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We investigate the superstability of generalized derivations in non-Archimedean algebras by using
a version of fixed point theorem via Cauchy functional equation.

1. Introduction

A functional equation (ξ) is superstable if every approximately solution of (ξ) is an exact
solution of it.

The stability of functional equations was first introduced by Ulam [1] during his talk
before a Mathematical Colloquium at the University of Wisconsin in 1940.

Given ametric groupG(·, ρ), a number ε > 0, and amapping f : G → Gwhich satisfies
the inequality ρ(f(x · y), f(x) · f(y)) ≤ ε for all x, y in G, does there exist an automorphism a
of G and a constant k > 0, depending only on G such that ρ(a(x), f(x)) ≤ kε for all x ∈ G?

If the answer is affirmative, we would call the equation a(x · y) = a(x) · a(y) of
automorphism is stable. In 1941, Hyers [2] gave a first affirmative answer to the question of
Ulam for Banach spaces. In 1978, Rassias [3] generalized the theorem of Hyers by considering
the stability problem with unbounded Cauchy differences ‖f(x + y) − f(x) − f(y)‖ ≤
ε(‖x‖p + ‖y‖p), (ε > 0, p ∈ [0, 1)). In 1991, Gajda [4] answered the question for the case



2 Abstract and Applied Analysis

p > 1, which was raised by Rassias. This new concept is known as Hyers-Ulam-Rassias or
generalized Hyers-Ulam stability of functional equations [5, 6].

In 1992, Găvruţa [7] generalized the Th. M. Rassias Theorem as follows.
Suppose that (G,+) is an ablian group, X is a Banach space ϕ : G ×G → [0,∞) which

satisfies

ϕ̃
(

x, y
)

=
1
2

∞
∑

n=0

2−nϕ
(

2nx, 2ny
)

<∞, (1.1)

for all x, y ∈ G. If f : G → X is a mapping with

∥

∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ ϕ(x, y), (1.2)

for all x, y ∈ G, then there exists a uniquemapping T : G → X such that T(x+y) = T(x)+T(y)
and ‖f(x) − T(x)‖ ≤ ϕ̃(x, x) for all x, y ∈ G.

In 1949, Bourgin [8] proved the following result, which is sometimes called the
superstability of ring homomorphisms: suppose that A and B are Banach algebras with unit.
If f : A → B is a surjective mapping such that

∥

∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ ε,

∥

∥f
(

xy
) − f(x)f(y)∥∥ ≤ δ,

(1.3)

for some ε ≥ 0, δ ≥ 0 and for all x, y ∈ A, then f is a ring homomorphism.
Badora [9] and Miura et al. [10] proved the Ulam-Hyers stability and the Isac and

Rassias-type stability of derivations [11] (see also [12, 13]); Savadkouhi et al. [14] have
contributed works regarding the stability of ternary Jordan derivations. Jung and Chang [15]
investigated the stability and superstability of higher derivations on rings. Recently, Ansari-
Piri and Anjidani [16] discussed the superstability of generalized derivations on Banach
algebras. In this paper, we investigate the superstability of generalized derivations on non-
Archimedean Banach algebras by using the fixed point methods.

2. Preliminaries

In 1897, Hensel [17] has introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications [18, 19].

A non-Archimedean field is a field K equipped with a function (valuation) | · | from K

into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r‖s|, and |r + s| ≤ max{|r|, |s|} for all
r, s ∈ K (see [20, 21]).

Definition 2.1. LetX be a vector space over a scalar fieldKwith a non-Archimedean nontrivial
valuation | · |. A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it satisfies
the following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0,

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X,

(NA3) ‖x + y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X (the strong triangle inequality).
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A sequence {xm} in a non-Archimedean space is Cauchy if and only if {xm+1 − xm}
converges to zero. By a complete non-Archimedean space, we mean one in which every
Cauchy sequence is convergent. A non-Archimedean normed algebra is a non-Archimedean
normed space A with a linear associative multiplication, satisfying ‖xy‖ ≤ ‖x‖‖y‖ for all
x, y ∈ A. A non-Archimedean complete normed algebra is called a non-Archimedean Banach
algebra (see [22]).

Example 2.2. Let p be a prime number. For any nonzero rational number x = (a/b)pnx such
that a and b are integers not divisible by p, define the p–adic absolute value |x|p := p−nx . Then,
| · | is a non-Archimedean norm on Q. The completion of Q with respect to | · | is denoted by
Qp which is called the p-adic number field.

Definition 2.3. Let X be a nonempty set and d : X × X → [0,∞] satisfy the following
properties:

(D1) d(x, y) = 0 if and only if x = y,

(D2) d(x, y) = d(y, x) (symmetry),

(D3) d(x, z) ≤ max{d(x, y), d(y, z)} (strong triangle in equality),

for all x, y, z ∈ X. Then, (X, d) is called a non-Archimedean generalized metric space. (X, d)
is called complete if every d-Cauchy sequence in X is d-convergent.

Definition 2.4. LetA be a non-Archimedean algebra. An additive mappingD : A → A is said
to be a ring derivation if D(xy) = D(x)y + xD(y) for all x, y ∈ A. An additive mapping H :
A → A is said to be a generalized ring derivation if there exists a ring derivationD : A → A
such that

H
(

xy
)

= xH
(

y
)

+D(x)y, (2.1)

for all x, y ∈ A.
We need the following fixed point theorem (see [23, 24]).

Theorem 2.5 (non-Archimedean alternative Contraction Principle). Suppose that (X, d) is a
non-Archimedean generalized complete metric space and Λ : X → X is a strictly contractive
mapping; that is,

d
(

Λx,Λy
) ≤ Ld(x, y), (

x, y ∈ X)

, (2.2)

for some L < 1. If there exists a nonnegative integer k such that d(Λk+1x,Λkx) <∞
for some x ∈ X, then the followings are true:

(a) the sequence {Λnx} converges to a fixed point x∗ of Λ,
(b)x∗ is a unique fixed point of Λ in

X∗ =
{

y ∈ X | d
(

Λkx, y
)

<∞
}

, (2.3)

(c) if y ∈ X∗, then

d
(

y, x∗) ≤ d(Λy, y). (2.4)
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3. Non-Archimedean Superstability of Generalized Derivations

Hereafter, we will assume thatA is a non-Archimedean Banach algebra with unit over a non-
Archimedean field K.

Theorem 3.1. Let ϕ : A × A → [0,∞) be a function. Suppose that f, g : A → A are mappings
such that g is additive and

∥

∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ ϕ(x, y), (3.1)

∥

∥f
(

xy
) − xf(y) − g(x)y∥∥ ≤ ϕ(x, y), (3.2)

for all x, y ∈ A. If there exists a natural number k ∈ K and 0 < L < 1,

|k|−1ϕ(kx, ky), |k|−1ϕ(kx, y), |k|−1ϕ(x, ky) ≤ Lϕ(x, y), (3.3)

for all x, y ∈ A. Then, f is a generalized ring derivation and g is a ring derivation.

Proof. By induction on i, we prove that

∥

∥f(ix) − if(x)∥∥ ≤ max
{

ϕ(0, 0), ϕ(x, x), ϕ(2x, x), . . . , ϕ((i − 1)x, x)
}

, (3.4)

for all x ∈ A and i ≥ 2. Let x = y in (3.1). Then,

∥

∥f(2x) − 2f(x)
∥

∥ ≤ max
{

ϕ(0, 0), ϕ(x, x)
}

, n ∈ N0, x ∈ A. (3.5)

This proves (3.4) for i = 2. Let (3.4) holds for i = 1, 2, . . . , j. Replacing x by jx and y by x in
(3.1) for each n ∈ N0, and for all x ∈ A, we get

∥

∥f
((

j + 1
)

x
) − f(jx) − f(x)∥∥ ≤ max

{

ϕ(0, 0), ϕ
(

jx, x
)}

. (3.6)

Since

f
((

j + 1
)

x
) − f(jx) − f(x)

= f
((

j + 1
)

x
) − (

j + 1
)

f(x) +
(

j + 1
)

f(x) − f(jx) − f(x)
= f

((

j + 1
)

x
) − (

j + 1
)

f(x) + jf(x) − f(jx),
(3.7)

for all x ∈ A, it follows from induction hypothesis and (3.6) that

∥

∥f
((

j + 1
)

x
) − (

j + 1
)

f(x)
∥

∥

≤ max
{∥

∥f
((

j + 1
)

x
) − f(jx) − f(x)∥∥,∥∥jf(x) − f(jx)∥∥}

≤ max
{

ϕ(0, 0), ϕ(x, x), ϕ(2x, x), . . . , ϕ
((

j
)

x, x
)}

,

(3.8)
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for all x ∈ A. This proves (3.4) for all i ≥ 2. In particular,

∥

∥f(kx) − kf(x)∥∥ ≤ ψ(x), (3.9)

for all x ∈ Awhere

ψ(x) = max
{

ϕ(0, 0), ϕ(x, x), ϕ(2x, x), . . . , ϕ((k − 1)x, x)
}

(x ∈ A). (3.10)

Let X be the set of all functions r : A → A. We define d : X ×X → [0,∞] as follows:

d(r, s) = inf
{

α > 0 : ‖r(x) − s(x)‖ ≤ αψ(x) ∀x ∈ A}

. (3.11)

It is easy to see that d defines a generalized complete metric on X. Define J : X → X by
J(r)(x) = k−1r(kx). Then, J is strictly contractive on X, in fact, if

‖r(x) − s(x)‖ ≤ αψ(x), (x ∈ A), (3.12)

then by (3.3),

‖J(r)(x) − J(s)(x)‖ = |k|−1‖r(kx) − s(kx)‖ ≤ α|k|−1ψ(kx) ≤ Lαψ(x), (x ∈ A). (3.13)

It follows that

d(J(r), J(s)) ≤ Ld(r, s) (r, s ∈ X). (3.14)

Hence, J is a strictly contractive mapping with Lipschitz constant L. By (3.9),

∥

∥

(

Jf
)

(x) − f(x)∥∥ =
∥

∥

∥k−1f(kx) − f(x)
∥

∥

∥,

|k|−1∥∥f(kx) − kf(x)∥∥ ≤ |k|−1ψ(x) (x ∈ A).
(3.15)

This means that d(J(f), f) ≤ 1/|k|. By Theorem2.5, J has a unique fixed point h : A → A in
the set

U =
{

r ∈ X : d
(

r, J
(

f
))

<∞}

, (3.16)

and for each x ∈ A,

h(x) = lim
m→∞

Jm
(

f(x)
)

= lim k−mf(kmx). (3.17)
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Therefore,

∥

∥h
(

x + y
) − h(x) − h(y)∥∥

= lim
m→∞

|k|−m∥∥f(km(x + y
)) − f(kmx) − f(kmy)∥∥

≤ lim
m→∞

|k|−mmax
{

ϕ(0, 0), ϕ
(

knx, kny
)}

≤ lim
m→∞

Lmϕ
(

x, y
)

= 0,

(3.18)

for all x, y ∈ A. This shows that h is additive.
Replacing x by knx in (3.2) to get

∥

∥f
(

knxy
) − knxf(y) − g(knx)y∥∥ ≤ ϕ(knx, y), (3.19)

and so

∥

∥

∥

∥

∥

f
(

knxy
)

kn
− xf(y) − g(knx)

kn
y

∥

∥

∥

∥

∥

≤ 1
|k|n ϕ

(

knx, y
) ≤ Lnϕ(x, y), (3.20)

for all x, y ∈ A and all n ∈ N. By taking n → ∞, we have

h
(

xy
)

= xf
(

y
)

+ lim
n→∞

g(knx)
kn

y, (3.21)

for all x, y ∈ A.
Fixm ∈ N. By (3.21), we have

xf
(

kmy
)

= h
(

kmxy
) − lim

n→∞

(

g(knx)
kn

(

kmy
)

)

= kmxf
(

y
)

+ lim
n→∞

(

g(knkmx)
kn

y

)

− km lim
n→∞

(

g(knx)
kn

y

)

= kmxf
(

y
)

+ km lim
n→∞

(

g(kn+mx)
kn+m

y

)

− km lim
n→∞

(

g(knx)
kn

y

)

= kmxf
(

y
)

,

(3.22)

for all x, y ∈ A. Then, xf(y) = x(f(kmy)/km) for all x, y ∈ A and each m ∈ N, and so
by taking m → ∞, we have xf(y) = xh(y). Now, we obtain h = f , since A is with unit.
Replacing y by kny in (3.2), we obtain

∥

∥f
(

kn
(

xy
)) − xf(kny) − kng(x)y∥∥ ≤ ϕ(x, kny), (3.23)
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and hence,

∥

∥

∥

∥

∥

f
(

knxy
)

kn
− xf

(

kny
)

kn
− g(x)y

∥

∥

∥

∥

∥

≤ 1
|k|n ϕ

(

x, kny
) ≤ Lnϕ(x, y), (3.24)

for all x, y ∈ A and each n ∈ N. Letting n tends to infinite, we have

f
(

xy
)

= xf
(

y
)

+ g(x)y. (3.25)

Now, we show that g is a ring derivation. By (3.25), we get

g
(

xy
)

z = f
(

xyz
) − xyf(z)

= xf
(

yz
)

+ g(x)yz − xyf(z)
=
(

xg
(

y
)

+ g(x)y
)

z,

(3.26)

for all x, y, z ∈ A. Therefore, we have g(xy) = xg(y) + g(x)y.

The proof of following theorem is similar to that in Theorem 3.1, hence it is omitted.

Theorem 3.2. Let ϕ : A × A → [0,∞) be a function. Suppose that f, g : A → A are mappings
such that g is additive and

∥

∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ ϕ(x, y),

∥

∥f
(

xy
) − xf(y) − g(x)y∥∥ ≤ ϕ(x, y),

(3.27)

for all x, y ∈ A. If there exists a natural number k ∈ K and 0 < L < 1,

|k|ϕ
(

k−1x, k−1y
)

, |k|ϕ
(

k−1x, y
)

, |k|ϕ
(

x, k−1y
)

≤ Lϕ(x, y), (3.28)

for all x, y ∈ A. Then, f is a generalized ring derivation and g is a ring derivation.

The following results are immediate corollaries of Theorems 3.1 and 3.2 and
Example 2.3.

Corollary 3.3. Let A be a non-Archimedean Banach algebra over Qp, ε > 0, and p1, p2 ∈ (1,∞).
Suppose that f, g : A → A are mappings such that g is additive and

∥

∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ ε(‖x‖p1∥∥y∥∥p2),

∥

∥f(xy) − xf(y) − g(x)y∥∥ ≤ ε(‖x‖p1∥∥y∥∥p2),
(3.29)

for all x, y ∈ A. Then, f is a generalized ring derivation and g is a ring derivation.
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Corollary 3.4. Let A be a non-Archimedean Banach algebra over Qp, ε > 0 and p1, p2, p1 + p2 ∈
(−∞, 1). Suppose that f, g : A → A are mappings such that g is additive and

∥

∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ ε(‖x‖p1∥∥y∥∥p2),

∥

∥f
(

xy
) − xf(y) − g(x)y∥∥ ≤ ε(‖x‖p1∥∥y∥∥p2),

(3.30)

for all x, y ∈ A. Then, f is a generalized ring derivation and g is a ring derivation.
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