove that h is
constant on K1. This contradiction shows that ϕ(K2) ⊆ Ω1.

Corollary 2.21. Let X be a compact plane set such that G = int(X) is connected and G = X. Let
K be a compact subset of X such that Ω = int(K) is connected and K = Ω. Suppose that K has
peak K-boundary with respect to LipA(X,K, 1) and K is strongly accessible from the interior. If T is
a unital compact endomorphism of LipA(X,K, 1) and TZ is a one-to-one mapping on Ω, then T is
induced by a continuous self-map ϕ of X such that ϕ = TZ and ϕ(K) ⊆ Ω = int(K).

3. Spectrum of Unital Compact Endomorphisms

In this section we determine the spectrum of a unital compact endomorphism of a subalgebra
of LipA(X,K, α) which is a natural Banach function algebra with the norm ‖ · ‖Lip(X,K,α).

The following result is a modification of [9, Theorem 1.7] for unital compact
endomorphisms of natural Banach function algebras.

Theorem 3.1. LetX be a compact Hausdorff space and B a natural Banach function algebra onX. If T
is a unital compact endomorphism of B induced by a self-map ϕ : X → X, then

⋂∞
n=0 ϕn(X) is finite,

and if X is connected,
⋂∞
n=0 ϕn(X) is singleton where ϕn is the nth iterate of ϕ, that is, ϕ0(x) = x and

ϕn(x) = ϕ(ϕn−1(x)). If
⋂∞
n=0 ϕn(X) = {x0}, then x0 is a fixed point for ϕ. In fact, if F =

⋂∞
n=0 ϕn(X),

then ϕ(F) = F.

Theorem 3.2. Suppose that X is a compact plane set with int(X)/= ∅, Ω is a connected open set in
the complex plane with Ω ⊆ int(X), and K = Ω. Let B be a subalgebra of A(X,K) containing the
coordinate function Z which is a natural Banach function algebra on X with an algebra norm ‖ · ‖B.
Let T be a unital compact endomorphism of B induced by a self-map ϕ of X. If ϕ(X) ⊆ int(K) and z0
is a fixed point of ϕ, then

σ(T) = {0, 1} ∪ {(

ϕ′(z0)
)n : n ∈ N

}

. (3.1)

Proof. Clearly 0 and also 1 ∈ σ(T) since T(1X) = 1X . If ϕ is constant then the proof is complete.
Let λ ∈ σ(T) \ {0, 1}. The compactness of T implies that there exists f ∈ B \ {0} such that
Tf = f ◦ ϕ = λf . Since ϕ(z0) = z0 ∈ int(K), f(z0) = 0. We claim that f (j)(z0)/= 0 for some
j ∈ N. If f (n)(z0) = 0 for all n ∈ N, then f = 0 on an open disc with center z0 and so on Ω.
By maximum modules principle, it follows that f = 0 on X since ϕ(X) ⊆ Ω, λ ∈ C \ {0},
and λf(z) = f(ϕ(z)) for all z ∈ X. This contradicts to f /= 0. Hence, our claim is justified. Let
m = min{n ∈ N : f (n)(z0)/= 0}. Then f (k)(z0) = 0 for all k ∈ {0, . . . , n − 1} and f (m)(z0)/= 0. By
m times differentiation of f ◦ϕ = λf , we have (ϕ′(z0))

mf (m)(ϕ(z0)) = λf (m)(z0), and therefore
λ = (f ′(z0))

m. Then σ(T) \ {0, 1} ⊆ {(ϕ′(z0))
n : n ∈ N}.

Conversely, first we show that, if λ ∈ σ(T) with |λ| = 1, then λ = 1. Let λ ∈ σ(T) and
|λ| = 1. The compactness of T implies that there exists g ∈ B \ {0} such that g ◦ ϕ = λg. It
follows that |g ◦ ϕ| = |g|. Since ϕ(K) ⊆ int(K) = Ω and g is analytic on the connected open
set Ω, we conclude that g is constant on Ω by maximum modules principle. Since ϕ(X) ⊆ Ω,
g ◦ ϕ = λg, and λ ∈ C \ {0}, we deduce that g is constant on X. Applying again g ◦ ϕ = λg

implies that λ = 1 since g ∈ B \ {0}.
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We now claim that ϕ′(z0) ∈ σ(T). If ϕ′(z0) /∈ σ(T), then there exists a nonzero linear
operator S : B → B such that

(

T − ϕ′(z0)I
)

S = I. (3.2)

Since Z − z01X ∈ B, h = S(Z − z01X) ∈ B and so

h ◦ ϕ − ϕ′(z0)h = Z − z01X, (3.3)

by (3.2). By differentiation at z0, we have

0 = h′
(

ϕ(z0)
)

ϕ′(z0) − ϕ′(z0)h′(z0) = 1, (3.4)

this is a contradiction. Hence, our claim is justified.
We now show that (ϕ′(z0))

n ∈ σ(T) for all n ∈ N. If ϕ′(z0) = 0 or |ϕ′(z0)| = 1, the proof
is complete. Suppose that ϕ′(z0)/= 0 and |ϕ′(z0)|/= 1. If (ϕ′(z0))

j /∈ σ(T) for some j ∈ N with
j > 1, then there exists a nonzero linear operator Sj : B → B such that

(

T − (

ϕ′(z0)
)j
I
)

Sj = I. (3.5)

Since (Z − z01X)j ∈ B, hj = Sj(Z − z01X)j ∈ B and so

hj ◦ ϕ − (

ϕ′(z0)
)j
hj = (Z − z01X)j , (3.6)

by (3.5). By j − 1 times differentiation at z0, we have

hj(z0) = h′j(z0) = · · · = h(j−1)j (z0) = 0, (3.7)

and by j times differentiation at z0, we have

0 =
(

ϕ′(z0)
)j
h
(j)
j

(

ϕ(z0)
) − (

ϕ′(z0)
)j
h
(j)
j (z0) = j!, (3.8)

this is a contradiction. Thus, (ϕ′(z0))
n ∈ σ(T) for all n ∈ N. This completes the proof.

Corollary 3.3. Let B and T satisfy the conditions of Theorem 3.2, and let B be a natural Banach
function algebra with the norm ‖ · ‖α,K. If F is a finite set such that ϕ(F) = F, then there exist z0 ∈ F
andm ∈ N such that

{λm : λ ∈ σ(T)} = {0, 1} ∪ {(

ϕ′
m(z0)

)n : n ∈ N
}

. (3.9)

Proof. Since F is a finite set and ϕ(F) = F, there exist z0 ∈ F andm ∈ N such that ϕm(z0) = z0.
Since ϕ(X) ⊆ int(K), so z0 ∈ int(K). If ϕ is constant, then the proof is complete. When ϕ is
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nonconstant, we define ˜T : B → B by ˜Tf = f ◦ ϕm. Then ˜T is a compact endomorphism of B
induced by ϕm by Corollary 2.6 and ϕm(z0) = z0. Therefore,

σ
(

˜T
)

= {0, 1} ∪ {(

ϕ′
m(z0)

)n : n ∈ N
}

(3.10)

by Theorem 3.2. Since Tf = f ◦ ϕ and ˜Tf = f ◦ ϕm for all f ∈ B, we have ˜T = Tm. By Spectral
Mapping Theorem, σ(Tm) = {λm : λ ∈ σ(T)}. Therefore,

{λm : λ ∈ σ(T)} = {0, 1} ∪ {(

ϕ′
m(z0)

)n : n ∈ N
}

. (3.11)

Corollary 3.4. Suppose thatX is a compact plane set with int(X)/= ∅,Ω is a connected open set in the
complex plane withΩ ⊆ int(X), andK = Ω. Take α ∈ (0, 1]. Let ϕ be a self-map of X with ϕ(X) ⊆ Ω
such that ϕ ∈ LipA(X,K, α), and let ϕ(z0) = z0 for some z0 ∈ Ω. If T is a unital endomorphism of
LipA(X,K, α) induced by ϕ, then T is compact and

σ(T) = {0, 1} ∪ {(

ϕ′(z0)
)n : n ∈ N

}

. (3.12)
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