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We focus our study on a discussion of duality relationships of a minimax fractional programming
problem with its two types of second-order dual models under the second-order generalized
convexity type assumptions. Results obtained in this paper naturally unify and extend some
previously known results on minimax fractional programming in the literature.

1. Introduction

Fractional programming is an interesting subject applicable to many types of optimization
problems such as portfolio selection, production, and information theory and numerous
decision making problems in management science. More specifically, it can be used in
engineering and economics to minimize a ratio of physical or economical functions, or both,
such as cost/time, cost/volume, and cost/benefit, in order to measure the efficiency or
productivity of the system (see Stancu-Minasian [1]).

Minimax type functions arise in the design of electronic circuits; however, minimax
fractional problems appear in the formulation of discrete and continuous rational approx-
imation problems with respect to the Chebyshev norm [2], continuous rational games [3],
multiobjective programming [4, 5], and engineering design aswell as some portfolio selection
problems discussed by Bajona-Xandri and Martinez-Legaz [6].

In this paper, we consider the minimax fractional programming problem

minimize φ(x) = sup
y∈Y

f
(
x, y
)

h
(
x, y
) ,



2 Abstract and Applied Analysis

subject to g(x) ≤ 0, x ∈ Rn, (1.1)

where Y is a compact subset of Rl and f(·, ·) : Rn × Rl → R, h(·, ·) : Rn × Rl → R, and
g(·) : Rn → Rm are twice continuously differentiable functions on Rn × Rl, Rn × Rl, and Rn,
respectively. It is assumed that, for each (x, y) in Rn × Rl, f(x, y) ≥ 0 and h(x, y) > 0.

For the case of convex differentiable minimax fractional programming, Yadav and
Mukherjee [7] formulated two dual models for (1.1) and derived duality theorems. Chandra
and Kumar [8] pointed out certain omissions and inconsistencies in the dual formulation of
Yadav andMukherjee [7]; they constructed twomodified dual problems for (1.1) and proved
appropriate duality results. Liu andWu [9, 10] andAhmad [11] obtained sufficient optimality
conditions and duality theorems for (1.1) assuming the functions involved to be generalized
convex.

Second-order duality provides tighter bounds for the value of the objective function
when approximations are used. For more details, one can consult ([12, page 93]). One more
advantage of second-order duality, when applicable, is that, if a feasible point in the primal is
given and first-order duality does not apply, then we can use second order duality to provide
a lower bound of the value of the primal (see [13]).

Mangasarian [14] first formulated the second-order dual for a nonlinear programming
problem and established second-order duality results under certain inequalities. Mond [12]
reproved second-order duality results assuming rather simple inequalities. Subsequently,
Bector and Chandra [15] formulated a second-order dual for a fractional programming
problem and obtained usual duality results under the assumptions [14] by naming these
as convex/concave functions.

Based upon the ideas of Bector et al. [16] and Rueda et al. [17], Yang and Hou
[18] proposed a new concept of generalized convexity and discussed sufficient optimality
conditions for (1.1) and duality results for its corresponding dual. Recently, Husain et al. [19]
formulated two types of second-order dual models to (1.1) and discussed appropriate duality
results involving η-convexity/generalized η-convexity assumptions.

In this paper, we are inspired by Chandra and Kumar [8], Bector et al. [16], Liu
[20], and Husain et al. [19] to discuss weak, strong, and strict converse duality theorems
connecting (1.1) with its two types of second-order duals by using second-order generalized
convexity type assumptions [21].

2. Notations and Preliminaries

Let S = {x ∈ Rn : g(x) ≤ 0} denote the set of all feasible solutions of (1.1). For each (x, y) ∈
Rn × Rl, we define

J(x) =
{
j ∈M : gj(x) = 0

}
, (2.1)

whereM = {1, 2, . . . , m},

Y (x) =

{

y ∈ Y : f
(
x, y
)
= sup

z∈Y
f(x, z)

}

,
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K(x) =

{
(
s, t, ỹ

) ∈ N × Rs
+ × Rls : 1 ≤ s ≤ n + 1, t = (t1, t2, . . . , ts) ∈ Rs

+

with
s∑

i=1

ti = 1, ỹ =
(
y1, y2, . . . .ys

)
with yi ∈ Y (x), i = 1, 2, . . . , s

}

.

(2.2)

Definition 2.1. A functional F : X × X × Rn → R, where X ⊆ Rn is said to be sublinear in its
third argument, if ∀x, x ∈ X,

(i) F(x, x;a1 + a2) ≤ F(x, x;a1) + F(x, x;a2) ∀a1, a2 ∈ Rn,

(ii) F(x, x;αa) = αF(x, x;a) ∀α ∈ R+, a ∈ Rn.

By (ii), it is clear that F(x, x; 0 a) = 0.

Definition 2.2. A point x ∈ S is said to optimal solution of (1.1) if φ(x) ≥ φ(x) for each x ∈ S.

The following theorem [8]will be needed in the subsequent analysis.

Theorem 2.3 (necessary conditions). Let x∗ be a solution (local or global) of (1.1), and let
∇gj(x∗), j ∈ J(x∗) be linearly independent. Then there exist (s∗, t∗, y∗) ∈ K(x∗), λ∗ ∈ R+, and
μ∗ ∈ Rm

+ such that

∇
s∗∑

i=1

t∗i
(
f
(
x∗, y∗

i

) − λ∗h(x∗, y∗
i

))
+∇

m∑

j=1

μ∗
j gj(x

∗) = 0,

f
(
x∗, y∗

i

) − λ∗h(x∗, y∗
i

)
= 0, i = 1, 2, . . . , s∗,

m∑

j=1

μ∗
j gj(x

∗) = 0,

t∗i ≥ 0,
s∗∑

i=1

t∗i = 1, y∗
i ∈ Y (x∗), i = 1, 2, . . . , s∗.

(2.3)

Throughout the paper, we assume that F is a sublinear functional. For β = 1, 2, . . . , r let b, b0, bβ :
X ×X → R+, φ, φ0, φβ : R → R, ρ, ρ0, ρβ be real numbers, and let θ : Rn × Rn → R.

3. First Duality Model

In this section, we discuss usual duality results for the following dual [19]:

max
(s,t,y)∈K(z)

sup
(z,μ,λ,p)∈H1(s,t,y)

λ, (3.1)
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whereH1(s, t, y) denotes the set of all (z, μ, λ, p) ∈ Rn × Rm
+ × R+ × Rn satisfying

∇
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

+∇2
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p

+∇
m∑

j=1

μjgj(z) +∇2
m∑

j=1

μjgj(z)p = 0,

(3.2)

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
)) − 1

2
pT∇2

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p ≥ 0, (3.3)

m∑

j=1

μjgj(z) − 1
2
pT∇2

m∑

j=1

μjgj(z)p ≥ 0. (3.4)

If, for a triplet (s, t, y) ∈ K(z), the setH1(s, t, y) = ∅, then we define the supremum over it to
be −∞.

Remark 3.1. If P = 0, then (3.1) becomes the dual considered in [9].

Theorem 3.2 (weak duality). Let x and (z, μ, λ, s, t, y, p) be the feasible solutions of (1.1) and
(3.1), respectively. Suppose that there exist F, θ, φ, b and ρ such that

b(x, z)φ

⎡

⎣
s∑

i=1

ti
(
f
(
x, yi

) − λh(x, yi
)) −

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
)) −

m∑

j=1

μjgj(z)

+
1
2
pT∇2

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p +

1
2
pT

m∑

j=1

μjgj(z)p

⎤

⎦ < 0

=⇒ F
⎛

⎝x, z;∇
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

+∇
m∑

j=1

μjgj(z)

+∇2
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p +∇2

m∑

j=1

μjgj(z)p

⎞

⎠ < −ρ‖θ(x, z)‖2.

(3.5)

Further assume that

a < 0 =⇒ φ(a) < 0, (3.6)

b(x, z) > 0, (3.7)

ρ ≥ 0. (3.8)
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Then

sup
y∈Y

f
(
x, y
)

h
(
x, y
) ≥ λ. (3.9)

Proof. Suppose contrary to the result that

sup
y∈Y

f
(
x, y
)

h
(
x, y
) < λ. (3.10)

Thus, we have

f
(
x, yi

) − λh(x, yi
)
< 0, ∀yi ∈ Y (x), i = 1, 2, . . . , s. (3.11)

It follows from ti ≥ 0, i = 1, 2, . . . , s, that

ti
[
f
(
x, yi

) − λh(x, yi
)] ≤ 0, (3.12)

with at least one strict inequality since t = (t1, t2, . . . , ts)/= 0. Taking summation over i, we have

s∑

i=1

ti
(
f
(
x, yi

) − λh(x, yi
))

< 0, (3.13)

which together with (3.3) gives

s∑

i=1

ti
(
f
(
x, yi

) − λh(x, yi
))

< 0

≤
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

− 1
2
pT∇2

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p.

(3.14)

The above inequality along with (3.4) implies

s∑

i=1

ti
(
f
(
x, yi

) − λh(x, yi
)) −

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
)) −

m∑

j=1

μjgj(z)

+
1
2
pT∇2

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p +

1
2
pT∇2

m∑

j=1

μjgj(z)p < 0.

(3.15)
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Using (3.6) and (3.7), it follows from (3.15) that

b(x, z)φ

⎡

⎣
s∑

i=1

ti
(
f
(
x, yi

) − λh(x, yi
)) −

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
)) −

m∑

j=1

μjgj(z)

+
1
2
pT∇2

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p +

1
2
pT∇2

m∑

j=1

μjgj(z)p

⎤

⎦ < 0,

(3.16)

which along with (3.5) and (3.8) yields

F
⎛

⎝x, z;∇
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

+∇
m∑

j=1

μjgj(z)

+∇2
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p +∇2

m∑

j=1

μjgj(z)p

⎞

⎠ < 0,

(3.17)

which contradicts (3.2) since F(x, z; 0) = 0.

Theorem 3.3 (strong duality). Assume that x∗ is an optimal solution of (1.1) and ∇gj(x∗), j ∈
J(x∗) are linearly independent. Then there exist (s∗, t∗, y∗) ∈ K(x∗) and (x∗, μ∗, λ∗, p∗ = 0) ∈
H1(s∗, t∗, y

∗) such that (x∗, μ∗, λ∗, s∗, t∗, y∗, p∗ = 0) is a feasible solution of (3.1) and the two
objectives have the same values. Further, if the assumptions of weak duality (Theorem 3.2) hold for all
feasible solutions (z, μ, λ, s, t, y, p) of (3.1), then (x∗, μ∗, λ∗, s∗, t∗, y∗, p∗ = 0) is an optimal solution
of (3.1).

Proof. Since x∗ is an optimal solution of (1.1) and ∇gj(x∗), j ∈ J(x∗) are linearly independent,
then, by Theorem 2.3, there exist (s∗, t∗, y∗) ∈ K(x∗) and (x∗, μ∗, λ∗, p∗ = 0) ∈ H1(s∗, t∗, y

∗)
such that (x∗, μ∗, λ∗, s∗, t∗, y∗, p∗ = 0) is a feasible solution of (3.1) and the two objectives have
the same values. Optimality of (x∗, μ∗, λ∗, s∗, t∗, y∗, p∗ = 0) for (3.1) thus follows from weak
duality (Theorem 3.2).

Theorem 3.4 (Strict converse duality). Let x∗ and (z∗, μ∗, λ∗, s∗, t∗, y∗, p∗) be the optimal solutions
of (1.1) and (3.1), respectively. Suppose that ∇gj(x∗), j ∈ J(x∗) are linearly independent and there
exist F, θ, φ, b and ρ such that

b(x∗, z∗)φ

⎡

⎣
s∗∑

i=1

t∗i
(
f
(
x∗, y∗

i

) − λ∗h(x∗, y∗
i

)) −
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

)) −
m∑

j=1

μ∗
j gj(z

∗)

+
1
2
p∗T∇2

s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
p∗ +

1
2
p∗T∇2

m∑

j=1

μ∗
j gj(z

∗)p∗
⎤

⎦ ≤ 0
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=⇒ F
⎛

⎝x∗, z∗;∇
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
+∇

m∑

j=1

μ∗
j gj(z

∗)

+∇2
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
p∗ +∇2

m∑

j=1

μ∗
j gj(z

∗)p∗
⎞

⎠ < −ρ‖θ(x∗, z∗)‖2.

(3.18)

Further Assume

a < 0 =⇒ φ(a) ≤ 0, (3.19)

b(x∗, z∗) > 0, (3.20)

ρ ≥ 0. (3.21)

Then z∗ = x∗, that is, z∗ is an optimal solution of (1.1).

Proof. Suppose contrary to the result that z∗ /=x∗. Since x∗ and (z∗, μ∗, λ∗, s∗, t∗, y∗, p∗) are
optimal solutions of (1.1) and (3.1), respectively, and ∇gj(x∗), j ∈ J(x∗) are linearly
independent, therefore, from strong duality (Theorem 3.3), we reach

sup
y∗∈Y

f
(
x∗, y∗)

h
(
x∗, y∗) = λ∗. (3.22)

Thus, we have

f
(
x∗, y∗

i

) − λ∗h(x∗, y∗
i

) ≤ 0, ∀y∗
i ∈ Y (x∗), i = 1, 2, . . . , s∗. (3.23)

Now, proceeding as in Theorem 3.2, we get

s∗∑

i=1

t∗i
(
f
(
x∗, y∗

i

) − λ∗h(x∗, y∗
i

)) −
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

)) −
m∑

j=1

μ∗
j gj(z

∗)

+
1
2
p∗T∇2

s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
p∗ +

1
2
p∗T∇2

m∑

j=1

μ∗
j gj(z

∗)p∗ < 0.

(3.24)
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Using (3.19) and (3.20), it follows from (3.24) that

b(x∗, z∗)φ

⎡

⎣
s∗∑

i=1

t∗i
(
f
(
x∗, y∗

i

) − λ∗h(x∗, y∗
i

)) −
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

)) −
m∑

j=1

μ∗
j gj(z

∗)

+
1
2
p∗T∇2

s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
p∗ +

1
2
p∗T∇2

m∑

j=1

μ∗
j gj(z

∗)p∗
⎤

⎦ ≤ 0,

(3.25)

which along with (3.18) and (3.21) implies

F
⎛

⎝x∗, z∗;∇
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
+∇

m∑

j=1

μ∗
j gj(z

∗)

+∇2
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
p∗ +∇2

m∑

j=1

μ∗
j gj(z

∗)p∗
⎞

⎠ < 0,

(3.26)

which contradicts (3.2) since F(x∗, z∗; 0) = 0.

4. Second Duality Model

This section deals with duality theorems for the following second-order dual to (1.1):

max
(s,t,y)∈K(z)

sup
(z,μ,λ,p)∈H2(s,t,y)

λ, (4.1)

whereH2(s, t, y) denotes the set of all (z, μ, λ, p) ∈ Rn × Rm
+ × R+ × Rn satisfying

∇
s∑

i=1
ti
(
f
(
z, yi

) − λh(z, yi
))

+∇2
s∑

i=1
ti
(
f
(
z, yi

) − λh(z, yi
))
p

+∇
m∑

j=1
μjgj(z) +∇2

m∑

j=1
μjgj(z)p = 0,

(4.2)

s∑

i=1
ti
(
f
(
z, yi

) − λh(z, yi
))

+
∑

j∈J◦
μjgj(z)

−1
2
pT∇2

[
s∑

i=1
ti
(
f
(
z, yi

) − λh(z, yi
))

+
∑

j∈J◦
μjgj(z)

]

p ≥ 0,
(4.3)

∑

j∈Jα
μjgj(z) − 1

2
pT∇2

∑

j∈Jα
μjgj(z)p ≥ 0, α = 1, 2, . . . , r, (4.4)

where Jα ⊆M, α = 0, 1, 2, . . . , r, with
⋃r
α=0 Jα =M and Jα ∩ Jβ = ∅, if α/= β.

If, for a triplet (s, t, y) ∈ K(z), the set H2(s, t, y) = ∅, then we define the supremum
over it to be −∞.
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Theorem 4.1 (weak duality). Let x and (z, μ, λ, s, t, y, p) be the feasible solutions of (1.1) and
(4.1), respectively. Suppose that there exist F, θ, φ0, b0, ρ0 and φβ, bβ, ρβ, β = 1, 2, . . . , r such that

b0(x, z)φ0

⎡

⎣
s∑

i=1

ti
(
f
(
x, yi

) − λh(x, yi
)) −

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
)) −

∑

j∈J0
μjgj(z)

+
1
2
pT∇2

⎛

⎝
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

+
∑

j∈J0
μjgj(z)

⎞

⎠p

⎤

⎦ < 0

=⇒ F
(

x, z;∇
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

+∇2
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p

+∇
∑

j∈J0
μjgj(z) +∇2

∑

j∈J0
μjgj(z)p

⎞

⎠ < −ρ0‖θ(x, z)‖2,

(4.5)

− bα(x, z)φα
⎡

⎣
∑

j∈Jα
μjgj(z) − 1

2
pT∇2

∑

j∈Jα
μjgj(z)p

⎤

⎦ ≤ 0

=⇒ F
⎛

⎝x, z;∇
∑

j∈Jα
μjgj(z) +∇2

∑

j∈Jα
μjgj(z)p

⎞

⎠ ≤ −ρα‖θ(x, z)‖2, α = 1, 2, . . . , r.

(4.6)

Further assume that

a ≥ 0 =⇒ φα(a) ≥ 0, α = 1, 2, . . . , r, (4.7)

a < 0 =⇒ φ0(a) < 0, (4.8)

b0(x, z) > 0, bα(x, z) ≥ 0, α = 1, 2, . . . , r, (4.9)

ρ0 +
r∑

α=1

ρα ≥ 0.s (4.10)

Then

sup
y∈Y

f
(
x, y
)

h
(
x, y
) ≥ λ. (4.11)

Proof. Suppose contrary to the result that

sup
y∈Y

f
(
x, y
)

h
(
x, y
) < λ. (4.12)
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Thus, we have

f
(
x, yi

) − λh(x, yi
)
< 0, ∀yi ∈ Y (x), i = 1, 2, . . . , s. (4.13)

It follows from ti ≥ 0, i = 1, 2, . . . , s, that

ti
[
f
(
x, yi

) − λh(x, yi
)] ≤ 0, (4.14)

with at least one strict inequality since t = (t1, t2, . . . , ts)/= 0. Taking summation over i, we have

s∑

i=1

ti
(
f
(
x, yi

) − λh(x, yi
))

< 0, (4.15)

which together with (4.3) implies

s∑

i=1

ti
(
f
(
x, yi

) − λh(x, yi
))

< 0

≤
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

+
∑

j∈J0
μjgj(z)

− 1
2
pT∇2

⎡

⎣
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

+
∑

j∈J0
μjgj(z)

⎤

⎦p.

(4.16)

Using (4.8) and (4.9), it follows from (4.16) that

b0(x, z)φ0

⎡

⎣
s∑

i=1

ti
(
f
(
x, yi

) − λh(x, yi
)) −

s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
)) −

∑

j∈J0
μjgj(z)

+
1
2
pT∇2

⎡

⎣
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

+
∑

j∈J0
μjgj(z)

⎤

⎦p

⎤

⎦ < 0,

(4.17)

which by (4.5) implies

F
(

x, z;∇
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

+∇2
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p

+∇
∑

j∈J0
μjgj(z) +∇2

∑

j∈J0
μjgj(z)p

⎞

⎠ < −ρ0‖θ(x, z)‖2.
(4.18)
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Also, inequality (4.4) along with (4.7) and (4.9) yields

−bα(x, z)φα
⎡

⎣
∑

j∈Jα
μjgj(z) − 1

2
pT∇2

∑

j∈Jα
μjgj(z)p

⎤

⎦ ≤ 0, α = 1, 2, . . . , r. (4.19)

From (4.6) and the above inequality, we have

F
⎛

⎝x, z;∇
∑

j∈Jα
μjgj(z) +∇2

∑

j∈Jα
μjgj(z)p

⎞

⎠ ≤ −ρα‖θ(x, z)‖2, α = 1, 2, . . . , r. (4.20)

On adding (4.18) and (4.20) and making use of the sublinearity of F with (4.10), we obtain

F
(

x, z;∇
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))

+∇2
s∑

i=1

ti
(
f
(
z, yi

) − λh(z, yi
))
p

+∇
m∑

j=1

μjgj(z) +∇2
m∑

j=1

μjgj(z)p

⎞

⎠ < 0,

(4.21)

which contradicts (4.2) since F(x, z; 0) = 0.

The proof of the following theorem is similar to that of Theorem 3.3 and, hence, is
omitted.

Theorem 4.2 (strong duality). Assume that x∗ is an optimal solution of (1.1) and ∇gj(x∗), j ∈
J(x∗), are linearly independent. Then there exist (s∗, t∗, y∗) ∈ K(x∗) and (x∗, μ∗, λ∗, p∗ = 0) ∈
H2(s∗, t∗, y

∗) such that (x∗, μ∗, λ∗, s∗, t∗, y∗, p∗ = 0) is a feasible solution of (4.1) and the two
objectives have the same values. Further, if the assumptions of weak duality (Theorem 4.1) hold for all
feasible solutions (z, μ, λ, s, t, y, p) of (4.1), then (x∗, μ∗, λ∗, s∗, t∗, y∗, p∗ = 0) is an optimal solution
of (4.1).

Theorem 4.3 (strict converse duality). Let x∗ and (z∗, μ∗, λ∗, s∗, t∗, y∗, p∗) be the optimal solutions
of (1.1) and (4.1), respectively. Suppose that ∇gj(x∗), j ∈ J(x∗) are linearly independent and there
exist F, θ, φ0, b0, ρ0 and φβ, bβ, ρβ, β = 1, 2, . . . , r such that

b0(x∗, z∗)φ0

⎡

⎣
s∗∑

i=1

t∗i
(
f
(
x∗, y∗

i

) − λ∗h(x∗, y∗
i

)) −
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))

−
∑

j∈J0
μ∗
j gj(z

∗) +
1
2
p∗T∇2

⎛

⎝
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
+
∑

j∈J0
μ∗
j gj(z

∗)

⎞

⎠p∗

⎤

⎦ ≤ 0
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=⇒ F
(

x∗, z∗;∇
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
+∇2

s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
p∗

+∇
∑

j∈J0
μ∗
j gj(z

∗) +∇2
∑

j∈J0
μ∗
j gj(z

∗)p∗
⎞

⎠ < −ρ0‖θ(x∗, z∗)‖2

(4.22)

− bα(x∗, z∗)φα

⎡

⎣
∑

j∈Jα
μ∗
j gj(z

∗) − 1
2
p∗T∇2

∑

j∈Jα
μ∗
j gj(z

∗)p∗
⎤

⎦ ≤ 0

=⇒ F
⎛

⎝x∗, z∗;∇
∑

j∈Jα
μ∗
j gj(z

∗) +∇2
∑

j∈Jα
μ∗
j gj(z

∗)p∗
⎞

⎠ ≤ −ρα‖θ(x∗, z∗)‖2, α = 1, 2, . . . , r.

(4.23)

Further assume that

a ≥ 0 =⇒ φα(a) ≥ 0, α = 1, 2, . . . , r, (4.24)

a < 0 =⇒ φ0(a) ≤ 0, (4.25)

b0(x∗, z∗) > 0, bα(x∗, z∗) ≥ 0, α = 1, 2, . . . , r, (4.26)

ρ0 +
r∑

α=1

ρα ≥ 0. (4.27)

Then z∗ = x∗, that is, z∗ is an optimal solution of (1.1).

Proof. Suppose contrary to the result that z∗ /=x∗. Since x∗ and (z∗, μ∗, λ∗, s∗, t∗, y∗, p∗) are
optimal solutions of (1.1) and (4.1), respectively, and ∇gj(x∗), j ∈ J(x∗) are linearly
independent, therefore, from strong duality (Theorem 4.2), we reach

sup
y∗∈Y

f
(
x∗, y∗)

h
(
x∗, y∗) = λ∗. (4.28)

Thus, we have

f
(
x∗, y∗

i

) − λ∗h(x∗, y∗
i

) ≤ 0, ∀y∗
i ∈ Y (x∗), i = 1, 2, . . . , s∗. (4.29)

Now, proceeding as in Theorem 4.1, we get

s∗∑

i=1

t∗i
(
f
(
x∗, y∗

i

) − λ∗h(x∗, y∗
i

)) −
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))

−
∑

j∈J0
μ∗
j gj(z

∗) +
1
2
p∗T∇2

⎛

⎝
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
+
∑

j∈J0
μ∗
j gj(z

∗)

⎞

⎠p∗ < 0.

(4.30)
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Using (4.25) and (4.26), it follows from (4.30) that

b0(x∗, z∗)φ0

⎡

⎣
s∗∑

i=1

t∗i
(
f
(
x∗, y∗

i

) − λ∗h(x∗, y∗
i

)) −
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

)) −
∑

j∈J0
μ∗
j gj(z

∗)

+
1
2
p∗T∇2

⎛

⎝
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
+
∑

j∈J0
μ∗
j gj(z

∗)

⎞

⎠p∗

⎤

⎦ ≤ 0,

(4.31)

which by (4.22) implies

F
(

x∗, z∗;∇
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
+∇2

s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
p∗

+∇
∑

j∈J0
μ∗
j gj(z

∗) +∇2
∑

j∈J0
μ∗
j gj(z

∗)p∗
⎞

⎠ < −ρ0‖θ(x∗, z∗)‖2.
(4.32)

Also, inequality (4.4) along with (4.24) and (4.26) yields

−bα(x∗, z∗)φα

⎡

⎣
∑

j∈Jα
μ∗
j gj(z

∗) − 1
2
p∗T∇2

∑

j∈Jα
μ∗
j gj(z

∗)p∗
⎤

⎦ ≤ 0, α = 1, 2, . . . , r. (4.33)

From (4.23) and the above inequality, we have

F
⎛

⎝x∗, z∗;∇
∑

j∈Jα
μ∗
j gj(z

∗) +∇2
∑

j∈Jα
μ∗
j gj(z

∗)p∗
⎞

⎠ ≤ −ρα‖θ(x∗, z∗)‖2, α = 1, 2, . . . , r. (4.34)

On adding (4.32) and (4.34) and making use of the sublinearity of F with (4.27), we obtain

F
(

x∗, z∗;∇
s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
+∇2

s∗∑

i=1

t∗i
(
f
(
z∗, y∗

i

) − λ∗h(z∗, y∗
i

))
p∗

+∇
m∑

j=1

μ∗
j gj(z

∗) +∇2
m∑

j=1

μ∗
j gj(z

∗)p∗
⎞

⎠ < 0,

(4.35)

which contradicts (4.2) since F(x∗, z∗; 0) = 0.
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5. Conclusion and Further Developments

In this paper, we have established weak, strong, and strict converse duality theorems
for a class of minimax fractional programming problems in the frame work of second-
order generalized convexity. The second-order duality results developed in this paper can
be further extended for the following nondifferentiable minimax fractional programming
problem [22, 23]:

minimize ψ(x) = sup
y∈Y

f
(
x, y
)
+
(
xTBx

)1/2

h
(
x, y
) − (xTDx)1/2

,

subject to g(x) ≤ 0, x ∈ Rn,

(5.1)

where Y is a compact subset ofRl, B andD are n×n positive semidefinite symmetric matrices,
and f(·, ·) : Rn × Rl → R, h(·, ·) : Rn × Rl → R, and g(·) : Rn → Rm are twice continuously
differentiable functions on Rn × Rl, Rn × Rl, and Rn, respectively.

The question arises as towhether the second-order fractional duality results developed
in this paper hold for the following complex nondifferentiable minimax fractional problem:

minimize Ψ(ξ) = sup
ν∈W

Re
[
f(ξ, ν) +

(
zTBz

)1/2]

Re
[
h(ξ, ν) − (zTDz)1/2

] ,

subject to − g(ξ) ∈ S, ξ ∈ C2n,

(5.2)

where ξ = (z, z), ν = (ω,ω) for z ∈ Cn, ω ∈ Cl, f(·, ·) : C2n ×C2l → C and h(·, ·) : C2n ×C2l → C
are analytic with respect to ω,W ia a specified compact subset in C2l, S is a polyhedral cone
in Cm, and g : C2n → Cm is analytic. Also B,D ∈ Cn×n are positive semidefinite Hermitian
matrices.
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