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We study the normality of families of holomorphic functions. We prove the following result. Let
α(z), ai(z), i = 1, 2, . . . , p, be holomorphic functions and F a family of holomorphic functions in a
domainD, P(z,w) := (w −a1(z))(w −a2(z)) · · · (w −ap(z)), p ≥ 2. If Pw ◦ f(z) and Pw ◦ g(z) share
α(z) IM for each pair f(z), g(z) ∈ F and one of the following conditions holds: (1) P(z0, z)−α(z0)
has at least two distinct zeros for any z0 ∈ D; (2) there exists z0 ∈ D such that P(z0, z) − α(z0)
has only one distinct zero and α(z) is nonconstant. Assume that β0 is the zero of P(z0, z) − α(z0)
and that the multiplicities l and k of zeros of f(z) − β0 and α(z) − α(z0) at z0, respectively, satisfy
k /= lp, for all f(z) ∈ F, then F is normal in D. In particular, the result is a kind of generalization
of the famous Montel’s criterion. At the same time we fill a gap in the proof of Theorem 1.1 in our
original paper (Wu et al., 2010).

1. Introduction and Main Result

Let f(z) and g(z) be two nonconstant meromorphic functions in a domain D ⊆ C, and let a
be a finite complex value or function. We say that f and g share a CM (or IM) in D provided
that f −a and g−a have the same zeros counting (or ignoring)multiplicity inD. It is assumed
that the reader is familiar with the standard notations and the basic results of Nevanlinna’s
value-distribution theory ([1, 2] or [3]).

The following theorem was proved by Chang et al. [4] in 2005 and [5] in 2009. It is an
extension of a result obtained by Fang and Yuan [6] in 2000.

Theorem A. Let α(z) be a nonconstant meromorphic function, F a family of holomorphic functions
in a domainD, and R(z) a rational function of degree at least 3. Suppose that R◦f(z)/=α(z) for each
f ∈ F and all z ∈ D. Then F is normal in D.
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In the case whereF is a family of holomorphic functions andR(z) is a rational function
of degree at least 2, the result was proved by Bergweiler [7] in 2004, by Hinchliffe [8] in 2003,
and by Clifford [9] in 2005. It extends a result obtained by Fang and Yuan [6] in 2000, in
which R(z) is a polynomial of degree at least 2.

Recently, we [10] improved Theorem A in the case of R(z) being polynomial.

Theorem B. Let α(z) be a holomorphic function, F a family of meromorphic functions in a domain
D, and P(z) a polynomial of degree at least 3. If P ◦ f(z) and P ◦ g(z) share α(z) IM for each pair
f(z), g(z) ∈ F and one of the following conditions holds:

(1) P(z) − α(z0) has at least three distinct zeros for any z0 ∈ D;

(2) there exists z0 ∈ D such that P(z) − α(z0) has at most two distinct zeros and α(z) is
nonconstant. Assume that β0 is the zero of P(z) − α(z0) with multiplicity p and that the
multiplicities l and k of zeros of f(z)−β0 and α(z)−α(z0) at z0, respectively, satisfy k /= lp,
for all f(z) ∈ F, then F is normal in D.

Remark 1.1. α(z) assuming the value α(z0) with multiplicity k at z0 ∈ D means that α(z) −
α(z0) = (z − z0)

kβ(z) or α(z) = (z − z0)
−kβ(z) and β(z0)/= 0.

In this paper, we extend Theorem B in the case of F being holomorphic and prove
Theorem 1.2. In order to state it, we need some notations below. Set

P(z,w) := (w − a1(z))(w − a2(z)) · · ·
(
w − ap(z)

)
, (1.1)

where ai(z), i = 1, 2, . . . , p, are holomorphic in D; Pw ◦ f(z) := P(z, f(z)).

Theorem 1.2. Let α(z) be a holomorphic function, F a family of holomorphic functions in a domain
D, and P(z,w) a polynomial in variable w as in (1.1) with p ≥ 2. If Pw ◦ f(z) and Pw ◦ g(z) share
α(z) IM for each pair f(z), g(z) ∈ F and one of the following conditions holds:

(1) P(z0, z) − α(z0) has at least two distinct zeros for any z0 ∈ D;

(2) there exists z0 ∈ D such that P(z0, z) − α(z0) has only one distinct zero and α(z) is
nonconstant. Assume that β0 is the zero of P(z0, z)−α(z0) and that the multiplicities l and
k of zeros of f(z) − β0 and α(z) − α(z0) at z0, respectively, satisfy k /= lp, for all f(z) ∈ F,

then F is normal in D.

Remark 1.3. Example 1.4 shows that p = degwP(z,w) ≥ 2 is best possible in Theorem 1.2.

Example 1.4. Let P(z,w) = w + z2, D = {|z| < 1}, and let F := {fn}, where

fn(z) := nz, n = 1, 2, . . . . (1.2)

If Pw(fn(z)) = nz + z2 = z2, then z = 0. Hence Pw ◦ fn(z) and Pw ◦ fm(z) share α(z) := z2 IM
for each pair fn(z), fm(z) ∈ F. Obviously, for z0 = 0 ∈ D, we have that P(0, z)−α(0) has only
one distinct zero β0 = 0 and z2 is nonconstant, noting that the multiplicities l = 1 and k = 2 of
zeros of fn(z) and α(z) at 0, respectively, satisfy k /= lp, for all fn(z) ∈ F. However, clearly, F
is not normal at 0.
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Remark 1.5. In Theorem 1.2 setting α(z) constant zero and P(z,w) a polynomial in variable
w that vanishes exactly on a finite set of holomorphic functions S, we obtain Corollary 1.6
which generalizes the famous Montel’s criterion that a holomorphic family omitting 2 (or
more) values is normal.

Corollary 1.6. Let F be a family of holomorphic functions on a domain D. Let S be a finite set
of holomorphic functions with at least 2 elements. If all functions in F share the set S ignoring
multiplicities, that is, if for all f(z), g(z) ∈ F and for all z ∈ D

f(z) ∈ S ⇔ g(z) ∈ S, (1.3)

then F is normal in D.

In 2010, we [11] obtained a normal criterion as follows.

Theorem C. Let α(z) be an analytic function, F a family of analytic functions in a domain D,
and H(z) a transcendental entire function. If H ◦ f(z) and H ◦ g(z) share α(z) IM for each pair
f(z), g(z) ∈ F and one of the following conditions holds:

(1) H(z) − α(z0) has at least two distinct zeros for any z0 ∈ D;

(2) α(z) is nonconstant and there exists z0 ∈ D such thatH(z) − α(z0) := (z − β0)
pQ(z) has

only one distinct zero β0 and suppose that the multiplicities l and k of zeros of f(z) − β0
and α(z) − α(z0) at z0, respectively, satisfy k /= lp, for each f(z) ∈ F, where Q(β0)/= 0;

(3) there exists a z0 ∈ D such that H(z) − α(z0) has no zero and α(z) is nonconstant, then F
is normal in D.

However, there exists a gap in the proof of Theorem C which is Theorem 1.1 in our
original paper [11]. We will give the correct proof after the proof of Theorem 1.1 in Section 3.

2. Preliminary Lemmas

In order to prove our result, we need the following lemmas. The first one extends a famous
result by Zalcman [12] concerning normal families.

Lemma 2.1 ( see [13]). Let F be a family of meromorphic functions on the unit disc. Then F is not
normal on the unit disc if and only if there exist

(a) a number 0 < r < 1;

(b) points zn with |zn| < r;

(c) functions fn ∈ F;
(d) positive numbers ρn → 0

such that gn(ζ) := fn(zn + ρnζ) converges locally uniformly to a nonconstant meromorphic function
g(ζ), whose order is at most 2.

Remark 2.2. If F is a family of holomorphic functions on the unit disc in Lemma 2.1, then g(ζ)
is a nonconstant entire function.
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Lemma 2.3 is very useful in the proof of our main theorem. In order to state them, we
denote byU(z0, r) (or U0(z0, r)) the open (or punctured) disc of radius r around z0, that is,

U(z0, r) := {z ∈ C : |z − z0| < r},

U0(z0, r) := {z ∈ C : 0 < |z − z0| < r}.
(2.1)

Lemma 2.3 (see [9] or [14]). Let {fn(z)} be a family of analytic functions inU(z0, r). Suppose that
{fn(z)} is not normal at z0 but is normal in U0(z0, r). Then there exists a subsequence {fnk(z)} of
{fn(z)} and a sequence of points {znk} tending to z0 such that fnk(znk) = 0, but {fnk(z)} tending to
infinity locally uniformly onU0(z0, r).

3. Proof of the Results

Proof of Theorem 1.1. Without loss of generality, we assume that D = {z ∈ C, |z| < 1}. Then we
consider the following two cases.

Case 1. P(z0, z) − α(z0) has at least two distinct zeros a and b for any z0 ∈ D.
Suppose that F is not normal inD. Without loss of generality, we assume that F is not

normal at z = 0.
By Lemma 2.1, there exist zn → 0, fn ∈ F, ρn → 0+ such that

hn(ξ) = fn
(
zn + ρnξ

) −→ h(ξ) (3.1)

uniformly on any compact subset of C, where h(ξ) is a nonconstant entire function.
Hence

Pw ◦ fn
(
zn + ρnξ

) − α
(
zn + ρnξ

) −→ Pw ◦ h(ξ) − α(0) (3.2)

uniformly on any compact subset of C.
We claim that Pw ◦ h(ξ) − α(0) has at least two distinct zeros.
If h(ξ) is a nonconstant polynomial, then both of the two equations of h(ξ) = a and

h(ξ) = b have roots. So Pw ◦ h(ξ) − α(0) has at least two distinct zeros.
If h(ξ) is a transcendental entire function, then by Picard’s theorem [3] at least one of

the two equations h(ξ) = a or h(ξ) = b has infinitely many zeros.
Thus, the claim gives that there exist ξ1 and ξ2 such that

Pw ◦ h(ξ1) − α(0) = 0, Pw ◦ h(ξ2) − α(0) = 0 (ξ1 /= ξ2). (3.3)

We choose a positive number δ small enough such thatD1∩D2 = ∅ and Pw ◦h(ξ)−α(0)
has no other zeros in D1 ∪D2 except for ξ1 and ξ2, where

D1 = {ξ ∈ C; |ξ − ξ1| < δ}, D2 = {ξ ∈ C; |ξ − ξ2| < δ}. (3.4)
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By (3.2) and Hurwitz’s theorem [14], for sufficiently large n there exist points ξ1n ∈ D1,
ξ2n ∈ D2 such that

Pw ◦ fn
(
zn + ρnξ1n

) − α
(
zn + ρnξ1n

)
= 0,

Pw ◦ fn
(
zn + ρnξ2n

) − α
(
zn + ρnξ2n

)
= 0.

(3.5)

Noting that Pw ◦ fm(z) and Pw ◦ fn(z) share α(z) IM, it follows that

Pw ◦ fm
(
zn + ρnξ1n

) − α
(
zn + ρnξ1n

)
= 0,

Pw ◦ fm
(
zn + ρnξ2n

) − α
(
zn + ρnξ2n

)
= 0.

(3.6)

Taking n → ∞, we obtain

Pw ◦ fm(0) − α(0) = 0. (3.7)

Since P(z,w) is a polynomial in variable w, we know that the zeros of

Pw ◦ fm(ξ) − α(ξ) (3.8)

have no accumulation points except for finitely many fm, and then

zn + ρnξ1n = 0, zn + ρnξ2n = 0, (3.9)

or equivalently

ξ1n = −zn
ρn

, ξ2n = −zn
ρn

. (3.10)

This contradicts the facts that ξ1n ∈ D1, ξ2n ∈ D2, D1 ∩D2 = ∅. So F is normal in Case 1.

Case 2. There exists z0 ∈ D such that P(z0, z) − α(z0) has only one distinct zero and α(z) is
nonconstant. Assume that β0 is the zero of P(z0, z) − α(z0) and that the multiplicities l and k
of zeros of f(z) − β0 and α(z) − α(z0) at z0, respectively, satisfy k /= lp, for all f(z) ∈ F.

Wewill prove thatF is normal at any z0 ∈ D. Without loss of generality, we can assume
that z0 = 0.

We can write P(z0, z) − α(0) := (z − β0)
pH(z), where H(z) is a polynomial and

H(β0)/= 0.
Since α(z) is nonconstant, there exists a punctured neighbourhood U0(0, r) such that

α(z)/=α(0). (3.11)

We claim that F is normal at z′0 ∈ U0(0, r) for small enough r. In fact, P(z0, z) − α(z′0)
has at least three distinct zeros. Then Case 1 tells us that this claim is true.
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Next we prove that F is normal at z = 0. For any {fn(z)} ⊂ F, by the former claim,
there exists a subsequence of functions {fnm(z)} such that

fnm(z) − β0 −→ G(z), (3.12)

uniformly on a punctured disc U0(0, r).
For the sake of simplicity, we denote {fnm(z)} by {fn(z)} in what follows.
Suppose that {fn(z)} is not normal at z = 0. We claim that there exists a sequence of

points zn ∈ U(0, r) (zn → 0) such that Pw ◦ fn(zn) − α(zn) = 0.
By Lemma 2.3, we have that there exists a sequence of points {z′n} tending to 0 such

that fn(z′n) = β0 and G(z) ≡ ∞. Thus, fn(z) → ∞ on U0(0, r) and fn(zn′) = β0 for a sequence
of points z′n → 0. We know that if n is sufficiently large, then

∣
∣(fn(z) − β

) − fn(z) + β0
∣
∣ =

∣
∣β − β0

∣
∣ ≤ ρ <

∣
∣fn(z) − β0

∣
∣ (3.13)

for |z| = δ and β ∈ U(β0, ρ). For large n, we also have |z′n| < δ, and thus we deduce from
Rouché’s theorem [15] that fn(z) takes the value β ∈ U(β0, ρ); that is, we have fn(U(0, δ)) ⊃
U(β0, ρ) for large n. Since also fn(∂U(0, δ)) ∩ U(β0, ρ) = ∅ for large n, we find a component
U of f−1

n (U(β0, ρ)) contained in U(0, δ) for such n. Moreover, U is a Jordan domain and fn :
U → U(β0, ρ) is a proper map.

For z ∈ ∂U, we then have fn(z) ∈ ∂U(β0, ρ) and thus |Pw ◦ fn(z) − α(0)| > ε. Hence

∣∣Pw ◦ fn(z) − α(z) − (
Pw ◦ fn(z) − α(0)

)∣∣ = |α(z) − α(0)| < ε <
∣∣Pw ◦ fn(z) − α(0)

∣∣ (3.14)

for z ∈ ∂U. Noting that Pw ◦ fn(z′n) − α(0) = 0, Rouché’s theorem [15] now shows that our
claim holds.

By the claim and almost the same argument as in Case 1, we obtain that zn = 0 for
sufficiently large n. By P(0, z) − α(0) = (z − β0)

pH(z), we have

Pw ◦ fn(z) − α(z) =
(
fn(z) − β0

)p
H
(
fn(z)

) − (α(z) − α(0)),

(
fn(0) − β0

)p
H
(
fn(0)

)
= Pw ◦ fn(0) − α(0) = 0.

(3.15)

Hence

Pw ◦ fn(z) − α(z) = zk
[
zlp−khn(z) − β(z)

]
, if lp > k,

Pw ◦ fn(z) − α(z) = zlp
[
hn(z) − zk−lpβ(z)

]
, if lp < k,

(3.16)

where hn(z), β(z) are holomorphic functions and hn(0)/= 0, β(0)/= 0.
Set Hn(z) := zlp−khn(z) − β(z), if lp > k, or Hn(z) := hn(z) − zk−lpβ(z), if lp < k.

Obviously, Hn(0) = −β(0)/= 0 or Hn(0) = hn(0)/= 0.
By the same argument as in the former case, we see that there exists a sequence of

points z∗n ∈ U(0, r) such that z∗n → 0 andHn(z∗n) = 0. Obviously, z∗n /= 0 and

Pw ◦ fn(z∗n) − α(z∗n) = 0. (3.17)
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Noting that Pw ◦ fn(z) and Pw ◦ fm(z) share α(z) IM, we obtain that

Pw ◦ fm(z∗n) − α(z∗n) = 0 (3.18)

for each m. Thus, taking n → ∞, Pw ◦ fm(0) − α(0) = 0. Since the zeros of Pw ◦ fm(ξ) − α(ξ)
have no accumulation points except for finitely many fm, we have z∗n = 0. This contradicts
our supposition.

Theorem 1.1 is proved completely.

Proof of the Gap of Theorem C. In the original proof (3.7) becomes

H ◦ fm(0) − α(0) = 0, (3.19)

where H(z) is a transcendental entire function.
The zeros ofH ◦fm(ξ)−α(ξ)maybe have accumulation points, forH ◦fm(ξ)−α(ξ) ≡ 0.

However, we claim that H ◦ fm(ξ) − α(ξ) ≡ 0 does not hold for infinitely many m.
In fact, if it is not true, by using Lemma 2.1 for these infinitely fm(z), then there exist a

sequence of points zm → 0, fm ∈ {fn(z)}, and ρm → 0+ such that gm(ξ) := fm(zm + ρmξ) →
g(ξ) uniformly on any compact subset ofC, where g(ξ) is a nonconstant entire function. Thus,
H ◦ g(ξ) − α(0) ≡ 0. This is impossible.
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