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By means of the fixed point theory of strict set contraction operators, we establish a new existence
theorem on multiple positive solutions to a singular boundary value problem for second-order
impulsive differential equations with periodic boundary conditions in a Banach space. Moreover,
an application is given to illustrate the main result.

1. Introduction

The theory of impulsive differential equations describes processes that experience a sudden
change of their state at certain moments. In recent years, a great deal of work has been done
in the study of the existence of solutions for impulsive boundary value problems, by which a
number of chemotherapy, population dynamics, optimal control, ecology, industrial robotics,
and physics phenomena are described. For the general aspects of impulsive differential
equations, we refer the reader to the classical monograph [1]. For some general and recent
works on the theory of impulsive differential equations, we refer the reader to [2–14].
Meanwhile, the theory of ordinary differential equations in abstract spaces has become a new
important branch (see [15–18]). So it is interesting and important to discuss the existence of
positive solutions for impulsive boundary value problem in a Banach space.

Let (E, ‖ · ‖) be a real Banach space, J = [0, 2π], 0 = t0 < t1 < t2 < · · · < tm <
tm+1 = 2π , J0 = [0, t1], and Ji = (ti, ti+1], i = 1, . . . , m. Note that PC[J, E] = {u : u is a



2 Abstract and Applied Analysis

map from J into E such that u(t) is continuous at t /= tk and left continuous at t = tk and
u(t+

k
) exist, k = 1, 2, . . . , m}, and it is also a Banach space with norm

‖u‖PC = sup
t∈J

‖u(t)‖. (1.1)

Let the Banach space E be partially ordered by a cone P of E; that is, x ≤ y if and only
if y − x ∈ P , and PC[J, E] is partially ordered by K = {u ∈ PC[J, E] : u(t) ∈ P, t ∈ J} : u ≤ v if
and only if v − u ∈ K; that is, u(t) ≤ v(t) for all t ∈ J .

In this paper, we consider the following singular periodic boundary value problem
with impulsive effects in Banach E

−u′′(t) +M2u(t) = f(t, u(t)), t ∈ J, t /= tk,

Δu|t=tk = Ik(u(tk)),

Δu′∣∣
t=tk

= −Ik(u(tk)), k = 1, 2, . . . , m,

u(0) = u(2π), u′(0) = u′(2π),

(1.2)

whereM > 0 is constant, f(t, u)may be singular at t = 0 and/or t = 2π , f ∈ C[(0, 2π)×P, P],
Ik, Ik ∈ C[P, P], Δu|t=tk = u(t+

k
) − u(t−

k
), Δu′|t=tk = u′(t+

k
) − u′(t−

k
), k = 1, 2, . . . , m, and ui(t+

k
)

(resp., ui(t−
k
)) denote the right limit (resp., left limit) of ui(t) at t = tk, i = 0, 1.

In the special case where E = R
+ = [0,+∞), and Ik = Ik = 0, k = 1, 2, . . . , m, problem

(1.2) is reduced to the usual second-order periodic boundary value problem. For example, in
[19], the periodic boundary value problem:

−u′′(t) +Mu(t) = f(t, u(t)), t ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π),
(1.3)

was proved to have at least one positive solution, by Jiang [19] .
In [20], the authors studied the multiplicity of positive solutions for IBVP(1.2) in E =

R
+; the main tool is the theory of fixed point index.

In [21], the author considers the following periodic boundary value problem of
second-order integrodifferential equations of mixed type in Banach space:

−u′′ = f(t, u, Tu, Su), t ∈ (0, 2π),

Δu|t=tk = Ik(u(tk)),

Δu′∣∣
t=tk

= −Ik(u(tk)), k = 1, 2, . . . , m,

u(0) = u(2π), u′(0) = u′(2π),

(1.4)
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where f ∈ C[J × E × E × E, E], Ik, Ik ∈ C[E, E], and the operators T , S are given by

Tu(t) =
∫ t

0
k(t, s)u(s)ds, Su(t) =

∫2π

0
k1(t, s)u(s)ds, (1.5)

with k ∈ C[D,R], D = {(t, s) ∈ R
2 : 0 ≤ s ≤ t ≤ 2π}, k1 ∈ C[J × J,R]. By applying

the monotone iterative technique and cone theory based on a comparison result, the author
obtained an existence theorem of minimal and maximal solutions for the IBVP(1.4).

Motivated by the above facts, our aim is to study the multiplicity of positive solutions
for IBVP(1.2) in a Banach space. By means of the fixed point index theory of strict set
contraction operators, we establish a new existence theorem on multiple positive solutions
for IBVP(1.2). Moreover, an application is given to illustrate the main result.

The rest of this paper is organized as follows. In Section 2, we present some basic
lemmas and preliminary facts which will be needed in the sequel. Our main result and its
proof are arranged in Section 3. An example is given to show the application of the result in
Section 4.

2. Preliminaries

Let Tr = {x ∈ E : ‖x‖ ≤ r}, Br = {u ∈ PC[J, E] : ‖u‖PC ≤ r} (r > 0); for D ⊂ PC[J, E],
we denote D(t) = {u(t) : u ∈ D} ⊂ E(t ∈ J).α denotes the Kuratowski measure of non-
compactness.

Let PC1[J, E] = {u | u be a map from J into E such that u(t) is continuously
differentiable at t /= tk and left continuous at t = tk and u(t+k), u′(t−k), u′(t+k) exist, k =
1, 2, . . . , m}. Evidently, PC1[J, E] is a Banach space with norm

‖u‖PC1 = max
{‖u‖PC,

∥
∥u′∥∥

PC

}

. (2.1)

Let J ′ = J \ {t1, t2, . . . , tm}; a map u ∈ PC1[J, E] ∩ C2[J ′, E] is a solution of IBVP(1.2) if
it satisfies (1.2).

Now, we first give the following lemmas in order to prove our main result.

Lemma 2.1 (see [17]). Let K be a cone in real Banach space E, and let Ω be a nonempty bounded
open convex subset of K. Suppose that A : Ω → K is a strict set contraction and A(Ω) ⊂ K. Then
the fixed-point index i(A,Ω, K) = 1.

Lemma 2.2 (see [21]). u ∈ PC1[J, E] ∩ C2[J ′, E] is a solution of IBVP (1.2) if and only if u ∈
PC[J, E] is a solution of the impulsive integral equation:

u(t) =
∫2π

0
G(t, s)f(s, u(s))ds +

m∑

k=1

[

G(t, tk)Ik(u(tk)) +H(t, tk)Ik(u(tk))
]

, (2.2)
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where

G(t, s) =
(

2M
(

e2πM − 1
))−1

⎧

⎨

⎩

eM(2π−t+s) + eM(t−s), 0 ≤ s ≤ t ≤ 2π,

eM(2π+t−s) + eM(s−t), 0 ≤ t ≤ s ≤ 2π,

H(t, s) =
(

2
(

e2πM − 1
))−1

⎧

⎨

⎩

eM(2π−t+s) − eM(t−s), 0 ≤ s ≤ t ≤ 2π,

eM(s−t) − eM(2π+t−s), 0 ≤ t < s ≤ 2π.

(2.3)

By simple calculations, we obtain that for (t, s) ∈ J × J ,

l0 :=
eπM

M
(

e2πM − 1
) ≤ G(t, s) ≤ e2πM + 1

2M
(

e2πM − 1
) := l1, (2.4)

|H(t, s)| ≤ 1
2
, MG(t, s) +H(t, s) > 0. (2.5)

To establish the existence of multiple positive solutions in PC1[J, E] ∩ C2[J ′, E] of
IBVP(1.2), let us list the following assumptions:

(A1) ‖f(t, x)‖ ≤ g(t)‖h(x)‖, t ∈ (0, 2π), x ∈ P , where g : (0, 2π) → (0,∞) is continuous
and

h : P → P is bounded and continuous and satisfies
∫2π
0 g(s)ds < +∞.

(A2) h(x) in (A1) satisfies

cl1

∫2π

0
g(s)ds + l1

m∑

k=1

hk +
1
2

m∑

k=1

ck < 1,

dl1

∫2π

0
g(s)ds + l1

m∑

k=1

ek +
1
2

m∑

k=1

dk < 1,

(2.6)

where

c = lim
‖x‖→ 0

‖h(x)‖
‖x‖ , d = lim

‖x‖→+∞
‖h(x)‖
‖x‖ ,

ck = lim
‖x‖→ 0

‖Ik‖
‖x‖ , dk = lim

‖x‖→+∞
‖Ik‖
‖x‖ ,

hk = lim
‖x‖→ 0

∥
∥
∥Ik

∥
∥
∥

‖x‖ , ek = lim
‖x‖→+∞

∥
∥
∥Ik

∥
∥
∥

‖x‖ .

(2.7)
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(A3) For any r > 0 and [a, b] ⊂ (0, 2π), f is uniformly continuous on [a, b] × Tr .

(A4) There exist L, Lk,Hk ≥ 0 such that α(f(t,D)) ≤ Lα(D), α(Ik(D)) ≤ Lkα(D),
α(Ik(D)) ≤ Hkα(D) (k = 1, . . . , m), and 4πLl1 + l1

∑m
k=1 Hk + (1/2)

∑m
k=1 Lk < 1, for

t ∈ (0, 2π), and D ⊂ P is bounded.

(A5) For any x ∈ P , Ik(x) ≥ MIk(x);

(A6) P is a solid cone, and there exist u0 ∈
◦
P , J ′0 = [a′, b′] ⊂ J such that t ∈ J ′0, x ≥ u0

imply f(t, x) ≥ h(t)u0, h ∈ C(J ′0, [0,+∞)), and l := l0
∫b′

a′ h(s)ds > 1.
Define an operator A as follows:

(Au)(t) =
∫2π

0
G(t, s)f(s, u(s))ds +

m∑

k=1

[

G(t, tk)Ik(u(tk)) +H(t, tk)Ik(u(tk))
]

, t ∈ J.

(2.8)

Lemma 2.3. Assuming (A1) and (A4) hold, then, for any r > 0, A : PC[J, P] ∩ Br → PC[J, P] is
bounded and continuous.

Proof. According to (A1) and (A4), we obtain that A is a bounded operator. In the following,
we will show that A is continuous.

Let {un}, {u} ⊂ PC[J, P]∩Br , and ‖un − u‖PC → 0. Next we show that ‖Aun −Au‖PC →
0. By (A1), {(Aun)(t)} is equicontinuous on each Ji (i = 0, . . . , m). By the Lebesgue
dominated convergence theorem and (2.4), we have

‖Aun(t) −Au(t)‖

≤
∥
∥
∥
∥
∥

∫2π

0
G(t, s)

(

f(s, un(s)) − f(s, u(s))
)

ds

∥
∥
∥
∥
∥
+

m∑

k=1

G(t, tk)
∥
∥
∥Ik(un(tk)) − Ik(u(tk))

∥
∥
∥

+
m∑

k=1

|H(t, tk)|‖Ik(un(tk)) − Ik(u(tk))‖

≤ l1

∫2π

0

∥
∥f(s, un(s)) − f(s, u(s))

∥
∥ds + l1

m∑

k=1

∥
∥
∥Ik(un(tk)) − Ik(u(tk))

∥
∥
∥

+
1
2

m∑

k=1

‖Ik(un(tk)) − Ik(u(tk))‖ −→ 0 (n −→ ∞).

(2.9)

In view of the Ascoli-Arzela theorem, {Aun} is a relatively compact set in PC[J, E]. In the
following we will verify that ‖Aun −Au‖PC → 0 (n → ∞).

If this is not true, then there are ε0 > 0 and {uni} ⊂ {un} such that ‖Auni −Au‖PC ≥
ε0 (i = 1, 2, . . .). Since {Aun} is a relatively compact set, there exists a subsequence of
{Auni} which converges to v ∈ PC[J, P], without loss of generality, and we assume that
limi→∞Auni = v, that is, limi→∞‖Auni − v‖PC = 0, so v = Au, which imply a contradiction.
Therefore A is continuous.
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Lemma 2.4. Assuming (A1), (A3), and (A4) hold, then, for any R > 0, A : PC[J, P] ∩ BR →
PC[J, P] is a strict set contraction operator.

Proof. For any R > 0, S ⊂ PC[J, P] ∩ BR, by (A1), AS is bounded and equicontinuous on each
Ji, i = 0, . . . , m, and by [17],

αPC(AS) = sup
t∈J

α((AS)(t)), (2.10)

where (AS)(t) = {Au(t) : u ∈ S, t ∈ J}.
Let

D =

{∫2π

0
G(t, s)f(s, u(s))ds : u ∈ S

}

,

Dδ =

{∫2π−δ

δ

G(t, s)f(s, u(s))ds : u ∈ S

}

, 0 < δ < min{π, t1, 2π − tm}.
(2.11)

By (A1) and (2.4), for any u ∈ S,
∥
∥
∥
∥
∥

∫2π−δ

δ

G(t, s)f(s, u(s))ds −
∫2π

0
G(t, s)f(s, u(s))ds

∥
∥
∥
∥
∥

≤ l1max
x∈TR

‖h(u)‖
∫δ

0
g(s)ds + l1max

u∈TR
‖h(x)‖

∫2π

2π−δ
g(s)ds.

(2.12)

In view of (2.12) and (A1), we have dH(Dδ,D) → 0 (δ → 0+), where dH(Dδ,D) denotes the
Hausdorff distance of D and Dδ.

Therefore,

lim
δ→ 0+

α(Dδ) = α(D). (2.13)

Next we will estimate α(Dδ). Since

∫2π−δ

δ

G(t, s)f(s, u(s))ds ∈ (2π − 2δ)co
({

G(t, s)f(s, u(s)) : s ∈ [δ, 2π − δ]
})

, (2.14)

thus

α(Dδ) = α

({∫2π−δ

δ

G(t, s)f(s, u(s))ds : u ∈ S

})

≤ 2(π − δ)α
(

co
{

G(t, s)f(s, u(s)) : s ∈ [δ, 2π − δ], u ∈ S
})

≤ 2πα
({

G(t, s)f(s, u(s)) : s ∈ [δ, 2π − δ], u ∈ S
})

≤ 2πl1α
(

f(Iδ × S(Iδ))
)

,

(2.15)

where Iδ = [δ, 2π − δ], S(Iδ) = {u(t) : t ∈ Iδ, u ∈ S}.
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By (A3) and (A4), it is not difficult to prove that

α
(

f(Iδ × S(Iδ))
)

= max
t∈Iδ

α
(

f(t, S(Iδ))
) ≤ Lα(S(Iδ)) ≤ Lα(S(J)). (2.16)

By [17], we have

Lα(S(J)) ≤ 2LαPC(S). (2.17)

Let δ → 0+, and making use of the fact that limδ→ 0+α(Dδ) = α(D), we obtain

α(D) ≤ 2πl12LαPC(S) = 4πLl1αPC(S). (2.18)

It is clear that

α

({
m∑

k=1

G(t, tk)Ik(u(tk)) : u ∈ S

})

≤
(

l1
m∑

k=1

Hk

)

αPC(S), (2.19)

α

({
m∑

k=1

H(t, tk)Ik(u(tk)) : u ∈ S

})

≤
(

1
2

m∑

k=1

Lk

)

αPC(S). (2.20)

Hence, according to (2.18)–(2.20), we have

αPC(AS) ≤
(

4πLl1 + l1
m∑

k=1

Hk +
1
2

m∑

k=1

Lk

)

αPC(S). (2.21)

By (A4) and Lemma 2.3, A is a strict set contraction operator from PC[J, P] into
PC[J, P].

3. Main Result

Theorem 3.1. Assuming that (A1)–(A6) hold, then the IBVP (1.2) has at least two positive solutions
u1 and u2 satisfying

u1(t) ≥ lu0(t), for t ∈ J ′0 =
[

a′, b′
]

, l > 1, (3.1)

where l was specified in (A6).

Proof. First we verify that there exists δ > 0 such that ‖v‖ ≥ δ for v ≥ u0. If this is not true,
then there exists {vn} ⊂ Ewhich satisfies vn ≥ u0 and ‖vn‖ < (1/n) (n = 1, 2, . . .), so we have

u0 ≤ θ, which is a contradiction with u0 ∈
◦
P .

By (A2), there exist c′ > c, c′
k
> ck, d′ > d, d′

k
> dk, h′

k
> hk, and e′

k
> ek, and

0 < r1 < δ, r2 > max{δ, l‖u0‖} (3.2)
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satisfy

c′l1

∫2π

0
g(s)ds + l1

m∑

k=1

h′
k +

1
2

m∑

k=1

c′k < 1, (3.3)

b := d′l1

∫2π

0
g(s)ds + l1

m∑

k=1

e′k +
1
2

m∑

k=1

d′
k < 1. (3.4)

For x ∈ Tr1 ∩ P ,

‖h(x)‖ ≤ c′‖x‖, ‖Ik(x)‖ ≤ c′k‖x‖,
∥
∥
∥Ik(x)

∥
∥
∥ ≤ h′

k‖x‖. (3.5)

For ‖x‖ ≥ r2 and x ∈ P ,

‖h(x)‖ ≤ d′‖x‖, ‖Ik(x)‖ ≤ d′
k‖x‖,

∥
∥
∥Ik(x)

∥
∥
∥ ≤ e′k‖x‖. (3.6)

Therefore, for any x ∈ P , we have

‖h(x)‖ ≤ d′‖x‖ +M′, ‖Ik(x)‖ ≤ d′
k‖x‖ +M′,

∥
∥
∥Ik(x)

∥
∥
∥ ≤ e′k‖x‖ +M′, (3.7)

where

M′ = max{M0,M1, . . . ,Mm,K1, . . . , Km}, M0 = sup{‖h(x)‖ : x ∈ Tr2 ∩ P},

Mk = sup{‖Ik(x)‖ : x ∈ Tr2 ∩ P}, Kk = sup
{∥
∥
∥Ik(x)

∥
∥
∥ : x ∈ Tr2 ∩ P

}

(k = 1, 2, . . . , m).

(3.8)

Let r3 = r2 + (1 − b)−1G, G = M′[l1
∫2π
0 g(s)ds + ml1 + m/2], U1 = {u ∈ PC[J, P] :

‖u‖PC < r1}, U2 = {u ∈ PC[J, P] : ‖u‖PC < r3}, U3 = {u ∈ PC[J, P] : ‖u‖PC < r3, u(t) ≥ lu0 for
t ∈ J ′0 and l > 1}. It is clear that U1, U2, U3 are nonempty, bounded, and convex open sets in
PC[J, P], and U1 = PC[J, P] ∩ Br1 , U2 = PC[J, P] ∩ Br3 , and U3 = {u ∈ U2 : u(t) ≥ lu0, t ∈ J ′0}.

From (3.2), we obtain

U1 ⊂ U2, U3 ⊂ U2, U1 ∩U3 = ∅. (3.9)

According to Lemma 2.4, A : U2 → PC[J, P] is a strict set contraction operator, and for
u ∈ U2, by (2.4) and (3.7), we obtain

‖(Au)(t)‖ =

∥
∥
∥
∥
∥

∫2π

0
G(t, s)f(s, u(s))ds +

m∑

k=1

[

G(t, tk)Ik(u(tk)) +H(t, tk)Ik(u(tk))
]
∥
∥
∥
∥
∥

≤ l1

∫2π

0
g(s)ds‖h(u)‖ +

m∑

k=1

(

l1
∥
∥
∥Ik

∥
∥
∥ +

1
2
‖Ik‖

)
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≤ l1

∫2π

0
g(s)ds

(

d′‖u‖ +M′) + l1
m∑

k=1

(

e′k‖u‖ +M′) +
1
2

m∑

k=1

(

d′
k‖u‖ +M′)

=

[

d′l1

∫2π

0
g(s)ds + l1

m∑

k=1

e′k +
1
2

m∑

k=1

d′
k

]

‖u‖ +M′
[

l1

∫2π

0
g(s)ds +ml1 +

m

2

]

= b‖u‖ +G

≤ br3 +G < r3.

(3.10)

Hence

A
(

U2

)

⊂ U2. (3.11)

Similarly, A : U1 → PC[J, P] is a strict set contraction operator, and for u ∈ U1, by
(3.3) and (3.5), we obtain

‖(Au)(t)‖ =

∥
∥
∥
∥
∥

∫2π

0
G(t, s)f(s, u(s))ds +

m∑

k=1

[

G(t, tk)Ik(u(tk)) +H(t, tk)Ik(u(tk))
]
∥
∥
∥
∥
∥

≤ c′l1

∫2π

0
g(s)ds‖u‖ +

m∑

k=1

(

l1h
′
k‖u‖ +

1
2
c′k‖u‖

)

=

[

c′l1

∫2π

0
g(s)ds + l1

m∑

k=1

h′
k +

1
2

m∑

k=1

c′k

]

‖u‖

< ‖u‖ ≤ r1,

(3.12)

so

A
(

U1

)

⊂ U1. (3.13)

Let u ∈ U3, by (3.11), we have ‖Au‖PC < r3.
By (2.5), (A5), and (A6), for t ∈ J ′0,

(Au)(t) =
∫2π

0
G(t, s)f(s, u(s))ds +

m∑

k=1

[

G(t, tk)Ik(u(tk)) +H(t, tk)Ik(u(tk))
]

≥
∫2π

0
G(t, s)f(s, u(s))ds +

m∑

k=1

[MG(t, tk) +H(t, tk)]Ik(u(tk))

≥
∫2π

0
G(t, s)f(s, u(s))ds
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≥ l0

∫b′

a′
f(s, u(s))ds

≥ l0

∫b′

a′
h(s)dsu0

= lu0.

(3.14)

So Au ∈ U3, and

A
(

U3

)

⊂ U3. (3.15)

According to (3.11)–(3.15) and Lemma 2.1, we have

i
(

A,Uj, PC[J, P]
)

= 1
(

j = 1, 2, 3
)

. (3.16)

Hence

i
(

A,U2 \
(

U1 ∪U3

)

, PC[J, P]
)

= i(A,U2, PC[J, P]) − i(A,U1, PC[J, P]) − i(A,U3, PC[J, P])

= −1.

(3.17)

Thus, A has two fixed points u1 and u2 in U3 and U2 \ (U1 ∪U3), respectively, which
means u1(t) and u2(t) are positive solution of the IBVP (1.2), where u1(t) ≥ lu0, for t ∈ J ′0 and
l > 1.

4. Example

To illustrate how our main result can be used in practice, we present an example.

Example 4.1. Consider the following problem:

−x′′
n(t) + 4xn =

1√
t

[

3
(

2 +
999
π

t

)

ln
(

1 + x2
n+1

)

+
xn

3

]

, t ∈ J,

Δxn|t=1/3 =
1
8
xn

(
1
3

)

,

Δx′
n

∣
∣
t=1/3 = −1

4
xn

(
1
3

)

,

xn(0) = xn(2π), x′
n(0) = x′

n(2π),

(4.1)

where xm+n = xn (n = 1, 2, . . . , m).
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Conclusion

IBVP (4.1) has at least two positive solutions {x1n(t)} and {x2n(t)} such that x1n(t) > 1 for
t ∈ [π, 2π], n = 1, 2, . . . , m.

Proof. Let J = [0, 2π], E = R
m = {x = (x1, x2, . . . , xm) : xn ∈ R, n = 1, 2, . . . , m};

then, E is a Banach space with norm ‖x‖ = max1≤n≤m|xn|. Let P = {(x1, x2, . . . , xm) :
xn ≥ 0, n = 1, 2, . . . , m}; then, P is a solid cone in E. Compared to IBVP (1.2), f(t, x) =
(f1, f2, . . . , fm), fn(t, x) = (1/

√
t)[3(2 + (999/π)t) ln(1 + x2

n+1) + xn/3)] is singular at t = 0.
I(x) = (I1(x), I2(x), . . . , Im(x)), and In(x) = (1/8)xn(1/3). I(x) = (I1(x), . . . , Im(x)), and
In(x) = (1/4)xn(1/3), n = 1, 2, . . . , m.

Next we will verify that the conditions in Theorem 3.1 are satisfied.
Let g(t) = 1/

√
t, h(x) = (h1(x), h2(x), . . . , hm(x)), and hn(x) = 6000 ln(1 + x2

n+1) + xn/3.
It is clear that ‖f(t, x)‖ ≤ g(t)‖h(x)‖, for t ∈ (0, 2π) and x ∈ E, so (A1) is satisfied.

By simple calculations, we have M = 2, c = d = 1/3, c1 = d1 = 1/8, h1 = e1 = 1/4,
∫2π
0 g(s)ds = 5.01326, l0 = 0.00093, and l1 = 0.25. Hence, l1

∫2π
0 g(s)dsc+ l1h1 + (1/2)c1 < 1; that

is, (A2) is satisfied.
Since E is a finite-dimensional space, it is obvious that (A3) and (A4) are satisfied.
It is clear that In(x) = (1/4)xn(1/3) and MIn(x) = 2 × (1/8)xn(1/3) = (1/4)xn(1/3),

so In(x) = MIn(x); that is, (A5) is satisfied.

Let u0 = (1, 1, . . . , 1) ∈
◦
P and J ′0 = [π, 2π] ⊂ [0, 2π]; for t ∈ J ′0 and x ≥ u0, we have

fn(t, x) =
1√
t

[(

3
(

2 +
999
π

t

)

ln
(

1 + x2
n+1

)

+
xn

3

)]

>
3000 ln 2√

t
. (4.2)

Let h(t) = 3000 ln 2/
√
t; then, for t ∈ J ′0 and x ≥ u0, we obtain that f(t, x) ≥ h(t)u0 and

l0
∫2π
π h(s)ds > 1. Therefore (A6) is satisfied.

By Theorem 3.1, IBVP (4.1) has at least two positive solutions {x1n(t)} and {x2n(t)}
and satisfies x1n(t) > 1, n = 1, 2, . . . , m.
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